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DETECTION AND FEATURE SELECTION IN SPARSE
MIXTURE MODELS1

BY NICOLAS VERZELEN AND ERY ARIAS-CASTRO
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We consider Gaussian mixture models in high dimensions, focusing on
the twin tasks of detection and feature selection. Under sparsity assumptions
on the difference in means, we derive minimax rates for the problems of test-
ing and of variable selection. We find these rates to depend crucially on the
knowledge of the covariance matrices and on whether the mixture is symmet-
ric or not. We establish the performance of various procedures, including the
top sparse eigenvalue of the sample covariance matrix (popular in the con-
text of Sparse PCA), as well as new tests inspired by the normality tests of
Malkovich and Afifi [J. Amer. Statist. Assoc. 68 (1973) 176–179].

1. Introduction. Variable (aka feature) selection is a fundamental aspect of
regression analysis and classification, particularly in high-dimensional settings
where the number of variables exceeds the number of observations. The corre-
sponding literature is vast, from the early proposals based on penalizing the num-
ber of variables (i.e., the �0 norm) [Akaike (1974), Mallows (1973), Schwarz
(1978)], to the more recent variants based on convex relaxations (e.g., the �1 norm)
[Tibshirani (1996), Candes and Tao (2007), Zhu and Hastie (2004), Chen, Donoho
and Saunders (1998)] and a wide array of alternative approaches, including non-
convex relaxations [Fan and Peng (2004)], greedy methods [Mallat and Zhang
(1993), Tropp (2004)] and methods based on multiple testing [Ji and Jin (2012),
Jin (2009), Ingster, Pouet and Tsybakov (2009), Donoho and Jin (2009)]. We refer
the reader to Massart (2007) and Hastie, Tibshirani and Friedman (2009), Chap-
ters 3, 7, 18, for additional pointers.

In contrast, variable selection in the context of clustering is at a comparatively
infant stage of development, even though clustering is routinely used in high-
dimensional settings. Also, according to Hastie, Tibshirani and Friedman (2009):

Specifying an appropriate dissimilarity measure is far more important in obtaining suc-
cess with clustering than choice of clustering algorithm.

And, of course, choosing a dissimilarity measure is intimately related to weight-
ing the variables, or combinations of variables, according to their importance in

Received May 2014; revised December 2015.
1Supported in part by the US Office of Naval Research (N00014-13-1-0257) and the French

Agence Nationale de la Recherche (ANR 2011 BS01 010 01 projet Calibration).
MSC2010 subject classifications. 62H30, 62H15.
Key words and phrases. Gaussian mixture models, detection of mixtures, feature selection for

mixtures, sparse mixture models, the sparse eigenvalue problem, projection tests based on moments.

1920

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/16-AOS1513
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


DETECTION AND FEATURE SELECTION IN SPARSE MIXTURE MODELS 1921

clustering the observations. The literature on variable selection for clustering is
indeed much more recent, scarce and ad hoc. Chang (1983) concludes empirically
that performing principal component analysis as a preprocessing step to clustering
a Gaussian mixture is not necessarily useful. Raftery and Dean (2006) and Maugis
and Michel (2011) propose a model selection approach, while penalized methods
are suggested in Pan and Shen (2007), Xie, Pan and Shen (2008), Wang and Zhu
(2008), Friedman and Meulman (2004), Witten and Tibshirani (2010).

We focus here on the emblematic setting of a mixture of two Gaussians in high-
dimensions. Working under the crucial assumption that the difference in means is
sparse, we study the cousin problems of mixture detection (i.e., testing whether
the difference in means is zero or not) and variable selection (i.e., estimating the
support of the difference in means), both when the covariance matrix is known and
when it is unknown. We obtain minimax lower bounds and propose a number of
methods which are able to match these bounds.

1.1. Detection problem. The first problem that we consider is that of detection
of mixing, specifically, we test the null hypothesis that there is only one compo-
nent, versus the alternative hypothesis that there are two components, in a sample
assumed to come from a Gaussian mixture model. We assume throughout that the
group covariance matrices are identical, and we consider the case where it is known
and the case where it is unknown. Formally, in the case where it is unknown, we
observe X1, . . . ,Xn ∈ R

p and consider the general testing problem

H0 : X1, . . . ,Xn
i.i.d.∼ N (μ,�),

(1)
for some μ ∈ R

p and some � ∈R
p×p p.s.d.;

versus

H1 : X1, . . . ,Xn
i.i.d.∼ νN (μ0,�) + (1 − ν)N (μ1,�),

(2)
for some � ∈ R

p×p p.s.d., some μ0 �= μ1 ∈R
p and some ν ∈ (0,1).

(As usual, “p.s.d.” stands for “positive semidefinite.”) We are specifically interested
in settings where the difference in means is sparse:

(3) �μ := μ1 − μ0 is s-sparse,

where 1 ≤ s ≤ p and ν belongs to (0,1). (We say that a vector is s-sparse if it
has at most s nonzero entries.) In the sequel, we denote θ = (ν,μ0,μ1,�) the
set of parameters with the convention that under the null hypothesis μ1 = μ0,
so that �μ = 0, and ν ∈ (0,1) is arbitrary. We then write Pθ for the probability
distribution of X1, . . . ,Xn.

We note that the model (1)–(2) can be written as

Xi = μ0 + (1 − ηi)�μ + �1/2Zi,
(4)

where η1, . . . , ηn
i.i.d.∼ Bern(ν) and independent of Z1, . . . ,Zn

i.i.d.∼ N (0, I),
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where I denotes the identity matrix (here in dimension p), and the hypothesis
testing problem then reads

(5) H0 : �μ = 0 versus Hν
1,s : �μ �= 0 is s-sparse.

For simplicity of exposition:

• We assume that the sparsity s is known. This is a rather mild assumption (at
least in theory) as discussed in Section 5.

• We assume the parameter ν is unknown and bounded away from 0 and 1. When
ν approaches 0 or 1, the problem becomes that of testing for contamination.
Although the two settings are intimately related, treating both would burden the
presentation.

We consider the testing problem (1) versus (2) in a high-dimensional large-
sample context where all the parameters (p, s, �μ, �) may depend on n. Unless
specified otherwise, all the limits are taken when the sample size increases to in-
finity, n → ∞. We adopt a minimax perspective, which consists of quantifying the
performance of tests in the worst case sense.

As various testing problems are studied in this manuscript, the notion of min-
imax detection rates is first introduced in an abstract way. Consider H0 : θ ∈ �n

0
versus H1 : θ ∈ �n

1 based on a sample from a distribution belonging to some fam-
ily {Pθ : θ ∈ �} and define a nonnegative function R that satisfies R(θ) = 0 for all
θ ∈ �n

0 and R(θ) > 0 for all θ ∈ �n
1. Henceforth, R(·) is called the signal-to-noise

ratio. In our Gaussian mixture framework, think of R(θ) as some (pseudo-)norm
of �μ. Given some number rn > 0, define �n

1(R, rn) := {θ ∈ �n
1 : R(θ) ≥ rn}, the

set of parameters in the alternative that are rn-separated from the null hypothesis.
Then the worst-case risk of a test φ for testing θ ∈ �n

0 versus θ ∈ �n
1(R, rn) is the

sum of its probabilities of type I and type II errors, maximized over the null set �n
0

and alternative distributions Pθ whose signal-to-noise ratio is larger than rn, or in
formula

γ
(
φ;�n

0,�
n
1(R, rn)

) := sup
θ∈�n

0

Pθ (φ = 1) + sup
θ∈�n

1(R,rn)

Pθ (φ = 0).

The rationale behind the introduction of rn is that in testing problems such as (1)–
(2) some distributions in the alternative are arbitrarily close to the null hypothesis
so that γ (φ;�n

0,�
n
1;R,0) = 1 for any test φ. This is why the probability type II

error is maximized over alternatives that are sufficiently separated from the null
distribution, which is here quantified as R(θ) ≥ rn. Then the minimax risk for this
testing problem is defined as

γ ∗(
�n

0,�
n
1(R, rn)

) := inf
φ

γ
(
φ;�n

0,�
n
1(R, rn)

)
,

where the infimum is over all possible tests for H0 versus H1. Formally speaking,
we consider a sequence of hypotheses indexed by the sample size n and, corre-
spondingly, consider sequences of tests, also indexed by n. Understood as such,
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lim infn→∞ γ ∗[�n
0,�

n
1(R, rn)] = 1 is equivalent to saying that, in the large-sample

limit, no test does better than random guessing. When a sequence of tests φn sat-
isfies γ (φn;�n

0,�
n
1(R, rn)) → 0, it is said to be asymptotically powerful. A real

sequence r∗
n is said to be a minimax separation rate of H0 versus H1 if for any

sequence rn satisfying rn 
 r∗
n , γ ∗[�n

0,�
n
1(R, rn)] → 1, while for any sequence

rn satisfying rn � r∗
n , γ ∗[�n

0,�
n
1(R, rn)] → 0. As we shall see in concrete situa-

tions, the minimax separation rate r∗
n characterizes the minimal distance between

the mixture means to enable reliable mixture detection. As is customary, we leave
the dependency on n implicit in the sequel.

