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ASYMPTOTIC THEORY OF GENERALIZED ESTIMATING
EQUATIONS BASED ON JACK-KNIFE PSEUDO-OBSERVATIONS

BY MORTEN OVERGAARD, ERIK THORLUND PARNER AND JAN PEDERSEN!
Aarhus University

A general asymptotic theory of estimates from estimating functions
based on jack-knife pseudo-observations is established by requiring that the
underlying estimator can be expressed as a smooth functional of the empir-
ical distribution. Using results in p-variation norms, the theory is applied to
important estimators from time-to-event analysis, namely the Kaplan—-Meier
estimator and the Aalen—Johansen estimator in a competing risks model, and
the corresponding estimators of restricted mean survival and cause-specific
lifetime lost. Under an assumption of completely independent censorings, this
allows for estimating parameters in regression models of survival, cumulative
incidences, restricted mean survival, and cause-specific lifetime lost. Consid-
ering estimators as functionals and applying results in p-variation norms is
apparently an excellent way of studying the asymptotics of such estimators.

1. Introduction. The pseudo-observation method was introduced in
Andersen, Klein and Rosthgj (2003) as a way to perform regression analysis when
modeling, for example, state occupation probabilities in multi-state settings in
time-to-event analysis. It is an alternative to the popular Cox model that models the
hazard functions, but results in a complicated model for the state occupation prob-
abilities. The pseudo-observation method has particularly been considered in the
competing risks setting, where the state occupation probabilities are cause-specific
incidences and survival probability, which are estimated by the Aalen—Johansen
estimator and Kaplan—Meier estimator, respectively, but the method has also been
used for modeling the restricted mean survival that is not a state occupation prob-
ability.

The pseudo-observation method is suited for a situation in which we are inter-
ested in the effect of covariates, Z, on a variable, V, that we for some reason may
not always be able to observe entirely, for example, due to missingness, censoring
or other coarsening of the data. We are interested in modeling the effect of Z on V
by

(1.1) E(V|Z) = u(Bo: Z)
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for some mean function u and true, but unknown parameter vector By. Typically,
w(Bo; Z) = M(ﬂOT Z) is the inverse of the link function in a generalized linear
model setup. Estimating Sy is usually done by solving an estimating equation of
the type

n
(12) > AB: Z (Ve — n(Bs Z) =0,
k=1
but this is not possible when the i.i.d. sample Vi, ..., V, is not fully observed.
The pseudo-observation method presumes the expected value 8 = E(V) can be
estimated reasonably well from a sample, X1, ..., X, of some observable ran-
dom variable X, which will likely include information on V when V is observed.
Letting 6, denote the estimate of 6 based on the entire sample and letting é,&")
denote the similar estimate based on the sample X1, ..., X¢—1, Xk+1, ..., Xn, that

is, leaving out X, the jack-knife pseudo-observation of the potentially unobserved
Vi is defined as

(1.3) bpx =nby — (n — 1)K,

A

Doing this for all k, we obtain a sample of pseudo-observations, én?l, ceesBnn.
Estimates of By are then obtained by solving an estimating equation of the type

(1.4) > AB; Zi) Onk — 11(B; Zi)) =0,

k=1

which is just (1.2) with Vj substituted for the pseudo-observation én, - The pseudo-
observations are an intricate transformation of the original dataset and are likely to
be correlated, and as such it is not clear by results from the standard methods that
this is a reasonable estimating procedure.

Andersen, Klein and Rosthgj (2003) conjectured that an estimating equation like
(1.4) in the generalized linear model setup would yield consistent, asymptotically
normal estimates with a variance that could be consistently estimated by the ordi-
nary sandwich variance estimator. A proof of the conjectures of Andersen, Klein
and Rosthgj (2003) in the competing risks setting was presented by Graw, Gerds
and Schumacher (2009), based on a so-called von Mises expansion of the estima-
tor, and relying on an assumption that the censoring mechanism is independent
of event time, event type and covariates. We will call this completely independent
censorings later on.

In the paper of Jacobsen and Martinussen (2016), the proof of Graw, Gerds and
Schumacher (2009) was, however, found to be lacking in the handling of some re-
mainder terms. Jacobsen and Martinussen (2016) also used a von Mises expansion,
but only studied the survival probability, that is, pseudo-observations based on the
Kaplan—Meier estimator, and found that while all other conclusions of Graw, Gerds
and Schumacher (2009) remain true in that setting, the variance of the estimator
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cannot in general be consistently estimated by the ordinary sandwich variance es-
timator, which instead leads to conservative confidence bounds and tests. In the
context of pseudo-observations, however, many von Mises expansions are used
and it is then important to handle the remainder terms with great care.

In this paper, we consider the pseudo-observation method in a general frame-
work. This involves considering estimators as functionals and applying concepts
from functional analysis. Functional analytic results stated in Dudley and Norvaisa
(2011) allow us to study the pseudo-observations rigorously in this framework.
We argue that we will have asymptotic normality and consistency of parameter
estimates in a quite general setting under certain conditions. By appealing to a
p-variation approach, we will, by results stated in Dudley and NorvaiSa (1999),
see that this is specifically the case when the pseudo-observations are based on
the Kaplan—Meier estimator, the Aalen—Johansen estimator in the competing risks
setting, and the estimators of restricted mean and cause-specific lost lifetime. We
will also see that the usual sandwich variance estimator generally is not consistent,
and we propose a modification.

In Section 2, we will discuss how many estimators can be considered functionals
mapping a sample average to an estimate and briefly review some of the theory
on functionals and their differentiability. In Section 3, the main result, a general
asymptotic theory for the pseudo-observation method, is presented based on the
assumption that the estimator, and thereby functional, under study is sufficiently
well behaved. In Section 4, we consider various important regression models from
time-to-event analysis in the competing risks setting, and we will see how the
parameters can be estimated using the pseudo-observation method and how the
necessary assumptions can be fulfilled.

2. Estimators as functionals. A reasonable estimator é(~) of a parameter 6
based on an i.i.d. sample X1, ..., X, can likely be considered a function of the
empirical distribution of the X;’s. For instance, take a look at the log-likelihood
function when X; has density f,

n
@.1) ln(e)=Zlogf<9;Xi)znflogf(e;x)an(xx
i=1
where F), is the empirical distribution. Any solution to /,(6) = 0 will depend on
the data only through F,,. In other words, a reasonable estimator is given by

2.2) bn = 0(Fy),

where (-) is a map from the set of distributions to the set of parameters.

In the following, we treat an estimating map like 6 from (2.2) by considering it a
functional from a Banach space to the parameter space. Since the actual empirical
distribution is not necessarily a convenient starting point, we introduce the follow-
ing general setup in which we allow Fj, to be a more general sample average. In
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our applications, this sample average will be some linear transformation of the em-
pirical distribution, and we want to avoid the technicalities of this transformation.

Let (2, F, P) be a probability space, (X', .A) a measurable space and (D, || - ||)
a Banach space. Consider a map §.): X — D and an i.i.d. sample Xy,..., X,
defined on (€2, F, P) with values in X'. We define the sample average by

1 n
(2.3) F,=-) 6x, €D.
= ;
When (F},),>1 has a limit in D, we will not hesitate to call it F.

