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NONASYMPTOTIC ANALYSIS OF SEMIPARAMETRIC
REGRESSION MODELS WITH HIGH-DIMENSIONAL

PARAMETRIC COEFFICIENTS1

BY YING ZHU

Michigan State University

We consider a two-step projection based Lasso procedure for estimating
a partially linear regression model where the number of coefficients in the
linear component can exceed the sample size and these coefficients belong to
the lq -“balls” for q ∈ [0,1]. Our theoretical results regarding the properties of
the estimators are nonasymptotic. In particular, we establish a new nonasymp-
totic “oracle” result: Although the error of the nonparametric projection per
se (with respect to the prediction norm) has the scaling tn in the first step, it
only contributes a scaling t2

n in the l2-error of the second-step estimator for
the linear coefficients. This new “oracle” result holds for a large family of
nonparametric least squares procedures and regularized nonparametric least
squares procedures for the first-step estimation and the driver behind it lies
in the projection strategy. We specialize our analysis to the estimation of a
semiparametric sample selection model and provide a simple method with
theoretical guarantees for choosing the regularization parameter in practice.

1. Introduction. Semiparametric regression modeling plays an important
role in the statistics and econometric literature as it retains the flexibility of non-
parametric models while avoiding the “curse of dimensionality.” Härdle, Liang
and Gao (2000), Ruppert, Wand and Carroll (2003) and Yatchew (2003) provide
detailed discussions on a variety of semiparametric regression models. The lead-
ing example of semiparametric regression models is the partially linear regression
introduced by Engle et al. (1986):

(1) Yi = Xiβ
∗ + g

(
γ ∗
i

)+ ηi,

where {ηi}ni=1 is a zero-mean unobserved random vector, {Yi,Xi, γ
∗
i }ni=1 are ob-

served data, and E[ηi |γ ∗
i , Xi] = 0. In this paper, we focus on univariate γ ∗

i only;
g(·) is an unknown function of the single variable γ ∗

i ; β∗ is a p-dimensional vec-
tor of unknown coefficients of main interests and its j th component is denoted by
β∗

j . There is a rich literature on estimations of (1) where the dimensions of β∗ is
fixed or small relative to n and β∗ is exactly sparse (i.e., it belongs to the l0-“ball”);
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see, for example, Chen (1988), Robinson (1988), Donald and Newey (1994), Yu
and Ruppert (2002). Some variable selection procedures are also available: Bunea
(2004) and Bunea and Wegkamp (2004) develop model selection criteria for (1)
with i.i.d. data while Fan and Li (2004) propose a profile least squares procedure
with longitudinal data; Liang and Li (2009) develop penalized least squares and
penalized quantile regression for (1) with i.i.d. data where the covariates are con-
taminated with additive errors. All these aforementioned papers focus on the case
where p is small relative to n and β∗ belongs to the l0-“ball.”

Many important statistical models can be in fact transformed into (1). One in-
stance concerns the sample selection model in econometrics:

Y1i = 1
{
Wiθ

∗ + ε1i > 0
}
,(2)

Yi = Xiβ
∗ + ε2i whenever Y1i = 1,(3)

E(ε2i |Wi,Xi, Y1i = 1) = g
(
Wiθ

∗),(4)

where β∗ is a p-dimensional vector of unknown coefficients of interests and θ∗ is
a d-dimensional vector of unknown nuisance parameters; g(·), referred to as the
“selection bias,” is an unknown function of the single index Wiθ

∗; ε1is and ε2is are
zero-mean unobserved random errors; Wis, Xis, Y1is and Yis are observed data.
For example, Y1i indicates whether individual i worked or not whereas Yi is ac-
tual hours i worked if Y1i = 1. In social science, observational studies based on
selected samples (i.e., units with Y1i = 1) like the previous example are common.
When a sample, intentionally or unintentionally, is based in part on values taken
by a dependent variable, parameter estimates without corrective measures may be
inconsistent. Selection may result from self-selection, where the outcome of inter-
est is determined in part by the individual choice of whether or not to participate
in the activity of interest. It can also result from endogenous stratification, where
those who participate in the activity of interest are deliberately oversampled with
an extreme case being sampling only participants.

In the classical low-dimensional sample selection models, parameter estimates
obtained from OLS on (3) may be inconsistent unless corrective measures are
taken [see, e.g., Gronau (1973); Heckman (1976); Ahn and Powell (1993); Newey
(2009)]. Equation (4) is known as the “single-index” restriction used in Ahn and
Powell (1993) and Newey (2009). In particular, it is implied by independence of
the errors (ε1i , ε2i ) and the covariates (Wi,Xi). Note that equations (2)–(4) imply
(1) with γ ∗

i = Wiθ
∗ when Y1i = 1, and by construction, E[ηi |Wi,Xi, Y1i = 1] = 0.

Consequently, a consistent estimator of β∗ based on (1) and the subsample with
Y1i = 1 is not contaminated by the sample selectivity bias.

Given an estimate θ̂ of θ∗, a natural way to estimate the linear coefficients β∗
consists of two steps. The first step (projection) uses nonparametric regression to
obtain the partial residuals, a commonly used idea in the estimation of partially
linear models [see, e.g., Robinson (1988); Donald and Newey (1994); Liang and
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Li (2009)]. The second step is an l1-penalized least squares estimator (the Lasso)
[Tibshirani (1996)] using the partial residuals from the first step. Upon the avail-
ability of the estimate β̂ for β∗, an estimator for the nonparametric component g(·)
can be obtained by performing a nonparametric regression where β∗ is surrogated
with β̂ . This projection-based Lasso procedure is intuitive and can be easily im-
plemented using built-in routines in standard software packages (e.g., matlab, R).
It decomposes the joint estimation of the high-dimensional linear coefficients and
the nonparametric component into sequential estimations with each searching over
a much smaller parameter space. The first-step estimation is easily paralleable as
it involves solving p + 1 independent subproblems and each subproblem can be in
general solved with an efficient algorithm.

In this paper, we study the aforementioned procedures by allowing the dimen-
sion of β∗, p, to exceed n; moreover, β∗ belongs to the lq -“balls” for q ∈ [0,1].
Throughout this paper, we will refer to β∗ as the high-dimensional linear coeffi-
cients and g as the nonparametric component. Our analysis differs from the ex-
isting approaches in the following aspects. First, the theoretical guarantees in this
paper are nonasymptotic in nature, while the results in previous literature such as
Chen (1988), Robinson (1988), Donald and Newey (1994), Yu and Ruppert (2002),
Liang and Li (2009) and Liang et al. (2010) are asymptotic. Complementary to the
asymptotic “oracle” results from existing literature [e.g., Chen (1988); Liang and
Li (2009); Zhu, Dong and Li (2013)] which says the coefficients in the linear com-
ponent can be estimated asymptotically as well as if the unknown nonparametric
component were known, we derive a new nonasymptotic “oracle” result: if the er-
ror of the nonparametric projection per se (with respect to the prediction norm) has
the scaling tn in the first step of our procedure, it only contributes a scaling t2

n in
the l2-error of the second-step estimator for β∗, where tn is related to the “critical
radius” for the local complexity of a function class—a notion used in nonparamet-
ric literature [e.g., van der Vaart and Wellner (1996); van de Geer (2000); Bartlett
and Mendelson (2002); Koltchinskii (2006); Wainwright (2015)]. This new “ora-
cle” result is derived for a large family of nonparametric least squares estimators
and regularized nonparametric least squares estimators for the first step. The driver
behind this “oracle” result lies in the projection strategy.

Second, our analysis allows β∗ to belong to the lq -“balls” for q ∈ [0,1], which
covers a spectrum of sparsity cases (exact and approximate), while the analyses
in previous literature such as Bunea (2004), Bunea and Wegkamp (2004), Liang
and Li (2009) and Liang et al. (2010) focus on the case where β∗ is exactly sparse
(i.e., it belongs to the l0-“ball”). This distinction together with the use of l1-penalty
in this paper makes our analysis a novel contribution to the existing literature on
semiparametric regression. We further specialize our nonasymptotic analysis to
the estimation of a leading case of the semiparametric model (2)–(4) where the
coefficient vector θ∗ in (2) has a dimension (d) which can also exceed n, and θ∗
belongs to the lq -“balls” for q ∈ [0,1]. While allowing (4) to be nonparametric, we
focus on the case where ε1i in (2) has a standard normal distribution given that this
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model is the most widely applied for studying sample selectivity in social science
[e.g., Wooldridge (2002)]. To the best of our knowledge, these results are also new
to econometrics.

