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FLEXIBLE RESULTS FOR QUADRATIC FORMS WITH
APPLICATIONS TO VARIANCE COMPONENTS ESTIMATION
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Rutgers University and Stanford University

We derive convenient uniform concentration bounds and finite sam-
ple multivariate normal approximation results for quadratic forms, then
describe some applications involving variance components estimation in
linear random-effects models. Random-effects models and variance com-
ponents estimation are classical topics in statistics, with a corresponding
well-established asymptotic theory. However, our finite sample results for
quadratic forms provide additional flexibility for easily analyzing random-
effects models in nonstandard settings, which are becoming more important
in modern applications (e.g., genomics). For instance, in addition to deriving
novel non-asymptotic bounds for variance components estimators in classical
linear random-effects models, we provide a concentration bound for variance
components estimators in linear models with correlated random-effects and
discuss an application involving sparse random-effects models. Our general
concentration bound is a uniform version of the Hanson–Wright inequality.
The main normal approximation result in the paper is derived using Reinert
and Röllin [Ann. Probab. (2009) 37 2150–2173] embedding technique for
Stein’s method of exchangeable pairs.

1. Introduction. Suppose that ζ = (ζ1, . . . , ζd)� ∈ R
d is a random vector

with independent components satisfying E(ζj ) = 0, j = 1, . . . , d . Additionally,
let Q be a d × d positive semidefinite matrix with real (non-random) entries.
Quadratic forms ζ�Qζ have been studied for decades in statistics [Sevastyanov
(1961); Whittle (1964); Hanson and Wright (1971); Hall (1984); Götze and
Tikhomirov (1999, 2002); Chatterjee (2008)]. This paper is largely motivated by
recent applications involving random-effects models, which rely heavily on prop-
erties of quadratic forms [e.g., Jiang et al. (2016); de Los Campos, Sorensen and
Gianola (2015); Dicker and Erdogdu (2016a)]. In the first part of the paper, we
give two new finite sample bounds for quadratic forms—a uniform concentration
inequality (Theorem 1) and a normal approximation result (Theorem 2)—which
may be useful in a variety of statistical applications. The second part of the paper
focuses on applications of Theorems 1–2 related to variance components estima-
tion in linear random-effects models, including nonstandard models with corre-
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lated random effects and a sparse random-effects model, which was previously
studied in the context of genome wide association studies.

Theorems 1 and 2 are the main theoretical results in the paper. We rate the
novelty of our normal approximation result Theorem 2, which is a multivariate
normal approximation results proved via Stein’s method for exchangeable pairs,
higher than that of Theorem 1. However, the main emphasis of both results is
convenience for use in applications.

Our concentration bound, Theorem 1, is a uniform version of the Hanson–
Wright inequality for quadratic forms. The method of proof for Theorem 1 is rel-
atively standard—combining a chaining argument from empirical process theory
[e.g., Chapter 3 of Van de Geer (2000)] with the pointwise-bound of the origi-
nal Hanson–Wright inequality—and it should be possible to generalize our result
to larger classes of quadratic forms, similar to Adamczak (2015). However, we
note that while Theorem 1 is restricted to relatively simple (Lipschitz) classes of
quadratic forms, it is not a corollary of the uniform bounds in Adamczak (2015),
which require a stronger condition on the distribution of ζ (see the comments in
Section 3.1 following the statement of Theorem 1).

Theorem 2 is a normal approximation result for vectors of quadratic forms.
Most of the existing normal approximation results for quadratic forms are asymp-
totic results [Whittle (1964); Hall (1984); Jiang (1996)], require the random vari-
ables ζi to be i.i.d. [Hall (1984); Götze and Tikhomirov (1999, 2002); Chatterjee
(2008)], or have other limitations [e.g., Gaussian ζi ; Sevastyanov (1961)]. The-
orem 2 gives a nonasymptotic normal approximation bound, which applies to ζ

with independent (but not necessarily identically distributed) sub-Gaussian com-
ponents. Furthermore, in contrast with most existing results on quadratic forms,
which are predominantly univariate, Theorem 2 is a multivariate result, which ap-
plies to vectors of quadratic forms (ζ�Q1ζ , . . . , ζ�QKζ ), for positive semidef-
inite matrices Q1, . . . ,QK (the applications to random-effects models consid-
ered in Section 4 require K = 2). The proof of Theorem 2 relies on Stein’s
method of exchangeable pairs and follows the embedding approach of Reinert and
Röllin (2009). Theorem 2 and its proof shares similarities with Proposition 3.1 of
Chatterjee (2008). However, Proposition 3.1 of Chatterjee (2008) applies only to
a single quadratic form ζ�Qζ in i.i.d. Rademacher random variables ζi satisfying
P(ζi = 1) = P(ζi = −1) = 1/2.

Linear random-effects models are studied in Section 4. Asymptotic results for
quadratic forms serve as the theoretical underpinning for many applications in-
volving random-effects models [Hartley and Rao (1967); Jiang (1996, 1998)].
However, new applications of random-effects models in genomics have pushed
the boundaries of existing theoretical results [Yang et al. (2010, 2014); Golan
and Rosset (2011); Speed et al. (2012); Zaitlen and Kraft (2012); Jiang et al.
(2016); de Los Campos, Sorensen and Gianola (2015)]. In Section 4, we present
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new nonasymptotic bounds for variance components estimators in linear random-
effects models. To our knowledge, these are the first finite sample results on the sta-
tistical properties of variance components estimators. Many now-classical asymp-
totic results for random-effects models [e.g., Jiang (1996)] follow as corollaries of
our finite sample results in Section 4. More significantly, nonasymptotic bounds,
like those in this paper, provide increased flexibility for use in applications. In par-
ticular, our results can be easily applied in nonstandard settings, where it is less
clear how to adapt the existing asymptotic theory; see, for example, Proposition 2,
which applies to random-effects models with correlated random-effects, and Sec-
tion 4.4 for an application involving sparse random-effects models.

The rest of the paper proceeds as follows. Some basic notation is introduced
in Section 2. The main theoretical results are stated in Section 3. Linear random-
effects models are studied in Section 4. Theorems 1–2 are proved in the Appen-
dices; other results are proved in the supplemental article [Dicker and Erdogdu
(2016b)].

