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STATISTICAL CONSISTENCY AND ASYMPTOTIC NORMALITY
FOR HIGH-DIMENSIONAL ROBUST M-ESTIMATORS

BY PO-LING LOH

University of Wisconsin-Madison

We study theoretical properties of regularized robust M-estimators, ap-
plicable when data are drawn from a sparse high-dimensional linear model
and contaminated by heavy-tailed distributions and/or outliers in the additive
errors and covariates. We first establish a form of local statistical consistency
for the penalized regression estimators under fairly mild conditions on the
error distribution: When the derivative of the loss function is bounded and
satisfies a local restricted curvature condition, all stationary points within a
constant radius of the true regression vector converge at the minimax rate en-
joyed by the Lasso with sub-Gaussian errors. When an appropriate noncon-
vex regularizer is used in place of an �1-penalty, we show that such stationary
points are in fact unique and equal to the local oracle solution with the correct
support; hence, results on asymptotic normality in the low-dimensional case
carry over immediately to the high-dimensional setting. This has important
implications for the efficiency of regularized nonconvex M-estimators when
the errors are heavy-tailed. Our analysis of the local curvature of the loss
function also has useful consequences for optimization when the robust re-
gression function and/or regularizer is nonconvex and the objective function
possesses stationary points outside the local region. We show that as long as a
composite gradient descent algorithm is initialized within a constant radius of
the true regression vector, successive iterates will converge at a linear rate to
a stationary point within the local region. Furthermore, the global optimum
of a convex regularized robust regression function may be used to obtain a
suitable initialization. The result is a novel two-step procedure that uses a
convex M-estimator to achieve consistency and a nonconvex M-estimator to
increase efficiency. We conclude with simulation results that corroborate our
theoretical findings.

1. Introduction. Ever since robustness entered the statistical scene in Box’s
classical paper of 1953 [Box (1953)], many significant steps have been taken to-
ward analyzing and quantifying robust statistical procedures—notably the work
of Tukey (1960), Huber (1964), and Hampel (1968), among others. Huber’s sem-
inal work on M-estimators [Huber (1964)] established asymptotic properties of
a class of statistical estimators containing the maximum likelihood estimator,
and provided initial theory for constructing regression functions that are robust
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to deviations from normality. Despite the substantial body of work on robust
M-estimators, however, research on high-dimensional regression estimators has
mostly been limited to penalized likelihood-based approaches [e.g., Fan and Li
(2001), Friedman, Hastie and Tibshirani (2008), Ravikumar, Wainwright and Laf-
ferty (2010), Tibshirani (1996)]. Several recent papers [Negahban et al. (2012),
Loh and Wainwright (2014, 2015)] have shed new light on high-dimensional
M-estimators, presenting a fairly unified framework for analyzing statistical and
optimization properties of such estimators. However, whereas the M-estimators
studied in those papers are finite-sample versions of globally convex functions,
many important M-estimators, such as those arising in classical robust regression,
only possess convex curvature over local regions—even at the population level. In
this paper, we present new theoretical results, based only on local curvature as-
sumptions, which may be used to establish statistical and optimization properties
of regularized M-estimators with highly nonconvex loss functions.

Broadly, we are interested in regression estimators that are robust in the follow-
ing senses:

(a) Model misspecification. The ordinary least squares objective function may
be viewed as a maximum likelihood estimator for linear regression when the ad-
ditive errors εi are normally distributed. It is well known that the �1-penalized
ordinary least squares estimator is still consistent when the εi ’s are sub-Gaussian
[Bickel, Ritov and Tsybakov (2009), Wainwright (2009)]; however, if the distribu-
tion of the εi ’s deviates more wildly from the normal distribution (e.g., the εi ’s are
heavy-tailed), the regression estimator based on the least squares loss no longer
converges at optimal rates. In addition, whereas the usual regularity assumptions
on the design matrix such as the restricted eigenvalue condition have been shown to
hold with high probability when the covariates are sub-Gaussian [Raskutti, Wain-
wright and Yu (2010), Rudelson and Zhou (2013)], we wish to devise estimators
that are also consistent under weaker assumptions on the distribution of the covari-
ates.

(b) Outliers. Even when the covariates and error terms are normally distributed,
the regression estimator may be inconsistent when observations are contaminated
by outliers in the predictors and/or response variables [Rousseeuw and Leroy
(2005)]. Whereas the standard ordinary least squares loss function is nonrobust
to outliers, alternative estimators exist in a low-dimensional setting that are ro-
bust to a certain degree of contamination. We wish to extend this theory to high
dimensions.

Inspired by the classical theory on robust estimators for linear regression [Huber
(1981), Maronna, Martin and Yohai (2006), Hampel et al. (1986)], we study reg-
ularized versions of low-dimensional robust regression estimators and establish
statistical guarantees in a high-dimensional setting. As we will see, the regularized
robust regression functions continue to enjoy good behavior in high dimensions,
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and we can quantify the degree to which the high-dimensional estimators are ro-
bust to the types of deviations described above.

Our first main contribution is to provide a general set of sufficient conditions
under which optima of regularized robust M-estimators are statistically consis-
tent, even in the presence of heavy-tailed errors and outlier contamination. The
conditions involve a bound on the derivative of the regression function, as well
as restricted strong convexity of the loss function in a neighborhood of constant
radius about the true parameter vector, and the conclusions are given in terms of
the tails of the error distribution. The notion of restricted strong convexity, as used
previously in the literature [Negahban et al. (2012), Agarwal, Negahban and Wain-
wright (2012), Loh and Wainwright (2014, 2015)], traditionally involves a global
condition on the behavior of the loss function. However, due to the highly non-
convex behavior of the robust regression functions of interest, we assume only a
local condition of restricted strong convexity in the development of our statistical
results. Consequently, our main theorem provides guarantees only for stationary
points within the local region of strong curvature. We show that all such local sta-
tionary points are statistically consistent estimators for the true regression vector;
when the covariates are sub-Gaussian, the rate of convergence agrees (up to a con-
stant factor) with the rate of convergence for �1-penalized ordinary least squares
regression with sub-Gaussian errors. We also use the same framework to study
generalized M-estimators and provide results for statistical consistency of local
stationary points under weaker distributional assumptions on the covariates.

The wide applicability of our theorem on statistical consistency of high-
dimensional robust M-estimators opens the door to an important question regard-
ing the design of robust regression estimators, which is the topic of our second
contribution: If all regression estimators with bounded derivative are statistically
consistent with rates agreeing up to a constant factor, why use a complicated non-
convex regression function instead of a simple convex function such as the Huber
loss? In the low-dimensional setting, several independent lines of work provide
reasons for using nonconvex M-estimators over their convex alternatives [Huber
(1981), Shevlyakov, Morgenthaler and Shurygin (2008)]. One compelling jus-
tification is from the viewpoint of statistical efficiency. Indeed, the log likeli-
hood function of the heavy-tailed t-distribution with one degree of freedom gives
rise to the nonconvex Cauchy loss, which is consequently asymptotically effi-
cient [Lehmann and Casella (1998)]. In our second main theorem, we prove that
by using a suitable nonconvex regularizer [Fan and Li (2001), Zhang (2010a)], we
may guarantee that local stationary points of the regularized robust M-estimator
agree with a local oracle solution defined on the correct support. Thus, provided the
sample size scales sufficiently quickly with the level of sparsity, results on asymp-
totic normality of low-dimensional M-estimators with a diverging number of pa-
rameters [Huber (1973), Yohai and Maronna (1979), Portnoy (1985), Mammen
(1989), He and Shao (2000)] may be used to establish asymptotic normality of
their high-dimensional counterparts. In particular, when the loss function equals
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the negative log-likelihood of the error distribution, stationary points of the high-
dimensional M-estimator will also be efficient in an asymptotic sense. Our oracle
result and subsequent conclusions regarding asymptotic normality resemble a va-
riety of other results in the literature on nonconvex regularization [Fan and Peng
(2004), Bradic, Fan and Wang (2011), Li, Peng and Zhu (2011)], but our result is
stronger, because it provides guarantees for all stationary points in the local region.
Our proof technique leverages the primal-dual witness construction recently pro-
posed in Loh and Wainwright (2014); however, we require a more refined analysis
here in order to extend the result to one involving only local properties of the loss
function.