In our problem with p ≥ n or even p � n, the p × p random matrix v̂T v̂
n

has rank at most n [where v̂j is the estimate of the true partial residuals vj =
(Xij − E(Xij |γ ∗

i ))ni=1 for j = 1, . . . , p]. This singularity issue plus the estima-
tion errors in (v̂j )

p
j=1 from the p nonparametric regressions in the first step pose

a substantial challenge in the nonasymptotic analysis of our two-step procedure.
In the standard high-dimensional sparse linear regression where the covariates are
perfectly observed and absent from estimation errors, lower restricted eigenvalue
(LRE) conditions [see, e.g., Bickel, Ritov and Tsybakov (2009); Meinshausen and
Yu (2009); Bühlmann and van de Geer (2011); Negahban et al. (2012)] are often
used to establish the error bounds. However, in our setting, guarantees for the ran-
dom matrix v̂T v̂

n
to satisfy these existing high-level assumptions are not automatic

and require careful verifications. We provide detailed analysis which shows that
an LRE condition is satisfied by 1

n
v̂T v̂ with high probability when it is satisfied by

the population matrix E[vT
i vi].

Section 2 describes the estimation procedure and Section 3 provides prelimi-
naries to the identification assumptions on the models of our interests. General
upper bounds on the l2-errors of the estimators for the high-dimensional linear
coefficients in the standard partially linear model (1) are established in Section 4.
Section 5.1 presents nonasymptotic bounds for the parametric component and non-
parametric component, respectively, along with a result on variable selection con-
cerning a leading case of the semiparametric model (2)–(4) when it is estimated by
the procedure in Section 2. For this estimator, we also provide a practical method
with theoretical guarantees for choosing the regularization parameter and evaluate
it with Monte-Carlo simulations in Section 5.2. Section 6 discusses future direc-
tions of this research. Proofs of the main results are collected in Appendix A, with
the remaining technical lemmas and proofs contained in Appendix S. Both Appen-
dices are included in the supplementary materials [Zhu (2017)].

Notation. The lq -norm of a p-dimensional vector � is denoted by |�|q ,
1 ≤ q ≤ ∞ where |�|q := (

∑p
j=1 |�j |q)1/q when 1 ≤ q < ∞ and |�|q :=

maxj=1,...,p |�j | when q = ∞. For a matrix A ∈ R
p1×p , write |A|∞ := maxi,j |aij |

to be the elementwise l∞-norm of A. The l2-operator norm, or spectral norm of
the matrix A corresponds to its maximum singular value, defined as ‖A‖2 :=
sup�∈S |A�|2, where S = {� ∈ R

p||�|2 = 1}. The l∞-matrix norm (maximum
absolute row sum) of A is denoted by ‖A‖∞ := maxi

∑
j |Aij | (note the difference

between |A|∞ and ‖A‖∞). For a square matrix A ∈ R
p×p , denote its minimum

eigenvalue by λmin(A). For a vector � ∈ R
p , let J (�) = {j ∈ {1, . . . , p}|�j 	= 0}

be its support, that is, the set of indices corresponding to its nonzero compo-
nents �j . The cardinality of a set J ⊆ {1, . . . , p} is denoted by |J |. Define
Pn := 1

n

∑n
i=1 δXi

that places a weight 1
n

on each observation Xi for i = 1, . . . , n,
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and the associated L2(Pn)-norm of the vector � := {�(Xi)}ni=1, denoted by |�|n,

is given by [ 1
n

∑n
i=1(�(Xi))

2] 1
2 . For functions f (n) and g(n), write f (n) � g(n)

to mean that f (n) ≥ cg(n) for a universal constant c ∈ (0,∞) and similarly,
f (n) � g(n) to mean that f (n) ≤ c′g(n) for a universal constant c′ ∈ (0,∞),
and f (n) � g(n) when f (n) � g(n) and f (n) � g(n) hold simultaneously. Also
denote max{a, b} by a ∨ b and min{a, b} by a ∧ b.

2. Estimation procedures. We first present the general framework for esti-
mating the high-dimensional linear coefficients β∗ and the nonparametric compo-
nent g(·) in (1). We then provide a specific example of the general procedure for
estimating a leading case of the semiparametric model (2)–(4).

The two-step estimator of the high-dimensional linear coefficients. First-step
estimation. To simplify the notation, we write, for j = 1, . . . , p, E(Xij |γi) :=
mj(γi), Ê(Xij |γi) := m̂j (γi), E(Yi |γi) := m0(γi), and Ê(Yi |γi) := m̂0(γi). To es-
timate model (2)–(4) via (1), we assume that a surrogate γ̂i = Wiθ̂ for γ ∗

i = Wiθ
∗

is available for now. For the standard partially linear model (1) when γ ∗
i is an ob-

served variable, simply define γ̂i := γ ∗
i . For an estimator of mj(γ

∗
i ), we focus on

the following least squares estimators or the regularized least squares estimators:

m̂j ∈ arg min
m̃j∈Fj

{
1

2n

n∑
i=1

(
zij − m̃j (γ̂i)

)2}
,(5)

m̂j ∈ arg min
m̃j∈Fj

{
1

2n

n∑
i=1

(
zij − m̃j (γ̂i)

)2 + λnj,2|m̃j |2Fj

}
,(6)

where | · |Fj
is a norm associated with the function class Fj and λnj,2 > 0 is a

regularization parameter and zi0 = yi and zij = xij for each j = 1, . . . , p. For
the partially linear model (1) with observed γ ∗

i , we want to point out that the
procedures above will not work when γ ∗

i has a dimension that is large relative to
n unless Fj has an additive decomposition structure.

A nonparametric regression problem like (5)–(6) is a standard setup in many
modern statistics books [e.g., van de Geer (2000); Wainwright (2015)]. Examples
of (5) include the linear regression, sparse linear regressions, convex regressions
and Lipschitz Isotonic regressions. Examples of (6) include sieves-based estima-
tors and kernel ridge regressions (KRR). In this paper, we let Fj in (6) be a repro-
ducing kernel Hilbert space equipped with the norm | · |Fj

and the solution to (6) is
known as the KRR estimate. By Lagrangian duality, for a properly chosen radius
R̄j > 0, the minimization problem in (6) can be reformulated as

(7) min
m̃j∈Fj

1

n

n∑
i=1

(
zij − m̃j (γ̂i)

)2 such that |m̃j |Fj
≤ R̄j .
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Second-step estimation. An estimator of the high-dimensional linear coefficients
β∗ can be obtained by performing the following Lasso program:

(8) β̂ ∈ argmin
β∈Rp

: 1

2n
|v̂0 − v̂β|22 + λn,3

p∑
j=1

σ̂vj
|βj |,

where λn,3 ≥ 0 is some regularization parameter, v̂ = (v̂1, . . . , v̂p) with v̂j =
(Xij −m̂j (γ̂i))

n
i=1, and v̂0 = (Yi −m̂0(γ̂i))

n
i=1. For simplicity, we assume v̂j is nor-

malized such that σ̂vj
:=
√

1
n

∑n
i=1 v̂2

ij = 1 for each j = 1, . . . , p in our analysis.
When performing the two-step procedure above to estimate (2)–(4) via (1), pro-
gram (5) or (6) and program (8) only apply to the observations with Y1i = 1; that
is, n =∑n0

i=1 Y1i where n0 is the number of the full sample observations for (2).

Estimator of the nonparametric component. Given the estimate β̂ of β∗, an
estimator for g(·) can be either (9) or (10) as below:

ĝ ∈ arg min
g̃∈F

1

2n

n∑
i=1

(
yi − xiβ̂ − g̃(γ̂i)

)2
,(9)

ĝ ∈ arg min
g̃∈F

{
1

2n

n∑
i=1

(
yi − xiβ̂ − g̃(γ̂i)

)2 + λ∗
n|g̃|2F

}
,(10)

where λ∗
n > 0 is a regularization parameter. As in (5)–(6), we define γ̂i := γ ∗

i for
the standard partially linear model (1) when γ ∗

i is an observed variable.

An example. We specialize our general procedure above to estimate a leading
case of the semiparametric model (2)–(4), where ε1i in (2) has a standard normal
distribution (binary probit model), and for every j = 0, . . . , p, mj(·) is assumed to
belong to the class of Lipschitz functions. For an estimator of θ∗, we consider the
l1-regularized conditional maximum likelihood estimator:

(11) θ̂ ∈ arg min
θ∈Rd

{
− 1

n0

n0∑
i=1

y1iφ1(wiθ) + 1

n0

n0∑
i=1

φ2(wiθ) + λn0,1|θ |1
}
,

where λn0,1 ≥ 0 is a regularization parameter, φ1(wiθ) = log �(wiθ)
1−�(wiθ)

, and
φ2(wiθ) = − log[1 − �(wiθ)] [�(·) is the standard normal c.d.f.].