2. Notation. If u = (u1, . . . , up)� ∈ R
p , then ‖u‖ = (u2

1 + · · · + u2
p)1/2 is

its Euclidean norm. For a d × m matrix A = (aij ) with real entries, let ‖A‖ =
sup‖x‖=1 ‖Ax‖ and ‖A‖HS = {∑d

i=1
∑m

j=1 a2
ij }1/2 be the operator norm and the

Hilbert–Schmidt (Frobenius) norm of A, respectively. If f :Rm →R is a function
with kth order derivatives, define

|f |j = sup
x∈Rm,

1≤i1,...,ij≤m

∣∣∣∣ ∂j

∂xi1 · · · ∂xij

f (x)

∣∣∣∣, j = 1, . . . , k,

and let |f |0 = supx∈Rm |f (x)|. Additionally, define Ck
b(Rm) = {f : Rm → R;

|f |j < ∞, j = 0,1, . . . , k} to be the class of real-valued functions on R
m with

bounded derivatives up to order k. Finally, following Vershynin (2012), let
‖ζ‖ψ2 = supr≥1 r−1/2

E(|ζ |r )1/r be the sub-Gaussian norm of the real-valued ran-
dom variable ζ .

3. Results for quadratic forms.

3.1. Uniform concentration bound. The Hanson–Wright inequality is a clas-
sical probabilistic bound for quadratic forms, which has been the subject of re-
newed attention recently in applications related to random matrix theory [e.g., Hsu,
Kakade and Zhang (2012); Rudelson and Vershynin (2013); Adamczak (2015)].
Theorem 1 is a uniform version of the Hanson–Wright inequality, which applies to
families of quadratic forms ζ�Q(u)ζ , where Q(u) is a matrix function of u ∈ R

K .
As illustrated in Section 4, Theorem 1 has applications in the analysis of random-
effects models; more broadly, it has applications in M-estimation and maximum
likelihood problems with non-i.i.d. data.
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THEOREM 1. Let 0 < R < ∞ and let t1(u), . . . , tm(u) be real-valued Lips-
chitz functions on [0,R]K ⊆ R

K , satisfying

(1) max
i=1,...,m

∣∣ti(u) − ti
(
u′)∣∣≤ L

∥∥u − u′∥∥, u,u′ ∈ [0,R]K,

for some constant 0 < L < ∞. Let T (u) = diag{t1(u), . . . , tm(u)}, let V be an
d ×m matrix, and define Q(u) = V T (u)V �. Additionally, let ζ = (ζ1, . . . , ζd)� ∈
R

d , where ζ1, . . . , ζd are independent mean 0 sub-Gaussian random variables sat-
isfying

(2) max
i=1,...,d

‖ζi‖ψ2 ≤ γ

for some constant γ ∈ (0,∞). Then there exists an absolute constant C ∈ (0,∞)

such that

P

[
sup

u∈[0,R]K
∣∣ζ�Q(u)ζ −E

{
ζ�Q(u)ζ

}∣∣> r
]

≤ C exp
[
− 1

C
min

{
r2

γ 4‖V �V ‖2(‖T (0)‖2
HS + KL2R2m)

,

r

γ 2‖V �V ‖(‖T (0)‖ + K1/2LR)

}]
,

whenever r2 ≥ Cγ 4‖V �V ‖2K3L2R2m.

Theorem 1 is proved in Appendix A. As mentioned in Section 1, the proof
combines a chaining argument with the classical (nonuniform) Hanson–Wright
inequality. In a typical application, the dimension K will be small (in Section 4,
we use Theorem 1 with K = 1) and m,d may be large. A uniform Hanson–Wright
inequality, with a similar upper bound, is also given in Adamczak (2015). How-
ever, Adamczak’s result applies to random vectors satisfying a relatively strong
concentration property and does not cover sub-Gaussian random vectors satisfy-
ing only (2); see Remark 2.9 following Theorem 2.5 in Adamczak (2015).

3.2. Normal approximation. The main result of this section is Theorem 2,
a multivariate normal approximation result for vectors of quadratic forms (ζ�Q1ζ ,

. . . , ζ�QKζ )� ∈ R
K . Theorem 2 may be viewed as a generalization of Proposi-

tion 3.1 in Chatterjee (2008), which applies to a single quadratic for ζ�Qζ in
Rademacher random variables ζj satisfying P(ζj = ±1) = 1/2 (though our bound
in Theorem 2 is not as tight as Chatterjee’s; see the discussion after the statement
of the theorem).

THEOREM 2. Let ζ1, . . . , ζd be independent sub-Gaussian random vari-
ables with mean 0 and variance 1, and assume that they satisfy (2). Let
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ζ = (ζ1, . . . , ζd)� ∈ R
d . Additionally, for k = 1, . . . ,K , let Qk = (q

(k)
ij ) be an

d × d positive semidefinite matrix and let qQk = diag(q
(k)
11 , . . . , q

(k)
dd ). Define

wk = ζ�Qkζ − tr(Qk), qwk = ζ�
qQkζ − tr(Qk), and

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1
qw1
...

wK

qwK

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ζ�Q1ζ − tr(Q1)

ζ�
qQ1ζ − tr(Q1)

...

ζ�QKζ − tr(QK)

ζ�
qQKζ − tr(QK)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
2K.

Finally, let z ∼ N(0, I2K) and V = Cov(w). There is an absolute constant 0 <

C < ∞ such that∣∣E{f (w)
}−E

{
f
(
V 1/2z

)}∣∣≤ C(γ + 1)8K3/2d1/2|f |2
(

max
k=1,...,K

‖Qk‖
)2

(3)
+ C(γ + 1)8K3d|f |3

(
max

k=1,...,K
‖Qk‖

)3
,

for all three-times differentiable functions f :R2K →R.

A proof of Theorem 2 may be found in Appendix B. The proof is based on
Stein’s method of exchangeable pairs and the embedding technique from Reinert
and Röllin (2009). In more detail, the embedding technique leads us to consider
the vector w, formed from pairs (wk, w̌k), as opposed to just (w1, . . . ,wk)

�, which
might be more natural from an applications viewpoint. Indeed, let w′ ∈ R

2K be
defined in the exact same way as w, except that one of the random variables ζi

is selected at random and replaced with an independent copy. Then we have the
simple relationship (derived in detail in Appendix B)

(4) E
(
w′ − w|ζ )= −�Kw,

where

�1 =

⎡
⎢⎢⎣

2

d
− 1

d

0
1

d

⎤
⎥⎥⎦ ∈ R

2×2, �K =

⎡
⎢⎢⎢⎣
�1 0 · · · 0
0 �1 · · · 0
...

...
. . .

...

0 0 · · · �1

⎤
⎥⎥⎥⎦ ∈ R

2K×2K.

The identity (4) forms the basis for applying the method of exchangeable pairs;
the proof of the theorem is concluded by using an appropriate Stein identity and
bounding various moments involving w,w′.