Our third and final contribution addresses algorithms used to optimize our pro-
posed M-estimators. Since our statistical consistency and oracle results only pro-
vide guarantees for the behavior of local solutions, we need to devise an optimiza-
tion algorithm that always converges to a stationary point inside the local region.
Indeed, local optima that are statistically inconsistent are the bane of nonconvex
M-estimators, even in low-dimensional settings [Freedman and Diaconis (1982)].
To remedy this issue, we propose a novel two-step algorithm that is guaranteed to
converge to a stationary point within the local region of restricted strong convex-
ity. Our algorithm consists of optimizing two separate regularized M-estimators
in succession and may be applied to situations where both the loss and regularizer
are nonconvex. In the first step, we optimize a convex regularized M-estimator to
obtain a sufficiently close point that is then used to initialize an optimization al-
gorithm for the original (nonconvex) M-estimator in the second step. We use the
composite gradient descent algorithm [Nesterov (2007)] in both steps of the algo-
rithm, and prove rigorously that if the initial point in the second step lies within
the local region of restricted curvature, all successive iterates will continue to lie
in the region and converge at a linear rate to an appropriate stationary point. Any
convex, statistically consistent M-estimator suffices for the first step; we use the
�1-penalized Huber loss in our simulations involving sub-Gaussian covariates with
heavy-tailed errors, since global optima are statistically consistent by our earlier
theory. Our resulting two-step estimator, which first optimizes a convex Huber loss
to obtain a consistent estimator and then optimizes a (possibly nonconvex) robust
M-estimator to obtain a more efficient estimator, is reminiscent of the one-step es-
timators common in the robust regression literature [Bickel (1975)]; however, here
we require full runs of composite gradient descent in each step of the algorithm,
rather than a single Newton–Raphson step. Note that if the goal is to optimize
an M-estimator involving a convex loss and nonconvex regularizer, such as the
SCAD-penalized Huber loss, our two-step algorithm is also applicable, where we
optimize the �1-penalized loss in the first step.

Related work. We close this section by highlighting three recent papers on re-
lated topics. The analysis in this paper most closely resembles the work of Lozano
and Meinshausen (2013), in that we study stationary points of nonconvex functions
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used for robust high-dimensional linear regression within a local neighborhood of
the true regression vector. Although the technical tools we use here are similar,
we focus on regression functions that are expressible as M-estimators; the mini-
mum distance loss function proposed in that paper does not fall into this category.
In addition, we formalize the notion of basins of attraction for optima of noncon-
vex M-estimators and develop a two-step optimization algorithm that consists of
optimizing successive regularized M-estimators, which goes beyond their results
about local convergence of a composite gradient descent algorithm.

Another related work is that of Fan, Li and Wang (2014). While that paper fo-
cuses exclusively on developing estimation bounds for penalized robust regression
with the Huber loss function, the results presented in our paper are strictly more
general, since they also hold for nonconvex M-estimators, giving rise to solutions
that are efficient as well as consistent. The analysis of the �1-penalized Huber loss
is still relevant to our analysis, because as shown below, its global convergence
guarantees provide us with a good initialization for the composite gradient algo-
rithm that we use in the first step of our two-step algorithm.

Finally, we draw attention to the recent work by Mendelson (2014). In that
paper, careful derivations based on empirical process theory demonstrate the ad-
vantage of using differently parametrized convex loss functions tuned according
to distributional properties of the additive noise in the model. Our analysis also
reveals the impact of different parameter choices for the regression function on
the resulting estimator, but the rates of Mendelson (2014) are much sharper than
ours (albeit agreeing up to a constant factor). However, our analysis is not limited
to convex loss functions, and covers nonconvex loss functions possessing local
curvature, as well. Finally, whereas Mendelson (2014) is primarily concerned with
optimizing the estimator with respect to �1- and �2-error, our oracle results suggest
that it is also instructive to consider second-order properties such as the variance
and asymptotic efficiency. Indeed, such considerations may lead to a different pa-
rameter choice for a robust loss than if the primary goal is to minimize the bias
alone.

The remainder of our paper is organized as follows: In Section 2, we provide ba-
sic background concerning (generalized) M-estimators, and introduce robust loss
functions and regularizers to be discussed in the sequel. In Section 3, we present
our main theorem concerning statistical consistency of robust high-dimensional
M-estimators and unpack the distributional conditions required for the assump-
tions of the theorem to hold for specific estimators via a series of propositions.
We also present our main theorem concerning oracle properties of nonconvex reg-
ularized M-estimators, with a corollary illustrating the types of asymptotic nor-
mality conclusions that may be derived from the oracle result. Section 4 provides
our two-step optimization algorithm and corresponding theoretical guarantees. We
conclude in Section 5 with a variety of simulation results. A brief review of robust-
ness measures is provided in Appendix A, and proofs of the main theorems and all
supporting lemmas and propositions are contained in the remaining Supplemen-
tary Material [Loh (2016)].
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Notation. For functions f (n) and g(n), we write f (n) � g(n) to mean that
f (n) ≤ cg(n) for some universal constant c ∈ (0,∞), and define f (n) � g(n)

analogously. We write f (n) � g(n) when f (n) � g(n) and f (n) � g(n) hold si-
multaneously. For a vector v ∈ R

p , we write supp(v) ⊆ {1, . . . , p} to denote the
support of v, and for an arbitrary subset S ⊆ {1, . . . , p}, we write vS ∈ R

S to de-
note the vector v restricted to S. For a matrix M , we write |||M|||2 to denote the
spectral norm. For a function h : Rp → R, we write ∇h to denote a gradient or
subgradient of the function. We use the relation ⊥⊥ to denote independence. Fi-
nally, Br (v) denotes the �2-ball of radius r centered around v.

2. Background and problem setup. In this section, we provide some back-
ground on M-estimators for robust regression and the nonconvex regularizers cov-
ered by our theory.

Throughout, we assume that {(xi, yi)}ni=1 are i.i.d. observations from the linear
model

(1) yi = xT
i β∗ + εi, ∀1 ≤ i ≤ n,

where xi ∈ R
p , yi ∈ R, and β∗ ∈ R

p is a k-sparse vector; that is, | supp(β∗)| ≤ k.
We also assume that xi ⊥⊥ εi and both are zero-mean random variables. We are
interested in high-dimensional regression estimators of the form

(2) β̂ ∈ arg min‖β‖1≤R

{
Ln(β) + ρλ(β)

}
,

where Ln is the empirical loss function and ρλ is a penalty function. For instance,
the Lasso program is given by the loss Ln(β) = 1

n

∑n
i=1(x

T
i β − yi)

2 and penalty
ρλ(β) = λ‖β‖1, but this framework allows for much more general settings. Since
we are interested in cases where the loss and regularizer may be nonconvex, we
include the side condition ‖β‖1 ≤ R in the program (2) in order to guarantee the
existence of local/global optima. We will require R ≥ ‖β∗‖1, so that the true re-
gression vector β∗ is feasible for the program.

In the scenarios below, we will consider loss functions Ln that satisfy

(3) E
[∇Ln

(
β∗)] = 0.

When the population-level loss L(β) := E[Ln(β)] is a convex function, equa-
tion (3) implies that β∗ is a global optimum of L(β). When L is nonconvex, the
condition (3) ensures that β∗ is at least a stationary point of the function. Our goal
is to develop conditions under which certain stationary points of the program (2)
are statistically consistent for β∗.

2.1. Robust M-estimators. We wish to study functions Ln that are robust to
outliers and/or model misspecification. Consequently, we borrow our loss func-
tions from the classical theory of robust regression; the additional regularizer ρλ
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appearing in the program (2) encourages sparsity and endows it with appealing be-
havior in high dimensions. Here, we provide a brief review of M-estimators used
for robust linear regression. For a more detailed treatment of the basic concepts
of robust regression, see the books [Huber (1981), Maronna, Martin and Yohai
(2006), Hampel et al. (1986)] and the many references cited therein.

Let � denote the regression function defined on an individual observation pair
(xi, yi). The corresponding M-estimator is then

(4) Ln(β) = 1

n

n∑
i=1

�
(
xT
i β − yi

)
.

Note that

E
[∇Ln

(
β∗)] = E

[
�′(xT

i β∗ − yi

)
xi

] = E
[
�′(εi)xi

] = E
[
�′(εi)

] ·E[xi] = 0,

so the condition (3) is always satisfied. In particular, the maximum likelihood es-
timator corresponds to the choice �(u) = − logpε(u), where pε is the probability
density function of the additive errors εi . Note that when εi ∼ N(0,1), the MLE
corresponds to the choice �(u) = u2

2 , and the resulting loss function is convex.
Several popular robust loss functions that we will study in this paper include the

Huber, Tukey and Cauchy losses, which are reviewed in Appendix B.1. Although
second and third derivatives do not exist for all these loss functions, a unifying
property is that the derivative �′ is bounded in each case. This turns out to be an
important property for robustness of the resulting estimator. Intuitively, we may
view a solution β̂ of the program (2) as an approximate sparse solution to the
estimating equation ∇Ln(β) = 0, or equivalently,

(5)
1

n

n∑
i=1

�′(xT
i β − yi

)
xi = 0.

When β = β∗, equation (5) becomes

(6)
1

n

n∑
i=1

�′(εi)xi = 0.