We now provide an estimator based on Lipschitz regression for the first step
(nonparametric projection). Note that a function f : [a, b] →R is L-Lipschitz if

(12)
∣∣f (t) − f

(
t ′
)∣∣≤ L

∣∣t − t ′
∣∣

for all t, t ′ ∈ [a, b]. When mj satisfies the L-Lipschitz assumption, we can restrict
m̃j in (5) to be in the class of L-Lipschitz functions. As a result, program (5) can be
converted to an equivalent finite-dimensional problem by applying the constraint
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(12) to each of the sampled points γ̂i = wiθ̂ so that there must exist a real-valued
vector (z̃ij )

n
i=1 which satisfies (14) below:

(ẑij )
n
i=1 ∈ arg min

(z̃ij )ni=1

{
1

2n

n∑
i=1

(zij − z̃ij )
2

}

(13)
s.t. |z̃ij − z̃i′j | ≤ L|γ̂i − γ̂i′ | for all i < i ′, i, i ′ = 1, . . . , n.

Given an optimal solution (ẑij )
n
i=1, a Lipschitz function m̂j can be constructed

by interpolating linearly between ẑij s and the resulting function m̂j is an estimate
of mj . Moreover, one can easily see that m̂j (γ̂i) = ẑij . When mj(·) is assumed
to be a monotonic Lipschitz function, additional monotonicity constraints can be
exploited together with the Lipschitz constraints in the convex program above.
Kakade et al. (2011) provides a computationally efficient algorithm with provable
guarantees for this type of minimization problems. Cross-validation methods can
be used to select the Lipschitz constant L.

Given γ̂i = wiθ̂ and m̂j (γ̂i), we can then use (8) to estimate β∗. The resulting
estimator together with θ̂ can be plugged into (9) to estimate g(·).

3. Preliminaries. We first formalize a notion of “sparsity” by the lq -“balls”
which is used in Ye and Zhang (2010), Raskutti, Wainwright and Yu (2011) and
Negahban et al. (2012).

DEFINITION 1 (lq -“sparsity”). The lq -“balls” of “radius” Rq for q ∈ [0,1] are
defined by

Bp
q (Rq) :=

{
β ∈ R

p||β|qq =
p∑

j=1

|βj |q ≤ Rq

}
for q ∈ (0,1],

Bp
0 (R0) :=

{
β ∈ R

p||β|0 =
p∑

j=1

1{βj 	= 0} ≤ R0

}
for q = 0.

REMARK. For example, the exact sparsity on β corresponds to the case q = 0
with R0 = k, which says that β has at most k nonzero components. In the more
general setting q ∈ [0,1], membership in Bp

q (Rq) has various interpretations and
one of them involves how quickly the ordered |β(j)|s decay where |β(j)| ≤ C∗j−ζ

for some positive constants (C∗, ζ ).

The following definition is in regard to the so-called “Lower Restricted Eigen-
value” (LRE) of E[vT

i vi], related to the identification of our models.

DEFINITION 2 (LRE). For a subset Sτ ⊆ {1,2, . . . , p} and all nonzero � ∈
C(Sτ ) ∩ Sδ where

C(Sτ ) := {� ∈ R
p : |�Sc

τ
|1 ≤ 3|�Sτ |1 + 4

∣∣β∗
Sc

τ

∣∣
1

}
,
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Sτ := {j ∈ {1,2, . . . , p} : ∣∣β∗
j

∣∣> τ
}
,

(with �Sτ denoting the vector in R
p that has the same coordinates as � on Sτ and

zero coordinates on the complement Sc
τ of Sτ ), and

Sδ := {� ∈ R
p : |�|2 ≥ δ

}
,

we say the LRE condition holds if there exists a κL > 0 such that the matrix �v =
E[vT

i vi] satisfies

(14) c∗κL ≤ �T
E[vT

i vi]�
|�|22

,

where vi = (Xij −E(Xij |γ ∗
i ))

p
j=1 and c∗ > 0 is a universal constant. The choices

of δ and τ will be specified in Section 4.

REMARK. As an example, note if λmin(�v) > 0, the LRE condition holds with
respect to κL = λmin(�v). Suppose β∗ ∈ R

p belongs to the lq2 -“balls” Bp
q2(Rq2) for

a “radius” Rq2 and q2 ∈ [0,1]. When β∗ is exactly sparse (namely, q2 = 0), we can
take δ = 0 and choose Sτ = J (β∗) [where J (β∗) denotes the support of β∗], which
reduces the set C(Sτ ) ∩ Sδ to the following cone:

C
(
J
(
β∗)) := {� ∈ R

p : |�J(β∗)c |1 ≤ 3|�J(β∗)|1}.
Let us consider a simpler case where v is observed. The sample analog of

�T �v�

|�|22
being bounded away from 0 over the cone C(J (β∗)) is the so-called

lower restricted eigenvalue (LRE) condition on the Gram matrix vT v
n

where v =
(v1, . . . , vp) ∈ R

n×p [see, e.g., Bickel, Ritov and Tsybakov (2009); Meinshausen
and Yu (2009); Bühlmann and van de Geer (2011); and Negahban et al. (2012)].
When β∗ is approximately sparse (namely, q2 ∈ (0,1]), in sharp contrast to the
case of exact sparsity, the set C(Sτ ) is no longer a cone but rather contains a
ball centered at the origin. As a consequence, it is never possible to ensure that
|v�|22

n
is bounded from below for all vectors � in the set C(Sτ ) [see Negahban

et al. (2012) for a geometric illustration of this issue]. For this reason, it is cru-
cial to further restrict the set C(Sτ ) for q2 ∈ (0,1] by intersecting it with the set
Sδ := {� ∈ R

p : |�|2 ≥ δ}. Provided that the parameters δ and τ are suitably cho-
sen, the intersection C(Sτ ) ∩ Sδ excludes many “flat” directions (with eigenvalues
of 0) in the space for the case of q2 ∈ (0,1]. To the best of our knowledge, the ne-
cessity of this additional set Sδ , essential for the approximately sparse cases with
q2 ∈ (0,1], is first recognized explicitly in Negahban et al. (2012). To derive a gen-
eral upper bound on the l2-error of the procedure introduced in Section 2 for β∗,
we use an idea similar to Negahban et al. (2012) in our analysis.

In the problem of our interest, v is unknown and needs to be estimated. We
provide results that imply the LRE condition holds for v̂T v̂

n
with high probability
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when κL > 0. These results provide finite-sample guarantees of the population
LRE condition when the unknown residual v is replaced with its estimate v̂ and
the expectation is replaced with a sample average.

For (2)–(4), the condition κL > 0 is a high-dimensional generalization of the
identification assumption used in the low-dimensional sample selection model lit-
erature [e.g., Ahn and Powell (1993); Newey (2009)].

4. General error bounds on |β̂ − β∗|2 for the partially linear model. This
section provides general upper bounds on |β̂ −β∗|2 for the standard partially linear
model (1) where γ ∗

i is an observed variable and the estimator β̂ for β∗ is obtained
by the two-step procedure described in Section 2. For notational simplicity, in
the theoretical results presented below, we assume the regime of interest is p ≥
(n ∨ 2); the modification to allow p < (n ∨ 2) is trivial. Moreover, we assume that
n� logp. Also, as a general rule for this paper, all the c ∈ (0,∞) constants denote
positive universal constants that are independent of n, p, and Rq2 (and also n0, d

and Rq1 in Section 5). The specific values of these constants may change from
place to place. We impose the following sampling assumption on the model of our
interests.

ASSUMPTION 4.1. The data are i.i.d. with finite second moments.

Recall from programs (5)–(6), m̃j (·) ∈ Fj . We also assume mj(·) ∈ Fj . Define
the shifted version of the function class Fj :

F̄j := {f = f ′ − f ′′ : f ′, f ′′ ∈Fj

}
.

The following regularity assumptions are imposed to obtain the theoretical results
in this section.

ASSUMPTION 4.2. For any j = 0, . . . , p, F̄j is a star-shaped function class;
that is, for any f ∈ F̄j and α ∈ [0,1], αf ∈ F̄j .

