
The Annals of Statistics
2017, Vol. 45, No. 5, 2218–2247
DOI: 10.1214/16-AOS1525
© Institute of Mathematical Statistics, 2017

SPECTRUM ESTIMATION FROM SAMPLES

BY WEIHAO KONG AND GREGORY VALIANT1

Stanford University

We consider the problem of approximating the set of eigenvalues of the
covariance matrix of a multivariate distribution (equivalently, the problem of
approximating the “population spectrum”), given access to samples drawn
from the distribution. We consider this recovery problem in the regime where
the sample size is comparable to, or even sublinear in the dimensionality of
the distribution. First, we propose a theoretically optimal and computation-
ally efficient algorithm for recovering the moments of the eigenvalues of the
population covariance matrix. We then leverage this accurate moment recov-
ery, via a Wasserstein distance argument, to accurately reconstruct the vector
of eigenvalues. Together, this yields an eigenvalue reconstruction algorithm
that is asymptotically consistent as the dimensionality of the distribution and
sample size tend toward infinity, even in the sublinear sample regime where
the ratio of the sample size to the dimensionality tends to zero. In addition to
our theoretical results, we show that our approach performs well in practice
for a broad range of distributions and sample sizes.

1. Introduction. One of the most insightful properties of a multivariate distri-
bution (or dataset) is the vector of eigenvalues of the covariance of the distribution
or dataset. This vector of eigenvalues—the “spectrum”—contains important infor-
mation about the structure and geometry of the distribution. Indeed, the first step
in understanding many high-dimensional distributions is to compute the eigenval-
ues of the covariance of the data, often with the aim of understanding whether
there exist lower dimensional subspaces that accurately capture the majority of the
structure of the high-dimensional distribution (e.g., as a first step in performing
Principal Component Analysis).

Given independent samples drawn from a multivariate distribution over R
d ,

when can this vector of eigenvalues of the (distribution/“population”) covariance
be accurately computed? In the regime in which the number of samples, n, is
significantly larger than the dimension d , the empirical covariance matrix of the
samples will be an accurate approximation of the true distribution covariance (as-
suming some modest moment bounds), and hence the empirical spectrum will ac-
curately reflect the true population spectrum. In the linear or sublinear regime in
which n is comparable to, or significantly smaller than d , the empirical covariance
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FIG. 1. Plots of the nonzero eigenvalues of the empirical covariance, corresponding to n = 500
samples from: (a) the d = 1000 dimensional Gaussian with identity covariance, and (b) the d = 1000
dimensional “2-spike” Gaussian distribution whose covariance has 500 eigenvalues with value 1,
and 500 eigenvalues of value 2. Note that the empirical spectra are poor approximations of the
true population spectra. To what extent can the eigenvalues of the true distribution (the population
spectrum) be accurately recovered from the samples, particularly in the “sublinear” data regime
where n � d?

will be significantly different from the population covariance of the distribution.
Both the eigenvalues, and corresponding eigenvectors (principal components) of
this empirical covariance matrix may be misleading. (See Figure 1 for an illus-
tration of this fact.) The basic question we consider and answer affirmatively is:
In this linear or sublinear sample regime in which the eigenvalues of the empiri-
cal covariance are misleading, is it possible to recover accurate estimates of the
eigenvalues of the underlying population covariance?

This question of understanding the relationship between the empirical spec-
trum and the population spectrum of the underlying distribution has a long history
of study, both from the perspective of characterizing the empirical spectrum, and
with the goal of correcting for its biases. In the former vein, the seminal work of
Anderson [2] considered the joint distribution of the empirical eigenvalues in the
asymptotic regime as n tends toward infinity, for fixed dimension, d . The work
of Marcenko and Pastur [29, 33] and more recent advances in random matrix the-
ory have enabled analysis of the empirical spectrum, particularly in the asymptotic
regime where the dimension and sample size scale linearly with each other (see,
e.g., Bai and Silverstein’s recent book [4]). We provide a more detailed discussion
of the relationship between this characterization of the empirical spectrum and the
problem of recovering the population spectrum in Section 1.2.

In the latter vein, works have considered both the end objective of recovering
the population spectrum, as well as the objective of estimating the population co-
variance matrix. In their seminal work [17], James and Stein’s proposed a shrink-
age estimator for covariance estimation which uses the empirical eigenvectors, but
“shrinks” the empirical eigenvalues to reduce the overall error due to the differ-
ences between the empirical and population spectra. Takemura [36] and Dey and
Srinivasan [10] extended this work of James and Stein, obtaining orthogonally
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invariant minimax covariance estimators under Stein’s loss. There are many other
approaches to eigenvalue shrinkage in this early line of work, for example, [12, 14,
15, 34, 35]. More recently, there has been a significant effort to develop optimal
covariance estimators in the asymptotic regime where both n and d tend to infinity.
This includes work of Ledoit and Wolf [21–23], Schäfer and Strimmer [32], and
more recent work of Donoho et al. [11] who considered shrinkage estimators in the
spiked covariance model (when all population eigenvalues take a constant number
of different values).

While both the problems of covariance estimation and spectrum estimation face
the common challenge that the empirical spectrum might differ significantly from
the population spectrum, the problems are different. It is not clear whether op-
timal estimators for one of the problems can be leveraged to yield optimal or
near-optimal estimators for the other problem. After formally defining the spe-
cific problem that we tackle—estimating the population spectrum in the linear and
sublinear data regimes—in Section 1.2, we provide a technical discussion of the
more modern related work on spectrum estimation, beginning with the seminal
work of Karoui [13] and Burda [6, 7].

1.1. Setup and definition. We focus on the general setting where the multi-
variate distribution over R

d in question is defined by a real-valued distribution
X, with zero mean, variance 1, and fourth moment β and a real d × d matrix S.
A sample of n vectors, viewed as a n × d data matrix Y consisting of n vectors
drawn independently from the distribution corresponding to the pair (X,S) is given
by Y = XS where X ∈ R

n×d has i.i.d. entries drawn according to distribution X.
Note that this setting encompasses the case where the data is drawn from the uni-
form distribution over a d-dimensional unit cube, and the case of a multivariate
Gaussian (corresponding to the distribution X being the standard Gaussian and the
covariance of the corresponding multivariate Gaussian given by ST S).

Throughout, we denote the corresponding population covariance matrix � =
ST S, and its eigenvalues by λ = λ1, . . . , λd , with λ1 ≤ λ2 ≤ · · · ≤ λd . Our objec-
tive will be to recover an accurate approximation to this sorted vector of eigenval-
ues, λ, given a data matrix Y as defined above. It is also convenient to regard the
vector of eigenvalues as a distribution over R, consisting of d equally-weighted
point masses at locations λ1, . . . , λd ; we refer to this distribution as the popula-
tion spectral distribution D� . We note that the task of learning the sorted vector
λ in L1 distance is closely related to the task of learning the spectral distribution
in Wasserstein distance (i.e., “earthmover distance”): the L1 distance between two
sorted vectors of length d is exactly d times the Wasserstein-1 distance between
the corresponding point-mass distributions. Similarly, given a distribution, Q, that
is close to the true spectral distribution D� in Wasserstein distance, the length d
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vector whose ith element is given by the ith (d + 1)-quantile2 of Q will be close,
in L1 distance, to the sorted vector of population eigenvalues.

1.2. Related work. Before formally stating our main result of accurate spec-
trum estimation in the sublinear data regime, we discuss the context of our results
and the connections to existing related work on spectrum estimation.