In particular, if εi is an outlier, its contribution to the sum in equation (6) is
bounded when �′ is bounded, lessening the contamination effect of gross outliers.

In the robust regression literature, a redescending M-estimator has the addi-
tional property that there exists ξ0 > 0 such that |�′(u)| = 0, for all |u| ≥ ξ0. Then
ξ0 is known as a finite rejection point, since outliers (xi, yi) with |εi | ≥ ξ0 will
be completely eliminated from the summand in equation (6). For instance, the
Tukey loss gives rise to a redescending M-estimator.1 Note that redescending M-
estimators will always be nonconvex, so computational efficiency will be sacri-
ficed at the expense of finite rejection properties. For an in-depth discussion of

1The Cauchy loss has the property that limu→∞ |�′(u)| = 0, but it is not redescending for any
finite ξ0.
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redescending M-estimators, namely different measures of robustness, see the arti-
cle by Shevlyakov, Morgenthaler and Shurygin (2008).

2.2. Generalized M-estimators. Whereas the M-estimators described in Sec-
tion 2.1 are robust with respect to outliers in the additive noise terms εi , they are
nonrobust to outliers in the covariates xi . This may be quantified using the concept
of influence functions (see Appendix A). Intuitively, an outlier in xi may cause the
corresponding term in equation (6) to behave arbitrarily badly. This motivates the
use of generalized M-estimators that downweight large values of xi (also known
as leverage points). The resulting estimating equation is then defined as follows:

(7)
n∑

i=1

η
(
xi, x

T
i β − yi

)
xi = 0,

where η :Rp ×R →R is defined appropriately. As will be discussed in the sequel,
generalized M-estimators may allow us to relax the distributional assumptions on
the covariates, for example, from sub-Gaussian to sub-exponential. Recall the fol-
lowing definitions [Vershynin (2012)].

DEFINITION 1 (Sub-Gaussian and sub-exponential random variables). (i) A
random variable X is sub-Gaussian with parameter σx if (E(|X|s))1/s ≤ σx

√
s,

for all s = 1,2, . . . .

(ii) A random variable X is sub-exponential with parameter σx if (E(|X|s))1/s ≤
σxs, for all s = 1,2, . . . .

A matrix X ∈ R
n×p with i.i.d. rows {xT

i } is sub-Gaussian (sub-exponential)
with parameter σx if for any unit vector u ∈ R

p , the random variable uT xi is sub-
Gaussian (sub-exponential) with parameter σx .

We will focus on functions η that take the form

(8) η(xi, ri) = w(xi)�
′(ri · v(xi)

)
,

where w,v > 0 are weighting functions. Note that the M-estimators considered in
Section 2.1 may also be written in this form, where w ≡ v ≡ 1. The Mallows, Hill–
Ryan and Schweppe functions, which are popular weight functions in robust statis-
tics and are of the form presented in equation (8), are defined in Appendix B.2.

Note that when η takes the form in equation (8), the estimating equation (7)
may again be seen as a zero-gradient condition ∇Ln(β) = 0, where

(9) Ln(β) := 1

n

n∑
i=1

w(xi)

v(xi)
�
((

xT
i β − yi

)
v(xi)

)
.

Under reasonable conditions, such as oddness of �′ and symmetry of the error
distribution, the condition (3) may be seen to hold [cf. condition (2) of Proposi-
tion 1 below and the following remark]. The overall program for a generalized
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M-estimator then takes the form

β̂ ∈ arg min‖β‖1≤R

{
1

n

n∑
i=1

w(xi)

v(xi)
�
((

xT
i β − yi

)
v(xi)

) + ρλ(β)

}
.

2.3. Nonconvex regularizers. Finally, we provide some background on the
types of regularizers we will use in our analysis of the composite objective func-
tion (2). Following Loh and Wainwright (2014, 2015), we require the regularizer
ρλ to satisfy the following properties.

ASSUMPTION 1 (Amenable regularizers). The regularizer is coordinate-
separable:

ρλ(β) =
p∑

j=1

ρλ(βj ),

for some scalar function ρλ :R �→R. In addition:

(i) The function t �→ ρλ(t) is symmetric around zero and ρλ(0) = 0.
(ii) The function t �→ ρλ(t) is nondecreasing on R

+.
(iii) The function t �→ ρλ(t)

t
is nonincreasing on R

+.
(iv) The function t �→ ρλ(t) is differentiable for t �= 0.
(v) limt→0+ ρ′

λ(t) = λ.
(vi) There exists μ > 0 such that the function t �→ ρλ(t) + μ

2 t2 is convex.
(vii) There exists γ ∈ (0,∞) such that ρ′

λ(t) = 0 for all t ≥ γ λ.

If ρλ satisfies conditions (i)–(vi) of Assumption 1, we say that ρλ is μ-
amenable. If ρλ also satisfies condition (vii), we say that ρλ is (μ, γ )-amenable. In
particular, if ρλ is μ-amenable, then qλ(t) := λ|t | − ρλ(t) is everywhere differen-
tiable. Defining the vector version qλ : Rp → R accordingly, it is easy to see that
μ
2 ‖β‖2

2 − qλ(β) is convex.
Some popular examples of nonconvex regularizers satisfying the above proper-

ties, particularly the SCAD and MCP, are provided in Appendix B.3. As studied
in detail in Loh and Wainwright (2014) and leveraged in the results of Section 3.3
below, using (μ, γ )-amenable regularizers allows us to derive a powerful oracle
result concerning local stationary points, which will be useful for our discussion
of asymptotic normality.

3. Main statistical results. We now present our core results concerning sta-
tionary points of the high-dimensional robust M-estimators described in Section 2.
We begin with a general deterministic result that ensures statistical consistency
of stationary points of the program (2) when the loss function satisfies restricted
strong convexity and the regularizer is μ-amenable. Next, we interpret the conse-
quences of our theorem for specific M-estimators and generalized M-estimators
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through a series of propositions, and provide conditions on the distributions of the
covariates and error terms under which the assumptions hold with high probability.
Lastly, we provide a theorem establishing that stationary points are equal to a local
oracle estimator when the regularizer is nonconvex and (μ, γ )-amenable.

Recall that β̃ is a stationary point of the program (2) if〈∇Ln(β̃) + ∇ρλ(β̃), β − β̃
〉 ≥ 0,

for all feasible β , where we abuse notation slightly and write ∇ρλ(β̃) =
λ sign(β̃) − ∇qλ(β̃) (recall that qλ is differentiable by our assumptions). The set
of stationary points includes all local and global minima, as well as interior local
maxima [Bertsekas (1999), Clarke (1983)].

3.1. General statistical theory. We require the loss function Ln to be differen-
tiable and satisfy the following local restricted strong convexity (RSC) condition.

ASSUMPTION 2 (Local RSC condition). There exist α > 0 and τ ≥ 0, and a
radius r > 0, such that for all β1, β2 ∈ Br (β

∗),

(10)
〈∇Ln(β1) − ∇Ln(β2), β1 − β2

〉 ≥ α‖β1 − β2‖2
2 − τ

logp

n
‖β1 − β2‖2

1.

The notion of restricted strong convexity was introduced by Negahban et al.
(2012) and Agarwal, Negahban and Wainwright (2012) to analyze statistical and
optimization properties of convex regularized M-estimators, and extended by Loh
and Wainwright (2015) to the case of nonconvex functions. However, unlike the
analogous definition in Loh and Wainwright (2015), Assumption 2 imposes no
conditions on the behavior of Ln outside the ball of radius r centered at β∗. The
intuition behind the RSC condition is that it is a weaker version of strong convexity,
which is exactly the condition when α > 0 and τ = 0. However, for τ > 0, we
allow the inner product on the left-hand side of inequality (10) to be negative for
some values of β1 and β2. Note that when p > n, the loss function Ln is not
strongly convex even when � is convex, since directions exist in which Ln has
zero curvature. Condition (10) therefore only imposes positive curvature of Ln for
vectors in the set where ‖β1−β2‖1‖β1−β2‖2

≤ c
√

n
logp

, which turns out to be sufficient for

stationary points to be consistent. (This set includes all k-sparse vectors β1 − β2,
provided n ≥ c2k logp.)

Since the loss functions used in robust regression are often nonconvex further
away from the origin, Assumption 2 only requires the RSC condition to hold lo-
cally. Accordingly, the theoretical guarantees derived in this paper only concern
the behavior of local behavior of stationary points around β∗. As discussed in more
detail below, we will take r to scale as a constant independent of n,p, and k. The
ball of radius r essentially cuts out a local basin of attraction around β∗ in which
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stationary points of the M-estimator are well behaved. Furthermore, our optimiza-
tion results in Section 4 guarantee that we may efficiently locate stationary points
within this constant-radius region via a two-step M-estimator.