Contribution. We distinguish between the cases where � is known or un-
known. The case where � is diagonal will play a special role, due to the fact
that it combines well with the assumption that the mean difference vector �μ

is assumed sparse in the canonical basis of Rp . We also distinguish between the
symmetric setting, where ν = 1/2, and the asymmetric setting, where ν �= 1/2.

For each situation, we introduce an appropriate signal-to-noise ratio function R

and derive the minimax detection rate with an explicit dependency in the sample
size n, the ambient dimension p, the sparsity s of the difference in means �μ, the
mixture weight ν. We also propose some tests—some of them new—which are
shown to be minimax rate optimal.

• When the covariance matrix � is known, the test based on the top eigenvalue
of the normalized sample covariance matrix is competitive when s is relatively
large; while the test based on the top sparse (in the eigen-basis of �) eigenvalue
of the normalized sample covariance matrix is competitive when s is relatively
small.

• When the covariance matrix � is unknown, we propose some new projection
tests based on moments à la Malkovich and Afifi (1973), which are shown to
achieve the minimax rate. The detection rates that we obtain for the projection
skewness and kurtosis statistics proposed in Malkovich and Afifi (1973) are sub-
optimal.

Our results are summarized in Tables 1 and 2. Note that when � is known, the
signal-to-noise ratio is measured in terms of the Mahalanobis distance of �μ from
0 (see Table 1) while a different measure is used when � is unknown; see Ta-
ble 2. We show that using the Mahalanobis distance in the latter setting leads to
exponential minimax bounds. This is detailed in Section 3.1.4.

1.2. Variable selection. The second problem that we consider is that of vari-
able selection, where the goal is to estimate the support of �μ in (3) under the
mixture model (2). The support of a vector v = (vj ) is {j : vj �= 0}. A problem
of particular interest when s is small compared to p—meaning s = o(p)—is that
of estimating the support of �μ, which corresponds to the variables that are re-
sponsible for separating the population into two groups. This is what we mean by
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TABLE 1
Minimax detection rates and near-optimal tests as a function of s when � is known and p ≥ n. The

minimax detection rates are expressed in terms of the signal-to-noise ratio R0 = �μ��−1�μ.
Here, γ denotes any arbitrary constant in (0,1)

Sparsity regimes Minimax detection rates Near-optimal test

s ≤ n
log(ep/n)

[ s log(ep/s)
n ]1/2 Top sparse eigenvalue (15)

n
log(ep/n)

≤ s ≤ (np)γ/2 s log(ep/s)
n Top sparse eigenvalue (15)

s ≥ √
np

√
p/n Top eigenvalue (14)

variable selection, and in a setting where the hypothesis testing problem is param-
eterized by the sample size n, we say that a certain estimator Ĵn is consistent for
J := {j : �μj �= 0} (which may depend on n) if

(6)
|Ĵn�J |

|J | → 0, n → ∞.

The dependency on n will often be left implicit.
For the problem of variable selection, we work under the assumption that the

effective dynamic range of �μ and the 2s-sparse Riesz constant of � are both
bounded. We define the effective dynamic range of a set of real numbers {xj }
(possibly organized as a vector) as supj |xj |/ infj∈J |xj |, assuming J := {j : xj �=
0} �= ∅. Given a p × p positive semidefinite matrix � �= 0 and an integer 1 ≤
s ≤ p, we define the largest s-sparse eigenvalue of � as λmax

s (�) = maxu u��u,
where the maximum is over s-sparse unit vectors u ∈ R

p . The smallest s-sparse
eigenvalue of � is defined analogously, replacing “max” with “min”. The s-sparse
Riesz constant of � is simply λmax

s (�)/λmin
s (�). Equivalently, it is the supremum

of u��u/v��v over all pairs of unit s-sparse vectors u and v.

Contribution. Since in each case our testing procedure in the sparse setting
[s = o(p)] is based on maximizing some form of moment over direction vectors

TABLE 2
Minimax detection rates and near-optimal tests when � is unknown. The minimax detection rates

are expressed in terms of the signal-to-noise R1 = ‖�μ‖4/�μ���μ. In this summary, we assume
that s log(ep/s) = o(n). If this is not the case and � is unknown, our lower bounds show that the

problem is extremely hard

Minimax detection rates Near-optimal test

Symmetric (ν = 1/2) [ s
n log(

ep
s )]1/4 Projection 1st moment (27)

Asymmetric (ν �= 1/2) [ s
n log(

ep
s )]1/3 Projection 2nd signed moment (38)
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which are sparse (in some way made explicit later on), it is natural to use the
support of the maximizing direction as an estimator for the support of �μ:

• When � is known, we show that this estimator is indeed consistent in the sense
of (6) at (essentially) the minimax rate for detection.

• When � is unknown, surprisingly, this estimator may be suboptimal. This leads
us to propose nontrivial variants in (31) (symmetric setting) and (40) (asymmet-
ric setting). We are able to show that the support estimator (31) is consistent at
(essentially) the minimax rate for detection.

1.3. Consequences for clustering. We see the problems of detection and vari-
able selection as complementary to the problem of clustering. We could imagine a
work flow where detection is performed first, then variable selection if the test is
significant, and then clustering based on the selected variables. To keep this paper
concise, we do not provide here an analysis of these multi-step clustering algo-
rithms. See Azizyan, Singh and Wasserman (2013, 2015), Jin and Wang (2014)
for recent results in this direction.

The motivation for performing detection and variable selection first is meaning-
ful because these can be successfully accomplished with a much smaller separation
between the components than clustering. Indeed, consider a Gaussian mixture of
the form 1

2N (0,�) + 1
2N (�μ,�). Even if � and �μ are known—in which case

the best clustering method is the rule {x��−1�μ > �μ��−1�μ/2}—the ex-
pected clustering error is at least P(N (0,1) > ‖�−1/2�μ‖/2), which converges
to 0 only if ‖�−1/2�μ‖ → ∞.

1.4. Methodology, computational issues and mathematical technique.

Methodology. Most of the tests that we propose are novel. While the first test
in Table 1 is very natural, the second test is new. It is a close cousin of the sparse
eigenvalue (19), considered in the sparse PCA literature (see Section 1.5). How-
ever, the latter appears suboptimal so that our variant brings a nontrivial improve-
ment. The tests in Table 2 are new. They compete with the projection kurtosis (25)
and skewness (36) that we adapted from the normality tests of Malkovich and Afifi
(1973). The motivation for introducing new tests is our inability to prove that these
kurtosis and skewness tests achieve the minimax rate. This is because they are
based on higher-order moments, which we found harder to control under the null.

Computational issues. We emphasize that except for the top eigenvalue, the
other test statistics in Tables 1 and 2 are very hard to compute even for mod-
erate p. We conjecture that no testing procedure with polynomial computational
complexity is able to achieve the minimax rates of detection. When the covariance
� is known, our testing problem shares many similarities with the sparse PCA de-
tection problem for which a gap between optimal and computationally amenable
procedures has been established [Berthet and Rigollet (2013a)].
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TABLE 3
Detection rates achieved by some computationally feasible tests when � is known. See Section 4 for
precise statements and assumptions. Compared to Table 1, the rates are at most

√
s slower than the

optimal rates

Sparsity regimes Detection rates Test

s ≤ √
p/ log(p) [s2 log(p)

n ]1/2 Maximal canonical variance (47)

s ≥ √
p/ log(p)

√
p/n Top eigenvalue (14)

Another contribution of this paper is to propose computationally feasible tests:

• We study coordinatewise methods based on moments.
• We study existing convex relaxations to the sparse eigenvalue problem.

See Tables 3 and 4. The tests in Table 4 are new and are the coordinatewise equiv-
alents of the tests appearing in Table 2.