Population and sample spectra: The Marcenko–Pastur law. Given the setting
described above, where we observe an n × d data matrix Y = XS with popula-
tion covariance given by ST S, in the regime in which the dimensionality of the
data, d , is linear in the number of samples, n, much is known about the mapping
from the population spectral distribution D� , to the empirical spectral distribution
of the samples. Specifically, provided the ratio of the number of samples, n, to
the dimensionality of the samples, d , is bounded below by some constant γ > 0,
for sufficiently large n, d , the expected empirical spectral distribution will be well
approximated by a deterministic function of the population spectral distribution.
This deterministic function characterizing the correspondence between the empir-
ical and population spectra is known as the Marcenko–Pastur law, which is defined
in terms of the Stieltjes’ transform (also referred to as the Cauchy transform) of
the spectral distribution [29, 33]. At least in the linear regime in which n and d

scale together, it is not hard to show that the empirical spectral distribution will be
close to the expected empirical spectral distribution, and hence, asymptotically, the
Marcenko–Pastur law will give an accurate characterization of the empirical spec-
tral distribution. We refer the reader to Chapter 3 of Bai and Silverstein’s book [4]
for a thorough treatment of the Stieltjes’ transform and Marcenko–Pastur law.

Inverting the Marcenko–Pastur law. Perhaps the most natural approach to re-
covering the population spectrum from the data matrix Y is to attempt to invert
the mapping between population spectrum and expected empirical spectrum given
by the Marcenko–Pastur law. The seminal work of Karoui [13] shows that this
inversion can be represented via a linear program, and that, in the linear regime
where n/d → γ ∈ (0,∞), the reconstruction will be asymptotically consistent.
This work also demonstrates the practical viability of this approach on a series of
synthetic data, for the setting d = 100, n = 500. Building off the work of Karoui,
Li et al. [25] considered applying this approach to a parametric model where the
population spectral distribution has a constant (finite) support. They also suggested
extending the Marcenko–Pastur law to the real line, allowing the optimization to
be conducted over the reals, which makes the optimization procedure both eas-
ier to implement and more computationally efficient. Another approach to invert

2For i = 1, . . . , d , the ith (d + 1)-quantile of a distribution Q is defined to be the minimum value,
x, with the property that the cumulative distribution function of Q at x is at least i/(d + 1).
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the Marcenko–Pastur law directly, proposed by Ledoit and Wolf [23, 24], exploits
the natural discreteness of the population spectrum in finite dimensions, and op-
timized over the Marcenko–Pastur law on the real line. Simulations demonstrated
that this approach yields significant improvements in the accuracy of the recovered
spectrum, versus the earlier approach of Karoui [13].

In a similar spirit, Mestre [30] considered the task of recovering the population
spectrum in the setting where the population spectral distribution has a constant
support (say of size r) and where the weights (but not the values) of each point
mass are known a priori. Mestre proposed an algorithm for recovering the values
of the support of the population spectrum via inverting the Marcenko–Pastur law,
which is successful provided the empirical spectral distribution consists of r clus-
ters of values, corresponding to the r point masses of the population spectrum.
Provided sufficient separation between the point masses of the population spec-
trum, in the linear regime where n and d have constant ratio, the requirements of
the algorithm are satisfied.

There seem to be two limitations to this general approach of “inverting” the
Marcenko–Pastur law. The first is that the Marcenko–Pastur law, in general, is
poorly equipped to deal with the sublinear-sample regime where n � d . In this
sublinear sample-size regime, for example, with n = d2/3, even if the population
spectrum has a specific limiting distribution, the expected empirical spectral dis-
tribution may not converge. The second drawback is the difficulty of obtaining
theoretical bounds on the accuracy of the recovered spectral distribution. This
seems mainly due to the difficulty of analyzing the robustness of inverting the
Marcenko–Pastur law. Specifically, given a dimension and sample size, it seems
difficult to characterize the set of population spectral distributions that map, via
the Marcenko–Pastur law, to a given neighborhood of a specific empirical spectral
distribution. This analysis is further complicated in the sublinear sample regime
by the potential lack of concentration of the empirical spectrum.

Method of moments. There have been several works that approach the spec-
trum recovery problem via the method of moments [3, 26, 31]. Rao et al. [31]
observed the fact that the moments of the empirical spectral distribution have a
limiting Gaussian distribution whose mean and variance are functions of the pop-
ulation spectrum. Given these moment distributions, they proposed a maximum
likelihood approach to recover the parameters of the population spectrum in the
setting where the spectrum consists of a constant number of point masses. In a sim-
ilar fashion, Bai et al. [3] directly estimate the moments of the population spectrum
from the empirical moments, via a system of polynomial equations that is derived
from the Marcenko–Pastur law. In the linear sample-size setting, Bai et al. show
that their recovery is consistent. We note that an immediate consequence of our
accurate moment estimation (Theorem 1), together with the fact that a distribution
supported on at most r values is robustly determined by its first 2r − 1 moments
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(see, e.g., [3]), yields the fact that for such spectral distributions, consistent esti-
mation is possible in the sublinear data regime as long as n

d
1− 2

2r−1
→ ∞.

The recent work of Li and Yao [26] essentially interpolates between the ap-
proach of Mestre [30] and Bai et al. [3] to tackle the setting where the spectrum
consists of a constant, r , number of point masses, but where the empirical spec-
trum cannot be partitioned into r corresponding clusters. For these “mixed” clus-
ters, they employ the moment-based approach of Bai et al., and show consistency
in the linear sample-size regime.

Finally, the work of Burda et al. [6] from the physics community employs a
method of moment approach to recovering specific classes of population spectra,
for example, the 3-spike case. This work is essentially a method-of-moments ap-
proach to inverting the Marcenko–Pastur law in specific cases, although this work
seems to be unaware of the Marcenko–Pastur law and the related literature relating
the empirical and population spectra.

Sketching bi-linear forms. In a recent work [27], Li et al. consider a seemingly
unrelated problem, the problem of sketching matrix norms. Namely, suppose one
wishes to approximate the kth moment of the spectrum of a d × d matrix, �,
‖�‖k

k = ∑d
i=1 λk

i , but rather than working directly with the matrix �, one only
has access to a much smaller matrix that is a bilinear sketch of �. The question
is how to design this sketch: for some r, s � d , can one design distributions A
and B over r × d and d × s matrices, respectively, such that for any �, with high
probability, given matrices A and B drawn respectively from A and B, ‖�‖k can
be approximated based on the r × s matrix A�B? The authors consider setting A
and B to have i.i.d. Gaussian entries, and show that such sketches are information
theoretically optimal, to constant factors.

The connection between sketching matrix norms and recovering moments of
the population covariance is that the matrix YYT = XSST XT can be viewed as
a bilinear sketch of the matrix SST . While SST is not the population covariance
matrix, it has the same eigenvalues (and hence same moments) as the population
covariance.

The main difference between our work and the work of Li et al. is the concep-
tual difference in focus: we are focussed on recovering the population spectrum
from limited data; they are focussed on defining small sketching matrices for ma-
trix norms. The approach to moment recovery of [27] and our work both leverage
a simple unbiased moment estimator (see Fact 1), though our techniques differ in
two ways: first, [27] is concerned with establishing the minimum sketch size from
an information theoretic perspective, and the proposed algorithm is not computa-
tionally efficient; second, from a technical perspective, the proof of correctness in
[27] focusses on the Gaussian setting, and it seems difficult to extend their analy-
sis techniques to the more general setting that we consider. In particular, to prove
the variance bound of the moment estimator in the more general setting, we take
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a rather different route and employ a variant of the approach of Yin and Krishna-
iah [38].

Other works on spectrum reconstruction. There are also several other works
on the population spectrum recovery problem for specific classes of population
covariance. These include the paper of Bickel and Levina [5] who obtain accurate
reconstruction in the sublinear-sample setting for the class of population covari-
ance matrices whose off-diagonal entries decrease quickly with their distance to
the diagonal (e.g., as in the class of Toeplitz matrices).

1.3. Summary of approach and results. Our approach to recovering the popu-
lation spectral distribution from a given data matrix is via the method of moments,
and is motivated by the observation (also leveraged in [27]) that there is a natural
unbiased estimator for the kth moment of the population spectral distribution.

FACT 1. Fix a list of k distinct integers σ = (σ1, . . . , σk) with σi ∈ {1, . . . , n}.
Let Y = XS where X ∈ R

n×d consists of entries drawn i.i.d. from a distribution of
zero mean and variance 1, and S ∈ Rd×d . Letting A = YYT , we have

E

[
k∏

i=1

Aσi,σ(i mod k)+1

]
=

d∑
i=1

λk
i ,

where the expectation is over the randomness of the entries of X, and λi is the ith
eigenvalue of the population covariance matrix ST S.