We have the following main result, which requires the regularizer and loss func-
tions to satisfy Assumptions 1 and 2, respectively. The theorem guarantees that sta-
tionary points within the local region of restricted strong convexity are statistically
consistent. Recall that k refers to the sparsity level of the true parameter vector β∗.

THEOREM 1. Suppose Ln satisfies the local RSC condition (10) with β2 = β∗,
for all β1 ∈ Br (β

∗). Also suppose ρλ is μ-amenable with 3
4μ < α. Further suppose

n ≥ C
r2 · k logp and R ≥ ‖β∗‖1, and suppose

(11) λ ≥ max
{

4
∥∥∇Ln

(
β∗)∥∥∞,8τR

logp

n

}
.

Then there exists a stationary point β̃ of the program (2) such that ‖β̃ − β∗‖2 ≤ r .
Furthermore,

(12)
∥∥β̃ − β∗∥∥

2 ≤ 24λ
√

k

4α − 3μ
and

∥∥β̃ − β∗∥∥
1 ≤ 96λk

4α − 3μ
.

In particular, for the choice λ �
√

logp
n

, the inequalities (12) imply that

∥∥β̃ − β∗∥∥
2 ≤ 24

4α − 3μ

√
k logp

n
and

∥∥β̃ − β∗∥∥
2 ≤ 96

4α − 3μ
k

√
logp

n
.

The proof of Theorem 1 is contained in Section C.1. Note that the statement
of the theorem is entirely deterministic, and the distributional properties of the
covariates and error terms come into play in verifying that inequality (11) and the
local RSC condition (10) hold with high probability. As will be shown below (cf.

Proposition 1), we have ‖∇Ln(β
∗)‖∞ �

√
logp

n
under fairly mild distributional

assumptions, provided �′ is bounded. Furthermore, for R ≤ c
√

k, we also have
R logp

n
�

√
logp

n
under the prescribed sample size scaling, thus justifying the choice

λ �
√

logp
n

suggested in the statement of Theorem 1. Finally, note that the theorem
does not require the condition (10) to hold uniformly over all pairs in the ball
Br (β

∗), as in Assumption 2, but only for β2 = β∗ and β1 ∈ Br (β
∗).

REMARK. Although Theorem 1 only guarantees the statistical consistency of
stationary points within the local region of radius r , it is essentially the strongest
conclusion one can draw based on a local RSC assumption (10) alone. The
power of Theorem 1 lies in the fact that when r is chosen to be a constant and
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k logp
n

= o(1), as is the case in our robust regression settings of interest, all station-
ary points within the constant-radius region are guaranteed to fall within a shrink-

ing ball of radius O(

√
k logp

n
) centered around β∗. Hence, the stationary points in

the local region are statistically consistent at the usual minimax rate expected for
�1-penalized ordinary least squares regression with sub-Gaussian data. Further-
more, the dimensions n,p and k are all allowed to grow; in particular, we do not
assume that k is bounded by a constant. As we will illustrate in more detail in the
next section, if robust loss functions with bounded derivatives are used in place of
the ordinary least squares loss, the statistical consistency conclusion of Theorem 1
still holds even when the additive errors follow a heavy-tailed distribution or are
contaminated by outliers.

As a corollary to the proof of Theorem 1, we have the following result, which
holds when Ln is convex. It applies to loss functions such as the Huber loss, and
will be relevant to our discussion of two-step estimators in Section 4.2, where we
will use a convex robust loss in the first step of an optimization procedure designed
to find stationary points of the program (2), even when � is nonconvex. The proof
of Corollary 1 is provided in Appendix E.1.

COROLLARY 1. Suppose, in addition to the assumptions stated in Theorem 1,
that the loss function Ln is convex. Also suppose n ≥ 2τ

α
· k logp. Then the pro-

gram (2) possesses a unique stationary point β̃ , and β̃ is contained in the ball
Br (β

∗).

3.2. Establishing sufficient conditions. From Theorem 1, we see that the key
ingredients for statistical consistency of local stationary points are (i) the bound-
edness of ‖∇Ln(β

∗)‖∞ in inequality (11), which ultimately dictates the �2-rate
of convergence of β̃ to β∗ up to a factor of

√
k, and (ii) the local RSC condi-

tion (10) in Assumption 2. We provide more interpretable sufficient conditions in
this section via a series of propositions.

For the results of this section, we will require some boundedness conditions on
the derivatives of the loss function �, which we state in the following assumption.

ASSUMPTION 3 (Derivative assumptions). Suppose there exist κ1, κ2 ≥ 0
such that ∣∣�′(u)

∣∣ ≤ κ1, ∀u,(13)

�′′(u) ≥ −κ2, ∀u.(14)

Note that the bounded derivative assumption (13) holds for all the robust loss
functions highlighted in Appendix B.1 (but not for the ordinary least squares loss),
and κ1 � ξ in each of those cases. Indeed, it is well known from classical robust
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statistics (cf. Appendix A) that loss functions with a bounded derivative exactly
correspond to bounded influence functions in the fixed-covariate setting. Further-
more, inequality (14) holds with κ2 = 0 when � is convex and twice-differentiable,
but the inequality also holds for nonconvex losses such as the Tukey and Cauchy
loss with κ2 > 0. By a more careful argument, we may eschew the condition (14)
if � is a convex function that is in C1 but not C2, as in the case of the Huber loss,
since Theorem 1 only requires first-order differentiability of Ln and qλ; however,
we state the propositions with Assumption 3 for the sake of simplicity.

We have the following proposition, which establishes the gradient bound (11)
with high probability under fairly mild assumptions.

PROPOSITION 1. Suppose � satisfies the bounded derivative condition (13)
and the following conditions also hold:

(1) w(xi)xi is sub-Gaussian with parameter σw .
(2) Either

(a) v(xi) = 1 and E
[
w(xi)xi

] = 0, or (b) E
[
�′(εi · v(xi)

) | xi

] = 0.

With probability at least 1 − c1 exp(−c2 logp), the loss function defined by equa-
tion (9) satisfies the bound

∥∥∇Ln

(
β∗)∥∥∞ ≤ cκ1σw

√
logp

n
.

The proof of Proposition 1 is a simple but important application of sub-Gaussian
tail bounds and is provided in Appendix D.1.

REMARK. Note that for the unweighted M-estimator (4), conditions (1) and
(2a) of Proposition 1 hold when xi is sub-Gaussian and E[xi] = 0. If the xi ’s are
not sub-Gaussian, condition (1) nonetheless holds whenever w(xi)xi is bounded.
Furthermore, condition (2b) holds whenever εi has a symmetric distribution and
�′ is an odd function. We further highlight the fact that aside from a possible mild
requirement of symmetry, the concentration result given in Proposition 1 is in-
dependent of the distribution of εi , and holds equally well for heavy-tailed error
distributions. The distributional effect of the xi ’s is captured in the sub-Gaussian
parameter σw; in settings where the contaminated data still follow a sub-Gaussian
distribution, but the sub-Gaussian parameter is inflated due to large leverage points,
using a weight function as defined in equation (4) may lead to a significant decrease
in the value of σw . This decreases the finite-sample bias of the overall estimator.

Establishing the local RSC condition in Assumption 2 is more subtle, and the
propositions described below depend in a more complex fashion on the distribution
of the εi ’s. As noted above, the statistical consistency result in Theorem 1 only
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requires inequality (10) to hold with β2 = β∗. However, for the stronger oracle
result of Theorem 2, we will require the full form of Assumption 2 to hold over
all pairs (β1, β2) in the local region. We will quantify the parameters of the RSC
condition in terms of an additional parameter T > 0, which is treated as a fixed
constant. Define the tail probability

(15) εT := P

(
|εi | ≥ T

2

)
,

and the lower-curvature bound

(16) αT := min|u|≤T
�′′(u) > 0,

where �′′ is assumed to exist on the interval [−T ,T ]. We assume that T is chosen
small enough so that αT > 0.

We first consider the case where the loss function takes the usual form of an
unweighted M-estimator (4). We have the following proposition, proved in Ap-
pendix D.2.

PROPOSITION 2. Suppose the xi ’s are drawn from a sub-Gaussian distribu-
tion with parameter σx and the loss function is defined by equation (4). Also sup-
pose

(17) cσ 2
x

(
ε

1/2
T + exp

(
− c′T 2

σ 2
x r2

))
≤ αT

αT + κ2
· λmin(�x)

2
.

Suppose � satisfies Assumption 3 and the sample size satisfies n ≥ c0k logp. With
probability at least 1−c exp(−c′ logp), the loss function Ln satisfies Assumption 2
with

α = αT · λmin(�x)

16
and τ = C(αT + κ2)

2σ 2
x T 2

r2 .