EXAMPLE 2.1. In our applications in competing risks scenarios in time-to-
event analysis, an observation is a pair X = (T, A) of the time of exit 7 and
the status at the time of exit A. We can take X = R2 or X = Ry x{0,...,d}
(the possible statuses are O for censored and 1,...,d for competing events).
The actual empirical distribution function of a sample X1, ..., X, is not a con-
venient starting point, but the following transformation is: For an observation
x = (,8) € X define Y, (s) = 1(7 > s), an indication of still being at risk at time
s, and Ny j(s) = 1(f <s, § = j) for j =0,...,d, indications for having exited
with a specific type of event or censoring before time s. We let (., be given
by 6, = (Yx, Nx0,.-., Nx,d)T such that F, = %ZSXI- is a vector of step func-
tions. There are different choices of Banach space D with different properties in
this case, for example, a function space with a supremum norm or with a norm
based on the entry-wise total variations or perhaps something in between. We
will return to this choice later on. The candidate for the limit of F;, is of course
F=(H, Hy,..., Hy)T, where H(s) = P(T > ) is the probability of being at risk
at time s and H;(s) = P(T <s,A= j) for j =0,...,d are the probabilities of
having exited with a specific type of event or censoring before time s.

In the setting above, the estimating map, 6, can be considered a functional from
D to the parameter space, which we later for simplicity will assume is R, another
Banach space. For such a functional, the concept of Fréchet differentiability gen-
eralizes the ordinary concept of differentiability. Details on functional differentia-
bility and useful results for our setting can be found in the supplement [Overgaard,
Parner and Pedersen (2017)]. Here, we give a short introduction.

Let D and E be Banach spaces and consider an open subset W € D and a func-
tional ¢ : W — E. Then ¢ is said to be (Fréchet) differentiable at f € W if a
continuous, linear map ¢} : D — E exists such that

(2.4) lo(f +h) —d(f) = ¢ ()] =o(lRlIp),

and it is differentiable in W if it is differentiable at all f € W. This notation is
inspired by van der Vaart (1998). We usually call qb/f (h) the derivative of ¢ at f
in the direction of h. The derivative, ¢': f ¢} is itself a functional from W
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to L(D, E), where L' (D, E) is the space of linear, continuous maps from D to
E, which is a Banach space when endowed with the operator norm. Higher-order
differentiability and continuous differentiability (C*) is then defined in terms of
this functional.

Assuming ¢ is our estimating functional, that is, 6, = ¢ (F), and that it is dif-
ferentiable at a given F' € D, the corresponding (first-order) influence function is
defined by

(2.5) p(x)=¢p: —F), xelX.

Note that due to linearity of ¢ we have ¢ (F, — F) = Z, #(X;). The following
example shows how a candidate of the influence functlon can be found in one
situation.

EXAMPLE 2.2. Consider the setting of Example 2.1 and suppose we have
decided on a Banach space D consisting of elements & = (hy, ho, ..., hg) that are
vectors of functions, including &, = (Y, Nx 0, ..., Ny 4). Consider the functional
¥ : D — R given by ¥ (h) = g W dh(s). Note that

t o1
2.6 F:/—st:At,
(2.6) Y (F) b HG) 1(s) 1(2)
the cumulative hazard for cause 1 at time 7, if H(¢) > 0, and

1Y 0 n
@.7) V(F) = /0 %dmm = A(0),

the Nelson—Aalen estimate of A at time 7. Here, we use the notation Y (s) = #{i :
T; > s} and Ny (s) =#{i : T; <s, A; = 1} as in Andersen et al. (1993). Taking the
limit for u | 0 of u=' (¥ (h + ug) — ¥ (h)) for h, g € D and ignoring the indicator
in the numerator, we obtain

T gy(s)
dgi(s
0 fi(s) 0 fx(s)?
which is the candidate for v (g) when 1 is differentiable. The corresponding
candidate for the influence function %(x) = w} 6y — F)is

(2.8)

dhy(s),

[ | 1Y (s)— H(s)
0 m (le—Hl)(S) / WdHl(S)
2.9 Y (s) g
—f ﬁd Ner) = [ rtanis) = [ s e,

where My 1 = Ny 1— [0' Y, (s) dA1(s). This matches the canonical gradient found
by James (1997). In Section 4, we will introduce a framework where a functional
like i will be differentiable in the sense of (2.4).
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In similarity to an ordinary Taylor approximation, an estimator on the form
¢ (F,) for a C! functional ¢ can be approximated by ¢ (F) + qb}(Fn — F). This
idea was first presented by von Mises (1947) and is often called the von Mises
method. Reeds (1976) elaborated on this method focusing on Hadamard differen-
tiable functionals. The idea is that if qb can be shown to be a reasonable function,
the asymptotic behavior of ¢ (F, — F) = 1 3", ¢(X;) is given by a central limit
theorem and a law of large numbers. This method is also related to the functional
delta method; see, for example, Gill (1989).

If ¢ is two times differentiable, we can similarly introduce the second-order
influence function given by

(2.10) P(x1,x2) = P (Sx; — F. 85, — F),  x1,x2€ X,

where ¢/ is the second-order derivative of ¢ at F. The second-order deriva-
tive is a bilinear, continuous map from D? to R, see the supplement [Overgaard,
Parner and Pedersen (2017)] for more details. It is also symmetric in its argu-
ments by Theorem 5.27 of Dudley and NorvaiSa (2011), the Schwarz theorem.
Note that due to (2.3) and the bilinearity of ¢, we have ¢%.(F, — F, F, — F) =
nLZ > j éﬁ.(X i» X ;). In Graw, Gerds and Schumacher (2009) the idea of analyz-
ing the asymptotic behavior of the pseudo-observations by approximating ¢ (F;,)
with

1
¢(F)+ ¢p(Fy — F) + E#(Fn —F F,—F)
(2.11)

1 . 11 .
:9+;Z¢(Xi)+§ﬁzz¢(xi’xj)
i i

was presented in the special case of the Aalen—Johansen estimator for compet-
ing risks models. We will also use this second-order von Mises expansion, but we
will keep track of the remainder term by using the integral representation in (1.10)
of the supplement. As it turns out, a careful analysis of the remainder term (see
Proposition 3.1) is essential for obtaining asymptotic normality of the estimating
function, and thereby also the consistency and asymptotic normality of the param-
eter estimates from the estimating equation in (1.4) as described in Theorem 3.4.

A consequence of studying random elements of general Banach spaces is the
fact that measurability is a more complicated matter on such a space. Often the
map x — &, will not be Borel measurable in applications. But we do not require
this kind of measurability in our approach. We require Borel measurability of x —
é(x) and (x1, x2) — (ﬁ(xl, x32). A natural assumption to work under is that

1 n
2.12)  (x1,...,x3) — ¢<— Zéxi) is Borel measurable for any n € N.
n-
i=1

The measurability is with respect to the product o-algebra A" on X", and the
assumption will be fulfilled for any reasonable estimating functional since the as-
sumption means measurability of the estimator. Specifically, it will be fulfilled for
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the estimators that we consider in Section 4. The estimators in Section 4 are all
related to the Nelson—Aalen estimator of (2.7) in Example 2.2 which is seen to
depend measurably on the observations through Y evaluated at the event times
given by jumps in N;. We argue in the supplement [Overgaard, Parner and Peder-
sen (2017)] that (2.12) yields measurability of x ¢(x) and (x1, x2) — ¢(x1 Xx2)
under the assumption that F is in fact a limit of (n Y% 8x;) in D for some choice
of sequence (x;). This limit assumption is implied by the assumptions of Proposi-
tion 3.1 below, which we are going to work under. To keep things simple, we will
also assume that

(2.13) I6xI] and |F, — F|| are random variables,

although most statements concerning these variables could be made in terms of
outer probability with slight modification. Both ||§x|| and || F;,, — F|| are random
variables in our applications as we shall see.