The above fact, whose simple proof is given in Section 2, suggests that a good
algorithm for estimating the kth moment of the spectral distribution would be to
compute the sum of the above quantity over all sets σ of distinct indices. The
naive algorithm for computing such a sum would take time O(nk) to evaluate,
and it seems unlikely that a significantly faster algorithm exists.3 Fortunately, as
we show, there is a simple algorithm that computes the sum over all increasing
lists of k indices; additionally, such a sum results in an estimator with comparable
variance to the computationally intractable estimator corresponding to the sum
over all lists. This algorithm, together with a careful analysis of the variance of the
corresponding estimator, yields the following theorem.

THEOREM 1 (Efficient moment estimation). There is an algorithm that takes
Y = XS and an integer k ≥ 1 as input, runs in time poly(n, d, k) and with probabil-
ity at least 1−δ, outputs an estimate of 1

d
‖ST S‖k

k (i.e., 1
d

∑
i λ

k
i ) with multiplicative

3The ability to efficiently compute this sum would imply an efficient algorithm for counting the
number of k-cycles in a graph, which is NP-hard, for general k [1].
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error at most

f (k)√
δ

max
(

dk/2−1

nk/2 ,
d

1
4 − 1

2k√
n

,
1√
n

)
,

where the function f (k) = 26kk3kβk/2.

Restated slightly, the above theorem shows that the kth moment of the popula-
tion spectrum can be accurately computed in the sublinear data regime, provided
n ≥ ckd

1− 2
k , for some constant ck dependent on k. In the asymptotic regime as

d → ∞, this theorem implies that the multiplicative error of the estimate of the
kth moment goes to zero provided n

d
1− 2

k

→ ∞. This moment recovery is useful

in its own right, as these moments of the spectral distribution (also referred to as
the Schatten matrix norms of the population covariance) provide insights into the
population distribution (see, e.g., [16] and the survey [28]).

The recovery guarantees of Theorem 1 are optimal to constant factors: to ac-
curately estimate the kth moment of the population spectrum to within a constant
multiplicative error, the sample size n must scale at least as d1−2/k , as is formal-
ized by the following lower bound, which is a corollary to the lower bound in [27].

COROLLARY 1. Fix a constant integer k, and suppose there exists an algo-
rithm that, for any d × d matrix S, when given an n × d data matrix Y = XS with
entries of X chosen i.i.d. as above, outputs an estimate y satisfying the following
with probability at least 3/4: 0.9‖SST ‖k

k ≤ y ≤ 1.1‖SST ‖k
k ; then n ≥ cd1−2/k , for

an absolute constant c independent of n,d and k.

Given accurate estimates of the low-order moments of the population spectral
distribution, an accurate approximation of the list of population eigenvalues can
be recovered by first solving the moment inverse problem—namely finding a dis-
tribution D whose moments are close to the recovered moments, for example, via
linear programming—and then returning the vector of length d whose ith element
is given by the ith (d +1)-quantile of distribution D. Altogether, this yields a prac-
tically viable polynomial-time algorithm with the following theoretical guarantees
for recovering the population spectrum.

THEOREM 2 (Main theorem). Consider an n × d data matrix Y = XS, where
X ∈ Rn×d has i.i.d. entries with mean 0, variance 1, and fourth moment β and S
is a real d × d matrix s.t. the eigenvalues of the population covariance � = ST S,
λ = λ1, . . . , λd , are upper bounded by a constant b. There is an algorithm that
takes Y as input and for any integer k ≥ 1 runs in time poly(n, d, k) and outputs
λ̂ = λ̂1, . . . , λ̂d with expected L1 error satisfying

E
[ d∑
i=1

|λi − λ̂i |
]

≤ bd

(
f (k)

(
dk/2−1

nk/2 + 1 + d
1
4 − 1

2k

n1/2

)
+ C

k
+ 1

d

)
,
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where C is an absolute constant and f (k) = C ′(6k)3k+1βk/2 for an absolute con-
stant C′.

This theorem implies that our population spectrum estimator is asymptotically
consistent in terms of Wasserstein distance, even in the sublinear sample-size
regime where d

n
→ ∞:

COROLLARY 2 (Consistent sublinear sample-size estimation). Fix a limiting
spectral distribution p∞ that is absolutely bounded by a constant, and a sequence
of absolutely bounded population spectral distributions, p1,p2, . . . and corre-
sponding population covariance matrices �1,�2, . . . , such that pd is the spectral
distribution of �d , and pd converges weakly to p∞ as d → ∞. Given a sequence
of data matrices, with the dth matrix Yd = XdSd being nd × d with ST

d Sd = �d

and entries of Xd chosen i.i.d. with zero mean, variance 1, and bounded fourth
moment, then our algorithm outputs a distribution qd on input Yd such that qd

converges weakly to p∞, provided nd

d1−ε → ∞ for every positive constant ε. (For

example, taking nd = d
logd

yields asymptotically consistent sublinear sample spec-
trum estimation.)

The proof of Theorem 2 follows from combining Theorem 1 with the follow-
ing proposition that bounds the Wasserstein distance between two distributions in
terms of their discrepancies in low-order moments.

PROPOSITION 1. Given two distributions with respective density functions
p, q supported on [−1,1] whose first k moments are α = (α1, . . . , αk) and
β = (β1, . . . , βk), respectively, the Wasserstein distance, W1(p, q), between p and
q is bounded by

W1(p, q) ≤ C

k
+ g(k)‖α − β‖2,

where C is an absolute constant, and g(k) = C′3k for an absolute constant C′.

The proof of the above proposition proceeds by leveraging the dual definition of
Wasserstein distance: W1(p, q) = supf ∈Lip

∫ ∞
−∞ f (x)(p(x)− q(x)) dx, where Lip

denotes the set of all Lipschitz-1 functions. Our proof argues that for any Lipschitz
function f , after convolving it with a special “bump” function, b̂, which is a scaled
Fourier transform of the bump function used in [18], the resulting function f ∗ b̂

has small high-order derivatives and is close to f in L∞ norm. Given the small
high-order derivates of f ∗ b̂, there exists a good degree-k polynomial interpolation
of this function, Pk : the closeness of the first k moments of p and q implies a
bound on the integral

∫
Pk(x)(p(x) − q(x)) dx, from which we derive a bound

on the original Wasserstein distance. Our approach to approximating a Lipschitz-1



SPECTRUM ESTIMATION FROM SAMPLES 2227

function with a degree n polynomial can also be seen as a constructive proof of a
special case of Jackson’s theorem (see, e.g., Theorem 7.4 in [8]).

We also show, via a Chebyshev polynomial construction, that the inverse linear
dependence of Proposition 1 between the number of moments k, and the Wasser-
stein distance between the distributions, is tight in the case that the moments ex-
actly match.

PROPOSITION 2. For any even k, there exits a pair of distributions p, q , each
consisting of k/2 point masses, supported within the unit interval [−1,1], s.t. p

and q have identical first k − 2 moments, and Wasserstein distance W1(p, q) >

1/2k.

1.4. Organization of paper. In Section 2, we motivate and state our algorithms
for accurately recovering the moments of the population spectrum, and prove The-
orem 1. The most cumbersome component of this proof of correctness of our al-
gorithm is the proof of a bound on the variance of our moment estimator; we defer
this proof to the online supplementary material [20]. In Section 3, we state our al-
gorithm for leveraging accurate moment reconstruction to recover the population
spectrum, and describe the connection between the Wasserstein distance between
spectral distributions, and L1 distance between the vectors. In Section 4, we es-
tablish Propositions 1 and 2, which bound the Wasserstein distance between two
distributions in terms of their discrepancies in low-order moments, completing our
proof of Theorem 2. Section 5 contains some results illustrating the empirical per-
formance of our approach.

2. Estimating the spectral moments. The core of our approach to recover-
ing the moments of the population spectral distribution is a convenient unbiased
estimator for these moments, first proposed in the recent word of Li et al. [27] on
sketching matrix norms. This estimator is defined via the notion of a cycle.