REMARK. Note that for a fixed value of T , inequality (17) places a tail condi-
tion on the distribution of εi via the term εT . This may be interpreted as a bound
on the variance of the error distribution when εi is sub-Gaussian, or a bound on
the fraction of outliers when εi has a contaminated distribution. Furthermore, the
exponential term decreases as a function of the ratio T

r
. Hence, for a larger value

of εT , the radius r will need to be smaller in order to satisfy the bound (17). This
agrees with the intuition that the local basin of good behavior for the M-estimator
is smaller for larger levels of contamination. Finally, note that although αT and
κ2 are deterministic functions of the known regression function � and could be
computed, the values of λmin(�x) and σ 2

x are usually unknown a priori. Hence,
Proposition 2 should be viewed as more of a qualitative result describing the be-
havior of the RSC parameters as the amount of contamination of the error distribu-
tion increases, rather than a bound that can be used to select a suitable robust loss
function.
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The situation where Ln takes the form of a generalized M-estimator (9) is more
difficult to analyze in its most general form, so we will instead focus on verifying
the local RSC condition (10) for the Mallows and Hill–Ryan estimators described
in Section 2.2. We will show that the RSC condition holds under weaker con-
ditions on the distribution of the xi ’s. We have the following lemmas, proved in
Appendices D.3 and D.4.

PROPOSITION 3 (Mallows estimator). Suppose the xi ’s are drawn from a sub-
exponential distribution with parameter σx and the loss function is defined by

Ln(β) = 1

n

n∑
i=1

w(xi)�
(
xT
i β − yi

)
,

and w(xi) = min{1, b
‖Bxi‖2

}. Also suppose

cb
∣∣∣∣∣∣B−1∣∣∣∣∣∣

2σ
2
x

(
ε

1/2
T + exp

(
−c′T

σxr

))
≤ αT

2(αT + κ2)
· λmin

(
E

[
w(xi)xix

T
i

])
.

Suppose � satisfies Assumption 3, and suppose the sample size satisfies n ≥
c0k logp. With probability at least 1 − c exp(−c′ logp), the loss function Ln sat-
isfies Assumption 2 with

α = αT · λmin(E[w(xi)xix
T
i ])

16
and τ = C(αT + κ2)

2σ 2
x T 2

r2 .

PROPOSITION 4 (Hill–Ryan estimator). Suppose the loss function is defined
by

Ln(β) = 1

n

n∑
i=1

w(xi)�
((

xT
i β − yi

)
w(xi)

)
,

where w(xi) = min{1, b
‖Bxi‖2

}. Also suppose

cb2∣∣∣∣∣∣B−1∣∣∣∣∣∣2
2

(
ε

1/2
T + exp

(
− c′T 2

b2|||B−1|||22σ 2
x r2

))
(18)

≤ αT

2(αT + κ2)
· λmin

(
E

[
w(xi)xix

T
i

])
.

Suppose � satisfies Assumption 3, and suppose the sample size satisfies n ≥
c0k logp. With probability at least 1 − c exp(−c′ logp), the loss function Ln sat-
isfies Assumption 2 with

α = αT · λmin(w(xi)xix
T
i )

16
and τ = C(αT + κ2)b

2|||B−1|||22T 2

r2 .
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REMARK. Due to the presence of the weighting function w(xi), Proposition 3
imposes weaker distributional requirements on the xi ’s than Proposition 2, and
the requirements imposed in Proposition 4 are still weaker. In fact, a version of
Proposition 3 could be derived with w(xi) = min{1, b2

‖Bxi‖2
2
}, which would not re-

quire the xi ’s to be sub-exponential. The tradeoff in comparing Proposition 4 to
Propositions 2 and 3 is that although the RSC condition holds under weaker dis-
tributional assumptions on the covariates, the absolute bound b2|||B−1|||22 used in
place of the sub-Gaussian/exponential parameter σx may be much larger. Hence,
the relative size of εT and the radius r will need to be smaller in order for inequal-
ity (18) to be satisfied, relative to the requirement for inequality (17).

In Section 5 below, we explore the consequences of Propositions 1–4 for heavy-
tailed, outlier and sub-exponential distributions.

3.3. Oracle results and asymptotic normality. As discussed in the preceding
two subsections, penalized robust M-estimators produce local stationary points
that enjoy �1- and �2-consistency whenever �′ is bounded and the errors and co-
variates satisfy suitable mild assumptions. In fact, a distinguishing aspect of dif-
ferent robust loss functions lies not in first-order comparisons, but in second-order
considerations concerning the variance of the estimator. This is a well-known con-
cept in classical robust regression analysis, where p is fixed, n → ∞ and the ob-
jective function does not contain a penalty term. By the Cramér–Rao bound and
under fairly general regularity conditions [Lehmann and Casella (1998)], the op-
timal choice of � that minimizes the asymptotic variance in the low-dimensional
setting is the MLE function, �(u) = − logpε(u), where pε is the probability den-
sity function of εi . When the class of regression functions is constrained to those
with bounded influence functions, however, a more complex analysis reveals that
choices of � corresponding, for example, to the losses introduced in Section 2.2
produce better performance [Huber (1981)].

In this section, we establish oracle properties of penalized robust M-estimators.
Our main result shows that under many of the assumptions stated earlier, local
stationary points of the regularized M-estimators coincide with the local oracle
result, defined by

(19) β̂O
S ∈ arg min

β∈RS :‖β−β∗‖2≤r

{
Ln(β)

}
.

This is particularly attractive from a theoretical standpoint, because the oracle
result implies that local stationary points inherit all the properties of the lower-
dimensional oracle estimator β̂O

S , which is covered by previous theory.
Note that β̂O

S is truly an oracle estimator, since it requires knowledge of both
the actual support set S of β∗ and of β∗ itself; the optimization of the loss func-
tion is taken only over a small neighborhood around β∗. In cases where Ln is
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convex or global optima of Ln that are supported on S lie in the ball of radius r

centered around β∗, the constraint ‖β − β∗‖2 ≤ r may be omitted. If Ln satisfies
Assumption 2, the oracle program (19) is guaranteed to be convex, as stated in the
following simple lemma, proved in Appendix F.1.

LEMMA 1. Suppose Ln satisfies Assumption 2 and n ≥ 2τ
α

k logp. Then Ln is
strongly convex over the region Sr := {β ∈R

p : supp(β) ⊆ S,‖β − β∗‖2 ≤ r}.

In particular, the oracle estimator β̂O
S is guaranteed to be unique.

Our central result of this section shows that when the regularizer is (μ, γ )-
amenable and the loss function satisfies the local RSC condition in Assumption 2,
stationary points of the M-estimator (2) within the local neighborhood of β∗ are in
fact unique and equal to the oracle estimator (19). We also require a condition on
the minimum signal strength, which we denote by β∗

min := minj∈S |β∗
j |. For sim-

plicity, we state the theorem as a probabilistic result for sub-Gaussian covariates
and the unweighted M-estimator (4); similar results could be derived for general-
ized M-estimators under weaker distributional assumptions.

THEOREM 2. Suppose the loss function Ln is given by the M-estimator (4)
and is twice differentiable in the �2-ball of radius r around β∗. Suppose the regu-
larizer ρλ is (μ, γ )-amenable. Under the same conditions of Theorem 1, suppose

in addition that ‖β∗‖1 ≤ R
2 and 160λk

2α−μ
< R, and β∗

min ≥ C

√
log k

n
+ γ λ. Suppose

n ≥ c0 max{k2, k logp}. With probability at least 1 − c exp(−c′ min{k, logp}),
any stationary point β̃ of the program (2) such that ‖β̃ − β∗‖2 ≤ r satisfies
supp(β̃) ⊆ S and β̃S = β̂O

S .

The proof of Theorem 2 builds upon the machinery developed in the recent pa-
per [Loh and Wainwright (2014)]. However, the argument here is slightly simpler,
because we only need to prove the oracle result for stationary points within a radius
r of β∗. For completeness, we include a proof of Theorem 2 in Section C.2, high-
lighting the modifications that are necessary to obtain the statement in the present
paper.

REMARK. Several other papers [Fan and Peng (2004), Bradic, Fan and Wang
(2011), Li, Peng and Zhu (2011)] have established oracle results of a similar flavor,
but only in cases where the M-estimator takes the form described in Section 2.1
and the loss is convex. Furthermore, the results of previous authors only concern
global optima and/or guarantee the existence of local optima with the desired ora-
cle properties. Hence, our conclusions are at once more general and more complex,
since we need a more careful treatment of possible local optima.
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In fact, since the oracle program (19) is essentially a k-dimensional optimization
problem, Theorem 2 allows us to apply previous results in the literature concern-
ing the asymptotic behavior of low-dimensional M-estimators to simultaneously
analyze the asymptotic distribution of β̂O

S and β̃ . Huber (1973) studied asymp-
totic properties of M-estimators when the loss function is convex, and established

asymptotic normality assuming p3

n
→ 0, a result which was improved upon by

Yohai and Maronna (1979). Portnoy (1985) and Mammen (1989) extended these
results to nonconvex M-estimators. Fewer results exist concerning generalized
M-estimators: Bai and Wu (1997) and He and Shao (1996) established asymp-
totic normality for a fairly general class of estimators, but the assumption is that p

is fixed and n → ∞. He and Shao (2000) extended their results to the case where

p is also allowed to grow and proved asymptotic normality when p2 logp
n

→ 0,
assuming a convex loss.