3. Pseudo-observations and asymptotics. To formalize the setting from the
Introduction, we consider a triple (V, X, Z) € R x X x Z of random variables,
where V is not entirely observable, X is observable, and Z represents covari-
ates. For simplicity, we consider a real-valued V, but the following results ex-
tend to a vector-valued V. We model E(V|Z) by w(Bo; Z) with an unknown pa-
rameter vector Sy € RY for some appropriate function wx, and we want to esti-
mate fo. Consider i.i.d. copies (V1, X1, Z1), ..., (Vy, Xy, Z,) of (V, X, Z), where
(X1, Z1), ..., (Xn, Z,) is the observed sample. We will assume that we have an
estimator of & = E(V) € R that can be considered a function of a sample average
F, = 1 "_18x, €D, asin (2.3), for some choice of §(.) and Banach space D, that

n
is, that the estimates are én = ¢ (Fy) for some functional ¢ from (an appropriate
subset of) D to the real line.

With the setting introduced above, we will next give a definition of the pseudo-
observations, which will replace the V’s in the estimating equation. We will then
decompose the pseudo-observations into their essential parts and remainder parts.
When the remainder terms vanish appropriately, the essential parts lead to a cen-
tral limit theorem that is useful for the estimating functions that we are going to
consider. Under standard regularity conditions, this leads to the consistency and
asymptotic normality of the corresponding estimates of Sy.

Let the empirical distribution leaving out the kth observation be denoted by

(3.1) F® = —Z(SX,
n i
Then the leave-k-out estimate is similarly
(3.2) 0" = ¢(FL).
In this case the jack-knife pseudo-observations are defined as

3.3) O =16y — (1 — 1OP = ng(F,) — (n — DH(FL),
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fork=1,...,n.

When ¢ is C2, that is, two times continuously differentiable, we can approxi-
mate each of ¢ (F},) and q‘)(F,gk) ) by a second-order Taylor expansion as in (1.10)
of the supplement [Overgaard, Parner and Pedersen (2017)]. This allows for a de-
composition of a pseudo-observation into an essential part and a remainder,

(3.4) Onk =0k + Rux.

The remainder, R x, will correspond to remainder terms and some second-order
terms from the Taylor expansions. How fast, if at all, this remainder converges to
0 will depend on the convergence of || F;, — F|| in similarity to an ordinary Taylor
expansion. A precise statement is found in Proposition 3.1 below. As we shall
see later on in (3.42), a sufficient condition for the remainder to be ignorable in
our estimating procedure is that (3.8) below holds for A = %, and we can always
have that number in mind. Also, our applications use the simpler (3.5) version of
condition (a) since |3, || is related to the number of state transitions in our setting,
and there will only be one state transition in the competing risks setting, which
gives us an upper bound on ||8,||. The (3.6) version of condition (a) will be useful
in the general multi-state setting, where such a bound may not exist, but where the
probability of having many transitions drops fast.

PROPOSITION 3.1. Assume an F € D exists such that
(a) thereisa ) € [41_1’ %) and a ¢ > 0 such that
3.5) |F, — F| = 0p(n_k) and ||8,|| <c forall x € X,

orthereisa ) € [}r, %) and a & € (0, % — A] such that
— Fll = op(n— 0+ i vE _
(3.6) |Fs = Fll=0p(n™C+?) and  lim y* P(I8x]l > ) =0.

(b) ¢ is C? in a neighborhood of F and the second-order derivative of ¢ is Lip-
schitz continuous in a neighborhood of F .

Consider a decomposition of the pseudo-observation én,k into é: « T Rnk with the
essential part

(3.7) 0 k= $(F) + @ (8x, — F) + ¢} (8x, — F. FP — F).
Then
(3.8) n* max| Ry x| — 0

in probability for n — oo.
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PROOF. Consider the expansions

1
¢(Fn)=¢(F)+¢}7(Fn_F)+§¢Z"(Fn_FaFn_F)

(3.9) 1
+ fo (1 =)@, , = F)(Fy — F, F — F)ds
and
B(ED) = 6(F) + 9 (FIV — F) + 39 (FIO — F. E® — F)
(3.10) 2

1
- /0 (1=$)(@hw — P (FP — F,F® — F)ds,

where F,, s = F +s(F, — F) and F,f{? =F +s(F,fk) — F), which are just versions
of (1.10) of the supplement and will be valid with high probability for large n due
to (a).

Using the two expansions of (3.9) and (3.10), we see that the Oth-order deriva-
tive term of ng(F,) — (n — Do (FX) is ¢ (F), and that the first-order derivative
term, by linearity of ¢/, is
(3.11) ngp(Fy— F) — (n — Dop(F® — F) = ¢ (5x, — F).

Both are included in the the essential part of the pseudo-observation.

As for the second-order derivative terms, note the identity

1
(3.12) F = F = (Fy = F) + ——(Fy = 0x,),
such that
no, n—1 w0 *)
20 (Fn = F. By = F) = ——¢p(F,” = F.F,” = F)

1 11
+ O (F = Fo, O = F) + ¢/ (6x, — F. FY — F)
and
n(qb;én,s _¢%)(FH_F, Fn_F)
= (1= D@0 — $5) (" = F. BV = F)
G.14) = (0%, — $F)(Fa = F. Fy = F)

+(n = D(9F, , — ¢;;(k))(Fn —F. F,—F)
+ (d);(k) — ¢F)(Fn — F,8x, — Fa)
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with only the last term from (3.13) included in the essential part and all other terms
going into the remainder. To sum up, the remainder is

1 1
Rn,k_ ¢;‘;(Fn_F,Fn_F)+§ d)/}{“(SXk_FmSXk_Fn)

T2
+ ¢(F — Fp, E® — F)

n—1

1
+ / (1 =)@}, . — P})(Fu — F, Fy — F)ds
(3.15) 0

1
+/0 (1=8)(2 = D(@F,, = @) (Fa = F. Fy = F)ds

1
+ [ A= 9@ = 0)(Fa = o, = Fi)ds

1
+f0 (1 =)@ w — PF)(Ex, = Fu, F{¥ — F)ds.

Using the assumptions and in particular the Lipschitz continuity of the second-
order derivative, there exists a constant K > O such that for large n with high
probability

K I K 2
|Rn,k| = EHFn - F||2+ Em(2miax||8xi||)

+K|F = F||F® - F|
+K sup ||Fns—F||F,—F|?