DEFINITION 1. Given integers n and k, a k-cycle is a sequence of k distinct
integers, σ = (σ1, . . . , σk) with σi ∈ [n]. Given an n × n matrix A, each cycle, σ ,
defines a product:

Aσ =
k∏

i=1

Aσi,σi+1,

with the convention that σk+1 = σ1, for ease of notation.

The following observation demonstrates the utility of the above definition.

FACT 2. For any k-cycle σ , a symmetric d × d real matrix T, and a random
n × d matrix X with i.i.d. entries with mean 0 and variance 1,

E
[(

XT TX
)
σ

] = trace
(
Tk),

where the expectation is over the randomness of X.
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PROOF. We can expand E[(XT TX)σ ] as follows, where γk+1 is shorthand for
γ1:

∑
δ1,...,δk,γ1,...,γk∈[d]

E

[
k∏

i=1

Xδi ,σi
Tδi ,γi+1Xγi+1,σi+1

]
= ∑

δ1,...,δk

k∏
i=1

Tδi ,δi+1 = trace
(
Tk).

The first equality holds since, for every term of the expression, the expectation of
that term is zero unless each of the entries of X appears at least twice. Because the
σi are distinct, in every nonzero term, each of the entries of X will appear exactly
twice and δi = γi . �

The above fact shows that each k-cycle yields an unbiased estimator for the
kth spectral moment of T . While each estimator is unbiased, the variance will
be extremely large. Perhaps the most natural approach to reducing this variance,
would be to compute the average over all k-cycles. Unfortunately, such an estima-
tor seems intractable, from a computational standpoint. The naive algorithm for
computing this average—simply iterating over the

(n
k

)
different k-cycles—would

take time O(nk) to evaluate. It seems unlikely that a significantly faster algorithm
exists, assuming that P �= NP , as an efficient algorithm to compute this average
over k-cycles would imply an efficient algorithm for counting the number of sim-
ple k-cycles in a graph (i.e., loops of length k with no repetition of vertices), which
is known to be NP-hard for general k (see, e.g., [1]).

One computationally tractable variant of this average over all k-cycles, would be
to relax the condition that the k elements of each cycle be distinct. This quantity
is simply the trace of the matrix (XT TX)k , which is trivial to compute! Unfor-
tunately, this exactly corresponds to the kth moment of the empirical spectrum,
which is a significantly biased approximation of the population spectral moment
(e.g., as illustrated in Figure 1).

Our algorithm proceeds by computing the average of all increasing k-cycles.

DEFINITION 2. An increasing k-cycle σ = (σ1, . . . , σk) is a k-cycle with the
additional property that σ1 < σ2 < · · · < σk .

We observe that, perhaps surprisingly, there is a simple and computationally
tractable algorithm for computing the average over all increasing cycles. Given
Y = XS, instead of computing the trace of (YT Y)k , which would correspond to
the empirical kth moment, we instead zero out the diagonal and lower-triangular
entries of YT Y in the “first” k − 1 copies of YT Y in the product (YT Y)k . It is
not hard to see that this exactly corresponds to preserving the set of increasing
cycles, as the contribution to a diagonal entry of the product corresponding to a
nonincreasing cycle will include a lower-triangular entry of one of the terms, and
hence will be zero (see Lemma 1 for a formal proof). This motivates Algorithm 1
for estimating the kth moment of the population spectrum.
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Algorithm 1 [Estimating the kth moment]

Input: Y ∈ Rn×d

Set,A = YYT , and let G = Aup be the matrix A with the diagonal and lower
triangular entries set to zero.

Output: tr(Gk−1A)

d·(n
k)

Our main moment estimation theorem characterizes the performance of Algo-
rithm 1.

THEOREM 1. Given a data matrix Y = XS where the entries of X are chosen
i.i.d. with mean 0, variance 1 and fourth moment β , Algorithm 1 runs in time
poly(n, d, k) and with probability at least 1 − δ, outputs an estimate of 1

d
‖ST S‖k

k

(i.e., 1
d

∑
i λ

k
i ) with multiplicative error at most

f (k)√
δ

max
(

dk/2−1

nk/2 ,
d

1
4 − 1

2k√
n

,
1√
n

)
,

where the function f (k) = 26kk3kβk/2.

The following restatement of the above theorem emphasizes the fact that ac-
curate estimation of the population spectral moments is possible in the sublinear
sample regime where n = o(d).

COROLLARY 3. Suppose X is a random n × d matrix whose entries are cho-
sen i.i.d as described above. For any constant c > 1, there exists a function fc(k)

such that, given n = fc(k)d1−2/k , for any d × d real matrix S, Algorithm 1 takes
data matrix Y = XS as input, runs in time poly(d, k) and with probability at least
3/4 (over the randomness of X), outputs an estimate, y, of the kth population
spectral moment that is a multiplicative approximation in the following sense:(

1 − c2k − 1

c2k + 1

)∥∥ST S
∥∥k
k ≤ y ≤

(
1 + c2k − 1

c2k + 1

)∥∥ST S
∥∥k
k.

As the above corollary shows, for any constant integer k ≥ 1 there is a constant
ck such that taking n = ckd

1−2/k is sufficient to estimate the kth spectral moment
accurately. For any constant k, this sublinear dependence between n and d is in-
formation theoretically optimal in the following sense (which is a stronger version
of Corollary 1).

PROPOSITION 3. Given the setting of Theorem 1, for any k > 1, suppose that
an algorithm takes XS and with probability at least 3/4 computes y with (1 −
ε)‖SST ‖k

k ≤ y ≤ (1 + ε)‖SST ‖k
k for ε = (1.22k − 1)/(1.22k + 1). Then X must be

n × d for n ≥ cd1−2/k for an absolute constant c.
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The above proposition follows as an immediate corollary from Theorem 3.2 of
[27] by plugging in S = X, T = Id , A = S and p = 2k.

2.1. Proof of Theorem 1. The proof of this theorem follows from the following
three components: Lemma 1 (below) shows that the efficient Algorithm 1 does in
fact compute the average over all increasing k-cycles, (YYT )σ ; Fact 2 guarantees
that the average over such cycles is an unbiased estimator for the claimed quantity;
and Proposition 4 bounds the variance of this estimator, which by Chebyshev’s in-
equality, guarantees the claimed accuracy of Theorem 1. Our proof of this variance
bound follows a similar approach as in [38].

The following lemma shows that Algorithm 1 computes the average over all
increasing k-cycles, σ , of (YYT )σ ; for an informal argument, see the discussion
before the statement of Algorithm 1.

LEMMA 1. Given an n × d data matrix Y = XS, Algorithm 1 returns the
average of (YYT )σ taken over all increasing k-cycles, σ .

PROOF. Let A = YYT = XSST XT ; let Ui,j,m denote the set of increasing m-
cycles σ such that σ1 = i and σm = j , and define

Fi,j,m = ∑
σ∈Ui,j,m

m−1∏

=1

Aσ
,σ
+1 .

There is a simple recursive formula of Fi,j,m, given by

(1) Fi,j,m =
j−1∑

=i

Fi,
,m−1A
,j .

Let G be the strictly upper triangular matrix of A, as in Algorithm 1, and let F (m)

denote the matrix whose (i, j)th entry is Fi,j,m. The recursive formula 1 can be
rewritten as F (m) = F (m−1)G. Given this, the sum over all increasing k-cycles is∑

i,j

Fi,j,k−1Aj,i = tr
(
F (k)A

) = tr
(
Gk−1A

)
,

as claimed. �

The main technical challenge in establishing the performance guarantees of our
moment recovery, is bounding the variance of our (unbiased) estimator.

PROPOSITION 4. Given the setup of Theorem 1, let U be the set of all increas-
ing cycles of length k, then the following variance bound holds, where the function
f (k) = 212kk6kβk :

Var
[

1

|U |
∑
σ∈U

(
XT TX

)
σ

]
≤ f (k)max

(
dk−2

nk
,
d

1
2 − 1

k

n
,

1

n

)
tr(Tk)2.
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To see the high level approach to our proof of this proposition, consider the
following: given lists of indices δ = (δ1, . . . , δk) and γ = (γ1, . . . , γk), with δi, γi ∈
[d], we have the following equality:

(
XT TX

)
σ = ∑

δ,γ∈[d]k

k∏
i=1

Xσiδi
Tδi ,γi+1Xσi+1,γi+1 .