REMARK. The star-shaped condition is often seen in literature of nonparamet-
ric statistics [see e.g., Wainwright (2015)]. It is relatively mild; for instance, it is
satisfied whenever the set F̄j is convex and contains the function f = 0. It is also
satisfied, for example, when the underlying Fj is the class of k−sparse linear com-
binations of basis functions ψl(·)s; that is, for f

′ ∈ Fj , f
′
(γ ∗

i ) =∑m
l=1 π∗

l ψl(γ
∗
i )

and π∗ := (π∗
l )ml=1 belongs to the l0−“ball” of “radius” k.

For any radius r̃nj > 0, define the conditional local complexity:

(15) Gn(r̃nj ;Fj ) := Eξ

[
sup

f ∈�(r̃nj ;Fj )

∣∣∣∣∣1n
n∑

i=1

ξif
(
γ ∗
i

)∣∣∣∣∣
∣∣∣{γ ∗

i

}n
i=1

]
,
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where ξis are i.i.d. zero-mean sub-Gaussian variables with parameter at most 1 and
E(ξi |γ ∗

i ) = 0 for all i = 1, . . . , n, and

�(r̃nj ;Fj ) = {f ∈ F̄j : |f |n ≤ r̃nj
}
,

where |f |n :=
√

1
n

∑n
i=1[f (γ ∗

i )]2. For any star-shaped class F̄j (Assumption 4.2),

it can be shown that the function t �→ Gn(t;Fj )

t
is nonincreasing on the interval

(0,∞) (Lemma S.15 in the supplementary materials). Therefore, we can always
find some large enough r̃nj > 0 that satisfies the critical inequality:

(16) Gn(r̃nj ;Fj ) ≤ r̃2
nj

2σ † ,

where σ † is some sub-Gaussian parameter to be defined shortly; moreover, (16)
has a smallest positive solution. In practice, determining the exact value of this
smallest positive solution can be difficult so obtaining reasonable upper bounds
on it is more useful. For this, we describe a method from existing literature. It
is known that the Dudley’s entropy integral can be used in bounding the com-
plexity Gn(r̃nj ;Fj ) in (15) [see, e.g., van de Geer (2000); Bartlett and Mendelson
(2002); Koltchinskii (2006); Wainwright (2015)]. Let Nn(t;�(r̃nj ;Fj )) denote
the t-covering number of the set �(r̃nj ;Fj ) in the L2(Pn) norm. Then the small-
est positive solution to (16) is bounded above by any r̃nj ∈ (0, σ †] such that

(17)
c′

√
n

∫ r̃nj

r̃2
nj

4
√

2σ†

√
logNn

(
t;�(r̃nj ;Fj )

)
dt ≤ r̃2

nj

4σ † .

For popular function classes, the covering number Nn(t;�(r̃nj ;Fj )) is readily
available so we can compute r̃nj based on (17). This method is known to yield
r̃nj with sharp scaling in a wide range of statistical problems, one of which is
illustrated in Section 5.1.

ASSUMPTION 4.3. Define vi0 = Yi −E(Yi |γ ∗
i ) and v = (v1, . . . , vp) ∈ R

n×p

with vij = Xij − E(Xij |γ ∗
i ), j = 1, . . . , p. (i) For any unit vector ρ ∈ R

p , the
random variable ρT vT

i is sub-Gaussian with parameter at most σv where vi is
the ith row of v; for j = 0, . . . , p, vj ∈ R

n is sub-Gaussian with parameter at
most σvj

; (ii) the random variable ηi is sub-Gaussian with parameter at most ση;
σ ∗

v = maxj∈{0,...,p} σvj
and σ = σ ∗

v ∨ ση.

REMARK. In the literature of nonparametric estimation, common measures
of function complexities associated with sub-Gaussian variables can be controlled
with standard techniques as in van der Vaart and Wellner (1996) and van de Geer
(2000). There are some cases where other concentration results [e.g., Ledoux
(1995/97); Bobkov and Ledoux (2000)] may provide sharper tail probabilities
when we relax the identicalness of {ηi}ni=1 and {vij }ni=1 for each j = 0, . . . , p.
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These cases include: vj for j = 0, . . . , p and η (i) have strongly log-concave dis-
tributions (defined below) for some ϕvj

> 0 and ϕη > 0; or, (ii) are bounded vectors
such that for every i = 1, . . . , n, vij and ηi are supported on the interval (a′

vj
, a′′

vj
)

with Bvj
:= a′′

vj
− a′

vj
, and on (a′

η, a
′′
η) with Bη := a′′

η − a′
η.

DEFINITION 3 (Strongly log-concave distributions). A distribution with den-
sity p (with respect to the Lebesgue measure) is a strongly log-concave distribu-
tion if the density p(x) = exp(−ψ(x)) where the function ψ : Rn →R is strongly
convex, meaning there is some ϕ > 0 such that

λψ(x) + (1 − λ)ψ(y) − ψ
(
λx + (1 − λ)y

)≥ ϕ

2
λ(1 − λ)|x − y|22

for all λ ∈ [0,1], and x, y ∈ R
n.

REMARK. Any Gaussian distribution with covariance matrix � � 0 is
strongly log-concave with parameter ϕ = λmin(�

−1). Moreover, there are vari-
ous non-Gaussian distributions that are also strongly log-concave.

With all the previous “ingredients” in hand, we introduce the following quanti-
ties which are related to the sources of statistical errors in |β̂ − β∗|2. Let

T0 = c0 max
{
T2,T �

2 ,T3
};

T2 = (∣∣β∗∣∣
1 ∨ 1

)
max

j∈{0,...,p} t
2
nj for any tnj ≥ rnj ,

where rnj > 0 is the smallest radius satisfying (16) with σ † = σ ∗
v ;

T �
2 = max

j∈{1,...,p} r
′2
nj ,

where r ′
nj > 0 is the smallest radius satisfying (16) with σ † = ση;

T3 = max
j∈{1,...,p}σvj

ση

√
logp

n
.

The following assumption concerns the LRE κL defined in (14).

ASSUMPTION 4.4. The coefficient vector β∗ ∈ R
p belongs to the lq2 -“balls”

Bp
q2(Rq2) for a “radius” Rq2 and q2 ∈ [0,1]. The condition κL > 0 holds over the

restricted set C(J (β∗)) with τ = 0 and δ = 0 for the exact sparsity case (q2 = 0

with Rq2 = k2), and over C(Sτ ) ∩ Sδ with τ = T0
κL

and δ = c3κ
−1+ q2

2
L R

1
2
q2T

1− q2
2

0 for
the approximate sparsity case (q2 ∈ (0,1]), respectively.

The following theorem (Theorem 4.1) provides a general upper bound on the
error |β̂ − β∗|2 when the first-step estimation concerns a program as in (5).
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THEOREM 4.1. For model (1) where γ ∗
i is an observed variable, consider the

procedure based on (5) with γ̂i := γ ∗
i and (8). Let Assumptions 4.1–4.4 hold and

λn,3 = T0 in (8). Assume

(18) Rq2T
−q2

0 max
{
κL

(
σ 4

v

κ2
L

∨ 1
)

logp

n
, t̄2

n

}
� κ

1−q2
L ,

where t̄n = maxj∈{0,...,p} tnj . Then, for some universal constants c > c3 > 0 with
c3 given in Assumption 4.4,

(19)
∣∣β̂ − β∗∣∣

2 ≤ cR
1
2
q2

κ
1− q2

2
L

T 1− q2
2

0

with probability at least 1 − c′
0 exp(−c′

1 logp) − c′
2 exp(−c′

3
nt̄2

n

σ 2 + c′
4 logp).

REMARK (on Theorem 4.1). When vj s and η have strongly log-concave dis-
tributions with parameters ϕvj

> 0 and ϕη > 0, respectively, c′
3σ

−2 in the proba-

bility guarantee for Theorem 4.1 can be replaced by 1
2 minj∈{0,...,p} ϕvj

∧ϕη; when
vij s and ηis are supported on (a′

vj
, a′′

vj
) with Bvj

:= a′′
vj

− a′
vj

, and on (a′
η, a

′′
η)

with Bη := a′′
η − a′

η, respectively, c′
3σ

−2 can be replaced by 1
4(maxj∈{0,...,p} B2

vj
∨

B2
η)−1. Note that in (18)–(19), we may take Rq2 = |β∗|q2

q2 for q2 ∈ (0,1] and
Rq2 = |β∗|0 for q2 = 0.