The upper bound (3) does not appear to be optimal; cf. Section 5 of Jiang
(1996) and Section 3 of Chatterjee (2008), where conditions for convergence
depend on the ratios ‖Qk − qQk‖2/Var(ζ�Qkζ ) and tr(Q4

k)/Var(ζ�Qkζ )2, re-
spectively. However, it is likely that (3) can be improved by carefully exam-
ining the proof in Appendix B, if one is willing to accept a more complex
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(and potentially less user-friendly) bound. Moreover, we argue presently that the
bound (3) is already effective in a range of practical settings. Assume that in
addition to the conditions of Theorem 2, the ζi are i.i.d. with excess kurtosis
γ2 = E(ζi) − 3 ≥ −2. Also, let σ 2

k = Var(ζ�Qkζ ). By Lemma S8 from the sup-
plement, σ 2

k = 2 tr(Q2
k) + γ2 tr( qQ2

k) ≥ (2 + γ2) tr(Q2
k). Hence, the upper bound in

Theorem 2 implies that ζ�Qkζ/σk is asymptotically N(0,1), if

d1/2‖Qk‖2

σ 2
k

+ d‖Qk‖3

σ 3
k

≤ d1/2‖Qk‖2

(2 + γ2) tr(Q2
k)

+
{

d2/3‖Qk‖2

(2 + γ2) tr(Q2
k)

}3/2
→ 0.

We conclude that if (i) lim infγ2 > −2 and (ii) ‖Qk‖2/ tr(Q2
k) = o(d−2/3), then

ζ�Qkζ/σk is asymptotically N(0,1). Regarding (i), note that γ2 > −2 for all dis-
tributions except the Rademacher distribution; furthermore, (ii) holds if, for in-
stance, all of the eigenvalues of Qk are contained in a compact subset of (0,∞).

On the other hand, there are some fairly natural applications where the condi-
tions on Qk discussed in the previous paragraph do not hold. In the next section,
we will consider applications where the nonzero eigenvalues of Qk may be iden-
tified with those of a sample covariance matrix (up to a scalar multiple). If the
data are from a “spiked covariance” model [Johnstone (2001)] with strong spikes,
where d0 � 1 of Qk’s eigenvalues are � d and the rest are � 1, then

d1/2‖Qk‖2

σ 2
k

+ d‖Qk‖3

σ 3
k

� d3/2

d2d2
0 + (d − d0)

+ d4

d3d
3/2
0 + (d − d0)3/2

→ ∞

and the upper bound in Theorem 2 may diverge. However, depending on the appli-
cation, in settings like this it may be feasible to use principal components analysis
as a pre-processing step, to “project out” the large eigenvalues of Qk ; Theorem 2
may then possibly be applied to the projected data.

4. Linear random-effects models. In this section, we apply the results from
Section 3 to the variance components estimation problem in a linear random-
effects model. We assume that

(5) y = Xβ + ε,

where y = (y1, . . . , yn)
� ∈R

n is an observed n-dimensional outcome vector, X =
(xij ) is an observed n × p predictor matrix with xij ∈ R, β = (β1, . . . , βp)� ∈ R

p

is an unknown p-dimensional vector, and ε = (ε1, . . . , εn)
� ∈R

n is an unobserved
error vector. We further assume that β1, . . . , βp, ε1, . . . , εn are independent random
variables with

E(εi) = 0 and Var(εi) = σ 2
0 , i = 1, . . . , n,

(6)

E(βj ) = 0 and Var(βj ) = σ 2
0 η2

0

p
, j = 1, . . . , p.
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Here, we assume that the βj are all independent. In Section 4.3, we investigate a
more general model with dependent random-effects and give a corresponding con-
centration bound. Throughout, we also assume that X is independent of ε and β .
Overall, (5)–(6) is a linear random-effects model with variance components pa-
rameters θ0 = (σ 2

0 , η2
0). In this parametrization, σ 2

0 is the residual variance and
η2

0 is a measure of the signal-to-noise ratio; this parametrization is standard [e.g.,
Hartley and Rao (1967)].

Let θ = (σ 2, η2) and define the Gaussian data log-likelihood,

�(θ) = −1

2
log

(
σ 2)− 1

2n
log det

(
η2

p
XX� + I

)

− 1

2σ 2n
y�
(

η2

p
XX� + I

)−1
y.

Note that �(θ) is the log-likelihood for θ , if β ∼ N{0, (η2
0σ

2
0 /p)I } and ε ∼

N(0, σ 2
0 I ) are Gaussian. In this section, we study properties of the maximum like-

lihood estimator (MLE),

(7) θ̂ = (
σ̂ 2, η̂2)= argmax

σ 2,η2≥0
�(θ),

in settings where ε and β are not necessarily Gaussian. [N.B. if �(θ) in (7) has
multiple maximizers, then use any pre-determined rule to select θ̂ .]

The estimator θ̂ has already been widely studied in the literature, even in set-
tings where ε and β are not Gaussian [e.g., Richardson and Welsh (1994); Jiang
(1996)]. In practice, θ̂ and other closely related estimators, such as REML esti-
mators, are probably the most commonly used variance components estimators
for linear random-effects models [Harville (1977); Searle, Casella and McCulloch
(1992); Demidenko (2013)]. Jiang’s (1996) work is especially relevant for the re-
sults in this section. Jiang studied models with independent random-effects and
derived general consistency and asymptotic normality results for θ̂ that are valid
in some of the settings considered here. However, asymptotic results tend to have
more limited flexibility for use in certain applications. This has become more no-
table recently, with the widespread use of random-effects models in genomic and
other applications, as discussed in Section 1.

In Sections 4.2–4.5 below, we present finite sample concentration and normal
approximation bounds for θ̂ , which follow from Theorems 1 and 2, respectively.
These bounds have not been optimized and some of the quantities in the bounds
can be extremely large for given values of θ0 and p−1XX� [e.g., κ(η2

0, σ
2
0 ,�)−1

and ν(η2
0, σ

2
0 ,�), defined in (9) and (22) below]. However, as described in the text

below, Propositions 1 and 4 still yield the “correct” asymptotic conclusions, sim-
ilar to Jiang (1996), which ensure consistency and asymptotic normality of θ̂ , if



QUADRATIC FORMS AND VARIANCE COMPONENTS ESTIMATION 393

p/n → ρ ∈ (0,∞) and the model parameters are bounded. Though it may be of
interest to further optimize Propositions 1–4 (and it is almost certainly possible),
our main emphasis is that the nonasymptotic approach taken here provides addi-
tional flexibility for deriving and understanding results in less standard settings.
For instance, while Propositions 1 and 4 parallel existing results in Jiang (1996),
Proposition 2 is a concentration bound for linear models with correlated random-
effects and appears to be more novel [an application of Proposition 2 may be found
in Dicker and Erdogdu (2016a)].

4.1. Additional notation. It is convenient to introduce some notation relating
to the spectrum of X. Let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of p−1XX� and
suppose that p−1XX� = U�U� is the eigen-decomposition of p−1XX�, where
� = diag(λ1, . . . , λn) and U is an n × n orthogonal matrix. Let n0 = max{i;λi >

0} be the rank of p−1XX� and define the empirical variance of the eigenvalues of
p−1XX�,

v(�) = 1

n

n∑
i=1

λ2
i −

(
1

n

n∑
i=1

λi

)2

= 1

n
tr
{(

1

p
XX�

)2}
−
{

1

n
tr
(

1

p
XX�

)}2
.