We now seek to bound each cross-term in the expansion of the total variance
Var[∑σ∈U(XT TX)σ ]: namely, for a pair of increasing k-cycles, σ , π consider
their contribution to the variance E[(XT TX)σ (XT TX)π ] being∑

δ,δ′,γ,γ ′∈[d]k

k∏
i=1

Tδi ,γi+1Tδ′
i ,γ

′
i+1

k∏
i=1

Xσi,δi
Xσi,γi

Xπi,δ
′
i
Xπi,γ

′
i
.

We bound this sum by partitioning the set of summands, {(δ, δ′, γ, γ ′)} into
classes. To motivate the role of these classes, consider the task of computing the
expectation of the “X” part of the expression, namely

E

[
k∏

i=1

Xσi,δi
Xσi,γi

Xπi,δ
′
i
Xπi,γ

′
i

]
,

for a given δ, δ′, γ, γ ′ ∈ [d]k . Thanks to the i.i.d. and zero mean properties of
each entry Xi,j , most of terms are zero. The idea is to partition the set of sum-
mands that give rise to nonzero terms, via the creation of a list of constraints,
L = {L1, . . . ,Lm}, where each Li contains only equalities and inequalities (“ �=”)
involving the indices of δ, δ′, γ , γ ′. For example, in the case k = 2, one such
constraint could be L1 = {δ1 = δ′

1, γ1 = γ ′
1, δ2 = γ ′

2, γ2 = δ′
2}, which specifies a

subset of {(δ, δ′, γ, γ ′)} that satisfy each of the four specified equalities. We will
design a set of these constraints, L = {L1, . . . ,Lm} satisfying the following useful
properties:

1. Any lists of indices δ, δ′, γ, γ ′ ∈ [d]k with the property that the expectation
of the X “part” is zero, namely E[∏k

i=1 Xσi,δi
Xσi,γi

Xπi,δ
′
i
Xπi,γ

′
i
] = 0, does not sat-

isfy any constraint Li ∈ L.
2. Any lists of indices δ, δ′, γ, γ ′ ∈ [d]k whose expectation of the X “part” is

nonzero must satisfy exactly one of the constraint.
3. For any constraint Li ∈ L, all lists of indices δ, δ′, γ, γ ′ ∈ [d]k satisfying Li

have the same expected value of the X “part,” namely

E

[
k∏

i=1

Xσi,δi
Xσi,γi

Xπi,δ
′
i
Xπi,γ

′
i

]
.

Given a set of constraints, L, satisfying the above, the set of summands
{(δ, δ′, γ, γ ′)} corresponding to a constraint Li ∈ L have the same value of
E[∏k

i=1 Xσi,δi
Xσi,γi

Xπi,δ
′
i
Xπi,γ

′
i
], which will not be too difficult to bound. What

remains is to deal with the T component of the expression. Our set of constraints
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is also useful for this purpose. For example, consider the following sum over all
(δ, δ′, γ, γ ′) that satisfy a constraint Li :

∑
δ,δ′,γ,γ ′ s.t. Li

k∏
i=1

Tδi ,γi+1Tδ′
i ,γ

′
i+1

,

the equalities in Li can be leveraged to simplify the calculation; revisiting the
example above with k = 2, for instance, for the constraint L1 = {δ1 = δ′

1, γ1 =
γ ′

1, δ2 = γ ′
2, γ2 = δ′

2}, the above expression simply becomes tr(T 4).
The full details of this partitioning scheme are rather involved, and are given in

the online supplementary material [20].

3. From moments to spectrum. Given the accurate recovery of the moments
of the population spectral distribution, as described in the previous section, we
now describe the algorithm for recovering the population spectrum from these mo-
ments. We proceed via the natural approach to this moment inverse problem. The
proposed algorithm has two parts: first, we recover a distribution whose moments
closely match the estimated moments of the population spectrum (recovered via
Algorithm 1); this recovery is performed via the standard linear programming ap-
proach. Given this recovered distribution, p+, to obtain the vector of estimated
population eigenvalues (the spectrum), one simply returns the length d vectors
consisting of the (d + 1)st-quantiles of distribution p+—specifically, this is the
vector whose ith component is the minimum value, x, with the property that the
cumulative distribution function of p+ at x is at least i/(d + 1). These two steps
are formalized in Algorithm 2.

The following restatement of Theorem 2 quantifies the performance of Algo-
rithm 2.

THEOREM 2. Consider an n × d data matrix Y = XS, where X ∈ Rn×d has
i.i.d. entries with mean 0, variance 1, and fourth moment β , and S is a real d × d

matrix s.t. the eigenvalues of the population covariance � = ST S, λ = λ1, . . . , λd

are upper bounded by a constant b ≥ 1. There is an algorithm that takes Y as input
and for any integer k ≥ 1 runs in time poly(n, d, k) and outputs λ̂ = λ̂1, . . . , λ̂d

with expected L1 error satisfying

E

[
d∑

i=1

|λi − λ̂i |
]

≤ bd

(
f (k)

(
dk/2−1

nk/2 + 1 + d
1
4 − 1

2k

n1/2

)
+ C

k
+ 1

d

)
,

where C is an absolute constant and f (k) = C′(6k)3k+1βk/2 for some absolute
constant C′.

At the highest level, the proof of the above theorem has two main parts: the
first part argues that if two distributions have similar first k moments, then the
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Algorithm 2 [Moments to spectrum]
Input: Approximation to first k moments of population spectrum, α̂, dimension-
ality d , and fine mesh of values x = x0, . . . , xt that cover the range [0, b] where
b is an upper bound on the maximum population eigenvalue. Taking xi = iε for
ε ≤ 1/max(d, n) is sufficient.
Output: Estimated population spectrum, λ̂1, . . . , λ̂d .

1. Let p+ be the solution to the following linear program, which we will regard
as a distribution consisting of point masses at values x:

(2)

minimize
p

|Vp − α̂|1
subject to 1T p = 1

p > 0,

where the matrix V is defined to have entries Vi,j = xi
j .

2. Return the vector λ̂1, . . . , λ̂d where λ̂i is the ith (d + 1)st-quantile of distri-
bution corresponding to p+, namely set λ̂i = min{xj : ∑


≤j p+

 ≥ i

d+1}.

two distributions are “close” (in a sense that we will formalize soon). As applied
to our setting, the guarantees of Algorithm 1 ensures that, with high probabil-
ity, the distribution returned by Algorithm 2 will have similar first k moments
to the true population spectral distribution, and hence these two distributions are
“close.” The second and straightforward part of the proof will then argue that if
two distributions,p and p′, are “close,” and distribution p, consists of d equally
weighted point masses (such as the true population spectral distribution), then the
vectors given by the (d + 1)-quantiles of distribution p′ will be close, in L1 dis-
tance, to the vector consisting of the locations of the point masses of distribution p.
As we show, the right notion of “closeness” of distributions to formalize the above
proof approach is the Wasserstein distance, also known as “earthmover” distance.

DEFINITION 3. Given two real-valued distributions p, q , with respective den-
sity functions p(x), q(x), the Wasserstein distance between them, denoted by
W1(p, q) is defined to be the cost of the minimum cost scheme of moving the
probability mass in distribution p to make distribution q , where the per-unit-mass
cost of moving probability mass from value a to value b is |a − b|.