A note on the mathematical technique. Regarding the technical arguments, the
derivation of the information lower bounds for the detection problem is typical:
we reduce the set of null hypotheses to the standard normal distribution and put a
prior on the set of alternatives, and then bound the variance of the resulting like-
lihood ratio under the null. The latter amounts to bounding the chi-squared diver-
gence between the reduced null and alternative distributions; see Tsybakov (2009),
Theorem 2.2. That said, in the details, the calculations are both complicated and
tedious. The test statistics that we study are based on sample moments of Gaussian
random variables of degree up to 4. To control these statistics under the null, we
use a combination of chaining à la Dudley [van der Vaart and Wellner (1996)] and
concentration bounds that we derive based on approximations of Gaussian random
variables by sums of Rademacher random variables together with concentration
bounds for these obtained by Boucheron et al. (2005).

TABLE 4
Detection rates achieved by some computationally feasible tests when � is unknown. See Section 4

for precise statements and assumptions. Compared to Table 2, the rates are respectively at most
s1/4 and s1/3 slower than the optimal rates. In this summary, we assume that log(p) = o(n)

Detection rates Test

Symmetric (ν = 1/2) [ s4

n log(
ep
s )]1/4 Coordinatewise 1st moment (50)

Asymmetric (ν �= 1/2) [ s3

n log(
ep
s )]1/3 Coordinatewise 2nd signed moment (51)
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1.5. Closely related literature. We already cited a number of publications
proposing various methods for variable selection in the context of high-
dimensional clustering. None of these papers offers any real theoretical insights
on the difficulty of this problem. In fact, very few mathematical results are avail-
able in this area.

Most of them are on the estimation of Gaussian mixture parameters. Recent
papers in this line of work include [Belkin and Sinha (2010), Kalai, Moitra and
Valiant (2012), Hsu and Kakade (2013), Brubaker and Vempala (2008)], and ref-
erences therein. These papers focus on designing polynomial time algorithms that
work when there is sufficient parameter identifiability, which is often not opti-
mized. An exception to that is Chaudhuri, Dasgupta and Vattani (1999), where a
multistage variant of k-means is analyzed in the canonical setting of a symmet-
ric mixture of two Gaussians with identity covariance, and showed to match an
information-theoretic bound when the centers are at a distance exceeding 1. We
note that there is no assumption of sparsity made in this literature.

Related to our proposal of coordinatewise methods presented in Section 4.1,
Chan and Hall (2010) test each coordinate for unimodality and prove variable
selection consistency in a nonparametric setting. Similar in spirit, Jin and Wang
(2014) propose2 the selection of features based on coordinatewise Kolmogorov–
Smirnov goodness-of-fit testing. Their setting is slightly different from ours as the
number of mixtures in their paper is allowed to be larger than 2 but the covariance
matrix is restricted to be diagonal and the distributions are supposed to be asym-
metric. Nevertheless, when specialized to a common framework (two components,
diagonal unknown covariance matrix, ν �= 1/2), their detection rates and ours are
the same. Azizyan, Singh and Wasserman (2013) consider the task of clustering a
sparse symmetric mixture of two Gaussians in high-dimensions with identity co-
variance matrix. They prove a minimax lower bound for some clustering error, but
do not exhibit any method that matches that lower bound. Instead, they propose
a coordinatewise approach which is almost identical to one of the methods con-
sidered by Amini and Wainwright (2009) (see below) and is very similar to what
we do in Section 4.1. This work is closely related to what we obtain in Section 2
(specialized to � = I) and in Section 4.1. The same authors propose2 in Azizyan,
Singh and Wasserman (2015) to first learn the parameters of the Gaussian mixture
model using Hardt and Price (2015) and then apply sparse linear discriminant anal-
ysis. Their results are not directly comparable to ours as they assume that �−1�μ

(instead of �μ) is sparse.
Close to our work is the recent literature on sparse principal component analysis,

in view of the following expression for the covariance matrix:

(7) Cov(X) = ν(1 − ν)�μ�μ� + �.

2 This work appeared after the initial version of the present paper was made publicly available.
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The difference is that, in this line of work, X1, . . . ,Xn are i.i.d. centered normal
with covariance matrix of the form (7). We note that most of the work considers
the case where � is known and isotropic. The most closely related is the work
of Berthet and Rigollet (2013a) on testing for a leading sparse principal direction.
From them, we drew the idea of using the SDP relaxation of d’Aspremont et al.
(2007) for the sparse eigenvalue problem; see Section 4.2. Also closely related is
Amini and Wainwright (2009), where the authors tackle the problem of variable
selection in the same context. They propose a coordinatewise approach which se-
lects the coordinates corresponding to the top s largest variances, identical to a
preprocessing step in Johnstone and Lu (2009). They also study the SDP method
of d’Aspremont et al. (2007), but under very strong constraints—in particular, they
assume that s = O(logp). The estimation of the leading principal component(s),
which concerns, for example, Johnstone and Lu (2009), Cai, Ma and Wu (2013,
2015), Birnbaum et al. (2013), Vu and Lei (2012, 2013) is also closely related.

REMARK. We note that most of the references in the sparse PCA literature
assume that � = I in (7). This can easily be extended to the case of a diago-
nal covariance matrix, which is also an important case in our work. That said,
it is important to realize that, even when more general covariance structures are
considered—as in Vu and Lei (2012, 2013)—the parallel with our work is essen-
tially restricted to the case where the covariance matrix is known. Indeed, once
the covariance matrix is unknown, looking for unusually large eigenvalues in the
(sample) covariance matrix becomes meaningless in the context of clustering.

1.6. Organization and notation. The paper is organized as follows. In Sec-
tion 2, we consider the case where the covariance is known. In Section 3, we treat
the case where the covariance is unknown, including the special case where it is
known to be diagonal. In Section 4, we suggest and study coordinatewise methods
and some relaxations. We then compare some of them in small numerical experi-
ments. We discuss extensions and important issues in Section 5, such as the case of
unknown sparsity, the case of mixture models with different covariances, the case
of mixtures with more than two components, and more. The proofs are gathered in
the online supplement [Verzelen and Arias-Castro (2016)].

Notation. For an integer p, [p] = {1, . . . , p}. For a matrix A ∈ R
p×p and

a subset S ⊂ [p], AS denotes the principal submatrix of A indexed by S. For
a finite set S, |S| denotes its size. For two vectors u = (uj ) and v = (vj )

in a Euclidean space, ‖u‖ denotes the Euclidean norm, 〈u, v〉 the inner prod-
uct, ‖u‖∞ = maxj |uj | the supnorm, and ‖u‖0 the cardinality of the support
supp(u) := {j : uj �= 0}. Finally, C, C1, C2, etc. will denote positive constants
that may change with each appearance.
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2. Known covariance matrix. In this section, the covariance � is assumed
to be known. The minimax detection rates are expressed with respect to the Maha-
lanobis distance

R0(θ) = �μ��−1�μ.

2.1. Minimax lower bound. Fix a mixing weight ν ∈ (0,1) and a sparsity s,
and consider

(8) �0(ν) = {
θ = (ν,μ,μ,�),μ ∈R

p,� p.s.d.
}
,

and, for rn > 0 and for a signal-to-noise ratio function R,

�1(ν,R, rn) := {
θ = (ν,μ0,μ1,�) :

(9)
μ0,μ1 ∈ R

p satisfying (3), � p.s.d.,R(θ) ≥ rn
}
,

where we leave implicit the dependency of �1(ν,R0, rn) on s. As the tests consid-
ered in this section use the knowledge the covariance matrix �, we also consider
for any covariance �,

(10) �0(ν,�) = {
θ = (ν,μ,μ,�),μ ∈ R

p}
,

and, fixing a mixing weight ν ∈ (0,1), a sparsity s and rn > 0, consider

�1(ν,�,R, rn) := {
θ = (ν,μ0,μ1,�) :

(11)
μ0,μ1 ∈ R

p satisfying (3),R(θ) ≥ rn
}
.

Then the minimax detection risk with known variance is defined by

γ ∗
known

(
�0(ν),�1(ν,R, rn)

) = sup
�

inf
φ

γ
(
φ;�0(ν,�),�1(ν,�,R, rn)

)
.

In order to emphasize the role of sparsity, we distinguish the sparse and non-
sparse settings, corresponding to s = p and s = o(p), respectively.

PROPOSITION 1. Consider testing (10) versus (11). For any fixed ν ∈ (0,1),
we have lim infγ ∗

known(�0(ν),�1(ν,R0, rn)) = 1 in the following two cases:

• Nonsparse setting. Assume s = p → ∞ and

rn 
 √
p/n.