4.2. Concentration bound. To derive a concentration bound for θ̂ (Proposi-
tion 1 below), we follow standard steps in the analysis of variance components
estimators [Hartley and Rao (1967)]. In particular, we introduce the profile likeli-
hood and other related objects, which essentially reduce the bivariate optimization
problem (7) to a univariate problem. Basic calculus implies that if η2 ≥ 0, then

max
σ 2,η2≥0

�
(
σ 2, η2)= max

η2≥0
�∗
(
η2),

where �∗(η2) = �{σ 2∗ (η2), η2} is called the profile likelihood and

σ 2∗
(
η2)= 1

n
y�
(

η2

p
XX� + I

)−1
y.

It follows that θ̂ = (σ 2∗ (η̂2), η̂2), where

η̂2 = argmax
η2≥0

�∗
(
η2).

The proof of Proposition 1 hinges on comparing the profile likelihood �∗(η2) to its
population version,

�0
(
η2)= −1

2
log

{
σ 2

0
(
η2)}− 1

2n
log det

(
η2

p
XX� + I

)
− 1

2
,
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where we have replaced σ 2∗ (η2) in �2∗(η2) with its expectation,

σ 2
0
(
η2)= E

{
σ 2∗
(
η2)|X}= σ 2

0

n
tr
{(

η2
0

p
XX� + I

)(
η2

p
XX� + I

)−1}

= σ 2
0

n

n∑
i=1

η2
0λi + 1

η2λi + 1
.

Observe that σ 2
0 (η2

0) = σ 2
0 .

Overall, our strategy for proving Proposition 1 mirrors the classical parametric
theory for consistency of maximum likelihood and M-estimators [e.g., Chapter 5
of van der Vaart (1998)], except that we employ Theorem 1 at several key steps.
As in the standard analysis, two important facts underlying Proposition 1 are (i) η2

0
is the unique maximizer of �0(η

2) and (ii) �∗(η2) ≈ �0(η
2), when n,p are large.

Theorem 1 is used to make the approximation �∗(η2) ≈ �0(η
2) more precise. It

should not be surprising that quadratic forms play an important role in the analysis,
given the dependence of �∗(η2) = �{σ 2∗ (η2), η2} on the quadratic form σ 2∗ (η2). We
emphasize that to prove Proposition 1, we use Theorem 1 with K = 1 and u =
η2; the general version of Theorem 1 with matrix functions defined on R

K may
be useful for studying random-effects model with K-groups of random-effects,
for example, the general linear random-effects model considered in Jiang (1996).
Proposition 1 is proved in Section S1 of the supplement.

PROPOSITION 1. Assume that the linear random-effects model (5)–(6) holds
and that β1, . . . , βp , ε1, . . . , εn are independent sub-Gaussian random variables
satisfying

(8) max
{∥∥p1/2βj

∥∥
ψ2

,‖εi‖ψ2; i = 1, . . . , n, j = 1, . . . , p
}≤ γ

for some 0 < γ < ∞. Finally, define

(9) κ
(
σ 2

0 , η2
0,�

)= σ 4
0 η8

0v(�)2

(σ 2
0 + 1)5(η2

0 + 1)12(λ1 + 1)18(λ−1
n0 + 1)8{v(�) + 1}2

.

(a) Suppose that n0 = n. There is an absolute constant 0 < C < ∞ such that

P
{‖θ̂ − θ0‖ > r|X}≤ C exp

{
− n

C
· κ(σ 2

0 , η2
0,�)

γ 2(γ + 1)2 · r2

(r + 1)2

}

for every r ≥ 0.
(b) Suppose that n0 < n. There is an absolute constant 0 < C < ∞ such that

P
{‖θ̂ − θ0‖ > r|X}

≤ C exp
{
− n

C
· κ(σ 2

0 , η2
0,�)

γ 2(γ + 1)2 ·
(

1 − n0

n

)4(n0

n

)2
· r2

(r + 1)2

}

for every r ≥ 0.
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For given values of σ 2
0 , η2

0 and �, the quantity κ(σ 2
0 , η2

0,�) in Proposi-
tion 1 may be extremely small [for instance, if σ 2

0 = η2
0 = λ1 = v(�) = 1 and

λn0 = 1/3, then κ(σ 2
0 , η2

0,�) = 2−53; if σ 2
0 = η2

0 = λ1 = v(�) = 3 and λn0 = 1,
then κ(σ 2

0 , η2
0,�) = 314 · 2−82]. However, we have not attempted to optimize

κ(σ 2
0 , η2

0,�), and the bounds in the proposition can almost certainly be improved
at the expense of some additional calculations and a more complex bound. Fur-
thermore, despite the magnitude of κ(σ 2

0 , η2
0,�), the proposition yields very sen-

sible asymptotic conclusions. Indeed, the key property of κ(σ 2
0 , η2

0,�) is that if
U ⊆ (0,∞) is compact, then

(10) 0 < inf
{
κ
(
σ 2

0 , η2
0,�

);σ 2
0 , η2

0, λ1, . . . , λn,v(�) ∈ U
}
.

An immediate consequence is that if σ 2
0 , η2

0, λ1, . . . , λn,v(�) are contained in a

compact subset of (0,∞), then Proposition 1 implies that θ̂ converges to θ0 at rate
n1/2 [at least when n = n0; if n0 < n, then part (b) of the proposition requires the
additional condition that n0/n stays away from 1—this is discussed further below].

The bounds in Proposition 1 are tighter [i.e., κ(σ 2
0 , η2

0,�) is larger] when the
eigenvalue variance v(�) is large. This is related to identifiability: σ 2

0 and η2
0 are

not identifiable when v(�) = 0, and it is easier to distinguish between them when
v(�) is large.

The cases where n0 = n and n0 < n are considered separately in Proposition 1
because the large-η2 asymptotic behavior of σ 2

0 (η2) = E{σ 2∗ (η2)|X} differs in
these two settings. In particular, assuming that σ 2

0 , n0, n and λ1, . . . , λn are fixed,
if n0 = n, then as η2 → ∞.