(3 16) s€[0,1]
+K(n—1) sup |Fs—FR|IF, - FI?
s€[0,1]
+2K max |8x, || sup |FX) — F|IF, — F|
t s€[0,1]
+2K max |, || sup |F - FI|F® - F].
! s€[0,1]
Since
S
(3.17) Fos = Fid=——0x,—F),  s€0,1],
we have
2
(3.18) | Fas — F®| < — max |13,
and

®) 2
(3.19) |F) —F| < - max 16x; Il + 11 F — FII,



1998 M. OVERGAARD, E. T. PARNER AND J. PEDERSEN

and so we see that maxy | R, «| is of the order

1
O (1 max 185,11 = FIP + - max o, I2(1 + 11, — F1))
(3.20) !
+ 0p( 5 max oy, ).
l

n2

Under (3.6), we have for any & > 0 that P(nig max; ||6x; ]| > ¢) < nP(||6x] >

enf) = 0 for n — oo by subadditivity. In other words, max; ||y, || = op(n) for
n — o0o. Under (3.5), max; ||8x; || is bounded by c. In both cases, the convergence
order in (3.20) is put together at least n~2*, and the result follows. [J

In (3.42) below, it is important that the convergence of |R, x| is uniform in k.
As can be seen in the proof, essentially the inequality in (3.16), the Lipschitz con-
tinuity of the second-order derivative allows us to obtain that uniformity from the
uniform closeness of F,Ek) to F, in (3.18) and thereby to F in (3.19) under our
assumptions. As noted by Jacobsen and Martinussen (2016) in the case of the
Kaplan—Meier functional, the term ¢/.(8x, — F, F,fk) — F) is generally not small
enough to be ignored, that is, we should not consider it a part of the remainder
term, if the remainder term is to satisfy (3.8).

The challenge posed by Proposition 3.1 is a balancing act. The norm we con-
sider should be strong enough that the functionals of importance are sufficiently
smooth [condition (b)], but weak enough that || F;, — F'|| converges sufficiently fast
[condition (a)].

EXAMPLE 3.2. Consider the setting of Example 2.1. We now want to decide
on which Banach space, D, we are going to consider F; a member of. A first at-
tempt could be the space of uniformly bounded vector functions endowed with
the supremum norm. Both F, and F are certainly members. But this supremum
norm approach is too weak to make the functionals we are interested in sufficiently
smooth [e.g., even if fy and g¢ are sufficiently well behaved that [ fydgo is mean-
ingful, the functional (f, g) — [ fdg can be difficult to define in a supremum
norm neighborhood of ( fy, go) and it will definitely not be continuous]. A sec-
ond attempt could be to consider the space of functions of bounded variation (in
each coordinate) with the corresponding total variation norm. But this approach
is too strong since F, does not converge to F in total variation norm. To suc-
ceed in the challenge of the balancing act posed by Proposition 3.1, we should
likely be looking for something in between. And as it turns out, the p-variation
approach, lodged between the supremum norm approach and the total variation
norm approach, solves the problem. The p-variation of a function f: [a, b] — R
is defined by v, (f;[a,b]) =sup > 7 ;| f(xi—1) — f(x;)|? where the supremum
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is over m € N and points xo < x| < --- < X, in the interval [a, b]. We consider
only p €[1,2) in the following. The space of functions of bounded p-variation,
Wy (la, b]) or in short W), is a Banach space when endowed with the p-variation

norm, || fllip1=v,(f;la, b])% 4+ || f oo, Where || - || is the supremum norm. We
see that F}, and F can be considered members of W;‘,’H. The product space Wg“
is a Banach space when endowed with a norm that is the sum of the entry-wise p-
variation norms. This norm is still denoted by || - [|{,). We argue in the supplement
that

I-p 1
(3.21) | F — Flljpy=Op(n 7 (loglogn)?)

for 1 < p < 2 based on a similar result for one-dimensional distribution functions
stated in, for example, Dudley and NorvaiSa (1999). Note that ||§x | and || F,, — F||
are random variables [i.e., that (2.13) is met] since both éx and F;,, — F consist of
one left-continuous entry and d 4+ 1 right-continuous entries, whose p-variations
can be obtained by suprema over the rationals. Since ||3y [|[p] < 2(d + 2) for any x
(and any p), we can establish that (3.5) in (a) of Proposition 3.1 is met for A = %
if we take % < p < 2. Since we can take A arbitrarily close to % if we take p close
to 2, the generality of Proposition 3.1 offers the extra piece of information that the
remainders vanish uniformly fairly rapidly for a functional satisfying condition
(b). The supplement [Overgaard, Parner and Pedersen (2017)] offers more details
on p-variation, referencing Dudley and Norvaisa (2011), and we will also return
to this in Section 4.

Note that the assumption of Proposition 3.1 that the functional is C? with a
derivative that is Lipschitz continuous in a neighborhood of F is implied if ¢ is C>
according to Proposition 1.4 of the supplement [Overgaard, Parner and Pedersen
(2017)]. The functionals we are considering in Section 4 are C¥ for any k, so this
assumption is automatically met.

The essential part in (3.7) can also be written

. . 1 .
(3.22) ik =G + (X0 + —— > $(Xe, Xi)
=1

in terms of the inﬂ.uence functions. Under the assumption in (b), we have for
some K > 0 that [¢(x)| = |9 (8x — F)| < KlI8x — FIl < K(I8« ]l + IIFIl), and
P (x1, x2)| = 9% (8x, — F, 8x, — F)I < K(lI8x, | + IF N I8, | + [ £ 1), such that
¢(X):.¢(X, x), and ¢ (X1, X») have mth moment whenever |6 | has mth moment
[and ¢ (X, X) has mth moment whenever ||dx|| has (2m)th moment]. Under (3.5),
|I6x || has any moment, and under (3.6) ||dx || has mth moment for all m < é, which

can be seen by using the formula E(||6x||"*) = mfooo y"* I P(||8x || > y)dy. This
means that the influence functions are at least integrable under the assumptions of
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Proposition 3.1, and under the same assumptions, they are necessarily centered in
the sense that

(3.23) E(¢(X)) =0,
(3.24) E(p(X,x))=0  forallx e X,

as, for some K > 0, |% Zl-q'ﬁ(Xi)| = |9 (Fy, — F)| < K||F, — F|| — 0 in proba-
bility for n — oo, and similarly for ¢.

As a preliminary result to handle estimating equations using the jack-knife
pseudo-observations we prove the following central limit theorem.

THEOREM 3.3. Make the assumptions of Proposition 3.1 with respect to
a functional ¢ and consider the essential parts of the corresponding pseudo-
observations as in (3.7). For some q €N, let A: Z — RY be a function such that
A(Z) is a column vector which has finite second moment if ¢ meets condition (3.5)
or has finite rth moment for an r > ﬁ if ¢ meets condition (3.6). Define

(3.25) Uy =2 AZ) Oy —E@Or 1 Z4))-
k=1
Then
I . d
(3.26) ﬁUn 5 N@©, ),
where
(3.27) ¥ = Var(A(Z)($(X) — E(¢(X)|Z)) + h1(X))

is the variance of the asymptotic distribution with hi(x) = E(A(Z)(ﬁ(X, x)). Al-
ternatively, the variance can be expressed as

(3.28) Y =E(h(X1, Z1, X2, Z2)h(X1, Z1, X3, Z3)7),

where

2
h(x1,21,%2,22) = Y _ A@)(¢(xi) — E(@(X)|Z =2z;))
(3.29) =l

+ (A(z1) + A(22))$(x1, x2).