• Sparse setting. Assume p/s → ∞ and

(12) rn 
 √
p/n

and

(13) lim sup
rn√

s
n

log(
ep
s

) ∨ s
n

log(1 +
√

epn

s2 )
< 1.
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REMARK. As usual, for the derivation of a minimax lower bound it is suf-
ficient to provide a lower bound on the risk for testing subclasses of �0(ν,�)

and �1(ν,�,R0, rn). In fact, we reduce the problem to testing θ ∈ �̃0 := {θ =
(ν,0,0, I)} against

θ ∈ �̃1(ν,R0, rn) := {(
ν,−(1 − ν)μ, νμ, I

)
,μ is s-sparse,R0(θ) ≥ rn

}
.

2.2. Methodology based on (sparse) principal component analysis. We now
turn to designing tests that are asymptotically powerful just above the lower bound
given in Proposition 1. We note that the performance bounds for the tests based
on (14) and (15) in Propositions 2 and 3 apply to a general (known) covariance
matrix.

Our methodology is based on the expression for the covariance matrix of X

displayed in (7). We standardize the observations to have identity covariance under
the null, thus working with X‡ = �−1/2X, which satisfies

�‡ := Cov(X‡) = �−1/2 Cov(X)�−1/2 = ν(1 − ν)�μ‡�μ�
‡ + I,

where �μ‡ := �−1/2�μ. Thus Cov(X‡) is a rank-one perturbation of the identity
matrix under the alternative. Since Cov(X‡) is unknown, our inference is based on
the sample equivalent, which is �̂‡ := �−1/2�̂�−1/2, where

�̂ := 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)�, X̄ := 1

n

n∑
i=1

Xi,

are the sample covariance matrix and sample mean, respectively.

• When �μ is not sparse (s = p), this leads us to consider the top eigenvalue of
�̂‡, namely

(14) λ̂max
� := max‖u‖=1

u��̂‡u.

We note that the maximizer of (14) is the first principal direction of the stan-
dardized observations, and that λ̂max

� is the variance along that direction. As we
shall see, this test is also competitive when �μ is moderately sparse.

• When �μ is s-sparse, we restrict the maximization over the set of vectors that
are s-sparse in some appropriate basis. To guide our choice, we notice that �μ‡
is a top eigenvector for �‡, and �1/2�μ‡ = �μ is s-sparse. This leads us to the
following form of s-sparse (top) eigenvalue:

λ̂max
s,� := max

‖u‖=1,‖�1/2u‖0≤s

u��̂‡u.(15)

We note that the maximizer of (15) is the first s-sparse (after standardization)
principal direction of the standardized observations, and that λ̂max

s,� is the variance
along that direction.
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REMARK. With the notable exception of (14), all the statistics studied in Sec-
tions 2 and 3 are difficult to compute, which effectively makes them useless in
practical settings, which are often high-dimensional. For this reason, we leave
implicit the critical values of the corresponding tests. The interested reader may
obtain their expression by inspecting the proofs of the corresponding propositions.

The following performance bound says, roughly, that the test based on (14) is
reliable when (12) does not hold.

PROPOSITION 2. Consider testing (10) versus (11) with � known, ν ∈ (0,1)

fixed, s ≤ p and p∧n → ∞. Let T denote the statistic (14). The test φ = {T ≥ 1+
p/n + 12

√
p/n} is asymptotically powerful, meaning γ (φ;�0(ν,�),�1(ν,�,

R0, rn)) → 0, if the minimum Mahalanobis distance rn satisfies

(16) lim inf rnν(1 − ν)

√
n

p
> C,

where C is a universal constant.

In view of Proposition 1, the above test is adaptive to the mixing weight ν as
long as it is fixed.

The following performance bound says, roughly, that the test based on (15) is
reliable when (13) does not hold, and that consistent support estimation is possible
with a slightly stronger signal-to-noise ratio. The procedure is also adaptive to ν.

PROPOSITION 3. Assume � is known and that p ∧n → ∞. For any sequence
s of sparsity, the following results hold.

• Detection. Consider testing (10) versus (11) with ν ∈ (0,1) fixed. Let Ts de-
note the statistic (15). There is a sequence of critical values t such that the test
φ = {Ts ≥ t} is asymptotically powerful, meaning γ (φ;�0(ν,�),�1(ν,�,R0,

rn)) → 0, if the minimum Mahalanobis distance rn satisfies

(17) lim inf
ν(1 − ν)rn√

s
n

log(
ep
s

) ∨ s
n

log(
ep
s

)
> C,

where C is a universal constant.
• Variable selection. Consider the model (11). Let ûs denote a maximizer of (15)

and let v̂s = �1/2ûs . Then under the slightly stronger condition

(18) ν(1 − ν)�μ��−1�μ �
√

s

n
log

(
ep

s

)
∨ s

n
log

(
ep

s

)
,

and the assumption that the effective dynamic range of �μ and the 2s-sparse
Riesz constant of � are both bounded, the support of v̂s is consistent for the
support of �μ.
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We note that without a bound on the dynamic range of �μ, its largest entries
could overwhelm the smaller (nonzero) ones and make consistent support recovery
difficult, or even impossible.

Special case: � = I. As a consequence of the remark below Proposition 1, the
detection boundary is roughly at

‖�μ‖2 ≈
[√

s

n
log

(
ep

s

)
∨ s

n
log

(
ep

s

)]
∧

√
p

n
,

except in the regime where s ≥ n and s ≈ √
np where there is a logarithmic gap

between the upper and lower bounds. The statistic of choice is (15), the top s-
sparse eigenvalue of �̂, which is also known to be rate-optimal for the problem of
testing for a top principal direction in a spiked Gaussian covariance model [Berthet
and Rigollet (2013a)].

REMARK. In general, the statistic defined in (15) is not the top s-sparse eigen-
value of �̂‡, which is instead defined as

(19) λmax
s (�̂‡) = max‖u‖=1,‖u‖0≤s

u��̂‡u.

We are only able to show that the statistic (19) is asymptotically powerful in the
following sense, that γ (φ;�0(ν,�),�1(ν,�,R1, rn)) → 0 for R1(θ) := ν(1 −
ν)‖�μ‖4/�μ���μ and rn satisfying (17) for some constant C > 0. However,
this bound is weaker than what we obtain in Proposition 3 for (15), simply because
the function R1(θ) is smaller than the Mahalanobis distance R0(θ). Indeed, using
the Cauchy–Schwarz inequality,

‖�μ‖4 = [(
�−1/2�μ

)�(
�1/2�μ

)]2

≤ ∥∥�−1/2�μ
∥∥2∥∥�1/2�μ

∥∥2

= (
�μ��−1�μ

)(
�μ���μ

)
.

3. Unknown covariance matrix. We distinguish between the symmetric case
(ν = 1/2) and the asymmetric case (ν �= 1/2). In terms of methodology, skewness
and kurtosis tests have played a major role in testing for multivariate normality,
at least since the seminal work of Mardia (1970). Some of these tests are based
on estimating the covariance matrix and, therefore, are not applicable in high-
dimensional settings where p > n, at least not without additional assumptions
on the covariance matrix. More malleable approaches are projection tests such as
those proposed by Malkovich and Afifi (1973). We adapt such tests to the sparse
setting considered here, and also design new variants to palliate some deficiencies.
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3.1. Symmetric setting. Consider the case where the covariance matrix is un-
known and where the mixture distribution is symmetric, meaning that ν = 1/2.
The resulting mixture testing problem is more difficult than in the asymmetric set-
ting treated in Section 3.2.

3.1.1. Minimax lower bound. We start with a minimax lower bound with re-
spect to the signal-to-noise ratio:

(20) R1(θ) = ‖�μ‖4

�μ���μ
.

We will see in Proposition 8 that the minimax detection rate with respect to the
Mahalanobis distance R0 is degenerate in a sparse high-dimensional setting.

PROPOSITION 4. Consider testing (8) versus (9) with ν = 1/2. Then
lim infγ ∗(�0(ν),�1(ν,R1, rn)) = 1 in the following cases:

• Nonsparse setting: s = p → ∞ and

(21) rn 
 (p/n)1/4;
or p � n and

(22) lim sup rne
−Cp/n < 1,

where C > 0 is a universal constant.
• Sparse setting: p/s → ∞ and

(23) lim sup rn

[
s

n
log

(
ep

s

)]−1/4
≤ C1,

where C1 > 0 is a universal constant; or n ≤ 1
C2

s log(ep/s) and

(24) lim sup rne
−C3

s
n

log(
ep
s

) ≤ 1,

where C2,C3 > 0 are universal constants.