σ 2
0
(
η2)= σ 2

0

n

n∑
i=1

η2
0λi + 1

η2λi + 1
� 1

η2 → 0,

as η2 → ∞; on the other hand, if n0 < n, then

σ 2
0
(
η2)= σ 2

0

n

n0∑
i=1

η2
0λi + 1

η2λi + 1
+ σ 2

0

(
1 − n0

n

)
� 1,

as η2 → ∞.
Note that Proposition 1(a) actually makes no explicit reference to p, or to the

relative convergence rates of p and n. However, there are implicit conditions on p.
For instance, since n0 = n in part (a), we must have n ≤ p. Additionally, in order
ensure that λ1, . . . , λn are contained in a compact subset U ⊆ (0,∞), so that (10)
holds, it may be natural to enforce other conditions on p, for example, p/n → ρ ∈
(1,∞).
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Part (b) of Proposition 1 applies to settings where p < n. Note that the upper
bound in part (b) contains an additional term (1 − n0/n)4(n0/n)2, as compared to
Proposition 1(a). Thus, assuming that σ 2

0 , η2
0, λ1, . . . , λn,v(�) are contained in a

compact subset of (0,∞), we conclude that θ̂ converges to θ0 at rate n1/2, if

(11) lim inf
(

1 − n0

n

)
n0

n
> 0.

Observe that (11) implies p → ∞. Hence, we need p → ∞ in order to ensure that
θ̂ is consistent. This is reasonable because information about η2

0 = pE(β2
j )/σ 2

0
is accumulated through β1, . . . , βp . The condition (11) also implies that if X is
full rank, then we must have p/n → ρ < 1 in order to ensure consistency. This
condition seems less natural and can likely be relaxed with a more careful analysis;
similar challenges arise frequently in random matrix theory when p/n → 1 [e.g.,
Bai, Miao and Yao (2003)].

4.3. A more general concentration bound. In this section, we investigate the
performance of θ̂ in models where the random-effects might be dependent. Sup-
pose that β̃ = (β̃1, . . . , β̃p)� ∈ R

p is a random vector that is independent of ε,X

and let

(12) ỹ = Xβ̃ + ε.

We do not assume that β̃ has independent components or that each of the compo-
nents has the same variance. We define the variance components estimator based
on the data (ỹ,X),

(13) θ̃ = (
σ̃ 2, η̃2)= argmax

σ 2,η2≥0
�̃(θ),

where

�̃(θ) = −1

2
log

(
σ 2)− 1

2n
log det

(
η2

p
XX� + I

)

− 1

2σ 2n
ỹ�
(

η2

p
XX� + I

)−1
ỹ.

The next proposition is a concentration bound for θ̃ , which implies that the esti-
mator may still perform reliably, if there is a good coupling for β̃ .

PROPOSITION 2. Suppose that ỹ, θ̃ satisfy (12)–(13). Suppose further that
β = (β1, . . . , βp)� ∈ R

p is a random vector with independent components, which
is independent of ε,X (but may be correlated with β̃), such that the independent
random-effects model (5)–(6) and (8) hold. Let κ(σ 2

0 , η2
0,�) be as in (9).
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(a) Suppose that n0 = n. There is an absolute constant 0 < C < ∞ such that

P
{‖θ̃ − θ0‖ > r|X}

≤ C exp
{
− n

C
· κ(σ 2

0 , η2
0,�)

γ 2(γ + 1)2 · r2

(r + 1)2

}

+ 4P
{
‖β̃ − β‖ >

1

C
· κ(σ 2

0 , η2
0,�)

(γ + 1)4 · n

p + n
· r

r + 1

∣∣∣X}.
(14)

for every r ≥ 0.
(b) Suppose that n0 < n. There is an absolute constant 0 < C < ∞ such that

P
{‖θ̃ − θ0‖ > r|X}

≤ C exp
{
− n

C
· κ(σ 2

0 , η2
0,�)

γ 2(γ + 1)2 ·
(

1 − n0

n

)4(n0

n

)2
· r2

(r + 1)2

}
(15)

+ 4P
{
‖β̃ − β‖ >

1

C
· κ(σ 2

0 , η2
0,�)

(γ + 1)4 · n

p + n
· r

r + 1

∣∣∣X}

for every r ≥ 0.

The proof of Proposition 2 is similar to that of Proposition 1 and may be found
in Section S2 of the supplement. Observe that the first term in each upper bound
(14)–(15) is the exact same as in Proposition 1. The second term in each of the
bounds is new; this term is small, if ‖β̃ −β‖ is typically small. In other words, in a
random-effects model where (6) does not hold, the Gaussian maximum likelihood
estimator θ̃ may be a reliable estimator for the variance components parameter
θ0 = (σ 2

0 , η2
0) from a corresponding random-effects model (5)–(6), if β̃ ≈ β .

Proposition 2 is useful for applications involving misspecified random-effects
models. In the next section, we show how it can be used to recover some of Jiang
et al. (2016) consistency results for sparse random-effects models in genome wide
association studies. An application of Proposition 2 involving fixed-effects mod-
els can be found in Dicker and Erdogdu (2016a). Despite its evident usefulness in
these applications, there are some relatively subtle issues related to the interpreta-
tion of Proposition 2. Indeed, assume that a model (12) is specified for some par-
ticular application, with potentially correlated or heteroscedastic random-effects.
In such a setting, it may be natural to assume that the estimator θ̃ targets the resid-
ual variance and signal-to-noise ratio parameters from the model (12). However,
Proposition 2 bounds the distance between θ̃ and the corresponding parameters
θ0 = (σ 2

0 , η2
0) from the independent random-effects model (5)–(6). It is not clear

a priori that θ0 should be interpreted in the same way as the parameters from the
original model (12); thus, one should take care when interpreting θ̃ in practice.
On the other hand, if ‖β̃ − β‖ ≈ 0 and the second term in the upper bounds in
Proposition 2 is small, then it often follows that E(‖β̃‖2) ≈ E(‖β‖2) = σ 2

0 η2
0. This
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gives a natural interpretation of θ0 in the context of the original model (12), that
is, η2

0 ≈ E(‖β̃‖2)/σ 2
0 and σ 2

0 = Var(εi).

4.4. Example: Sparse random-effects models for GWAS data. Linear random-
effects models like (5)–(6) (and, more generally, linear mixed models) have been
used for applications in genetics since at least the 1950s [Henderson (1950)].
More recently, variants of (5)–(6) have become an important tool for analyzing
data from genome wide association studies (GWAS) [Yang et al. (2010, 2014);
Golan and Rosset (2011); Speed et al. (2012); Zaitlen and Kraft (2012); Jiang
et al. (2016); de Los Campos, Sorensen and Gianola (2015)]. In GWAS datasets,
the outcome yi ∈ R often represents a measured quantitative trait from an individ-
ual (e.g., their height) and the corresponding predictors xij ∈ {0,1,2}, 1 ≤ j ≤ p,
indicate the genotype (minor allele frequency) for each single nucleotide polymor-
phism (SNP) assayed in the study. In large GWAS datasets, one may have n in
the 10,000s–100,000s and p in the 100,000s–1,000,000s. An important objective
in many GWAS analyses involving random-effects models is estimating the heri-
tability parameter, which represents the overall proportion of variability in yi that
is explained by the genotype xi = (xi1, . . . , xip)�. Heritability can be naturally
formulated in terms of variance components parameters, as in (16) below.