One can also define Wasserstein distance via a dual formulation (given by the
Kantorovich–Rubinstein theorem [19] which yields exactly what one would expect
from linear programming duality):

W1(p, q) = sup
f :Lip(f )≤1

∫
f (x) · (

p(x) − q(x)
)
dx,

where the supremum is taken over all functions with Lipschitz constant 1.
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Two convenient properties of Wasserstein distance are summarized in the fol-
lowing easily verified facts. The first states that in the case of distributions consist-
ing of d equally-weighted point masses, the Wasserstein distance exactly equals
the L1 distance between the sorted vectors of the locations of the point masses.
The second fact states that given any distribution p, supported on a subset of the
interval [a, b], the distribution p′ defined to place weight 1/d at each of the d

(d + 1)st-quantiles of distribution p, will satisfy W1(p,p′) ≤ b−a
d

. For our pur-
poses, these two facts establish that, provided the distribution p+ returned by the
linear programming portion of Algorithm 2 is close to the true population spectral
distance, in Wasserstein distance, then the final step of the algorithm—the round-
ing of the distribution to the point masses at the quantiles—will yield a close L1
approximation to the vector of the population spectrum.

FACT 3. Given two vectors a = (a1, . . . , ad), and b = (b1, . . . , bd) that have
been sorted, that is, for all i, ai ≤ ai+1 and bi ≤ bi+1,

|a − b|1 = d · W1(pa,pb),
where pa denotes the distribution that puts probability mass 1/d on each value ai ,
and pb is defined analogously.

FACT 4. Given a distribution p supported on [a, b], let distribution p′ be de-
fined to have probability mass 1/d at each of the d (d + 1)st-quantiles of distribu-
tion p. Then W1(p,p′) ≤ b−a

d
.

The remaining component of our proof of Theorem 2 is to establish that the
accurate moment recovery of Algorithm 1 as guaranteed by Theorem 1 is suffi-
cient to guarantee that, with high probability, the distribution p+ returned by the
linear program in the first step of Algorithm 2 is close, in Wasserstein distance,
to the population spectral distribution. We establish this general robust connec-
tion between accurate moment estimation, and accurate distribution recovery in
Wasserstein distance, via the following proposition, which we prove in Section 4.

PROPOSITION 1. Given two distributions with respective density functions
p, q supported on [−1,1] whose first k moments are α = (α1, . . . , αk) and
β = (β1, . . . , βk), respectively, the Wasserstein distance, W1(p, q), between p and
q is bounded by

W1(p, q) ≤ C

k
+ g(k)‖α − β‖2,

where C is an absolute constant, and g(k) = C′3k for an absolute constant C′.

We conclude this section by assembling the pieces—the accurate moment esti-
mation of Theorem 1, and the guarantees of the above proposition and Facts 3 and
4—to prove Theorem 2.
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PROOF OF THEOREM 2. Given the data matrix Y and an upperbound on the
population eigenvalues, b, we first divide each sample by

√
b thereby reducing

the problem to the setting where the eigenvalues are bounded by 1. We then run
Algorithm 1 on the scaled data matrix to recover the (scaled) moments. Given these
recovered moments, we then run Algorithm 2 to recover the scaled spectrum, and
then return this recovered spectrum scaled by the factor of b. We now prove the
correctness of this algorithm.

Let λ denote the vector of population eigenvalues, and let p denote the scaled
spectral distribution obtained by dividing each entry of λ by b. Hence p is sup-
ported on [0,1]. Denote the vector of the first k moments of this distribution as
α. Consider the distribution p+ recovered by the linear programming step of Al-
gorithm 2, and denote its first k moments with the vector α+. We first argue that
‖α+ − α‖2 is small, and then will apply the Wasserstein distance bound of Propo-
sition 1.

By Proposition 4 and the inequality E[X]2 ≤ E[X2], the estimated moment
vector α̂, given as input to Algorithm 2, satisfies E

[‖α − α̂‖1
] ≤ ∑k

i=1 f (i)×
max(di/2−1

ni/2 , d
1
4 − 1

2i√
n

, 1√
n
) where f (k) = 26kk3kβk/2. We now argue that there is a

distribution that is a feasible point for the linear program that also has accurate mo-
ments. Specifically, consider taking the mesh x = x1, . . . , xt of the linear program
grid points to be an ε-mesh with ε ≤ 1

max(n,d)
, and consider the feasible point of the

linear program that corresponds to the true population spectral distribution whose
support has been rounded to the nearest multiple of ε. This rounding changes the
ith moment by at most 1 − (1 − ε)i .

Hence, by the triangle inequality, this rounded population spectral distribution
is a feasible point of the linear program, p∗, with objective value at most ‖α −
α̂‖1 +∑k

i=1(1 − (1 − ε)i). Hence, also by the triangle inequality, the moments α+
of the distribution p+ returned by the linear program will satisfy

E
[∥∥α+ − α

∥∥
2

] ≤E
[∥∥α+ − α

∥∥
1

]
≤2

k∑
i=1

(
f (i)max

(
di/2−1

ni/2 ,
d

1
4 − 1

2i√
n

,
1√
n

)
+ 1 − (1 − ε)i

)

≤2k

(
f (k)

(
dk/2−1

nk/2 + 1 + d
1
4 − 1

2k

n1/2

)
+ kε

)
.

Letting p+
quant denote the distribution p+ that has been quantized so as to consist

of d equally weighted point masses (according to the second step of Algorithm 2),
by Fact 4 and Proposition 1, we have the following:

W1
(
p+

quant,p
) ≤ W1

(
p+

quant,p+) + W1
(
p+,p

)
≤ 1

d
+

(
C

k
+ g(k)

∥∥α+ − α
∥∥

2

)
.
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Plugging in ε ≤ 1/max(n, d) and our bound on the moment discrepancy ‖α+ −
α‖2 we get

W1(p+
quant,p) ≤ 1

d
+ C

k
+ f̃ (k)

(
dk/2−1

nk/2 + 1 + d
1
4 − 1

2k

n1/2

)
,

where f̃ (k) = C′(6k)3k+1βk/2. Let λ̂ be the vector corresponds to distribution
p+

quant after multiplication by b. By Fact 3 we have

E

[
d∑

i=1

|λi − λ̂i |
]

≤ bd

(
f̃ (k)

(
dk/2−1

nk/2 + 1 + d
1
4 − 1

2k

n1/2

)
+ C

k
+ 1

d

)
.

�

To yield Corollary 2 from Theorem 2, it suffices to show that, under the as-
sumptions of the corollary, in the limit as d → ∞, the number of moments that we
can accurately estimate with our sublinear sample size, nd , also goes to infinity (as
d → ∞). By assumption, nd

d1−ε → ∞ for every constant ε > 0, and hence there is
some function α(d) such that nd

d1−α(d) → ∞ with α(d) → 0; additionally, we may
assume that α(d) ≥ 1

log logd
. By setting kd = � 1

α(d)
�, from Theorem 2, we examine

the expected Wasserstein error of our reconstruction term by term. The first term
satisfies

f̃ (kd)
dkd/2−1

nkd2 ≤ (
(ckd)3kd+1)dkd/2−1

n
kd/2
d

≤ (
(ckd)3kd+1) d

kd
2 −1

d
kd
2 − kdα(d)

2

≤ (
(ckd)3kd+1)

d−1/2

≤ (c log logd)1+3 log logd

√
d

,

which tends to 0 as d → ∞. The second term satisfies

f̃ (k)
1 + d

1
4 − 1

2k

n1/2 ≤ (ckd)3kd+1 1 + d
1
4 − 1

2kd

d
1
2 − α(d)

2

≤ (ckd)3kd+1 1

d1/4

which tends to 0 as d → ∞. C/kd and 1/d also go to 0 as d → ∞. Combining
these four terms establishes Corollary 2.

4. Moments and Wasserstein distance. In this section, we prove Proposi-
tion 1, which establishes a general robust relationship between the disparity be-
tween the low-order moments of two univariate distributions, and the Wasserstein
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distance (see Definition 3) between the distributions. This relatively straightfor-
ward proof proceeds via a constructive version of Jackson’s theorem (see, e.g.,
Theorem 7.4 in [8]) which shows that Lipschitz functions can be well approxi-
mated by polynomials. For convenience, we restate Proposition 1, and the lower
bound establishing its tightness.