REMARK. From the above proposition, we deduce that the testing problem
becomes extremely difficult when ζ := s

n
log(ep/s) → ∞, in the sense that the

minimax detection rate is at least exponentially large with respect to ζ . A simi-
lar phenomenon occurs in other high-dimensional detection problems such as in
sparse linear regression [Verzelen (2012)].

REMARK. Similar to what we do in the proof of Proposition 1, we reduce to
testing subclasses of hypotheses. Specifically, we reduce to testing θ ∈ �̃0 := {θ =
(1

2 ,0,0, I)} against

θ ∈ �̃1

(
1

2
,R1, rn

)
:=

{(
1

2
,−μ,μ,�μ

)
,μ is s-sparse and R1(θ) ≥ rn

}
,

where �μ := I−μμ�. Note that, in this testing problem, the variables are centered
and Cov(X) = I, both under the null and under the alternative.
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3.1.2. A classical approach based on the kurtosis. Unlike in Section 2, here
the covariance matrix Cov(X), by itself, does not contain in any sensible informa-
tion to distinguish the null hypothesis from the alternative. It is therefore natural
to consider higher order moments of X. In the symmetric setting, a traditional ap-
proach is the use of a kurtosis test. Malkovich and Afifi (1973) propose a projection
test based on the kurtosis for the problem of testing for multivariate normality. This
is easily adapted to the sparse setting. The resulting test is based on rejecting for
small values of

(25) min‖u‖0≤s

∑
i[u�(Xi − X̄)]4

(
∑

i[u�(Xi − X̄)]2)2
.

We note that Malkovich and Afifi (1973)—who are interested in testing for mul-
tivariate normality and do not make sparsity assumptions—reject for unusually
large or small values of the above ratio along a general (meaning, not necessarily
sparse) direction u.

REMARK. Although the null distribution of (25) depends on the unknown co-
variance matrix �, it can calibrated by a simple Bonferroni correction, which is
possible because (25) is the minimum over all subsets S ⊂ [p] of size s of vari-
ables which have a null distribution that is independent of �. The same applies to
(27), (36) and (38).

PROPOSITION 5. Consider testing (8) versus (9) with the assumption |ν −
1/2| <

√
3

6 , and assume that n � [s log(ep/s)]2. Let T denote the statistic (25).
There is a sequence of critical values t such that such the test φ = {T ≤ t} is
asymptotically powerful, meaning γ (φ;�0(ν),�1(ν,R1, rn)) → 0, if

(26) rn �
[
s

n
log

(
ep

s

)]1/4
∨

[
s√
n

log
(

ep

s

)]
.

We see that there is a substantial discrepancy between the performance that we
establish for the sparse kurtosis test (25) in Proposition 5 and the lower bound
obtained in Proposition 4. The issue comes from the control of the numerator in
(25), in that the estimator for the fourth moment has a heavy tail and does not
concentrate enough when s log(ep/s) becomes large.

3.1.3. A new approach based on the first absolute moment. Instead of a kur-
tosis test, which is based on the fourth central moment, we propose a test based
on the first central absolute moment in order to palliate the aforementioned issues.
The test rejects for large values of

(27) max‖u‖0≤s

∑
i |u�(Xi − X̄)|

(
∑

i[u�(Xi − X̄)]2)1/2
.



DETECTION AND FEATURE SELECTION IN SPARSE MIXTURE MODELS 1935

PROPOSITION 6. Consider testing (8) versus (9) with the assumption |ν −
1/2| < 1

6 , and assume that n � s log(ep/s). Let T denote the statistic (27). There
is a sequence of critical values t such that the test φ = {T ≥ t} is asymptotically
powerful, meaning γ (φ;�0(ν),�1(ν,R1, rn)) → 0, if

(28) rn �
[
s

n
log(ep/s)

]1/4
.

Consequently, the test based on (27) achieves the minimax detection boundaries
(21) and (23). Note that the assumption n � s log(ep/s) is necessary in view of
Proposition 4.

Variable selection. In regard to variable selection, we are unable to use the statis-
tic (27) [or the original statistic (25)]. To see why, for concreteness, consider the
situation where the variables have zero mean under the null and alternative, and
assume the mixture is symmetric (ν = 1/2). Using the arguments provided in the
proof of Proposition 6, we can show that, if n → ∞ fast enough, then the result of
maximizing of the empirical ratio in (27) is consistent with

(29) max‖u‖0≤s

E|u�X|
(E[u�X]2)1/2 .

Elementary calculations yield

(30)
E|u�X|

(E[u�X]2)1/2 = E|hu/2 + z|
(1 + h2

u/4)1/2 =
√

2

π

(
1 + 1

192
h4

u + O
(
h6

u

))
,

where z ∼ N (0,1) and when hu := u��μ/
√

u��u → 0, which is allowed in
(28). The maximizer of (29) is therefore close to arg max‖u‖0≤s |hu|, which does
not necessarily have the same support as �μ.

In view of (30), we normalize (27) to cancel the denominator (u��u)2 in h4
u,

so that the maximizer is approximately aligned with �μ. This motivates us to
consider the support estimator Ĵ = supp(û), where û maximizes

(31) max‖u‖0≤s,‖u‖=1

[ ∑
i |u�(Xi − X̄)|

(
∑

i[u�(Xi − X̄)]2)1/2
−

√
2

π

](∑
i

[
u�(Xi − X̄)

]2
)2

.

PROPOSITION 7. Consider the model (11) with the assumption |ν −1/2| < 1
6 ,

assume that n � s log(ep/s) and that �μ is s-sparse. Then the estimator defined
in (31) is consistent for the support of �μ if

(32) 1 � ‖�μ‖4

�μ���μ
�

[
s

n
log

(
ep

s

)]1/4
,

and the effective dynamic range of �μ and the 2s-sparse Riesz constant of � are
both bounded.
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Consequently, the estimator (31) is consistent when the signal strength is just
above the detection threshold. When the signal is strong, the procedure above
seems to fail. However, we mention that the simpler support estimator based on

û ∈ arg max
‖u‖0≤s,‖u‖=1

∑
i

∣∣u�(Xi − X̄)
∣∣,

is consistent when ‖�μ‖4/�μ���μ → ∞ under the same conditions otherwise.
Details are omitted as the arguments are similar, but simpler, than those underlying
Proposition 7. Compare also with the coordinatewise support estimator introduced
in Section 4.1.2.

3.1.4. The Mahalanobis metric. The lower bounds obtained in Proposition 4
are in terms of R1, while those we obtained for the case where the covariance
matrix is known in Proposition 1 are in terms of the Mahalanobis metric R0. While
these two metrics are equivalent if the s-sparse Riesz constant of � is bounded,
this is not so for any arbitrary �. We state below an information bound in terms of
the Mahalanobis distance that is exponential in p/n, even when �μ is 1-sparse.
This suggests that R1 is more relevant than R0 in the present context.

PROPOSITION 8. If p � n, then lim infγ ∗(�0(ν),�1(ν,R0, rn)) = 1 when

(33) �μ��−1�μ 
 ep/(2n)

np
.

Again, the lower bound is proved by a reduction to the following simpler testing
problem. Fix a 1-sparse vector �μ, and consider θ ∈ �

‡
0 := {(1

2 ,0,0, I)} against

θ ∈ �
‡
1(

1
2 ,R0, rn), where

�
‡
1

(
1

2
,R0, rn

)
:=

{
θ =

(
1

2
,−1

2
�μ,

1

2
�μ,�

)
:

� − I has rank 1 and R0(θ) ≥ rn

}
.

In contrast to the collection �̃1(
1
2 ,R0, rn) used in the proof of Proposition 4,

�
‡
1(

1
2 ,R0, rn) contains the collections of all rank 1 perturbation of the identity

covariance matrix.

3.2. Asymmetric setting. Consider the case where the covariance matrix is un-
known and where the mixture distribution is asymmetric, meaning that ν �= 1/2.
As we shall see, detection in the asymmetric setting is quantifiably easier than
in the symmetric setting, due to the ability to test for asymmetry (in a particular
manner).
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3.2.1. Minimax lower bound. We start with a minimax lower bound. As in the
symmetric setting covered in Section 3.1, we use the signal-to-noise function R1
defined in (20).

PROPOSITION 9. Consider testing (8) versus (9) with ν �= 1/2 fixed. Then
lim infγ ∗(�0(ν),�1(ν,R1, rn)) = 1 in the following cases:

• Nonsparse setting. Assume s = p → ∞ and p = o(n) and

(34) rn 
 (p/n)1/3.