Jiang et al. (2016) studied a sparse random-effects (SRE) model with random
predictors for applications involving GWAS data; sparse models are popular in
GWAS because it is often assumed that many of the SNPs have no effect on the
outcome. While Jiang et al.’s model is highly idealized, their work appears to be
one of the first in-depth theoretical analyses of mixed-models with a specific em-
phasis on GWAS. The SRE model studied in Jiang et al. (2016) satisfies (5) and:

(SRE1) For 1 ≤ i ≤ n, 1 ≤ j ≤ p, the predictors xij are i.i.d. random variables
that have been standardized to have mean 0 and variance 1.

(SRE2) ε1, . . . , εn ∼ N(0, σ 2
0 ) are i.i.d.

(SRE3) There is a fixed, unknown subset C ⊆ {1, . . . , p} with p0 elements such
that

βj ∼ N
(
0, η2

gσ
2
0 /p

)
if j ∈ C,

βj = 0 if j ∈ {1, . . . , p} \ C,

where η2
g > 0 and the nonzero βj are all independent.

(SRE4) X, ε and β are all independent of each other.

Under this model, the heritability parameter is

(16) h2
0 = Var(x�

i β)

Var(yi)
= (p0/p)η2

g

(p0/p)η2
g + 1

.

In the remainder of this section, we focus on the estimators θ̂ = (σ̂ 2, η̂2) [defined
in (7)] and ĥ2 = η̂2/(η̂2 + 1) under the SRE model.
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Jiang et al. (2016) used asymptotic arguments to show that under the SRE
model, if p/n → ρ ∈ [1,∞) and p0/p → ρ0 ∈ (0,1], then ĥ2 = η̂2/(η̂2 +1) → h2

0

in probability (they also derive asymptotic normality results for ĥ2 under the SRE
model). Here, we provide an alternative analysis and show that ĥ2 is consistent
using Proposition 2. It is important to note that Jiang et al.’s (2016) results av-
erage over the distribution of X, in addition to the distributions of β and ε; in
other words, they are not conditional on X and they take advantage of assumption
(SRE1). In our analysis, we leverage (SRE1) as well, using an exchangeability ar-
gument before applying Proposition 2. We believe this argument provides some
new insight into the relationship between the random-effects βj and the predictors
xij ; this is discussed further after Proposition 3 below.

Before proceeding, observe that Proposition 1 cannot be applied to θ̂ under the
SRE model because Var(βj ) = 0 �= η2

gσ
2
0 /p = Var(βj ′) for j /∈ C, j ′ ∈ C, and C

is unknown. Moreover, Proposition 2 cannot be applied directly (with β in place
of β̃), because the coordinates of β in the SRE model are not exchangeable and
it is not possible to find a good coupling, as required in the proposition. However,
we can induce exchangeability in β by using the exchangeability of xij ; then we
can apply Proposition 2.

To begin, assume that the SRE model holds and let � be an independent
uniformly distributed p × p permutation matrix. Next, define β̃ = �β , and let
ỹ be given in (12). The key observation is that (SRE1) implies that the MLEs
θ̂ = θ̂(y,X) and θ̃ = θ̃(ỹ,X), defined in (7) and (13), respectively, have the same
distribution. Indeed, for any Borel set B ⊆ R

2,

P
{
θ̂(y,X) ∈ B

}= P
{
θ̂
(
X��β̃ + ε,X

) ∈ B
}

= P
{
θ̂
(
X��β̃ + ε,X��) ∈ B

}
(17)

= P
{
θ̂(Xβ̃ + ε,X) ∈ B

}= P
{
θ̃(ỹ,X) ∈ B

}
,

where the second equality holds because

(18) θ̂(y,X) = θ̂(y,XU)

for any p × p orthogonal matrix U and the third equality follows from (SRE1)
(in particular, the fact that the xij are exchangeable). Thus, in order to study dis-
tributional properties of θ̂ under the SRE model (unconditional on X), it suf-
fices to study θ̃ . Moreover, θ̃ and the model (12) are relatively nice because the
coordinates of β̃ are exchangeable, unlike the coordinates of β . In particular,
β̃ = (β̃1, . . . , β̃p)� ∈ R

p is formed by selecting p0 coordinates from {1, . . . , p}
uniformly at random and setting them to be N(0, η2

gσ
2
0 /p) random variables, then

setting the remaining coordinates equal to 0.
In order to apply Proposition 2 with β̃ , we need to construct a coupling; that is,

we need to find a vector β∗ = (β∗
1 , . . . , β∗

p)� ∈ R
p whose coordinates have mean 0,

constant variance, and are independent, such that ‖β̃ − β∗‖ is small (β∗ will be
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used in place of β in Proposition 2). Begin by taking z1, . . . , zp ∼ N(0,1) to be
independent and let I1, . . . , Ip be independent Bernoulli random variables with
P(Ij = 1) = p0/p. Now let S = {j ; Ij = 1}. If pS = |S| > p0, define S̃ by se-
lecting p0 elements uniformly at random from S ; if pS = p0, define S̃ = S ; and
if pS < p0, define S̃ by selecting p0 − pS elements uniformly at random from
{1, . . . , p} \S and adding them to S . Then, in any event, S̃ is uniformly distributed
on subsets of {1, . . . , p} with size p0. Consequently, we may assume without loss
of generality that

β̃j = ηgσ0√
p

zj if j ∈ S̃,

β̃j = 0 if j ∈ {1, . . . , p} \ S̃.

Next, define β∗ = (β∗
1 , . . . , β∗

p)� = (ηgσ0/
√

p)(z1I1, . . . , zpIp)�, so that

β∗
j = ηgσ0√

p
zj if j ∈ S,

β∗
j = 0 if j ∈ {1, . . . , p} \ S.

Clearly, the coordinates of β∗ are independent, E(β∗
j ) = 0, and Var(β∗

j ) =
η2

gσ
2
0 p0/p

2. Thus, we can now apply Proposition 2, with β∗ in place of β , to

obtain bounds on ‖θ̂ − θ∗‖, where θ∗ = (σ 2
0 , η2

gp0/p).
The last step, in order to determine the effectiveness of the bounds given by

Proposition 2, is to bound the difference ‖β̃ − β∗‖; this will allow us to con-
trol the second term in the upper bounds from Proposition 2. The difference
‖β̃ − β∗‖ can be bounded precisely by combining the fact that β̃j �= β∗

j if and

only if j ∈ (S \ S̃) ∪ (S̃ \ S) with some elementary tail bounds. Piecing every-
thing together leads to finite-sample bounds on P{‖θ̂ −θ∗‖ > r} and, consequently,
P{|σ̂ 2 − σ 2

0 | > r}, P{|η̂2 − (p0/p)η2
g| > r}, and P{|ĥ2 − h2

0| > r}. However, rather
than going through these details here, we emphasize the asymptotic implications,
which are given in the following proposition. [The only additional work required
to convert the finite sample bounds outlined above into an asymptotic result is to
get probabilistic bounds the spectrum of p−1XX�; this may be achieved using
standard results from random matrix theory, for example, Chapter 3 of Bai and
Silverstein (2010).]