PROPOSITION 1. Given two distribution with respective density functions p,
q supported on [−1,1] whose first k moments are α = (α1, . . . , αk) and β =
(β1, . . . , βk), respectively, the Wasserstein distance, W1(p, q), between p and q

is bounded by

W1(p, q) ≤ C

k
+ g(k)‖α − β‖2,

where C is an absolute constant, and g(k) = C′3k for an absolute constant C′.

The following lower bound shows that the inverse linear dependence in the
above bound on the number of matching moments, k, is tight in the case where
the moments exactly match.

PROPOSITION 2. For any even k, there exits a pair of distributions p, q , each
consisting of k/2 point masses, supported within the unit interval [−1,1], s.t. p

and q have identical first k − 2 moments, and Wasserstein distance W1(p, q) >

1/2k.

4.1. Proof of Proposition 1. For clarity, we give an intuitive overview of the
proof of Proposition 1 in the case where the first k moments of the two distribu-
tions in question match exactly. Consider a pair of distributions,p and q , whose
first k moments match. Because p and q have the same first k moments, for any
polynomial P of degree at most k, the inner product between P and p − q is zero:∫

P(x)(p(x) − q(x)) dx = 0. The natural approach to bounding the Wasserstein
distance, supf ∈Lip

∫
f (x)(p(x)− q(x)) dx, is to argue that for any Lipschitz func-

tion, f , there is a polynomial Pf of degree at most k that closely approximates f .
Indeed,∫

f (x)
(
p(x) − q(x)

)
dx

≤
∫ ∣∣Pf (x) − f (x)

∣∣(p(x) − q(x)
)
dx +

∫
Pf (x)

(
p(x) − q(x)

)
dx

≤ 2‖f − Pf ‖∞.

Hence, all that remains is to argue that there is a good degree k polynomial
approximation of any Lipschitz function f . As the following standard fact shows,
the approximation error of f by a degree-k polynomial is typically determined by
the k + 1th order derivative of f .
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FACT 5 (Polynomial interpolation; e.g., Theorem 2.2.4 of [9]). For a given
function g ∈ Ck+1[a, b], there exists a degree k polynomial Pg such that

∥∥g(x) − Pg(x)
∥∥∞ ≤

(
b − a

2

)k+1 maxx∈[a,b] |g(k+1)(x)|
2k(k + 1)! .

While our function f is Lipschitz, its higher derivatives do not necessarily exist,
or might be extremely large. Hence, before applying the above interpolation fact,
we define a “smooth” version of f , which we denote fs . This smooth function
will have the property that ‖f − fs‖∞ is small, and that the derivatives of fs are
small. We will accomplish this by defining fs to be the convolution of f with a
special “bump” function b̂ that we will define shortly. To motivate our choice of b̂,
consider the convolution of f with an arbitrary function, h: fs = f ∗ h. From the
definition of convolution, the derivates of fs satisfy the following property:

(fs)
(k+1)(x) = (

f ∗ h(k+1))(x).

Hence, we can bound the derivatives of fs by choosing h with small derivatives.
Additionally, since we require that fs is close to f , we also want h to be concen-
trated around 0 so the convolution will not change f too much in infinity norm.

We define fs to be the convolution of function f with a scaled version of a
special “bump” function b̂ defined as the Fourier transform of the function b(y)

defined as

b(y) =
⎧⎪⎨⎪⎩exp

(
− y2

1 − y2

)
|y| < 1,

0 otherwise.

This function was leveraged in a recent paper by Kane et al. [18], to smooth
the indicator function while maintaining small higher derivates. As they show, the
derivates of b̂ are extremely well behaved: ‖b̂(k)‖1 = O(1

k
) and ‖b̂(k)‖∞ = O(1).

The actual function that we convolve f with to obtain fs will be a scaled version
of this bump function b̂c = c · b̂(cx) for an appropriate choice of c.

We note that if, instead of convolving by b̂c, we had convolved by a scaled
Gaussian [or a scaled version of the function b(x) rather its Fourier transform] the
O(1/k) dependence on the Wasserstein distance that we show in Proposition 1
would, instead, be O(1/

√
k).4

We now give the proof of Proposition 1 in the special case where the first k

moments of p and q match exactly. The proof of the robust version is given in
the online supplementary material [20], and is similar, though requires bounds on

4In the Gaussian case, this is because the kth derivative of a standard Gaussian, G(x) is given by
G(k)(x) = (−1)kHk(x)e−x2

where Hk(x) is the kth Hermite polynomial, and for even k the value
of Hk(0) is k!

(k/2)! which is already too large to obtain better than an O( 1√
k
) dependence.
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the coefficients of the interpolation polynomial P that approximates the smoothed
function fs .

PROOF OF “NONROBUST” PROPOSITION 1. Consider distributions p,q sup-
ported on the interval [−1,1] whose first k moments match. Given a Lipschitz
function f , let fs = f ∗ b̂c(x) where the scaled bump function b̂c is as defined
above, for a choice of c to be determined at the end of the proof. Letting P denote
the degree k polynomial approximation of fs we have the following:∫

f (x)
(
p(x) − q(x)

)
dx ≤ 2‖f − P‖∞ ≤ 2‖f − fs‖∞ + 2‖fs − P‖∞.

We bound each of these two terms. For the first term, ‖f − fs‖∞, we have that
for any x:∣∣f (x) − fs(x)

∣∣ =
∣∣∣∣f (x) −

∫ ∞
−∞

f (x − t)b̂c(t) dt

∣∣∣∣
=

∣∣∣∣f (x)

(
1 −

∫ ∞
−∞

b̂c(t) dt

)
+

∫ ∞
−∞

(
f (x) − f (x − t)

)
b̂c(t) dt

∣∣∣∣
≤

∫ ∞
−∞

∣∣b̂c(t)t
∣∣dt.

Note that the last inequality holds since
∫

b̂c(t) dt = b(0) = 1 and f has Lip-
schitz constant at most 1, by assumption. To bound the above quantity, apply-
ing Lemma A.2 from [18] with l = 0, n = 1 yields |b̂c(t)t | = O(1), with l = 0,
n = 3 yields |b̂c(t)t | = O(c−2t−2). Splitting the integral into two parts, we
have ∫ ∞

−∞
∣∣b̂c(t)t

∣∣dt ≤ 2
(∫ 1/c

0

∣∣b̂c(t)t
∣∣dt +

∫ ∞
1/c

∣∣b̂c(t)t
∣∣dt

)
= O

(
1

c

)
.

We now bound the second term (the polynomial approximation error term)
‖fs − P‖∞, and then will specify the choice of c. From Fact 5, this term is con-
trolled by the (k + 1)st derivative of fs :∣∣(fs)

(k+1)
∣∣∞ = ck+1∣∣(f ∗ (

b̂(k+1))
c

)
(x)

∣∣∞
≤ ck+1|f |∞

∣∣b̂(k+1)
∣∣
1

= O
(
ck+1)

,

where the inequality holds by the definition of convolution and the last equality
applies Lemma A.3 from [18]. Hence, we have the following bound on the poly-
nomial approximation error term:

‖fs − P‖∞ ≤ maxx∈[−1,1] |f (k+1)
s (x)|

2k(k + 1)!

= O

(
ck+1

2k(k + 1)!
)
.
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Setting c = �(k) balances the contribution from the two terms, ‖f − fs‖∞ and
‖fs − P‖∞, yielding the proposition in the nonrobust case. �

4.2. Proof of Proposition 2: Wasserstein lower bound. We now prove Propo-
sition 2, showing that the O(1/k) dependence of Proposition 1 is optimal up to
constant factors, by constructing a sequence of distribution pairs pk, qk with the
same first k moments but that have O(1

k
) Wasserstein distance between them. The

proof follows from leveraging a Chebyshev polynomial construction via the fol-
lowing general lemma.

LEMMA 2. Given a polynomial P of degree j with j real roots {x1, . . . , xj },
then letting P ′ denote the derivative of P , then for all 
 ≤ j − 2,

∑j
i=1 x


i ·
1

P ′(xi )
= 0.