PROOF. This result is proved by recognizing U, as a second-order U -statistic
and applying results that apply to those. This is essentially the course taken in
Jacobsen and Martinussen (2016) to prove asymptotic normality of the estimating
function in the case of the Kaplan—Meier estimator.
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Since E(é,;"’k|Zk =72)=¢(F)+ E(d)(X)|Z = z) by (3.22) and (3.24), we are
looking at

Y AZ)($(X1) — E(p(X0)| Zi) + ¢F (8x, — F. FP — F))

k=1
(3.30) =D AZ((Xp) — E($(X0)|Zt))
k=1
1 & .
2.2 AZDeXx, X)),
L
which can also be expressed as
(331 nézzlh(xi,zi,xj,zj).
() = ik 2

The factor n aside, this is a U -statistic of order 2. Note that <25(Xk, X;), q'ﬁ(Xk),

and hence E(d)(X )| Zx), have rth moment for any r < 1 according to the mo-

ment considerations earlier on when condition (3.6) is met, and that they have any
moment when (3.5) is met. Under the moment conditions on A(Z), a Holder in-
equality gives us that the U-statistic above has finite second moment. As the mean
of the U -statistic is E(h(X 1, Z1, X2, Z>2)) = 0, the result with the variance expres-
sion from (3.28) follows from a multivariate version of Theorem 12.3 of van der
Vaart (1998). Note that

a3 E(h(X1.Z1, X2, Z)h(X1. Z1, X3, Z3)" | X =x, Z) =2)
—E(h(x.z, X, Z))E(h(x,z, X, Z))"
and
E(h(x,z, X, 2))
= AR)(¢(x) —E((X)|Z =2))
(3.33) +E(A(Z)(¢(X) —E(¢(X)|Z)))
+AQE@X, 0) + E(A(2)$(X, x))
=A@ (¢(x) —E(@(X)|Z =2z)) + h1(x),
using (3.24), such that the variance expression in (3.27) matches the one in (3.28).

O

We are going to consider estimating functions of the type

(3.34) Un(B) =Y AB: Zt) (Onk — (B; Z1)),
k
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where  is the function that models E(V|Z), that is,
(3.35) u(Bo;2) =E(V|Z =2),

for a g-dimensional parameter Sy as described in the beginning of this section and
where A is a g-dimensional function.

We are now ready to state our main theorem on consistency and asymptotic
normality of estimates obtained from the pseudo-observation method. Other than
the assumptions of Proposition 3.1, the assumption of (3.36) below is the key. It
establishes a close connection between the estimating functional and V.

THEOREM 3.4.  Make the assumptions of Proposition 3.1 with respect to a
Sunctional ¢. Consider U,, in (3.34) with pseudo-observations, 0, i, based on esti-
mates, 6,, = ¢ (Fy,), from that functional. Assume that

(3.36) E(¢(X)|Z=2)=E(V|Z=2) — ¢(F),

and that the following regularity conditions are met:

1. w(-; z) and A(-; z) are continuously differentiable for (almost) all z € Z,

2. A(Bo, Z) has finite second moment if condition (3.5) is met or has finite rth
moment for an r > ﬁ if condition (3.6) is met,

3. %A(,B; 2))u(B; Z) and A(B; Z)%/,L(,B; Z) are dominated integrable in a

neighborhood of Po,
4. |2 AB: Z)|" is dominated integrable in a neighborhood of By for r =1 if ¢

B
meets condition (3.5) or for an r > ﬁ if ¢ meets condition (3.6),
5. the matrix
0
3.37 M=E|A(By; Z)— 4
(3.37) (4o nee: 2], )
has full rank.

Then for every n an estimator /§n exists such that Uy (,én) = 0 with a probability
tending to 1 for n — co. Moreover, B, — Bo in probability and

(3.38) Sy — o) S NO, M =M
as n — oo, with

(3.39) ¥ = Var(A(Bo; Z)(¢(F) + ¢(X) — u(Bo; Z)) + hi1(X)),
where h1(x) = E(A(Bo; Z)$(X, x)).

PROOF. Let us first realize that ﬁ U, (Bo) LS N(0, ). Using the decomposi-
tion from Proposition 3.1, consider

(3.40) Ui =" ABo: Z) (6} — B0 1 Zk)).-
k=1
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Using (3.22) and (3.24),
E(0; 1Zc =2) = ¢(F) + E(p(X)|Z =2)
=¢(F)+E(\V|Z=2) —¢(F)=n(Bo; 2)

under the assumption in (3.36). Thus, we see that

(3.41)

1
5 Un(Bo) - f : Z1) (Onk — O 1)
(3.42)
1
sﬁm}gxmn,u;ZM(ﬂo;zkw=0p(nf—2*),
k
as maxy |Ry x| = op(n~%) by Proposition 3.1 under the assumptions, and

%Zk |[A(Bo; Zx)| = Op(1) by the regularity assumptions. Since % — 21 <0,
ﬁ U, (Bo) and LHU;,k are asymptotically equivalent, and the asymptotic normality

of ﬁUn (Bo) follows from Theorem 3.3.

With the asymptotic normality of the estimating function, the theorem is a rather
standard statement. See, for example, Sgrensen (1999) for further details. Note that

0 1 9
%( n<ﬁ>) n};aﬁ(fl(ﬁ 20) 6ok — 1(B: Z0))
(3.43)

— = Z A(B; Zk)—IBM(,B Zy),
and that according to a uniform law of large numbers for U -statistics [a law of large
numbers for U -statistics can be found in Problem 15 of Chapter 12 of van der Vaart
(1998)], this will converge (almost surely) to —M uniformly on balls shrinking
towards {Bg} as n — oo under the regularity conditions since we can again ap-
proximate 9,, k by 9* & uniformly well and E(@ k|Zk) = u(Po; Zx) as established
above. U

The matrix M is easily estimated by an empirical mean,
(3.44) =2y A 7o L 2
. —n.: ns £i 8,3’u Py

at the estimate ,3n If a c0n51stent estimate 3 of ) can be obtained, the sandwich
variance estimator M!S M ! estimates M~ 'S M~ I consistently. The usual esti-
mator of X, the one suggested by Andersen, Klein and Rosthgj (2003),

(3.45) - Z AP ZOAB: 2T Onic — nBu: Z0))°

=
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can be seen to converge in probability to Var(A (Bo; Z) (¢ (F) +43(X) —u(Bo; 2))),
leaving out the 41 (X) part of (3.39), and as such it is in general a biased estimate
of . Equation (3.39) suggests estimating X by

1 n n N A
(3.46) " > (ABus ZO(P(Fu) + &, $x, = Fa) — w(Bui Zi)) + h1(X))
. k=1

X (ABns Z (P (Fn) + & (8x, — Fu) — 1 (Bus Z)) + hi(Xp),

where ﬁl(x) = %2?21 A(/§n; Zj)qﬁ;én (8 — Fy, SXJ. — F;,). This estimator is of an
abstract nature. But since ¢, ¢’, and ¢” will be known, or can be derived, in appli-
cations, it certainly can be obtained in practice.

4. Applications in time-to-event analysis. We are going to have a look at
different pseudo-observation-based analyses that can be studied in our framework,
and we will see how they fit the conditions of Theorem 3.4.