PROPOSITION 3. Assume that (5) and (SRE1)–(SRE4) hold, along with the
following conditions:

(i) p0/p → ρ0 ∈ (0,1] and p/n → ρ ∈ (0,∞) \ {1}.
(ii) There exists a compact set D ⊆ (0,∞) such that σ 2

0 , η2
g ∈ D.

(iii) There is a common probability distribution F , with mean zero and finite
fourth moment, such that xij ∼ F for all 1 ≤ i ≤ n,1 ≤ j ≤ p.

Then |σ̂ 2 − σ 2
0 | → 0, |η̂2 − (p0/p)η2

g| → 0, and |ĥ2 − h2
0| → 0 in probability.
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Proposition 3 is very similar to Theorem 3.1 from Jiang et al. (2016). However,
beyond recapitulating an existing result, we believe that the approach outlined in
this section provides additional insight into random-effects models—especially,
into the role of the predictors X and how they interface with the random-effects β .

Proposition 1, for the random-effects model (5)–(6), requires relatively weak
conditions on the matrix of predictors X. In particular, if p/n → ρ ∈ (0,∞) \ {1},
then the upper bounds in Proposition 1 typically vanish when v(�),λ1, λn � 1.
These conditions allow for relatively strong (though not arbitrary) correlation be-
tween the predictors xij . On the other hand, GWAS researchers have noted that
correlation between the predictors can lead to bias in estimates of the heritability
h2

0 [Speed et al. (2012); de Los Campos, Sorensen and Gianola (2015)]. In many
models, this bias arises from the combined effects of correlation between the pre-
dictors xij and a sparse random-effects model with nonexchangeable βj , that is,
a SRE model without the assumption (SRE1). Conversely, our results suggest that
ĥ2 may be a reliable estimator for the heritability parameter, as long as at least one
of X or β has exchangeable entries. Indeed, this follows by combining Proposi-
tions 1–2 with the exchangeability argument outlined above in (17)–(18).

Exchangeability is a strong condition for X or β , in order to ensure consistency
of ĥ2. Our approach in this paper provides some guidance for rigorously investigat-
ing the necessity of this condition and how to relax it. The two key facts underlying
Proposition 3 for the SRE model are the distributional identity

(19) X
D= X��

and the invariance property for θ̂ given in (18). It might be of interest to investigate
the extent to which the identity (19) could be relaxed to an approximation, without
significantly impacting the performance of ĥ2. Additionally, for an SRE model sat-
isfying (5) and (SRE2)–(SRE4) (without the condition that xij are i.i.d.), it might
be possible to reformulate some of the bounds in this paper in terms of the empir-
ical variance of the eigenvalues of submatrices of n−1X�X, rather than v(�) (the
empirical variance of the eigenvalues of p−1XX�). This approach might lead to
more effective bounds for SRE models, conditional on the predictors X.

More broadly, the theoretical approach outlined in this paper may suggest other
relevant models and effective methods for analyzing GWAS data. For instance, as-
suming that E(xij ) = 0 and Var(xij ) = 1, one might investigate the class of models
(12) for which there is a coupling satisfying (5)–(6) and∣∣Var

(
x�
i β̃

)− Var
(
x�
i β

)∣∣= ∣∣E{(β − β̃)�
(
xix�

i

)
(β + β̃)

}∣∣≈ 0.

Proposition 2 indicates that within this class of models, ĥ2 = η̂2/(η̂2 + 1) may be
a reasonable estimate of the heritability parameter

h2
0 = Var(x�

i β̃)

Var(ỹi)
= Var(x�

i β̃)

Var(x�
i β̃) + Var(εi)

≈ Var(x�
i β)

Var(x�
i β) + Var(εi)

= η2
0

η2
0 + 1

.
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Thus, it becomes a substantive question of whether or not this class of models can
accurately describe interesting aspects of GWAS.

It is worth re-emphasizing that the analysis in this section is primarily uncon-
ditional, averaging over the distribution of X and β . The unconditional approach
is convenient mathematically, because we can leverage distributional assumptions
on X and β , such as exchangeability. On the other hand, a conditional analysis
(more similar to what is found elsewhere in Section 4) often seems more natural in
applications like GWAS. Indeed, the predictors X are observed, so it makes sense
to condition on them; additionally, each parameter value βj corresponds to the
effect of a presumably well-defined predictor (e.g., SNP), so even averaging over
the βj may seem arguable. If one takes the conditional perspective, then it is less
clear how to interpret exchangeability assumptions on X, β and, more generally,
the results in this section. One approach to resolving these issues, which could be a
topic for future research, involves converting the unconditional results in this sec-
tion into conditional results, by replacing assumptions on the distribution of (X,β)

(e.g., exchangeability) with corresponding assumptions on their actual value.

4.5. Normal approximation. In this section, we shift our attention back to the
independent random-effects model (5)–(6) and give a normal approximation result
for θ̂ (Proposition 4 below). One consequence of Proposition 4 is that under condi-
tions similar to those described after Proposition 1, n1/2(θ̂ − θ0) is asymptotically
normal, when p/n → ρ ∈ [0,∞). As with consistency (discussed in Section 4.2),
asymptotic normality of θ̂ has been studied previously in similar settings [Jiang
(1996)]. However, the main significance of Theorem 4 is its flexible finite-sample
nature, which makes it an easy-to-use tool for applications.

To derive Theorem 4, we again follow the standard strategy for parametric
M-estimators. First, we introduce the score function:

S(θ) = ∂

∂θ
�(θ) =

⎡
⎢⎢⎢⎣

1

2σ 4n
y�
(

η2

p
XX� + I

)−1
y

1

2σ 2n
y�
(

1

p
XX�

)(
η2

p
XX� + I

)−2
y

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎣

1

2σ 2

1

2n
tr
{(

1

p
XX�

)(
η2

p
XX� + I

)−1}
⎤
⎥⎥⎦ .