Although the overall M-estimator may be highly nonconvex, the restricted pro-
gram (19) defining the oracle estimator is nonetheless convex (cf. Lemma 1 above).
Hence, the standard convex theory for M-estimators with a diverging number of
parameters applies without modification. Since the regularity conditions existing
in the literature that guarantee asymptotic normality vary substantially depending
on the form of the loss function, we only provide a sample corollary for a specific
(unweighted) case, as an illustration of the types of results on asymptotic normality
that may be derived from Theorem 2.

COROLLARY 2. Suppose the loss function Ln is given by the M-estimator (4)
and the regularizer ρλ is (μ, γ )-amenable. Under the same conditions of The-
orem 2, suppose in addition that � ∈ C3, E[�′′(εi)] ∈ (0,∞), and k ≥ C logn.
Let β̃ be any stationary point of the program (2) such that ‖β̃ − β∗‖2 ≤ r . If
k log3 k

n
→ 0, then ‖β̃ − β∗‖2 = OP (

√
k
n
). If k2 log k

n
→ 0, then for any bounded se-

quence {vn} ⊆R
p , we have

√
n

σ(vn)
· vT

n

(
β̃ − β∗) d−→ N(0,1),

where

σ 2(v) := 1

E[�′′(εi)] ·E[(�′(εi))2] · vT

(
XT X

n

)
v.

The proof of Corollary 2 is provided in Appendix E.2. Analogous results may
be derived for other loss functions considered in this paper under slightly differ-
ent regularity assumptions, by modifying appropriate low-dimensional results with
diverging dimensionality [e.g., Mammen (1989), Portnoy (1985)].
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4. Optimization. We now discuss how our statistical theory gives rise
to a useful two-step algorithm for optimizing the resulting high-dimensional
M-estimators. We first present some theory for the composite gradient descent
algorithm, including rates of convergence for the regularized problem. We then
describe our new two-step algorithm, which is guaranteed to converge to a station-
ary point within the local region where the RSC condition holds.

4.1. Composite gradient descent. In order to obtain stationary points of the
program (2), we use composite gradient descent [Nesterov (2007)]. Denoting
�Ln(β) := Ln(β) − qλ(β), we may rewrite the program as

β̂ ∈ arg min‖β‖1≤R

{�Ln(β) + λ‖β‖1
}
.

Then the composite gradient iterates are given by

(20) βt+1 ∈ arg min‖β‖1≤R

{
1

2

∥∥∥∥β −
(
βt − ∇ �Ln(β

t )

η

)∥∥∥∥2

2
+ λ

η
‖β‖1

}
,

where η is the stepsize parameter. Defining the soft-thresholding operator Sλ/η(β)

componentwise according to

S
j
λ/η := sign(βj )

(
|βj | − λ

η

)
+
,

a simple calculation shows that the iterates (20) take the form

(21) βt+1 = Sλ/η

(
βt − ∇ �Ln(β

t )

η

)
.

The following theorem guarantees that the composite gradient descent algo-
rithm will converge at a linear rate to a point near β∗ as long as the initial point β0

is chosen close enough to β∗. We will require the following assumptions on Ln,
where

T ′(β1, β2) := Ln(β1) −Ln(β2) − 〈∇Ln(β2), β1 − β2
〉

denotes the Taylor remainder. In the statements below, we assume α′, α′′ > 0 and
τ ′, τ ′′ ≥ 0.

ASSUMPTION 4 (Local RSC′ and RSM conditions). Suppose Ln satisfies the
restricted strong convexity condition

(22) T ′(β1, β2) ≥ α′‖β1 − β2‖2
2 − τ ′ logp

n
‖β1 − β2‖2

1, ∀β1, β2 ∈ Br

(
β∗)

.

In addition, suppose Ln satisfies the restricted smoothness (RSM) condition

(23) T ′(β1, β2) ≤ α′′‖β1 − β2‖2
2 + τ ′′ logp

n
‖β1 − β2‖2

1, ∀β1, β2 ∈ R
p.
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Note that the definition of T ′ in Assumption 4 differs slightly from the defi-
nition of the related Taylor difference used in Assumption 2. However, one may
verify the RSC′ condition (22) in exactly the same way as we verify Assump-
tion 2 via the mean value theorem argument of Section 3.2, so we do not repeat the
proofs here. The restricted smoothness condition (23) is fairly mild and is easily
seen to hold with τ ′′ = 0 when the loss function � appearing in the definition of the
M-estimator has a bounded second derivative. We will also assume for simplicity
that qλ is convex, as is the case for the SCAD and MCP regularizers; the theo-
rem may be extended to situations where qλ is nonconvex, given an appropriate
quadratic bound on the Taylor remainder of qλ.

We have the following theorem, proved in Appendix C.3. It guarantees that as
long as the initial point β0 of the composite gradient descent algorithm is chosen
close enough to β∗, the log of the �2-error between iterates βt and a global mini-
mizer β̂ of the regularized M-estimator (2) will decrease linearly with t up to the
order of the statistical error ‖β̂ − β∗‖2.

THEOREM 3. Suppose Ln satisfies the local RSC′ condition (22) and the RSM
condition (23), and suppose ρλ is μ-amenable with μ < 2α and qλ is convex.
Suppose the regularization parameters satisfy the scaling

C max
{∥∥∇Ln

(
β∗)∥∥∞τ

√
logp

n

}
≤ λ ≤ C′α

R
.

Also suppose β̂ is a global optimum of the objective (2) over Br/2(β
∗), and η ≥ 2α′′

and

(24) n ≥ 4(2τ ′ + τ ′′)
α′ − μ/2 + η/2

· α′ − μ/2

α′ − μ/2 + η/2
· r2

4
· R2 logp.

If β0 ∈ Br/2(β
∗), successive iterates of the composite gradient descent algorithm

satisfy

∥∥βt − β̂
∥∥2

2 ≤ c

2α − μ

(
δ2 + δ4

τ
+ cτ

k logp

n

∥∥β̂ − β∗∥∥2
2

)
, ∀t ≥ T ∗(δ),

where δ2 ≥ c′‖β̂−β∗‖2
2

1−κ
is a tolerance parameter, κ ∈ (0,1), and T ∗(δ) = c′′ log(1/δ2)

log(1/κ)
.

REMARK. It is not obvious a priori that even if β0 is chosen within a small
constant radius of β∗, successive iterates will also remain close by. Indeed, the hard
work to establish this fact is contained in the proof of Lemma 3 in Appendix C.3.
Furthermore, note that we cannot expect a global convergence guarantee to hold
in general, since the only assumption on Ln is the local version of RSC. Hence,
a local convergence result such as the one stated in Theorem 3 is the best we
can hope for in this scenario. In the simulations of Section 5, we see cases where
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initializing the composite gradient descent algorithm outside the local basin of
attraction where the RSC condition holds causes iterates to converge to a stationary
point outside the local region, and the resulting stationary point is not consistent
for β∗. Hence, the assumption concerning the proximity of β0 to β∗ in Theorem 3
is necessary in order to ensure good behavior of the optimization trajectory for
nonconvex robust estimators.

4.2. Two-step estimators. As discussed in Section 3 above, whereas different
choices of � with bounded derivative yield estimators that are asymptotically un-
biased and satisfy the same �2-bounds up to constant factors, certain M-estimators
may be more desirable from the point of view of asymptotic efficiency. When � is
nonconvex, we can no longer guarantee fast global convergence of the composite
gradient descent algorithm—indeed, the algorithm may even converge to statisti-
cally inconsistent local optima. Nonetheless, Theorem 3 guarantees that composite
gradient descent will converge quickly to a desirable stationary point if the initial
point is chosen within a constant radius of the true regression vector. We now pro-
pose a new two-step algorithm that may be applied to optimize high-dimensional
robust M-estimators. Even when the regression function is nonconvex, our al-
gorithm will always converge to a stationary point that is statistically consistent
for β∗.

Two-step procedure.

(1) Run composite gradient descent using a convex regression function � with
convex �1-penalty, such that �′ is bounded.

(2) Use the output of step (1) to initialize composite gradient descent on the
desired high-dimensional M-estimator.