We will consider the time-to-event setting with competing risks as described
in Example 2.1. The pseudo-observations are in all cases based on the sample of

= (T, A), a pair of the exit time T and the status at exit A. We i imagine such
an observatlon has come about due to a censoring time C censoring the actual
event time 7 and event type A, that is, that T=TAC and A = AT <O).
Recall that we consider 8, = (Yy, Ny.0,..., Ny.g)T such that F, = %Z‘SX,- is
a vector of step functions. The expected limit of F}, is F = (H, Hy, ..., H)T,
where H(s) = P(f” >s) and Hj(s) = P(f" <s,A= Jj). We use the notation
S(s) =P(T > s), G(s) P(C >s), Fi(s)=P(T <s,A=j)for j=1,...,d,
and Aj(s) = [§ H dH;(u) and M, ;(s) = Ny J(s) Jo Ye)dA j(u) for j =
0,. d In our app 1cat10ns we will be interested in a particular tlmepomt t>0
and 1t will suffice to let all these functions be defined on the interval [0, ]. We will
assume:

1. Continuity of F'. This implies continuity of S, G and A ;, etc.

2. Positivity of H(¢), that is, H(¢) > 0 such that it is possible to remain at risk up
to time ¢.

3. Completely independent censorings in the sense that C is independent of
(T, A, Z).

The last assumption is perhaps the most restrictive and it will be emphasized in the
following. The assumption was key in Graw, Gerds and Schumacher (2009).

We will consider the Banach space D = Wg”([O, t]) fora p e (f—‘, 2) as de-
scribed in Example 3.2, and we will see that the conditions of Proposition 3.1 are
met for our functionals of interest. As argued in the example, condition (a) [version
(3.5)] is met in this setting.

In the supplement [Overgaard, Parner and Pedersen (2017)], we have listed sev-
eral differentiable maps between W,,-type spaces based on Dudley and NorvaiSa
(2011), including:
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1. f— % defined on an open set of functions in ¥V, bounded away from 0. Its

first-order derivative at f is g — _F

2. (f,g) — fo(.) f(s)dg(s) (from WIZ, to W,), the integration operator, with
derivative at (f, g) being (u, v) — fo(.) u(s)dg(s) + fo(‘) f(s)dv(s). Note that
the ordinary Lebesgue—Stieltjes integrals may not be well defined (when the
integrator is not of bounded variation). Integrals should be considered central
Young integrals.

3. [ ]_[(()')(1 + df(s)) (from W, to W,), the product integral operator. The
derivative at a continuous f is g — e/ (g(-) — g(0)).

Also, a continuous, linear map ¢ from W, for example, f +— f_ € W,, map-
ping to the left-continuous version, and f +— f(¢) € R, a coordinate projection,
is differentiable of any order with first-order derivative given by ¢ (g) =o(g).
Using the chain rule, we can use these basic differentiable functlonals to establish
differentiability of any order of a range of important functionals.

EXAMPLE 4.1. Consider again the Nelson—Aalen functional from Example
2.2. In the setting introduced in this section, the functional, given by ¥ (¢; h) =
Jo HE=0 dhy (s) for b = (hy, ho, ..., ha)T € W2, is differentiable of any or-
der in a neighborhood of F (under the positivity assumption) since it is a composi-
tion of differentiable operations. Using the chain rule (see the supplement) and the
derivatives of the elementary functionals stated above, the first-order derivative is

seen to be given by

. " gx(s)
dgi(s —

0 hy(s) 0 hy(s)
for h close to F. This matches the expression stated in Example 2.2. The first-

order influence function is thus given by {ﬁ(t' x) = fé Hl(v) dM, 1(s). We even

have that the functional given by ¥ (h) = J; ) l(hh(zf 9 dhy(s), mapping into

W, ([0, t]) is differentiable with the first-order derivative, as in (4.1), given by
Ui (@) = fy it dei () = fi £ dh (s).

(4.1) Yy(ts g) = dhy(s)

So, in each of our examples of application below, the procedure will be as fol-
lows. Interest will be in estimating parameters in a regression model E(V|Z) =
w(Bo; Z) for some V based on the potentially unobserved (7, A). We will find an
estimator of E(V) that can be considered a functional in the p-variation setting,
differentiable of any order. Then an estimating equation based on the jack-knife
pseudo-observations of that estimator and the particular model given by u can
be considered. Based on Theorem 3.4, solving the estimating equation will yield
reasonable estimates of Sy if the conditions are met.
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As condition (b) of Proposition 3.1 is met for a functional that is differentiable
of any order, we will have that Proposition 3.1 is met. We also need to have the reg-
ularity conditions of Theorem 3.4 fulfilled. Often @ (B8; Z) is on the form M(ﬁTZ)
and p is the inverse of a standard link function (identity, log, logit, cloglog, etc.),
and A is given by A(8; Z) = /(BT Z)Z (or some variation of it). The regularity
conditions needed in Theorem 3.4 are then met if the covariates are reasonably
well behaved: they should not be colinear and they should fulfil some moment
condition. These assumptions are standard in a regression analysis. The remaining
condition of Theorem 3.4, the condition in (3.36), is then the real hurdle and has
to be checked for each functional and V we consider.

4.1. Modeling a survival probability. In time-to-event analysis, assessing the
effect of covariates on the probability of survival may well be of interest. So,
we let V = I(T > t) for some ¢ of interest, and we want to estimate parame-
ters in a regression model of the type (3.35) of E(V|Z) = P(T > t|Z). In this
section, we will see that this can be done using estimating equations of the type
(3.34) based on jack-knife pseudo-observations from the Kaplan—Meier estimator
of E(V) = P(T > t) under standard regularity conditions on the model and un-
der the assumption of completely independent censorings. This fact was proven
by Jacobsen and Martinussen (2016). Here, the Kaplan—Meier functional serves as
an example of use of our framework and as a building-block for the subsequent
section.

To begin with, we will see what the Kaplan—Meier functional looks like in the p-
variation setting. In similarity to Example 4.1, let iy denote the all-cause Nelson—
Aalen functional,

O 1(hy 0
2) ¥ (h) = Z f ( h(s(); MW =0 gy o9,

and define a functional y by

“)
(4.3) x(h)y =TT = wds; h).

0

We see that x (F) = S, the survival function, while x (F,) = Sisthe Kaplan—Meier
estimate, that is, x is the Kaplan—Meier functional. As in Example 4.1, ¢ is seen
to be differentiable of any order in a neighborhood of F, and since the product
integral is differentiable of any order, the same applies to x in a neighborhood
of F. Using the continuity of i (F), the first-order derivative of x at F in direction
g is seen to be

d 1 o
@4 x(g) = —x(F)¥k(g) =S ( g - —dHl»)
d i ; /H H?
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by the chain rule.
Since we are interested in estimates of S(¢), our estimating functional is ¢ given
by

(4.5) ¢(h) = x(z; h),

where x (t; h) is the function x (h) evaluated at time 7. In the estimating equation,
the pseudo-observations will be based on the estimator given by ¢. The functional
¢ is differentiable of any order since this is the case for . The first-order derivative
at F is given by ¢ (g) = x5 (t; g). Let M, = Zle M, ;. Based on the expression
for the Nelson—Aalen influence function, the influence function of ¢ can be ex-
pressed as

. ro1
(4.6) ¢(x) = —S(t)/0 mde(s).

This is similar to the expression in Jacobsen and Martinussen (2016). As a conse-
quence of their Proposition 1, we have that

@.7 E(xp(s;8x — F)|Z) = Sz(s) — S(s), s €[0,1]

and specifically that E(¢5(X )Z) = Sz(t) — S(¢), under the assumption of com-
pletely independent censorings, where Sz (s) = P(T > s|Z) defines the conditional
survival function given covariates. This means that when V = 1(T > ¢), the con-
dition in (3.36) is met using the functional ¢. This condition was the remaining
assumption for Theorem 3.4 to be applicable in a standard setting. In conclusion,
we are able to model and estimate the effect of covariates on survival using pseudo-
observations based on the Kaplan—Meier functional under the assumption of com-
pletely independent censorings.