See Fact 14 in [37] for the very short proof of the above lemma.
Lemma 2 provides a very natural construction for a pair of distributions whose

low-order moments match: simply begin with any polynomial P of degree k with
k distinct (real) roots x1, . . . , xk , and define the signed measure m, supported at the
roots of P , with m(xi) = 1

P ′(xi )
. Define distribution p+ to be the positive portion

of m, normalized so as to be a distribution and define p− to be the negative portion
of m scaled so as to be a distribution. Note that provided k ≥ 2, the scaling factor
for p+ and p− will be identical, as Lemma 2 guarantees that

∑j
i=1

1
P ′(xi )

= 0, and
hence the first k − 2 moments of p+ and p− will agree.

Proposition 2 will follow from setting the polynomial P of the above con-
struction to be the kth Chebyshev polynomial (of the first kind) Tk . We require
the following properties of the Chebyshev polynomials, which can be easily
verified by leveraging the trigonometric definition of the Chebyshev polyno-
mials: Tk(cos(t)) = cos(kt), and the fact that the derivative satisfies T ′

k(x) =
k · Uk−1(x) where Uj is the j th Chebyshev polynomial of the second kind, sat-
isfying Uj(cos(t)) = sin((j+1)t)

sin t
.

FACT 6. Let x1, . . . , xk denote the roots of Tk , with xi = − cos( (1+2(i−1))π
2k

),
and set yi = 1/T ′

k(xi) = 1
kUk−1(xi )

:

1. For i ≤ n/2, i
k2 ≤ |yi | ≤ i π

k2 .

2. For i ≤ n/2, 5i
k2 ≤ |xi+1 − xi | ≤ 10i

k2 .

3.
∑n/2

i=1 y2i−1 = −∑n/2
i=1 y2i ∈ [1

4 , 1
2 ]. (Hence the scaling factor required to

make the distributions from the signed measure is at least 2.)

We now put the pieces together to complete the proof of Proposition 2.
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PROOF OF PROPOSITION 2. By construction, and Lemma 2, letting p+ de-
note the distribution corresponding to the positive portion of the signed measure
corresponding to Tk , and p− corresponding to the negative portion of the signed
measure, we have that p+ and p− each consist of k/2 point masses, located at val-
ues in the interval [−1,1], and the first k − 2 moments of p+ and p− are identical.

To lower bound the Wasserstein distance between p+ and p−, note that all the
mass in p+ must be moved to the support of p−. Hence, the distance is lower
bounded by the sum

k/4∑
i=1

2y2i |x2i − x2i−1| ≥
k/4∑
i=1

2
2i

k2 · 10i

k2 = 40

k4

k/4∑
i=1

i2 ≥ 40

64k
.

�

5. Empirical performance. We evaluated the performance of our population
spectrum recovery algorithm on a variety of synthetic distributions, for a range of
dimensions and sample sizes. Recall that our algorithm consists of first applying
Algorithm 1 to estimate the first k moments of the population spectral distribution,
and then applying Algorithm 2 to recover a distribution whose moments closely
match the estimated moments. Our matlab implementation is available from our
websites.

5.1. Implementation discussion. Our estimates of higher-order spectral mo-
ments have larger variance than our estimates of the lower-order spectral mo-
ments, hence when solving the moment inverse problem, we should be more for-
giving of discrepancies in higher moments. For example, we should require that
the distribution we return match the estimated 1st and 2nd moments extremely
accurately, while tolerating larger discrepancies between the 5th moment of the
distribution that we return and the estimated 5th population spectral moment.
We implemented this intuition as follows: in the linear program of Algorithm 2
that reconstructs a distribution from the moment estimates, the objective func-
tion of the linear program weighs the discrepancy between the ith moment of
the returned distribution and the ith estimated moment by a coefficient 1/(ciα̂i),
where α̂i is the ith estimated moment, and ci is a scaling factor designed to cap-
ture the (multiplicative) standard deviation of the estimate. In our experiments,
we set ci to correspond to our bound on the standard deviation of the error
in the ith recovered moment, implied by Theorem 1. This corresponds to set-
ting

ci = (2i)2i · max(di/2−1,1)

ni/2 .

This scaling is theoretically justified, and we made no effort to optimize it: it
seems likely that the empirical performance can be improved with a more careful
weighting function.
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FIG. 2. Empirical results for reconstructing the population spectrum for covariance � = Id for a
range of sample sizes and dimensions. Red lines depict the cdf of the distribution recovered by our
algorithm over five independent trials, the blue line depicts the cdf of the true population spectral
distribution, and the cyan line depicts the cdf of the empirical spectral distribution (in one of the
trials).

In all runs of our algorithm, we estimated and matched the first 7 spectral mo-
ments (i.e., we set the parameter k = 7 in Algorithm 2). Considering higher mo-
ments beyond the 7th did not significantly improve the results for the dimension
and sample sizes that we considered.

We would expect that the empirical performance could be improved by adap-
tively setting the number of moments to consider, based on the values of the lower
order moments. Specifically, it would be natural to only consider higher moments
if the lower order moments fail to robustly characterize the distribution. More gen-
erally, a variety of other approaches to the general moment inverse problem could
be substituted in place of Algorithm 2, and might improve the empirical perfor-
mance, though such directions are beyond the focus of this work.

5.2. Experimental setup and results. We evaluated our algorithm on four dif-
ferent types of population spectral distributions:

1. Identity covariance: �d = Id . (Figure 2.)
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FIG. 3. Empirical results for reconstructing the population spectrum for covariance matrices that
have d/2 eigenvalues equal to 1, and d/2 eigenvalues equal to 2. Red lines depict the cdf of the
distribution recovered by our algorithm over five independent trials, the blue line depicts the cdf of
the true population spectral distribution, and the cyan line depicts the cdf of the empirical spectral
distribution (in one of the trials).

2. “Two spike” spectrum: �d has d/2 eigenvalues equal to 1 and d/2 eigenval-
ues equal to 2. (Figure 3.)

3. Uniform spectrum: the eigenvalues of �d are {2/d,4/d,6/d, . . . ,2}, cor-
responding to a (discretized) uniform distribution over the range [0,2]. (Fig-
ure 4.)

4. Toeplitz5 covariance: �d(i, j) = 0.3|i−j |. (Figure 5.)

For each of the four types of population spectral distributions, we evalu-
ated our algorithm for a variety of dimensions and sample sizes, taking d =

5Toeplitz matrices arise in numerous application areas, particularly in settings where each data-
point is a time-series and the correlation between two measurements decreases exponentially as a
function of the chronological separation between the measurements.
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FIG. 4. Empirical results for reconstructing the population spectrum for a covariance matrices
whose eigenvalues correspond to the discretized uniform distribution on the interval [0,2]. Red lines
depict the cdf of the distribution recovered by our algorithm over five independent trials, the blue
line depicts the cdf of the true population spectral distribution and the cyan line depicts the cdf of
the empirical spectral distribution (in one of the trials).

512,1024,2048,4096, and for each value of d , we considered sample sizes
n = d/8, d/4, d/2, d,2d . For each setting, we ran our algorithm five times on
independently drawn data. Figures 2–5 show the results of each run, showing the
cdf of the estimated spectral distribution (red), together with the cdf of the popu-
lation spectral distribution (blue), and the cdf of the empirical spectral distribution
(cyan).

We observe that in general, for a fixed ratio of d/n, the results improve
with larger d , as is implied by our theoretical sublinear sample size asymptotic
consistency results (in spite of the daunting constant factors that appear in the
analysis). Additionally, our approach has good performance for the more dif-
ficult distributions—the uniform and Toeplitz distributions—even in the n ≤ d

regime.
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FIG. 5. Empirical results for reconstructing the population spectrum for covariance � = T where
Ti,j = 0.3|i−j | is a d ×d Toeplitz matrix. Red lines depict the cdf of the distribution recovered by our
algorithm over five independent trials, the blue line depicts the cdf of the true population spectral
distribution and the cyan line depicts the cdf of the empirical spectral distribution (in one of the
trials).

SUPPLEMENTARY MATERIAL

Supplement to “Spectrum estimation from samples” (DOI: 10.1214/16-
AOS1525SUPP; .pdf). The supplement contains the technical details of the proofs
of Propositions 1 and 4.
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