• Sparse setting. Assume p/s → ∞ and n � s log(ep/s) and

(35) lim sup rn

[
s

n
log

(
ep

s

)]−1/3
≤ Cν,

where Cν > 0 is a constant.

3.2.2. A classical approach based on the skewness. The standard approach in
this asymmetric setting is a skewness test. We adapt the projection skewness test
of Malkovich and Afifi (1973) to our sparse setting. This leads us to rejecting for
large values of the following statistic:

(36) max‖u‖0≤s

∑
i[u�(Xi − X̄)]3

(
∑

i[u�(Xi − X̄)]2)3/2
.

PROPOSITION 10. Consider testing (8) versus (9) with the assumption ν �=
1/2 fixed, and n � s log(ep/s). Let T denote the statistic (36). There is a sequence
of critical values t such that the test φ = {T ≥ t} is asymptotically powerful, mean-
ing γ (φ;�0(ν),�1(ν,R1, rn)) → 0, if

(37)
(
ν(1 − ν)|1 − 2ν|)2/3

rn �
[
s

n
log

(
ep

s

)]1/3
∨

[
n1/3 s

n
log(ep/s)

]
.

We notice a substantial discrepancy between this rate and the lower bound ob-
tained in Proposition 9. As with the kurtosis statistic, the main issue is our difficulty
with proving that the third moment concentrates enough under the null.

3.2.3. A new approach based on the signed second moment. We replace the
third moment with the second signed moment, leading to

(38) max‖u‖0≤s

∑
i[u�(Xi − X̄)]2 sign(u�(Xi − X̄))∑

i[u�(Xi − X̄)]2
.

PROPOSITION 11. Consider testing (8) versus (9) with the assumption ν �=
1/2 fixed, and n � s log(ep/s). Let T denote the statistic (38). There is a sequence
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of critical values t such that the test φ = {T ≥ t} is asymptotically powerful, mean-
ing γ (φ;�0(ν),�1(ν,R1, rn)) → 0, if

(39) lim inf
(
ν(1 − ν)|1 − 2ν|)2/3

rn

[
s

n
log

(
ep

s

)]−1/3
≥ C,

where C is a universal constant.

We see that this test achieves the minimax rate established in (35). Note that
the minimax detection rate is substantially faster in the asymmetric case compared
with the symmetric case.

Variable selection. Here, too, we are unable to use the statistic (38) to perform
variable selection. In analogy with the symmetric case, we consider the estimator
Ĵ = supp(û), where û maximizes

(40) max‖u‖=1,‖u‖0≤s

[∑
i

[
u�(Xi − X̄)

]2 sign
(
u�(Xi − X̄)

)][∑
i

[
u�(Xi − X̄)

]2
]1/2

.

Despite the strong parallel with the statistic (31), we were not able to obtain a
satisfactory performance for (40). We mention, as we did before, that other esti-
mators may be needed when the signal is strong. And we also refer the reader to
Section 4.1.2, where a coordinatewise support estimator is introduced.

3.3. Diagonal model. A popular approach in situations where the covariance
is unknown is to assume it is diagonal. In (supervised) classification, this leads
to diagonal linear discriminant analysis, which corresponds to the naive Bayes
classifier in the Gaussian mixture model [Bickel and Levina (2004)]. Define

(41) κ = ‖�μ‡‖∞/‖�μ‡‖, �μ‡ := �−1/2�μ.

Given ν ∈ (0,1), a ∈ (0,1), and s ≤ p, we consider the mixture testing problem
with unknown diagonal covariance matrix, which we define as testing

(42) �̆0 = {
θ = (ν,μ,μ,�),μ ∈R

p,� diagonal p.s.d.
}

versus

(43) �̆1(ν,R, rn) := �̆1(ν) ∩ {
θ : R(θ) ≥ rn

}
,

where

�̆1(ν) := {
θ = (ν,μ0,μ1,�) :

μ0,μ1 ∈ R
p satisfying (3), � diagonal p.s.d., κ ≤ a

}
.

In this situation, it is natural to estimate the covariance matrix by the diagonal
of the sample covariance matrix. We can then use this estimator in place of � in
(15), yielding the following statistic:

(44) max‖u‖0≤s

u��̂u

u� diag(�̂)u
,
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with the convention that 0/0 = 0, where for a square matrix A = (aij ), diag(A)

denotes the diagonal matrix with diagonal elements (aii). The null distribution of
the test statistic (44) does not depend on � as long as it is diagonal.

PROPOSITION 12. Consider testing (42) versus (43) with ν ∈ (0,1) fixed, and
1 
 logp 
 n. Assume that κ in (41) is bounded away from 1.

• Detection. Let T denote the statistic (44). There is a sequence of critical
values t such that the test φ = {T ≥ t} is asymptotically powerful, meaning
γ (φ; �̆0, �̆1(ν,R, rn)) → 0, if

(45) ν(1 − ν)rn ≥ C

1 − a2

[√
s

n
log(ep/s) ∨ s

n
log(ep/s)

]
,

where C > 0 is a universal constant.
• Variable selection. Let û denote a maximizer of (44). Then under the slightly

stronger condition (18), and assuming that ‖�μ‖0 > 1 and that the effective
dynamic range of �μ‡ is bounded, the support of û is consistent for the support
of �μ.

Proposition 12 presents an interesting phenomenon. When the covariance ma-
trix is supposed to be diagonal but is unknown, there is a qualitative difference
between the case ‖�μ‖0 = 1 and ‖�μ‖0 > 1. The conditions of Proposition 12
imply that ‖�μ‖0 > 1. When ‖�μ‖0 = 1, the statistic (44) is useless at either de-
tection or variable selection, since in that situation Cov(X) is also diagonal under
the alternative. In that case, the optimal detection rate is the same as that for gen-
eral unknown covariances, that is, (log(p)/n)1/4 when ν = 1/2 and (log(p)/n)1/3

when ν �= 1/2. Indeed, when s = 1, the proofs of Propositions 4 and 9 are based on
diagonal covariance matrices. When ‖�μ‖0 > 1, (45) is the same as (17), meaning
we can do as well as if � were known, as long as κ remains bounded away from 1,
meaning that �μ‡ is not approximately 1-sparse.

4. Computationally tractable methods and numerical experiments. A test
statistic of the form max{G(u;X1, . . . ,Xn) : ‖u‖0 ≤ s}, where G is a real-valued
function, results in a combinatorial maximization over the subsets of [p] of size at
most s, and this is very quickly intractable when s → ∞ as n → ∞, because there
are

(p
s

) ≥ (p/s)s such subsets.
More specifically, here we say that a method is computationally tractable if

it can be computed in time polynomial in (n,p, s). Although such a method may
still be practically intractable for large problems, on a theoretical level, it provides a
qualitative definition in line with a central concern in theoretical computer science.
Among the statistics considered in Sections 2 and 3, only the largest eigenvalue
λ̂max

� defined in (14) is known to be computable in polynomial time. All the other
methods are tailored to the sparse setting and are combinatorial in nature. This
motivates the development of computationally tractable methods for this setting.
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4.1. Coordinatewise methods. The simplest computationally tractable meth-
ods are arguably those based on testing each coordinate at a time. Such a method
is of the form

(46) M
(
T‡

(
X1)

, . . . , T‡
(
Xp))

,

where Xj = (Xi,j : i ∈ [n]) is the j th variable, T‡ is a test statistic for mixture
testing in dimension one, and M implements a multiple testing procedure. In
what follows, we opt for the simple Bonferroni correction, which corresponds to
M(t1, . . . , tp) = maxj tj . Coordinatewise testing and/or variable selection of this
type is considered in Azizyan, Singh and Wasserman (2013), Chan and Hall (2010)
and also in Amini and Wainwright (2009), Berthet and Rigollet (2013a), Johnstone
and Lu (2009) in the context of sparse PCA. Such approaches are also considered
in recent work3 by Jin and Wang (2014) and Jin, Ke and Wang (2015), who obtain
very precise minimax results when the covariance matrix has relatively small con-
dition number. Except for Chan and Hall (2010), where a nonparametric setting is
considered, these papers assume that the covariance matrix is known.

4.1.1. Known covariance. Denote � = (σjk) and �̂ = (σ̂jk). Inspired by the
statistic (19), we arrive at the maximum canonical variance statistic

(47) max
j∈[p]

σ̂jj

σjj

,

and at the corresponding support estimator

(48) Ĵ = {
j ∈ [p] : σ̂jj /σjj > t

}
, t := 1 + 5

(√
log(p)

n
∨ log(p)

n

)
,

for a given threshold ω → ∞. Note that (47) corresponds to working with the test
statistic T‡(x1, . . . , xn) = 1

n

∑
i(xi − x̄)2 in (46).