According to our results on statistical consistency (cf. Theorem 1 and Corol-
lary 1), step (1) will produce a global optimum β̂1 such that ‖β̂1 − β∗‖2 ≤
c

√
k logp

n
, as long as the regression function � is chosen appropriately.2 Under the

scaling n ≥ Cr2 · k logp, we then have ‖β̂1 − β∗‖2 ≤ r . Hence, by Theorem 3,
composite gradient descent initialized at β̂1 in step (2) will converge to a station-
ary point of the M-estimator at a linear rate. By our results of Section 3, the final
output β̂2 in step (2) is then statistically consistent and agrees with the local oracle
estimator if we use a (μ, γ )-amenable penalty.

REMARK. Our proposed two-step algorithm bears some similarity to classi-
cal algorithms used for locating optima of robust regression estimators in low-
dimensional settings. Recall the notion of a one-step M-estimator [Bickel (1975)],

2The rate of convergence may be sublinear in the initial iterations [Nesterov (2007)], but we are
still guaranteed to have convergence, provided � is convex.
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which is obtained by taking a single step of the Newton–Raphson algorithm start-
ing from a properly chosen initial point. Yohai (1987) and Simpson, Ruppert and
Carroll (1992) study asymptotic properties of one-step GM- and MM-estimators
in the setting where p is fixed, and show that the resulting regression estimators
may simultaneously enjoy high-breakdown and high-efficiency properties. Welsh
and Ronchetti (2002) present a finer-grained analysis of the asymptotic distribution
and influence function of one-step M-estimators as a function of the initialization.
Most directly related is the suggestion of Hampel et al. (1986) for optimizing re-
descending M-estimators using a one-step procedure initialized using a least me-
dian of squares estimator, in order to overcome the problem of nonconvexity and
possibly multiple local optima; however, the method is mostly justified heuristi-
cally. Although each step of our two-step method involves running a composite
gradient descent algorithm fully until convergence, the overall goal is still to pro-
duce an estimator at the end of the second step that is more efficient and has better
theoretical properties than the solution of the first step alone.

The simulations in the next section demonstrate the efficacy of our two-step
algorithm and the importance of step (1) in obtaining a proper initialization to
step (2).

5. Simulations. In this section, we expound upon concrete instances of our
theoretical results and provide simulation results. Data are generated i.i.d. from
the linear model

yi = xT
i β∗ + εi, ∀1 ≤ i ≤ n.

5.1. Statistical consistency. In the first set of simulations, we verify the �2-
consistency of high-dimensional robust M-estimators when data are drawn from
various distributions.

We begin our discussion with a lemma that demonstrates the failure of the Lasso

to achieve the minimax O(

√
k logp

n
) rate when the εi ’s are drawn from an α-stable

distribution with α < 2. Recall that a variable X0 has an α-stable distribution with
scale parameter γ if the characteristic function of X0 is given by

(25) E
[
exp(itX0)

] = exp
(−γ α|t |α)

, ∀t ∈ R,

and α ∈ (0,2] [Nolan (2015)]. In particular, the standard normal distribution is an
α-stable distribution with (α, γ ) = (2, 1√

2
), and the standard Cauchy distribution is

an α-stable distribution with (α, γ ) = (1,1). The lemma is proved in Appendix F.2.

LEMMA 2. Suppose X is a sub-Gaussian matrix and ε is an i.i.d. vector of

α-stable random variables with scale parameter 1. Suppose λ �
√

logp
n

. If α < 2
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and logp = o(n
2−α
α ), then

P

(∥∥∥∥XT ε

n

∥∥∥∥∞
≥ λ

)
≥ cα > 0,

where cα ≤ 1 is a constant that depends only on the sub-Gaussian parameter of
the rows of X and does not scale with the problem dimensions. In particular, if ε

is an i.i.d. vector of Cauchy random variables, the Lasso estimator is inconsistent.

In contrast, as established in Theorem 1 and the propositions of Section 3.2,
replacing the ordinary least squares loss by an appropriate robust loss function

yields estimators that are consistent at the usual O(

√
k logp

n
) rate.

In our first set of simulations, we generated εi’s from a Cauchy distribution
with scale parameter 0.1, and the xi ’s from a standard normal distribution. We ran
simulations for three problem sizes: p = 256,512 and 1024, with sparsity level
k ≈ p1/3. In each case, we set β∗ = ( 1√

k
, . . . , 1√

k
,0, . . . ,0). Figure 1(a) shows the

results when the loss function Ln is equal to the Huber, Tukey and Cauchy robust
losses, and the regularizer is the �1-penalty. The estimator β̂ was obtained using
the composite gradient descent algorithm described in Section 4.1 in the case of
the Huber loss, and the two-step algorithm described in Section 4.2 in the cases
of the Tukey and Cauchy losses, with the output of the Huber estimator used to

(a) (b)

FIG. 1. Plots showing statistical consistency of �1-penalized robust regression functions. Curves
correspond to the Huber (solid), Tukey (dash-dotted), Cauchy (dotted) and ordinary least squares
(dashed) losses, and are color-coded according to the problem sizes p = 256 (red), 512 (black) and
1024 (blue). (a) Plots for a heavy-tailed Cauchy error distribution. The Huber, Tukey and Cauchy
robust losses all yield statistically consistent results. (b) Plots for a mixture of normals error distri-
bution with 30% large-variance outliers. Since the error distribution is sub-Gaussian, the ordinary
least squares loss also yields a statistically consistent estimator at minimax rates; however, the robust
regression losses provide a significant improvement in the prefactor.
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initialize the second step of the algorithm. In each case, we set the regulariza-

tion parameters λ = 0.3
√

logp
n

and R = 1.1‖β∗‖1, and averaged the results over
50 randomly generated data sets. As shown in the figure, the �1-penalized robust
regression functions all yield statistically consistent estimators. Furthermore, the
curves for different problem sizes align when the �2-error is plotted against the
rescaled sample size n

k logp
, agreeing with the theoretical bound in Theorem 1.

We also ran simulations when the εi’s were generated from a mixture of nor-
mals, representing a contaminated distribution with a constant fraction of outliers.
With probability 0.7, the value of εi was distributed according to N(0, (0.1)2), and
was otherwise drawn from a N(0,102) distribution. Figure 1(b) shows the results
of the simulations. Again, we see that the robust regression functions all give rise

to statistically consistent estimators with �2-error scaling as O(

√
k logp

n
). We also

include the plots for the standard Lasso estimator with the ordinary least squares
objective. Since the distribution of εi is sub-Gaussian for the mixture distribution,
the Lasso estimator is also �2-consistent; however, we see that the robust loss func-
tions improve upon the �2-error of the Lasso by a constant factor.

Finally, we ran simulations to test the statistical consistency of generalized
M-estimators under relaxed distributional assumptions on the covariates. We
generated xi’s from a sub-exponential distribution, given by independent chi-
square variables with 10 degrees of freedom, and recentered to have mean zero.
The εi ’s were drawn from a Cauchy distribution with scale parameter 0.1. We
ran trials for problem sizes p = 128,256,512 and 1024, with k ≈ p1/3 and
β∗ = ( 1√

k
, . . . , 1√

k
,0, . . . ,0). We used the �1-penalized Mallows estimator de-

scribed in Proposition 3, with b = 3, B = Ip and � equal to the Huber loss func-
tion, and optimized the function using the composite gradient descent algorithm

with random initializations, with the regularization parameters λ = 0.3
√

logp
n

and
R = 1.1‖β∗‖1. Figure 2 shows the result of the simulations, from which we ob-
serve that the Mallows estimator is indeed statistically consistent, as predicted by
Theorem 1 and Proposition 3. We also plot the results for �1-penalized Huber re-
gression. It is not difficult to see from the proof of Theorem 1 that ‖∇Ln(β

∗)‖∞ is

also of the order O(

√
k logp

n
) when the xi’s are sub-exponential, but with a larger

prefactor than the Mallows loss. We observe in Figure 2 that the Huber loss indeed
appears to yield a statistically consistent estimator as well, but at a relatively slower
rate (for p = 128,256, and 512). In our simulations, we needed a slightly larger

value λ =
√

logp
n

for the Huber loss in order to achieve statistical consistency.