Condition (18) in Theorem 4.1 ensures that with high probability, v̂T v̂
n

satisfies
the LRE condition over the restricted sets specified in Assumption 4.4—a finite-
sample guarantee of the population identification condition. From Theorem 4.1, it
can be seen that the general upper bound on |β̂ − β∗|2 depends on two sources
of errors. The terms tnj (in T2) and r ′

nj (in T �
2 ) are related to the statistical errors

of the nonparametric projection step and T3 is related to the statistical error of the
Lasso estimation. The factor |β∗|1 in T2 is related to the fact that the estimator
uses v̂ to surrogate for the unknown v. Other surrogate-type Lasso estimators such
as the one in Rosenbaum and Tsybakov (2013) also involve the factor |β∗|1 in the
choice of their regularization parameter and error bounds.

When setting tnj = rnj in T2, we note the statistical error contributed by the
nonparametric projection step is maxj r2

nj instead of the optimal rate maxj rnj that

one would expect from the nonparametric regressions as (5). Note that maxj r2
nj <

maxj rnj if maxj rnj < 1; similarly, in terms of T �
2 , maxj r ′2

nj < maxj r ′
nj if

maxj r ′
nj < 1. As long as

(20)
{[(∣∣β∗∣∣

1 ∨ 1
)

max
j∈{0,...,p} r

2
nj

]
∨
[

max
j∈{1,...,p} r

′2
nj

]}
� T3,

the scaling of the upper bound on |β̂ − β∗|2 is as good as if the unknown non-
parametric component were known. This result establishes a new nonasymptotic
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“oracle” result. One of the drivers behind this oracle result lies on the terms:

(21)

∣∣∣∣∣1n
n∑

i=1

v̂
ij

′

[
m̂j (γ

∗
i ) − mj(γ

∗
i )

]∣∣∣∣∣,
∣∣∣∣∣1n

n∑
i=1

ηi

[
m̂j (γ

∗
i ) − mj(γ

∗
i )

]∣∣∣∣∣.
As an example for the standard partially linear model (1), suppose that Fj is the

class of linear combinations of basis functions ψl(·)s for all j = 0, ..., p such that
for f ∈ Fj , f (γ ∗

i ) =∑m
l=1 π∗

l ψl(γ
∗
i ) and π∗ := (π∗

l )ml=1 belongs to the l1−ball of
radius R. Then, under an LRE assumption and a normalization on the matrix of co-
variates formed by the basis functions, if σ ∗

v � 1, ση � 1, and m ≥ p, applying the
Lasso procedure in the nonparametric projection step would yield upper bounds

with scaling R(
logm

n
)

1
2 on the quantities in (21). These scaling attain the sharp

rates on r2
nj and r

′2
nj . If π∗ belongs to the l0−“ball” of “radius” k, then the standard

Lasso procedure would yield upper bounds with scaling k logm
n

on the quantities in

(21). These scaling almost achieve the sharp rates
k log m

k

n
on r2

nj and r
′2
nj . We point

out that while the preceding examples concern functions of the univariate γ ∗
i , sim-

ilar ideas can apply to multivariate functions, where sparsity assumptions become
even more crucial for producing manageable classes of models.

Further note that, since Theorem 4.1 holds for any tnj ≥ rnj , the choice of tnj

incurs a trade-off between T2 and c′
2 exp(−c′

3
nt̄2

n

σ 2 + c′
4 logp). This is a general phe-

nomenon for these tail bounds. When (20) holds, tnj can be chosen in the way
T2 � T3 so that the probability guarantee may be improved relative to the choice
tnj = rnj .

The following theorem (Theorem 4.2) provides a general upper bound on the
error |β̂ − β∗|2 when the first-step estimation concerns a regularized program as
in (6) where Fj is a reproducing kernel Hilbert space for j = 0, . . . , p. For Theo-
rem 4.2, let the local complexity measure Gn(r̃nj ;Fj ) be defined over the set

�(r̃nj ;Fj ) = {f ∈ F̄j : |f |n ≤ r̃nj , |f |Fj
≤ 1
};

recalling R̄j in (7), let T2 = (|β∗|1 ∨ 1)maxj∈{0,...,p}{(R̄j ∨ 1)t2
nj } where tnj ≥

(rnj ∨ c′′
√

σ 2

n
) for some universal positive constant c′′ that is sufficiently large;

T �
2 = maxj∈{1,...,p}{(R̄j ∨ 1)r ′2

nj }. The definitions for rnj , r ′2
nj and T3 remain the

same as those for Theorem 4.1.

THEOREM 4.2. For model (1) where γ ∗
i is an observed variable, con-

sider the procedure based on (6) with γ̂i := γ ∗
i and (8). For j = 0, . . . , p, let

λnj,2 = (2 + ς)t2
nj in (6) for any constant ς ≥ 0 and λn,3 = T0 in (8); also sup-

pose Assumptions 4.1–4.4 hold, |mj |Fj
≤ 1, and condition (18) is satisfied with

t̄2
n := maxj∈{0,...,p}{(R̄j ∨ 1)t2

nj }. Then the upper bound (19) holds (where T2 and
T �

2 correspond to the ones defined for Theorem 4.2) with probability at least

1 − c′
0 exp(−c′

1 logp) − c′′
2 exp(−c′′

3
nmaxj∈{0,...,p} t2

nj

σ 2 + c′′
4 logp).
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REMARK. Theorem 4.2 has similar implications as Theorem 4.1. In the
context where Fj is a reproducing kernel Hilbert space for j = 0, . . . , p, it is
well understood that computing the kernel ridge regression estimate (6) can be
based upon the empirical kernel matrix. Moreover, Mendelson (2002) shows that

Gn(r̃nj ;Fj )�
√

1
n

∑n
i=1 min{r̃2

nj , μ̃i} where μ̃1 ≥ μ̃2 ≥ · · · ≥ μ̃n ≥ 0 are the eigen-
values of the underlying kernel matrix for the estimate. Consequently, we can seek
an upper bound on the smallest positive solution to (16) by solving for r̃nj via√

1
n

∑n
i=1 min{r̃2

nj , μ̃i} ≤ r̃2
nj

2σ † . This method is known to yield r̃nj with sharp scal-
ing for various choices of kernels.

5. A leading case of the semiparametric sample selection model. In this
section, we specialize our analysis to the estimation of a leading case of model (2)–
(4). In the following, n =∑n0

i=1 Y1i denotes the number of the selected observations
for (3) and n0 is the number of the full sample observations for (2). Without loss
of generality, we assume that the selected sample consists of the first n out of n0

observations. For notational simplicity, in the theoretical results presented in this
section, we assume the regime of interest is p ≥ (n ∨ 2) and d ≥ (n0 ∨ 2); the
modification to allow p < (n ∨ 2) and/or d < (n0 ∨ 2) is trivial. Moreover, we
assume that n� logp and n0 � logd .

5.1. Error bounds and variable selection. We begin with a lemma on the radii
rnj and r ′

nj in Section 4; this lemma is based on (17) and results on the metric
entropy of Lipschitz functions.

LEMMA 5.1. Suppose the data are i.i.d. and the matrix W consists of bounded
elements; for j = 0, . . . , p, suppose mj(·) belongs to the class of L-Lipschitz func-
tions and m̃j in (5) is constrained to be in the same class. Then maxj∈{0,...,p} rnj ≤
c′

0(
|θ∗|1Lσ ∗2

v
n

)
1
3 and maxj∈{1,...,p} r ′

nj ≤ c′′
0(

|θ∗|1Lσ 2
η

n
)

1
3 .

The resulting estimator obtained using the framework described in Section 2 for
model (2)–(4) is referred to as β̂ := β̂HSEL (a candidate for β̂HSEL is provided in the
example in Section 2); β̂HSEL together with θ̂ can be plugged into (9) to estimate
g(·). We now provide an upper bound for |β̂HSEL − β∗|2 based on Lemma 5.1.