The pseudo-observation method for a survival probability based on the Kaplan—
Meier estimator has been examined in Klein et al. (2007) on real and simulated
data. In their Section 5, they estimated the odds ratio of disease-free survival for
leukemia patients given an autotransplantation relative to leukemia patients given
an allotransplantation using an estimating equation based on the logit link function,

T
that is, with u(8, Z) = %. Our results indicate that this is a reasonable

estimating procedure if the condition of completely independent censorings is met.

4.2. Modeling a cause-specific cumulative incidence. When study partici-
pants are at risk of multiple causes of death or other types of mutually exclu-
sive events, looking at the risk of having one specific type of event and how this
risk depends on covariates is often of interest. In other words, for some time-
point ¢ > 0, we consider a regression model of P(T' <¢, A =1|Z) = E(V|Z) with
V =1(T <t,A =1) (we assume, without loss of generality, that event 1 is of
interest) as in (3.35). We aim at estimating the regression parameters. The risk
P(T <t, A =1), the cumulative incidence of event 1, is usually estimated using
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the Aalen—Johansen estimator. In this section, we shall see that if we assume com-
pletely independent censorings and consider a reasonable model and estimating
equation, all assumptions of Theorem 3.4 are met in this setting and we can expect
the pseudo-observation approach to work.

It seems the Aalen—Johansen estimator in competing risks is most easily stud-
ied as an inverse probability of censoring weighting functional. Let ¢ now de-
note the Nelson—Aalen functional for the cumulative censoring hazard, v (h) =

f © l(hh (8; 9 dho(s), and let x denote the Kaplan—-Meier functional for the cen-

soring, x (h) = ]_[(()') (1 — ¥ (ds; h)). Now, consider the functional y given by
O 1(x(s—; h) > 0)

v = [

This leads to ¥ (F) = f§” gt dHi(s) = f3” S(s)dA 1 (s) = Fi under the assump-

tion of completely independent censorings, and similarly y (F,) = fo
le (s)

4.8) dhy(s).

G(s )
= f ()S(s—) dAl(s) = F1, the Aalen—Johansen estimate of the cause

1- spemﬁc cumulative incidence function. In the last part, the identity Y(‘)

S(s )G(s ), cf. p. 36 of Gill (1980), was used where S and G are the Kaplan—
Meier estimates for survival and censoring, respectively.

We see that y is a composition of functionals that are differentiable of any order
in the p-variation setting described earlier and, therefore, itself differentiable of
any order. Based on the chain rule, its first-order derivative at F in direction g is

/ O 1 O ¥ (s5—:
yF(g>=/0 ﬁdgms)—/o XEGZ8) 4y (s)

Y
4.9) s X)(S  £)
4 YFES 8 qh,(s),
G() g1(s) + Go) 1(s)
as xp(g) = —Gy(g) as was seen in the previous section.

Let Fz,1(t) :==P(T <t, A =1|Z). Then the following applies.

PROPOSITION 4.2.  We have
(4.10) E(yr(s; 8x — F)|Z) = Fz.1(s) — Fi(s), s €[0,1],
under the assumption of completely independent censorings.
PROOF. A proof of this result was essentially given in Graw, Gerds and Schu-

macher (2009) in the proof of their Lemma 2. In the supplement Overgaard, Parner
and Pedersen (2017), a detailed martingale-based proof is given. [

Since we are specifically interested in the cumulative incidence at time ¢, our
estimating functional is ¢ given by

(4.11) ¢(h) =y (t:h),
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where y (t; h) is the function y (h) evaluated at time ¢. When estimating param-
eters in a regression model of the cause 1-specific cumulative incidence using an
estimating equation like (3.34), the pseudo-observations may be based on the esti-
mator given by ¢. The functional ¢ is clearly differentiable of any order in the p-
variation setting, since this is the case for y. So, the conditions of Proposition 3.1
are met for this functional in the p-variation setting. We have ¢’F (g) = ij (t; 2)
and ¢(x) = y(t; 8y — F), or specifically
|

¢(x) = b Go) dNy,1(s) — F1(1)

t ] s— 1
+/0 G(s)/o iy WM 0@ A 9)

This is equivalent to the expression used in Graw, Gerds and Schumacher (2009).

Proposition 4.2 shows that the condition (3.36) is met for ¢ and V = 1(T <
t, A =1). By Theorem 3.4, we can conclude that we are able to model and esti-
mate the effect of covariates on the cause 1-specific cumulative incidence at time
t under the assumption of completely independent censorings. Of course, other
causes or combinations of causes could be considered just as well. The application
of the pseudo-observation method for the Aalen—Johansen estimator in a com-
peting risks scenario has been examined in various papers, among others, Klein
(2006) and Klein and Andersen (2005). Both papers are in fact focusing on using
more than one timepoint at once and are not strictly covered by our results, which
are focusing on the situation with one timepoint of interest, but this generalization
can certainly be made. Klein and Andersen (2005) applied the method to data on
events after bone marrow transplantation, focusing on estimating equations based
on the logit and complementary log-log link functions. Klein (2006) advocates
the use of additive models of the cause-specific cumulative incidences. With one
timepoint of interest, this can be done using an estimating equation based on the
identity link function [i.e., with u(87 2) = g7 Z],

4.12)

n
(4.13) > Zi(bui — B" Zi) =0,
k=1

where én, « are the pseudo-observations based on the Aalen—Johansen estimator for
the type of event of interest. Of course, the implied model poses restrictions on the
distribution of the covariates for ,BOT Z to be a reasonable model of the probability
P(T <t, A =1|Z). The By parameters are interpreted as risk differences in this
model.

4.3. Modeling a restricted mean survival time. Estimating the effect of covari-
ates on the survival time can be of interest, but is often hard to do since censorings
are likely to hinder observation of the larger survival times, leaving the tail of the
distribution ill-determined. As an alternative, the restricted survival time, T A ¢t for
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some ¢, is sometimes considered instead. Letting V = T A ¢, we consider a regres-
sion model of E(V |Z) = E(T At|Z) as in (3.35). In the following, we will see how
and when regression parameters can be estimated using the pseudo-observation ap-
proach of solving (3.34).

The restricted mean, E(T A t), is obtained by integrating the survival function
up to time ¢, that is, E(T A t) = fé S(s)ds, and it is estimated by plugging in the
Kaplan—Meier estimate for S, that is, estimated by fé S(s) ds. We calculate pseudo-
observations, é,,,k, based on this estimator for use in an estimating equation like
(3.34). By letting x denote the Kaplan—Meier functional from Section 4.1, the
restricted mean functional, which will be our estimating functional in this section,
is given by

t
(4.14) o (h) =/O x(s:h)ds.