PROPOSITION 13. Consider testing (10) versus (11) with ν ∈ (0,1) fixed and
p → ∞. Denoting T the statistic (47), we consider the test φ = {T ≥ t} with t

defined in (48). The test φ has asymptotic level 0. Moreover, it has asymptotic
power one if

(49) ν(1 − ν) max
j∈[p]

�μ2
j

σjj

> C1

(√
log(p)

n
∨ log(p)

n

)
,

where C1 > 0 is a universal constant. Moreover, the estimator (48) is consistent
for the support of �μ if

ν(1 − ν)min
j∈J

�μ2
j

σjj

> C2

(√
log(p)

n
∨ log(p)

n

)
,

where C2 > 0 is a universal constant.

3This work was made publicly available after ours.
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The proof is a straightforward adaptation of that of Proposition 3, and is omitted.

REMARK. A stronger result can be obtained by using (15) instead of (19),
leading to λ̂max

1,� instead of (47), but the approach is somewhat less natural and the
resulting performance bound somewhat less intuitive.

Special case � = I. In Section 2, we proved that the test based on (15) is
asymptotically powerful under (17), that is,

ν(1 − ν)‖�μ‖2 ≥ C

[√
s

n
log(ep/s) ∨ s

n
log(ep/s)

]
.

The coordinatewise test was shown here to be asymptotically powerful under (49),
that is,

ν(1 − ν)‖�μ‖2∞ ≥ C

[√
log(p)

n
∨ log(p)

n

]
.

(C is a sufficiently large constant.) When the energy of �μ is spread over its
support, we have ‖�μ‖∞ ≈ ‖�μ‖/√s, in which case the latter condition becomes

ν(1 − ν)‖�μ‖2 ≥ C

[√
s2

n
log(ep/s) ∨

(
s

n
log(ep/s)

)]
.

Hence, the coordinatewise method is shown to achieve a detection rate within a
multiplicative factor

√
s of the optimal rate. In the special situation where n =

O(logp), the coordinatewise method even achieves the optimal rate. In general,
however, there is this multiplicative factor of

√
s between the detection bounds. We

speculate that this factor of
√

s is unavoidable and incurred by any polynomial time
method. Our speculation is based on an analogy with the sparse PCA detection
problem and the recent work of Berthet and Rigollet (2013b). These authors prove
that a multiplicative factor of

√
s applies to any polynomial time algorithm, if

some classical problem in computational complexity, known as the planted clique
problem, is not solvable in polynomial time; see Berthet and Rigollet (2013b) for
definitions and pointers to the literature. (Although we focused on the case � = I,
this discussion is in fact valid for general covariance matrices � as long as the
s-sparse Riesz constants are bounded.)

4.1.2. Unknown covariance. We adapt the statistics (27) and (38) to coordi-
natewise methods by considering s = 1, thus working with

(50) T1 = max
j∈[p]T1,j , T1,j :=

n∑
i=1

|Xi,j − X̄j |√
σ̂jj

and

(51) T2 = max
j∈[p]T2,j , T2,j :=

∣∣∣∣∣
n∑

i=1

(Xi,j − X̄j )
2

σ̂jj

sign(Xi,j − X̄j )

∣∣∣∣∣.
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Although the null distribution of (50) depends on the unknown covariance ma-
trix �, it can be calibrated by a simple Bonferroni correction, which is possible
because the terms in the maximum have a null distribution that is independent of
�. The same applies to (51).

For any u ∈ (0,1), denote by q−1
1 (u) the (1 − u)-quantile of the distribution of

T1,1 under the null hypothesis. Given some level α ∈ (0,1), denote by Ĵ1 the set of
indices such that T1,j is significant at level α/p, namely,

Ĵ1 := {
j : T1,j > q−1

1 (α/p)
}
.

The estimator Ĵ2 is defined analogously based on (51). In practice, the quantile
functions q−1

1 and q−1
2 can be easily estimated by Monte Carlo simulations.

PROPOSITION 14. Consider testing (8) versus (9) with n � log(p) � 1. Con-
sider a sequence of levels α satisfying α = o(1) and α ≥ p−a for some fixed a > 0
in the definition of Ĵ1 and Ĵ2.

• Detection. The test φ1 := {Ĵ1 �= ∅} has a level smaller than α. Moreover, it has
asymptotic power 1 if if |ν − 1/2| < 1

6 and

(52) max
j∈[p]

(�μj )
2

σjj

�
[

log(p)

n

]1/4
.

The test φ2 := {Ĵ2 �=∅} has a level smaller than α. Moreover, it has asymptotic
power 1 if

(53) lim inf
(
ν(1 − ν)|1 − 2ν|)2/3 max

j∈[p]
(�μj)

2

σjj

[
log(p)

n

]−1/3
≥ C.

• Variable selection. Assume that the effective dynamic range of �μ and the 2s-
sparse Riesz constant of � are both bounded.
– If |ν − 1/2| < 1

6 , then under the stronger condition that

(54)
‖�μ‖4

�μ���μ
� s

[
log(p)

n

]1/4
,

Ĵ1 is consistent for the support of �μ.
– If ν �= 1/2 is fixed, then under the stronger condition that

(55)
‖�μ‖4

�μ���μ
� s

[
log(p)

n

]1/3
,

Ĵ2 is consistent for the support of �μ.
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REMARK. Assuming the energy of �μ is spread over its support, and that the
s-sparse Riesz constant of � is bounded, (52) and (53) reduce to

‖�μ‖4

�μ���μ
� s

[
log(p)

n

]1/4
= s3/4

[
s

log(p)

n

]1/4
,

(
ν(1 − ν)|1 − 2ν|)2/3 ‖�μ‖4

�μ���μ
≥ Cs

[
log(p)

n

]1/3
= Cs2/3

[
s

log(p)

n

]1/3
.

Compared to (28) and (39), the performances of the coordinatewise methods are
within s3/4 and s2/3 multiplicative factors, respectively, of the optimal rates. We
do not know to what extent this is intrinsic to the problem, namely, whether there
are polynomial time methods with performance bounds that come closer to the
optimal bounds.

4.2. Other computationally tractable methods. Beyond methods based on ex-
amining k-tuples of coordinates, instead of just k = 1 coordinate at a time, and
other heuristics based on principal component analysis [Srivastava (1984)], more
sophisticated methods may be needed. We present two methods based on relax-
ations of the sparse eigenvalue problem, which we learned from Berthet and Rigol-
let (2013a), who applied it to the problem of detecting a top principal component
in a spiked covariance model. See also Amini and Wainwright (2009). Assume
for simplicity that � = I (or, equivalently, that it is diagonal and known), so that
the sparse eigenvalues defined in (15) and (19) coincide, and in both cases, the
maximization is over s-sparse unit vectors.

• The first relaxation is the semidefinite program (SDP) of d’Aspremont et al.
(2007):

SDPs(A) = max
Z

trace(AZ),

(56)
subject to Z � 0, trace(Z) = 1, |Z|1 ≤ s,

where the maximum is over positive semidefinite matrices Z = (Zst ) and
|Z|1 := ∑

s,t |Zst |. We would then use SDPs(�̂).
• The second relaxation leads to using the minimum dual perturbation

(57) MDPs(A) := min
z≥0

[
λmax(

τz(A)
) + sz

]
,

where τz is entrywise soft-thresholding at z, meaning that for a matrix A =
(ajk), τz(A) = (bjk), where bjk = sign(ajk)max(|ajk| − z,0). We would then
use MDPs(�̂).

Both relaxations operate in polynomial time. That said, the semidefinite program
does not scale well, while the second relaxation is computationally more friendly
as it boils down to a one-dimensional grid search over z ∈ R requiring the compu-
tation of the top eigenvalue of symmetric matrix at every grid point.
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PROPOSITION 15. Consider testing (10) versus (11) with ν ∈ (0,1) fixed, and
n∧p → ∞. Let T denote either of the statistics SDPs(�̂) or MDPs(�̂). For some
universal constant C0 > 0, consider the test

φ =
{
T ≥ 1 + C0

[√
s2

n
log(ep/s) ∨ s

n
log(ep/s)

]}
.

The test φ has asymptotic level 0. Moreover, it has asymptotic power 1 if

ν(1 − ν)�μ��−1�μ ≥ C1

[√
s2

n
log

(
ep

s

)
∨ s

n
log

(
ep

s

)]
,

where C1 > 0 is a universal constant.