THEOREM 5.1. Suppose Assumptions 4.3–4.4 hold with γ ∗
i = Wiθ

∗ and T0

defined in (22). Also let the conditions in Lemma 5.1 hold and U ≥
1
n

∑n
i=1 L2(Wiθ̂ − Wiθ

∗)2 with probability at least 1 − α1 and
√
U � σ ∗

v . De-

fine T1 = M
√
U with M = [σ ∗

v (|β∗|1 ∨ 1)] ∨ ση and the definitions for T2, T �
2 and

T3 remain the same as those for Theorem 4.1. Assume tnj ≥ c′
0(

|θ∗|1Lσ ∗2
v

n
)

1
3 in T2 is
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chosen such that

T0 � T2 � max
{
T1,T3,

(∣∣β∗∣∣
1 ∨ 1

)( |θ∗|1Lσ ∗2
v

n

) 2
3
,

( |θ∗|1Lσ 2
η

n

) 2
3
}
,(22)

σ 2 logp � n max
j∈{0,...,p} t

2
nj where σ = σ ∗

v ∨ ση.(23)

Suppose λn,3 = T0 and

Rq2T
−q2

0 max
{
κL

(
σ 4

v

κ2
L

∨ 1
)

logp

n
,T , t̄2

n

}
� κ

1−q2
L

with T = maxj∈{1,...,p} σvj

√
U and t̄n = maxj∈{0,...,p} tnj . Then, with probability

at least 1 − α1 − c2 exp(−c3 logp), we have

∣∣β̂HSEL − β∗∣∣
2 ≤ c

√
Rq2

κ
1− q2

2
L

T 1− q2
2

0 .

Lemma 5.2 below provides an upper bound on
√

1
n

∑n
i=1(Wiθ̂ − Wiθ∗)2 in The-

orem 5.1 when ε1i in (2) has a standard normal distribution and θ∗ is estimated
by (11).

ASSUMPTION 5.1. For any unit vector ρ ∈ R
d , the random variable ρT WT

i

(for i = 1, . . . , n0) has a sub-Gaussian parameter at most σW where Wi is the ith
row of W ∈ R

n0×d ; Wj ∈ R
n0×1 (for j = 1, . . . , d) has a sub-Gaussian parameter

at most σWj
; σ ∗

W = maxj∈{1,...,d} σWj
.

ASSUMPTION 5.2. The coefficient vector θ∗ ∈ Bd
q1

(Rq1) for q1 ∈ [0,1] with

“radius” Rq1 . For �W = E[WT
i Wi], 0 < κW

L � �T �W �

|�|22
for all � ∈ C(J (θ∗)) \

{0} (namely, τ 1 = 0, δ1 = 0) for the exact sparsity case of θ∗ with q1 = 0,

Rq1 = k1, and for all nonzero � ∈ C(Sτ 1
) ∩ Sδ1 where τ 1 = c′σ ∗

W

κW
L

√
logd
n0

and

δ1 = c′′(κW
L )−1+ q1

2 R
1
2
q1(σ

∗
W

√
logd
n0

)1− q1
2 for the approximate sparsity case of θ∗

with q1 ∈ (0,1]; �T �W �

|�|22
≤ κW

U < ∞ for all � ∈C(Sτ 1
) \ {0}.

LEMMA 5.2. Suppose the data {Y1i ,Wi}n0
i=1 are i.i.d. and Assumptions 5.1–

5.2 hold; P(Y1i = 1|Wi) is bounded away from 0 and 1; n0 ≥ b0R

2
2−q1
q1 logd and

b′
0Rq1

logd
n

(
√

logd
n0

)−q1 ≤ 1 for some sufficiently large constants b0, b
′
0 > 0 that only

depend on κW
L , κW

U , σW and σ ∗
W . If θ̂ solves program (11) with λn0,1 = c′σ ∗

W

√
logd
n0

,
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then, with probability at least 1 − α = 1 − c′
2 exp(−c′

3 logd),

{
1

n

n∑
i=1

[
Wi

(
θ̂ − θ∗)]2} 1

2

≤ c1
R

1
2
q1

√
κW
U

(κW
L )1− q1

2

(
σ ∗

W

√
logd

n0

)1− q1
2
.

REMARK. If κW
L � 1, κW

U � 1, σ ∗
W � 1, σ ∗

v � 1 and L � 1, with Lemma 5.2,

we have T �R
1
2
q1(
√

logd
n0

)1− q1
2 and T1 � MR

1
2
q1(
√

logd
n0

)1− q1
2 in Theorem 5.1 where

M � (|β∗|1 ∨ 1) ∨ ση; moreover, for q1 = 0 with Rq1 = k1, if n � n0 and |θ∗
j | ≤

b < ∞ for all j ∈ J (θ∗), then

max
{(∣∣β∗∣∣

1 ∨ 1
)( |θ∗|1

n

) 2
3
,

( |θ∗|1σ 2
η

n

) 2
3
}
�M

√
k1 logd

n0

so T0 = c0[(M
√

k1 logd
n0

) ∨ (ση

√
logp

n
)], and consequently,

∣∣β̂HSEL − β∗∣∣
2 ≤ c

√
Rq2

κ
1− q2

2
L

[(
M

√
k1 logd

n0

)
∨
(√

σ 2
η logp

n

)]1− q2
2

with probability at least 1 − c2 exp(−c3 logp) − c′
2 exp(−c′

3 logd). Suppose
|β∗|1 � 1; let us illustrate various choices of t2

nj ≥ r2
nj with the exact sparsity

case of θ∗. Setting

t2
nj � max

{√√√√σ 2
η logp

n|β∗|21
,

√√√√σ 2
η k1 logd

n0|β∗|21
,

√
k1 logd

n0

}
�
(

k1

n

) 2
3
� r2

nj

makes T2 �
√

σ 2
η logp

n
∨[(|β∗|1 ∨ση)

√
k1 logd

n0
] so that (22) holds. Under this choice

of t2
nj , condition (23) in Theorem 5.1 requires that max{

√
nσ 2

η logp

|β∗|21
,

√
n2σ 2

η k1 logd

n0|β∗|21
,√

n2k1 logd
n0

}� σ 2 logp in order to ensure exp(−c′
3

nt̄2
n

σ 2 +c′
4 logp) � exp(−c3 logp).

More generally, when Fj in (5) belongs to a Hölder class of order ν ≥ 1, we
can again apply (17) and results on the metric entropy of νth order smoothness

classes to show that r2
nj � (k1

n
)

2ν
2ν+1 for all j = 0, . . . , p and r ′2

nj � (
k1σ

2
η

n
)

2ν
2ν+1 for all

j = 1, . . . , p. Choosing

t2
nj � max

{√√√√σ 2
η logp

n|β∗|21
,

√√√√σ 2
η k1 logd

n0|β∗|21
,

√
k1 logd

n0

}

yields

∣∣β̂HSEL − β∗∣∣
2 ≤ c

√
Rq2

κ
1− q2

2
L

[√
σ 2

η logp

n
∨
((∣∣β∗∣∣

1 ∨ ση

)√k1 logd

n0

)]1− q2
2
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with probability at least 1 − c2 exp(−c3 logp) − c′
2 exp(−c′

3 logd).

Variable-selection for exactly sparse β∗. The following theorem (Theo-
rem 5.2) establishes a result on the variable selection property of β̂HSEL when
β∗ is exactly sparse (q2 = 0). Theorem 5.2 requires the following assump-
tion.

ASSUMPTION 5.3. ‖E[vT
i,J (β∗)cvi,J (β∗)][E(vT

i,J (β∗)vi,J (β∗))]−1‖∞ ≤ 1−φ for
some constant φ ∈ (0,1].

REMARK. Assumption 5.3 is a population “incoherence condition” similar to
Wainwright (2009). The “incoherence condition” is a refined version of the “ir-
representable condition” in Zhao and Yu (2006) and the “neighborhood stability
condition” by Meinshausen and Bühlmann (2006). Bühlmann and van de Geer
(2011) shows this type of conditions is sufficient and “essentially necessary” for
the Lasso to achieve consistent variable selection.

THEOREM 5.2. Let Assumptions 5.3 and the conditions in Theorem 5.1 hold;
k3

2 logp

n
� b∗ and [(k2

2T )∨ (k2 maxj∈{0,...,p} t2
nj )] � b∗

0 for some b∗
0, b

∗ > 0 depend-

ing only on λmin(E[vT
i,J (β∗)vi,J (β∗)]), φ, and maxj∈{1,...,p} σvj

. Suppose λn,3 =
16−2φ

φ
T0. Then, with probability at least 1 − α1 − c2 exp(−c3 logp), we have:

(a) the support J (β̂HSEL) ⊆ J (β∗); (b) if minj∈J (β∗) |β∗
j | > B̄ , where

B̄ := c′′(16 − 2φ)
√

k2T0

φλmin(E[vT
i,J (β∗)vi,J (β∗)])

then J (β̂HSEL) ⊇ J (β∗), and hence J (β̂HSEL) = J (β∗).