Since y is differentiable of any order in the p-variation setting (and [0, ]2 s > s
is in W) its composition with the integration operator is also differentiable of any
order. In other words: the restricted mean functional, ¢, is differentiable of any or-
der in the p-variation setting, and so we see that the assumptions of Proposition 3.1
are met in this setting. Its first-order derivative at F is given by

t
4.15) $r(g) = /O Ko (s: g)ds,

and its influence function is given by d)(x) = fé X }(s; 8x — F)ds. Remembering
the result of (4.7) that holds when assuming completely independent censorings,
and considering V = T A t, this means

. t t
(4.16) E(¢(X)|Z)=/0 Sz(s)ds—/o S(s)ds = E(V|Z) — E(V),

such that the condition (3.36) is met when using this functional. In conclusion,
Theorem 3.4 applies under the assumption of completely independent censorings
if we consider reasonable A and w, and thus we are able to model and estimate the
effect of covariates on the restricted mean survival using the pseudo-observation
method. The pseudo-observation method based on the restricted mean estimator
was examined on real and simulated data in Andersen, Hansen and Klein (2004)
using an estimating equation based on the identity link function. Their simulation
study used completely independent censorings and showed only tiny amounts of
bias on their 8 estimates which is in agreement with our results.

4.4. Modeling an expected cause-specific lost lifetime. Consider V = (t—T A
t)1(A = 1), then V is the amount of lifetime lost due to cause 1 before time ¢. The
paper of Andersen (2013) proposed that a regression analysis on such a V may be
useful and suggested using the pseudo-observation approach since V may well not
be observable due to censorings. The expectation is E(V) = f(i Fi(s)ds, which is
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estimated by fé F 1(s) ds, where F | is the Aalen—Johansen estimate for cause 1. We
now want to study an estimating equation based on jack-knife pseudo-observations
of this estimator. Specifically, we want to show that Theorem 3.4 applies when the
pseudo-observations are based on this estimator. The first step is to consider the es-
timator as a functional in a reasonable setting. Letting y denote the cause 1-specific
Aalen—Johansen functional from Section 4.2, this cause-specific lost lifetime esti-
mator can be considered as a functional given by

4.17) o (h) =/O v (s; h)ds.

As was the case for the similar restricted mean functional, this cause-specific lost
lifetime functional is differentiable of any order in the p-variation setting since y
is differentiable of any order in this setting. The assumptions of Proposition 3.1
are therefore met. The first-order derivative at F is given by

t
(4.18) $r(g) = /0 yh(g)ds

and the influence function is given by ¢(x) = fot Yp(s; 8x — F)ds. Still considering
V=(—-TAt)I(A=1), we now see that under the assumption of completely
independent censorings Proposition 4.2 applies and

. t
(4.19) E(¢p(X)|Z) =f0 (Fz,1(s) — Fi(s))ds =E(V|Z) —E(V).

Thus, the condition in (3.36) is met for this functional. And so Theorem 3.4 ap-
plies, assuming the regularity conditions are met, thereby allowing us to model and
estimate the effect of covariates on the cause specific lost lifetime. In Andersen
(2013), this was done using an estimation equation based on the identity link func-
tion in the context of the bone marrow transplantation study.

5. A numerical example. The asymptotic properties of certain estimation
procedures proven in the previous sections do not guarantee reasonable finite sam-
ple properties. Let us in this section take a look at one example of the behavior of
a simple pseudo-observation based estimating procedure on a modestly sized sam-
ple, including parameter estimation and variance estimation using the proposed
variance estimate in (3.46) and the usual variance estimate in (3.45). To do this,
we simulate data from the following competing risks scheme. We consider a co-
variate Z such that P(Z =0) = P(Z = 1) = 0.5. We want two competing risks
and we are interested in a model of Fz 1(1) where Fz j(s) =P(T <s, A = j|Z).
Event times and types follow the probabilities:

(5.1 Fz.1(s)=1(0.054+0.702)s, Fz2(s)=1(0.034+0.12Z)s,

for s € [0, 1]. It follows that Z has a massive impact on Fz 1 and Fz7; see the
upper right of Figure 1 for an illustration. An exponentially distributed censoring
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variance estimates with the asymptotical variance and the observed variance among the parameter
estimates plotted.

time, C, is introduced such that we expect to be hindered in observing the variable
V =1(T <1, A =1) with probability 0.5, that is, such that P(C < T A1) =0.5
(in this scenario, it corresponds to a censoring intensity close to 1). We generate
a sample of n = 200 observations, and we are interested in estimating parameters
in the model Fz (1) = ﬁOT(l, Z)" = Boo + Bo1Z, that is, with true parameters
Boo = 0.05 and Bo; = 0.70. For that reason, we compute pseudo-observations,
(én,k), of the partially observed Vj’s based on the Aalen—Johansen estimator, and
we use them in an estimating equation:

3 (1) (a7 (3) =0

to estimate Bg by the solution ,3,, = (,BA,,,O, Bn,l)- This scheme ought to work well
(at least for large n) according to the results from Section 4.2. We consider the
estimate /§n,1 of special interest and have focused on this in the following. The
variance of /5%1 can be estimated based on the usual, but biased, variance estimate
in (3.45) and based on the proposed variance estimate in (3.46). Note that the
second-order derivative of the Aalen—Johansen functional can be found by using
the differentiability results stated in the supplement. Using the proposed variance

(5.2)
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estimator is then only a question of insertion of the observed F,,. Similarly, the
asymptotic variance can be numerically approximated using (3.39) since the true
F is known.

We replicated the experiment 100,000 times and stored the parameter estimate
and variance estimates for each sample of size 200. The results are summarized by
Figure 1. We see that the distribution of estimates seems normal. The sample mean
is 0.6998 and the sample standard deviation is 0.0687, leaving no indication of bias
from the true 0.70. The proposed variance estimator seems centered around the
asymptotic variance, but is on average slightly lower than the observed variance.
The usual variance estimator seems to be biased upwards. This is all reflected in
the coverages of corresponding 95 % confidence intervals. Considering coverage
as a Bernoulli (0/1) experiment, the true coverage probability can be estimated by
94.0% (93.9%-94.2%) for the proposed variance estimator and by 97.8% (97.7%—
97.9%) for the usual variance estimator.

The properties of the proposed variance estimator is a topic of ongoing research.

6. Discussion. We have provided a general framework for the study of jack-
knife pseudo-observations and we have extended the result of consistency and
asymptotic normality of the fSp-estimates from Jacobsen and Martinussen (2016)
to a much more general setting. The framework appears to suit inverse probabil-
ity of censoring weighted estimators like the Kaplan—Meier and Aalen—Johansen
estimators well.

We have focused only on real-valued pseudo-observations, but the approach can
be generalized to handle vector-valued pseudo-observations, for example, when
considering more timepoints than one simultaneously in the Kaplan—Meier case, if
the estimating function is modified accordingly. The approach can likely be gener-
alized to process-valued pseudo-observations if a functional central limit theorem
is used appropriately.

The p-variation concept works well for counting processes as in our examples,
and it is likely suited to also handle more general Markov multi-state models. In
other settings, for example, when multi-dimensional covariates are used for the
estimation of 8, other tools may be necessary in order to have the relevant sample
averages contained in appropriate Banach spaces.

The p-variation approach draws on results from Dudley and Norvaisa (1999,
2011) that treat basic functionals in p-variation that can be composed into the
functionals we consider in examples. We believe these works pave the way for the
use of functional analysis in many statistical applications like this, and that they
can find much more use in this field than they have found so far.

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic theory of generalized estimating equations
based on jack-knife pseudo-observations” (DOI: 10.1214/16-AOS1516SUPP;
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.pdf). The supplement contains an overview of the theory of differentiable func-
tionals, some details on the p-variation setting, a note on the measurability of the
influence functions, and a detailed proof of Proposition 4.2.
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