The proof of Proposition 15 is a straightforward adaptation of the work of
Berthet and Rigollet (2013a). The critical ingredient is the following inequality:

(58) λmax
s (A) ≤ SDPs(A) ≤ MDPs(A),

valid for any p.s.d. matrix A and any sparsity level s. Then, on the one hand, we
find in Berthet and Rigollet (2013a), Proposition 6.2, that

MDPs(�̂) ≤ 1 + C1

[√
s2

n
log

(
ep

s

)
∨ s

n
log

(
ep

s

)]
with probability tending to one under the null (where the sample is i.i.d. standard
normal); while, on the other hand, following what we did in the proof of Proposi-
tion 3, we find that λmax

s (�̂) ≥ 1 − 1
n

+ C2ν(1 − ν)�μ��−1�μ with probability
tending to one under the alternative. From these two bounds and (58), we conclude.

REMARK. We notice the same
√

s multiplicative factor and one wonders
whether the added sophistication of these relaxations (SDP or MDP) is worth it;
clearly, not from a theoretical standpoint, but it shows in our numerical experi-
ments presented in Section 4.3. This is analogous to what Berthet and Rigollet
(2013a) observed in the context of detecting a first principal component.

REMARK. We do not know of any analogous relaxations for the statistics pre-
sented in Section 3 for the case where the covariance matrix is unknown.

4.3. Numerical experiments. We present here the result of some small-scale
computer simulations meant to compare some of the computationally tractable
tests introduced above. In all the experiments, we chose p = 500, n = 200, and the
underlying covariance matrix � (whether assumed known or unknown) was taken
to be the identity. The variables were generated with zero mean under both the
null and the alternative. The difference in means, �μ, was chosen to be equally
spread (in terms of energy) over all its nonzero coordinates. Specifically, we chose
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FIG. 1. Power curves for the largest canonical variance (red), sth largest canonical variance
(green), top sample eigenvalue (blue) and MDP (magenta) for various sparsity levels s as displayed.
The level was set at 0.05 by simulation. On the horizontal axis is A = ‖�μ‖, while on the vertical
axis is the proportion of rejections (out of 100 repeats).

�μj = A1{j≤s}/
√

s, where the sparsity s ranged over {1,5,10,30}, while the
amplitude A = ‖�μ‖ varied the difficulty of the detection problem. We focused
entirely on the symmetric model where ν = 1/2. Each setting was repeated 100
times.

4.3.1. Known covariance. In this set of experiments, we assume that � is
known to be the identity, and compared the maximum canonical variance (47),
the s-largest canonical variance σ̂jj /σjj , the top sample eigenvalue (14), and the
MDP statistics defined in (57). Note that the s-largest canonical variance and the
MDPs both require knowledge of s. The results from these experiments are shown
as power curves in Figure 1. Among other things, they confirm that the maximum
canonical eigenvalue performs best when �μ is really sparse whereas top sam-
ple eigenvalues performs best for less sparse signals; see Table 3. At least in the
particular setting of these simulations, the combination of the maximum canonical
variance and the top sample eigenvalue is competitive. An alternative—which we
did not implement and is most relevant when � is diagonal—would be a higher-
criticism approach applied to the canonical variances σ̂jj /σjj , which under the
null are i.i.d. 1

n
χ2

n−1.

4.3.2. Unknown covariance (kurtosis versus first moment). In this set of ex-
periments, we assume that � is unknown (even though it remains the identity),
and compared the coordinatewise kurtosis and first absolute moment. We used
the maximum canonical variance (whose calibration is only possible when � is
known) as an oracle benchmark. Although we have a tighter control of the first
moment under the null compared to the kurtosis, in these experiments the two
behave very similarly (Figure 2).

5. Discussion. This paper leaves a number of interesting open problems re-
garding the theory of clustering under sparsity. We list a few of them below.



1946 N. VERZELEN AND E. ARIAS-CASTRO

FIG. 2. Power curves for the largest canonical variance (red), the largest canonical kurtosis
(green), and the largest canonical absolute moment (blue), for various sparsity levels s as displayed.
The level was set at 0.05 by simulation. On the horizontal axis is A = ‖�μ‖, while on the vertical
axis is the proportion of rejections (out of 100 repeats).

The generalized likelihood ratio test (GLRT). The GLRT performs well in very
many testing problems. In this paper, we simply focused on obtaining tests that
achieved the various optimal detection rates, and we are curious to know whether
the GLRT is one of them, at least in some of the settings. If anything, the GLRT is
computationally very intensive in high dimensions, even more so than the moment-
based methods analyzed here and, therefore, not practical, while heuristic imple-
mentations à la EM are very hard to analyze.

Theoretical adaptation to unknown sparsity. Throughout the paper, except in
Section 4.1, we work under the assumption that the sparsity level s is known.
This is in fact a mild assumption. Indeed, on the one hand, the problem is harder
when s is unknown (since the set of alternatives is larger), so that the minimax
lower bounds developed in the paper apply to the case where s is unknown. On the
other hand, one can easily check that there is enough lee-way in the concentration
bounds developed (under the null) for the various procedures that rely on s to
accommodate a scan over s ∈ [p].

Adaptation to unknown sparsity for computationally tractable procedures. We
also note that the coordinatewise methods studied in Section 4.1 do not require the
knowledge of the sparsity. When the population covariance matrix � is known, one
can rely on the maximal canonical variance statistic (47) and the top eigenvalue
statistic (47) together with a Bonferroni correction to simultaneously achieve the
rates of Table 3 for all s.

Unknown mixing probability. We have assumed that ν is unknown. However,
when the covariance matrix is unknown, it matters whether ν = 1/2 or ν �= 1/2, for
the proposed methods are different—based on the first absolute moment and the
second signed moment, respectively. Let us focus on the coordinatewise methods
introduced and studied in Section 4.1.2. For the detection problem, an easy way to
adapt to situations where it is unknown whether ν = 1/2 or ν �= 1/2 is to combine
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the tests based on T1 and T2 with a Bonferroni correction. For the variable selection
problem, one can simply consider the union Ĵ1 ∪ Ĵ2 of the variables selected by
the two methods.

Mixture models with different covariance matrices. We have assumed every-
where in the paper that the two populations had the same covariance matrix. When
this is not the case, assuming the two population covariance matrices are known
(both under the null and under the alternative) does not seem as meaningful, and
the case where they are unknown is more complex, and we speculate that more so-
phisticated methods that attempt to cluster the data into two groups (as the GLRT
does) may be required. We note, however, that the procedure presented in Sec-
tion 3.3 applies in exactly the same way to the special case where the population
covariance matrices are diagonal—although the performance bound established in
Proposition 12 is not valid.

Mixture models with more than two components. Suppose the mixture, under
the alternative, has K ≥ 2 components, with the kth component having mean μk

and proportion νk , and consider for simplicity the case where the population co-
variance matrix is known to be the identity, both under the null and the alternative.
Then, under the alternative,

Cov(X) =
K∑

k=1

νk(1 − νk)μkμ
�
k + ∑

1≤k<�≤K

νkν�

(
μkμ

�
� + μ�μ

�
k

) + I.

In the general situation where the group means are affine independent, Cov(X) is a
rank K − 1 perturbation of the identity matrix. It is therefore natural to consider a
test based on the top K − 1 s-sparse eigenvalues of the sample covariance matrix.
We note, though, that when K is fixed, the top s-sparse eigenvalue is still able to
achieve the optimal detection rate. See Hsu and Kakade (2013) for related results
in a nonsparse setting. Recently, Jin and Wang (2014) have also studied the case
where the population covariance matrices are diagonal but unknown.

Computational issues. Computational considerations have lead a number of
researchers to propose coordinatewise methods as we did in Section 4.1. In Sec-
tion 4.2 we studied an SDP relaxation in the context of mixture detection when the
covariance matrix is known to be the identity. It seems possible to extend this to the
case of a general known covariance matrix. If anything, the suboptimal test based
on (19) can be relaxed in the same exact way since it is based on computing a top
sparse eigenvalue. And the same is true of the diagonal model. However, we do
not know how to relax any of the tests considered in the case where the covariance
matrix is unknown.

Acknowledgements. We thank two anonymous referees for suggestions that
greatly improved the presentation.
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SUPPLEMENTARY MATERIAL

Supplement to “Detection and feature selection in sparse mixture models”
(DOI: 10.1214/16-AOS1513SUPP; .pdf). This supplement contains the proofs of
the results.
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