Bounds on the nonparametric selection bias function. For the case where g(·)
belongs to the class of Lipschitz functions,2 we consider the plug-in nonparametric
least squares estimator (9) (e.g., a candidate may be the Lipschitz regression) by
surrogating θ∗ with θ̂ and β∗ with β̂HSEL.

ASSUMPTION 5.4. For any unit vector ρ ∈ R
p , the random variable ρT XT

i

(for i = 1, . . . , n) is sub-Gaussian with parameter at most σX where Xi is the
ith row of X ∈ R

n×p; for all � ∈ C(Sτ ) \ {0} with τ defined in Assumption 4.4,

the matrix �X = E[XT
i Xi] satisfies �T �X�

|�|22
≤ κX

U < ∞; b′′
0Rq2

logp
n

T −q2
0 ≤ 1 for

some sufficiently large constant b′′
0 > 0 that only depends on κX

U , σX and κL; g(·)

2When ε1i and ε2i in (2)–(3) are bivariate normal with var(ε1i ) = var(ε2i ) = 1, the selection bias
function characterized by the Inverse Mills Ratio is a 1-Lipschitz function.
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belongs to the class of L̄-Lipschitz functions and g̃ in (9) is constrained to be in
the same class.

THEOREM 5.3. Define T g
0 = c′ maxl∈{1,2,3,4}{T g

l } where

T g
1 =

( |θ∗|1σ 2
η L̄

n

) 1
3
, T g

2 =
√

κX
U Rq2

κ
1− q2

2
L

T 1− q2
2

0 ,

T g
3 = L̄

R
1
2
q1

√
κW
U

(κW
L )1− q1

2

(
σ ∗

W

√
logd

n0

)1− q1
2
,

T g
4 =

√
L̄
(
κW
L

)q1−1
σηRq1

(
σ ∗2

W logd

n

) 1
4
(

σ ∗2
W logd

n0

) 1−q1
4

.

Let the conditions in Theorem 5.1, Lemma 5.2, and Assumption 5.4 hold. Then, for
the estimator ĝ(·) obtained by (9),

{
1

n

n∑
i=1

[
ĝ(Wiθ̂) − g

(
Wiθ

∗)]2} 1
2

≤ T g
0

with probability at least

1 − c2 exp(−c3 logp) − c′
2 exp

(−c′
3 logd

)− c4 exp
{
−c5

n(T g
0 )2

σ 2
η

}
.

REMARK. Note that T g
1 is expected from the fact that g(·) belongs to the

class of L̄-Lipschitz functions; T g
2 and T g

3 are expected from the statistical errors
of β̂HSEL and θ̂ that we plug into the nonparametric regression (9); T g

4 comes
from controlling the random variable 1

n

∑n
i=1 ηi[Wiθ̂ − Wiθ

∗] using the fact that
E[ηi |Wi,Y1i = 1] = 0 implied by the single index restriction (4).

For the standard partially linear model (1) with the observed variable γ ∗
i , if we

define the local complexity via F in (9) and the associated critical radius r
′g
n in a

similar fashion as (15) and (16) with σ † = ση, respectively, we have

{
1

n

n∑
i=1

[
ĝ
(
γ ∗
i

)− g
(
γ ∗
i

)]2} 1
2

≤ T g
0 := c′′ max

{
r ′g
n ,

√
κX
U Rq2

κ
1− q2

2
L

T 1− q2
2

0

}

with probability at least 1 − c′′
2 exp(−c′′

3 logp) − c′
4 exp{−c′

5
n(T g

0 )2

σ 2
η

}, where T0 is

defined in Theorem 4.1.
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5.2. Monte-Carlo simulations.

Choosing the regularization parameters. We now turn to evaluating the perfor-
mance of β̂HSEL using Monte-Carlo simulations. In practice, the choice of the regu-
larization parameter λn0,1 in (11) is straightforward. On the other hand, the choice
of our last-stage regularization parameter λn,3 in (8) depends on |β∗|1. Guided
by the theoretical specification for λn,3 in Theorem 5.1, we propose a simple algo-
rithm for its practical choice, which consists of two main steps: By over-penalizing,
the first step sets λn,3 to a choice that has a size no smaller than its optimal value
and returns an initial estimator β̂

(1)
HSEL such that (|β̂(1)

HSEL|1 ∨ 1) � (|β∗|1 ∨ 1) with
probability at least 1−c2 exp(−c3 logp)−c′

2 exp(−c′
3 logd); the second step tunes

the amount of regularization and sharpens the rate of convergence using the initial
estimator |β̂(1)

HSEL|1 returned by Step 1.
This algorithm also allows us to account for the size of the noise term η and

the analysis involves a variance-based control which reduces the sub-Gaussian
parameter ση to

√
var(ηi). In what follows, ση := √

var(ηi). We introduce the

quantity T̂1 =
√

(k̂1∨1) logd
n0

where k̂1 = |J (θ̂)| and initialize |β̂(0)
HSEL|1 := (

n0
logd

)
1
4 ,

σ̂
(0)
η := (

n0
logd

)
1
4 ∧ ( n

logp
)

1
4 . The algorithm is described in the following.

Algorithm for setting the regularization parameter λn,3.

1. Over-Penalization: Perform (8) with

λn,3 = λ
(0)
n,3 = T̂ (0)

0 =
[(∣∣β̂(0)

HSEL

∣∣
1T̂1
)∨ (σ̂ (0)

η

√
logp

n

)]

and obtain β̂
(1)
HSEL; form σ̂

(1)
η =

√
1
n

∑n
i=1(v̂i0 − v̂i β̂

(1)
HSEL)2.

2. Adjusted-Penalization: Perform (8) with

(24) λn,3 = λ
(1)
n,3 = T̂ (1)

0 = c

[(
M̂(1)T̂1

)∨ (σ̂ (1)
η

√
logp

n

)]

[where M̂(1) = (|β̂(1)
HSEL|1 ∨ 1) ∨ σ̂

(1)
η ] and obtain β̂

(2)
HSEL.

3. (Optional): Form σ̂
(2)
η =

√
1
n

∑n
i=1(v̂i0 − v̂i β̂

(2)
HSEL)2. By replacing |β̂(1)

HSEL|1
with |β̂(2)

HSEL|1 and σ̂
(1)
η with σ̂

(2)
η in (24), additional adjustment can be applied.

REMARK. Note that the algorithm above works if |β∗|1 � (
n0

logd
)

1
4 and ση �

(
n0

logd
)

1
4 ∧ ( n

logp
)

1
4 . The growth rate condition (

n0
logd

)
1
4 on |β∗|1 and ση are mo-

tivated by looking at the largest possible scalings (on ση and |β∗|1) that lead to
T1 � 1 when q1 = 1 and

√|θ∗|1 � 1 (cf. T1 in the remark following Lemma 5.2).

The other growth rate condition ( n
logp

)
1
4 on ση is stronger than what is needed for
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T3 � 1 and can be indeed increased to ( n
logp

)ε
∗

for ε∗ ∈ (1
4 , 1

2) at the expense of

introducing a possibly larger estimation error in |β̂(1)
HSEL|1 and σ̂

(1)
η . Given that in

problems with i.i.d. data the variance of noise is often assumed to be a constant

which does not grow with n, using ( n
logp

)
1
4 in σ̂

(0)
η for the initialization of the

algorithm is in fact a conservative choice.
A theoretical guarantee for the two-step algorithm above is provided by The-

orem A.1 in Section A.8 of the supplementary materials. In particular, it shows
that under certain conditions, with probability at least 1 − c2 exp(−c3 logp) −
c′

2 exp(−c′
3 logd), (|β̂(1)

HSEL|1 ∨ 1) � (|β∗|1 ∨ 1); moreover, in the second step of

the algorithm, λn,3 = λ
(1)
n,3 = T̂ (1)

0 � T (1)
0 achieve the size needed for Theorem 5.1

and

∣∣β̂(2)
HSEL − β∗∣∣

2 ≤ c′R
1
2
q2

κ
1− q2

2
L

(
T (1)

0

)1− q2
2 ,

with probability at least 1 − c2 exp(−c3 logp) − c′
2 exp(−c′

3 logd), where

(25) T (1)
0 = c max

{
M

√
(|Sτ 1

| ∨ 1) logd

n0
,

√
σ 2

† logp

n

}

with σ 2
† = σ 2

η ∨ Tη and M = (|β∗|1 ∨ 1) ∨ σ†; Tη ≥ |(σ̂ (1)
η )2 − σ 2

η | with prob-
ability at least 1 − c2 exp(−c3 logp) − c′

2 exp(−c′
3 logd) and Tη is defined in

(26) in the supplement. If ση 	= 0, Theorem A.1 requires Tη ≤ 1
2σ 2

η which im-

poses growth conditions on n and n0; consequently, σ 2
† = σ 2

η � (σ̂
(1)
η )2 and

λn,3 = λ
(1)
n,3 = T̂ (1)

0 � T (1)
0 have the optimal scaling. In the case ση = 0, σ 2

† = Tη

as (σ̂
(1)
η )2 still involves a nonnegative estimation error bounded above by Tη.