5.2. Convergence of optimization algorithm. Next, we ran simulations to ver-
ify the convergence behavior of the composite gradient descent algorithm de-
scribed in Section 4. We set p = 512, k ≈ p1/3, and n ≈ 15k logp, and generated
εi ’s from a Cauchy distribution with scale parameter 0.1, and the xi ’s from a stan-
dard normal distribution. We set β∗ = ( 1√

k
, . . . , 1√

k
,0, . . . ,0). We then simulated
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FIG. 2. Plot showing simulation results for the �1-penalized Mallows generalized M-estimator
with a Huber loss function, when covariates are drawn from a sub-exponential distribution and errors
are drawn from a heavy-tailed Cauchy distribution. Results for the �1-penalized Huber loss are
shown for comparison. Although both estimators appear to be statistically consistent, the Mallows
estimator exhibits better performance. The plot agrees with the behavior predicted by Theorem 1 and
Proposition 3.

the solution paths for the Huber and Cauchy loss functions with an �1-penalty, with

regularization parameters λ = 0.3
√

logp
n

and R = 1.1‖β∗‖1. Panel (a) of Figure 3
shows solution paths for the composite gradient descent algorithm with the Huber

(a) (b)

FIG. 3. Plots showing optimization trajectories for composite gradient descent applied to various
high-dimensional robust regression functions. Solution paths are shown in blue and measured with
respect to β∗, and the statistical error is plotted in red. (a) Solution paths for the �1-penalized convex
Huber loss with 10 random initializations. (b) Solution paths for the �1-penalized nonconvex Tukey
loss with 10 random initializations from the �1-penalized Huber output (black); slight perturbations
of β∗ within the local region where the loss satisfies RSC (green); and random initializations (blue).
The black and green trajectories converge at a linear rate to a unique stationary point in the local
region. The blue iterates converge to an entirely different stationary point.
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loss from 10 different starting points, chosen randomly from a N(0,62Ip) distri-
bution. An estimate of the global optimum β̂ was obtained from preliminary runs
of the optimization error, and the log optimization error log(‖βt − β̂‖2) for each of
the initializations was computed accordingly. In addition, we plot the statistical er-
ror log(‖β̂ −β∗‖2) in red for comparison. As seen in the plot, the log errors decay
roughly linearly in t . Since the �1-penalized Huber objective is convex, our theory
guarantees sublinear convergence of the iterates initially and then linear conver-
gence locally around β∗ within the radius r

2 , as specified by Theorem 3. Indeed,
our plots suggest nearly linear convergence even outside the local RSC region.
All iterates converge to the unique global optimum β̃ (the apparent bifurcation is
due to the small nonzero error tolerance provided in our implementation of the
algorithm as a criterion for convergence).

Figure 3(b) shows solution paths using the �1-penalized Tukey loss. We plot
the composite gradient descent iterates for 10 different starting points chosen by
the output of composite gradient descent applied to the �1-penalized Huber loss
(black) with random initializations; 10 randomly chosen starting points given by
β∗ plus a N(0, (0.05)2Ip) perturbation (green); and 10 randomly chosen starting
points drawn from a N(0,32Ip) distribution (blue). The simulation results reveal
a linear rate of convergence for composite gradient descent iterates in the first two
cases, as predicted by Theorem 3, since the initial iterates lie within the local region
around β∗ where the Tukey loss satisfies the RSC condition. All of the black and
green trajectories converge to the same unique stationary point in the local region.
In the third case, however, the rate of convergence of composite gradient descent
iterates is slower, and the iterates actually converge to a different stationary point
further away from β∗. This emphasizes the cautionary message that stationary
points may indeed exist for nonconvex robust regression functions that are not
consistent for the true regression vector, and first-order optimization algorithms
may converge to these undesirable stationary points if initialized improperly.

5.3. Nonconvex regularization. Finally, we ran simulations to verify the oracle
results described in Section 3.3. Figure 4 shows side-by-side comparisons for ro-
bust regression using the Huber and Cauchy loss functions with the SCAD penalty,
with parameter a = 2.5. We ran simulations for p = 256,512, and 1024, with
k ≈ p1/3 and β∗ = ( 1√

k
, . . . , 1√

k
,0, . . . ,0). The εi ’s were drawn from a Cauchy

distribution with scale parameter 0.1, and the xi ’s were drawn from a standard nor-
mal distribution. The �1-penalized Huber loss was used to select an initial point
for the composite gradient descent algorithm, as prescribed by the two-step al-

gorithm; in all cases, we set the regularization parameters to be λ =
√

logp
n

and
R = 1.1‖β∗‖1. Panel (a) plots the �2-error versus the rescaled sample size n

k logp
,

from which we see that both SCAD-penalized objective functions yield statisti-
cally consistent estimators. Panel (b) plots the fraction of trials (out of 50) for
which the recovered support of the estimator agrees with the true support of β∗.
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(a) (b)

(c)

FIG. 4. Simulation results for robust regression with a nonconvex SCAD regularizer, using a Huber
loss (solid lines) and Cauchy loss (dashed lines), for p = 256 (red), p = 512 (black) and p = 1024
(blue). (a) Plot showing �2-error as a function of the rescaled sample size n

k logp
. Both regulariz-

ers yield statistically consistent estimators, as predicted by Theorem 1. (b) Plot showing variable
selection consistency. The probability of success in recovering the support transitions sharply from
0 to 1 as a function of the sample size, agreeing with the theoretical predictions of Theorem 2. The
transition threshold corresponds with the sharp drop in �2-error seen in panel (a), since β̃ agrees
with the oracle result. (c) Plot showing the empirical variance of

√
n · eT

1 (β̃ − β∗), the rescaled first
component in the error vector. As predicted by the asymptotic normality result of Corollary 2, the
empirical variance remains roughly constant for sufficiently large sample sizes.

As we see, the families of curves for different loss functions stack up when the
horizontal axis is rescaled according to n

k logp
. Furthermore, the probability of cor-

rect support recovery transitions sharply from 0 to 1 in panel (b), as predicted by
Theorem 2. Note that the transition point for the Cauchy loss in panel (b), which
happens for n

k logp
≈ 8, also corresponds to a sharp drop in the �2-error in panel

(a), since β̃ is then equal to the low-dimensional oracle estimator. Panel (c) plots
the empirical variance of

√
n · eT

1 (β̃ − β∗), the first component of the error vec-
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tor rescaled by
√

n. We see that the variance for the Cauchy loss is uniformly
smaller than the variance for the Huber loss—indeed, the Cauchy loss corresponds
to the MLE of the error distribution. Furthermore, the curves for each loss func-
tion roughly align for different problem sizes, and the variance is roughly constant
for increasing n, as predicted by Corollary 2. Note that Corollary 2 requires third-
order differentiability, so it does not directly address the Huber loss. However, the
empirical variance of the Huber estimators is also roughly constant, suggesting
that a version of Corollary 2 might also exist for the Huber loss function.

6. Discussion. We have studied penalized high-dimensional robust estimators
for linear regression. Our results show that under a local RSC condition satisfied
by many robust regression M-estimators, stationary points within the region of
restricted curvature are actually statistically consistent estimators of the true re-
gression vector, and even under heavy-tailed errors or outlier contamination, these
estimators enjoy the same convergence rate as �1-penalized least squares regres-
sion with sub-Gaussian errors. Furthermore, we show that when the penalty is
chosen from an appropriate family of nonconvex, amenable regularizers, the sta-
tionary point within the local RSC region is unique and agrees with the local or-
acle solution. This allows us to establish asymptotic normality of local stationary
points under appropriate regularity conditions, and in some cases conclude that
the regularized M-estimator is asymptotically efficient. Finally, we propose a two-
step M-estimation procedure for obtaining local stationary points when the M-
estimator is nonconvex, where the first step consists of optimizing a convex prob-
lem in order to obtain a sufficiently close initialization for a final run of composite
gradient descent in the second step.

Several open questions remain that provide interesting avenues for future work.
First, although the side constraint ‖β‖1 ≤ R in the regularized M-estimation pro-
gram (2) is required in our proofs to ensure that stationary points obey a cone con-
dition, it is unclear whether this side condition is necessary. Indeed, since we are
only concerned with stationary points within a small radius r of β∗, the additional
�1-constraint may be redundant. It would be useful to remove the appearance of
R for practical problems, since we would then only need to tune the parameter λ.
Second, as a consequence of the oracle result in Theorem 2, local stationary points
inherit other properties of the oracle solution β̂O

S in addition to asymptotic normal-
ity, such as breakdown behavior and properties of the influence function. It would
be interesting to explore these properties for robust M-estimators with a diverging
number of parameters. A potentially harder problem would be to derive bounds on
the measures of robustness for stationary points of regularized robust estimators
when the oracle result does not hold (i.e., for �1-penalized robust M-estimators).
As suggested by the reviewers, two other interesting areas of research would be
to explore the case where β∗ only satisfies weak sparsity, or when endogeneity
is present in the data due to ultra-high-dimensionality. Lastly, whereas our results
on asymptotic normality allow us to draw conclusions regarding the asymptotic



894 P.-L. LOH

variance of the local oracle solution, it would be valuable to derive nonasymptotic
bounds on the variance of high-dimensional robust M-estimators. By trading off
the nonasymptotic bias and variance, one could then determine the form of a robust
regression function that is optimal in some sense.

Acknowledgments. The author thanks the Associate Editor and three anony-
mous reviewers for encouraging and helpful feedback in revising the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Statistical consistency and asymptotic normality for high-
dimensional robust M-estimators.” (DOI: 10.1214/16-AOS1471SUPP; .pdf).
We provide detailed technical proofs for the results stated in the main body of
the paper.
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