The quantity |Sτ 1
| denotes the cardinality of the thresholded set

Sτ 1
:= {j ∈ {1,2, . . . , d} : ∣∣θ∗

j

∣∣> τ 1
}

with τ 1 defined in Lemma A.93 in the supplement (also Assumption 5.2 in Sec-
tion 5.1). When |θ∗

Sc
τ1

|1 is sufficiently small as in many important problems [i.e.,

under the condition |θ∗
Sc

τ1
|1 ≤ c2

(|Sτ1 |∨1)

κW
L

√
logd
n0

in Lemma A.9], the estimation

error bound for |θ̂ − θ∗|2 dominates the approximation error bound; this fact
together with the assumptions κW

L � 1, κW
U � 1, and σ ∗

W � 1 in Lemma A.9

yield
√

1
n

∑n
i=1(Wiθ̂ − Wiθ∗)2 � |θ̂ − θ∗|2 �

√
(|Sτ1 |∨1) logd

n0
with probability at

3In Lemma A.9, we use the notation |Sτ 1 | = k1, which is more general than the exact sparsity
parameter k1 defined for Lemma 5.2.
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least 1 − c′
2 exp(−c′

3 logd). Note that the term

√
|Sτ1 | logd

n0
is no greater than

the term R
1
2
q1(
√

logd
n0

)1− q1
2 in Lemma 5.2. This is because in deriving a general

bound on |θ̂ − θ∗|2 with θ∗ ∈ Bd
q1

(Rq1) for Lemma 5.2 in Section 5.1, we uti-

lize |Sτ 1
| ≤ τ

−q1
1 Rq1 for q1 ∈ (0,1] [for q1 = 0, we simply have |Sτ 1

| = |J (θ∗)|];
consequently,

√
|Sτ1 | logd

n0
≤
√

τ
−q1
1 Rq1 logd

n0
� R

1
2
q1(
√

logd
n0

)1− q1
2 . To summarize the

previous observations,

√
(|Sτ1 |∨1) logd

n0
in T (1)

0 (25) provides a sharper upper bound

for
√

1
n

∑n
i=1(Wiθ̂ − Wiθ∗)2 than R

1
2
q1(
√

logd
n0

)1− q1
2 in Lemma 5.2 when |Sτ 1

| ≥ 1

and |θ∗
Sc

τ1
|1 ≤ c2

(|Sτ1 |∨1)

κW
L

√
logd
n0

(without this additional condition, the bound in

Lemma 5.2 is indeed sharp).

In practice, basing on

√
(|Sτ1 |∨1) logd

n0
to set λn,3 is also easier to implement than

basing on R
1
2
q1(
√

logd
n0

)1− q1
2 as we can surrogate |Sτ 1

| with k̂1 = |J (θ̂)|. Under a
“separation condition” on minj∈Sτ1

|θ∗
j | and a “bounded sparse eigenvalue” con-

dition on WT W
n0

, together with the condition |θ∗
Sc

τ1
|1 ≤ c2

(|Sτ1 |∨1)

κW
L

√
logd
n0

, we have

(k̂1 ∨ 1) � (|Sτ 1
| ∨ 1) (see Assumption A.2 and Lemma S.7 in the supplement).

Simulation designs. We simulate data based on model (2)–(3) where W ∈
R

n0×d is a matrix consisted of independent uniform random variables on [−
√

12
2 ,√

12
2 ] with variance 1 and X takes on the first p columns of W . The i.i.d. errors

ε1i ∼ N (0,1) for i = 1, . . . , n0 where n0 denotes the number of observations gen-
erated for equation (2). Conditional on the observations with Y1i = 1, the i.i.d.
errors (ε1i , ε2i) have the following joint normal distribution:

(26) (ε1i , ε2i)∼N
((

0
0

)
,

(
1 �

� 1

))
,

where � ∈ {0,0.9}. Given the structure of (ε1i , ε2i) in (26), g(·) = �
φ(·)
�(·) in (4),

the scaled inverse mills-ratio [�(·) and φ(·) denote the standard normal c.d.f. and
p.d.f., respectively].

We set d = 400, p = 200, and n0 = 300. On average n = 150 observations
will be used for estimating the main equation (3). This setup represents a scenario
where the number of covariates in (2) and (3), respectively, exceeds the number of
observations used to estimate the corresponding equation. We consider two sparse
designs where θ∗

l = 0.5 for l = 1,2,3,201 and β∗
1 = β∗

200 = 1 for both designs. For
l 	= 1,2,3,201 and j 	= 1,200, Design A sets θ∗

l = 0 and β∗
j = 0 (exact sparsity)

while Design B sets θ∗
l = 0.1

l
and β∗

j = 0.1
j

(approximate sparsity). This approxi-
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TABLE 1
Simulation results for d = 400, p = 200, and n0 = 300

a b c d e f g

Design A, � = 0 0.234 0.723 0.767 0 0.373 2 4.2
Design A, � = 0.9 0.230 0.686 0.773 0 0.398 2 4.2
Design B, � = 0 0.230 0.734 0.768 3 × 10−6 0.374 3.1 4.2
Design B, � = 0.9 0.222 0.668 0.782 −3 × 10−6 0.412 2.4 4.2

mate sparsity design is motivated by one of the interpretations for membership in
Bp

q (Rq) discussed in the remark following Definition 1.
Following the process described above, 100 sets of data are generated. We

choose λn0,1 =
√

var(Wij )
logd
n0

=
√

logd
n0

and choose λn,3 according to the algo-
rithm described earlier with three iterations and the choice c = 0.5 in (24) for the
second and third iterations.

Table 1 reports the following: (a) the mean of λn,3 (from the third iteration) over
the 100 trials; (b) 1

100
∑100

t=1 β̂t
1; (c) 1

100
∑100

t=1 β̂t
200; (d) 1

198
∑

j 	=1,200
1

100
∑100

t=1 β̂t
j ;

(e) 1
100
∑100

t=1 |β̂t − β∗|2; (f) 1
100
∑100

t=1
∑200

j=1 1{β̂t
j 	= 0}; (g) 1

100
∑100

t=1
∑400

j=1 1{θ̂ t
j 	=

0}. The results in columns b–g show that our estimator in conjunction with the
algorithm for setting λn,3 performs well for these sparse designs.

6. Future work. Here, we discuss two future directions for this work. First, it
is worth noting that while perfect variable selection of β̂HSEL is a desirable prop-
erty in the sense that it allows us to conduct post-selection inference by performing
low-dimensional procedures on the selected model, we recognize that the condi-
tions required in Theorem 5.2 might be hard to achieve in practice. Therefore,
it is useful to build a bias-corrected post procedure which uses β̂HSEL as an ini-
tial estimate to construct confidence intervals for individual coefficients and linear
combinations of several of them [similar to Zhang and Zhang (2014)].

Second, it may be worthwhile to extend our analysis to allow for non-sub-
Gaussian errors η in (1). There are a couple of ways to relax the sub-Gaussian
condition on the error terms. For example, the square-root Lasso and the piv-
otal Dantzig selector in literature evoke a bound for moderate deviations of
self-normalized sums of random variables which does not require sub-Gaussian
tails. However, compared to the standard Lasso, the square-root Lasso or the
pivotal Dantzig selector involves a more sophisticated optimization algorithm
computation-wise. Another paper by Minsker (2015) that uses a “trick” is also
able to avoid imposing a sub-Gaussian condition on the error terms when deriv-
ing the nonasymptotic bounds for the standard Lasso. It is possible to apply these
techniques in our problem, albeit doing so would distract the main focus of this
paper; therefore, we leave these extensions to future research.
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SUPPLEMENTARY MATERIAL

Supplementary materials for “Nonasymptotic analysis of semiparamet-
ric regression models with high-dimensional parametric coefficients” (DOI:
10.1214/16-AOS1528SUPP; .pdf). This supplement contains two Appendices. Ap-
pendix A provides the proofs for the main results and Appendix S provides the
remaining technical lemmas and proofs.
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