Then S(θ̂) = 0, provided η̂2 > 0. The main idea of the proof is to Taylor expand
the score function about θ0 so that

(20) 0 = S(θ̂) = S(θ0) + J (θ0)(θ̂ − θ0) + r,

where J (θ) = ∂
∂θ S(θ) and r is a remainder term. Theorem 4 follows by solving for

θ̂ − θ0 above, then using three key intermediate results: (i) S(θ0) is approximately
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normal, (ii) J (θ0) ≈ J0(θ0), where

(21) J0(θ) = E
{
J (θ)

}= E

{
∂

∂θ
S(θ)

}
,

and (iii) the remainder term r is small. Approximate normality of S(θ0) follows
from Theorem 2 in this paper. The approximation J (θ0) ≈ J0(θ0) and the fact that
r is small follow from concentration properties of quadratic forms.

PROPOSITION 4. Assume that the linear random-effects model (5)–(6) holds
and that β1, . . . , βp , ε1, . . . , εn are independent random variables satisfying (8).
Define

(22) ν
(
σ 2

0 , η2
0,�

)= (σ 2
0 + 1)9(η2

0 + 1)16(λ1 + 1)24

σ 6
0 η2

0

· {v(�) + 1}3

v(�)3 ,

let f ∈ C3
b(R2), and let z2 ∼ N(0, I ) be a two-dimensional standard normal ran-

dom vector. Finally, let J0(θ0) be as in (21), define I(θ0) = Var{S(θ0)|X}, and
define

(23) � = J0(θ0)
−1I(θ0)J0(θ0)

−1.

There is an absolute constant 0 < C < ∞ such that∣∣E[f {√n(θ̂ − θ0)
}|X]−E

{
f
(
�1/2z2

)|X}∣∣
≤ C(γ + 1)8ν

(
σ 2

0 , η2
0�
){ 3∏

k=1

(
1 + |f |k)

}
· p + n

n
· log(n)2

n1/2(24)

+ 2|f |0P
{
‖θ̂ − θ0‖ >

σ 2
0 log(n)

2
√

n

∣∣∣X}.
A detailed proof of Proposition 4 may be found in Section S3 of the supple-

ment. The quantity ν(σ 2
0 , η2

0,�) in (24) is potentially extremely large, and plays
a role similar to κ(σ 2

0 , η2
0,�) in Propositions 1–2. As with the previous proposi-

tions, despite the potential magnitude of ν(σ 2
0 , η2

0,�), the asymptotic implications
of Proposition 4 are very reasonable. Indeed, assume that the conditions of the
proposition hold. If, additionally, σ 2

0 , η2
0, λ1, . . . , λn,v(�) are contained in a com-

pact subset of (0,∞) and p/n → ρ ∈ [0,∞), then it is clear that the first term on
the right-hand side of (24) converges to 0. Moreover, Theorem 1 implies that the
second term on the right-hand side of (24) converges to 0, as long as we have the
additional condition (11) when n0 < n. Thus, under the specified conditions,

(25)
∣∣E[f {√n(θ̂ − θ0)

}|X]−E
{
f
(
�1/2z

)|X}∣∣→ 0

for all f ∈ C3
b(R2). This is an asymptotic normality result for

√
n(θ̂ − θ0).

One apparent limitation of (25) is that it only applies for f ∈ C3
b(R2). How-

ever, standard arguments [e.g., Section 3 of Reinert and Röllin (2009)] imply
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that (25) is valid for broader classes of nonsmooth functions f , including indi-
cator functions for measurable convex subsets of R2; thus, we may conclude that√

n�−1/2(θ̂ − θ0) � N(0, I ) in distribution, where � is defined in (23). We note
additionally that if β and ε are Gaussian, then � = I(θ0)

−1 = IN(θ0)
−1, where

IN(θ0) = (ιij (θ0))i,j=1,2 is the Gaussian Fisher information matrix for θ0 and

ιkl(θ0) = 1

2σ
2(4−k−l)
0 n

tr
{(

1

p
XX�

)k+l−2(η2
0

p
XX� + I

)2−k−l}
,

k, l = 1,2. Moreover, standard likelihood theory [e.g., Chapter 6 of Lehmann and
Casella (1998)] implies that θ̂ is asymptotically efficient in the Gaussian random-
effects model.

5. Discussion. We have presented new uniform concentration and normal
approximation bounds for quadratic forms, and described some applications to
variance components estimation in linear random-effects models. We expect that
the general results for quadratic forms, found in Section 3, will be useful in a
range of other applications, such as variance components estimation in nonstan-
dard random- and fixed-effects linear models, which arise in genomics and other
applications [Jiang et al. (2016); Dicker and Erdogdu (2016a)]; hypothesis testing
for variance components parameters in high-dimensional models; and other hy-
pothesis testing problems, where the test statistics involve quadratic forms in many
random variables. As discussed in Sections 3.2 and 4, many of the bounds in the
paper can be improved, at the expense of introducing some additional complexity
into the results. Furthermore, all of our results require sub-Gaussian random vari-
ables. It may be of interest to sharpen the results in the paper and extend them to
allow for heavier-tailed random variables with sufficiently many moments.

APPENDIX A: PROOF OF THEOREM 1

The proof begins with a chaining construction. Fix a positive integer M and
define a regular grid on [0,R]K with (2M + 1)K points, UK

M = UM × · · · × UM ,

where UM = {i2−MR}2M

i=0 ⊆ [0,R] ⊆ R. For each u = (u1, . . . , uK)� ∈ [0,R]K
and j = 1, . . . ,M define u̇j = (u̇1j , . . . , u̇Kj )

� where u̇ij is the smallest point in
UM that is at least as large as ui ; additionally, define u̇0 = 0.

Next, consider the decomposition ζ�Q(u)ζ − E{ζ�Q(u)ζ } = �1(u) +
�2(u) + �3(u), where

�1(u) = ζ�{Q(u) − Q(u̇M)
}
ζ −E

[
ζ�{Q(u) − Q(u̇M)

}
ζ
]
,

�2(u) = ζ�Q(u̇0)ζ −E
{
ζ�Q(u̇0)ζ

}
,

�3(u) =
M∑

j=1

ζ�{Q(u̇j ) − Q(u̇j−1)
}
ζ −

M∑
j=1

E
[
ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ
]
.
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Let r1, r2, r3 > 0 satisfy r1 + r2 + r3 = r . Then

P

[
sup

u∈[0,R]K
∣∣ζ�Q(u)ζ −E

{
ζ�Q(u)ζ

}∣∣> r
]

(26)

≤
3∑

i=1

P

{
sup

u∈[0,R]K
∣∣�i(u)

∣∣> rl

}
.

To prove the theorem, we bound each term on the right-hand side of (26).
To bound the term in (26) involving �1(u), observe that∣∣�1(u)

∣∣≤ ‖ζ‖2∥∥Q(u) − Q(u̇M)
∥∥+ ∣∣tr[E(ζζ�){Q(u) − Q(u̇M)

}]∣∣
≤ L‖u − u̇M‖∥∥V �V

∥∥{‖ζ‖2 +
d∑

i=1

E
(
ζ 2
i

)}

≤ K1/2LR2−M
∥∥V �V

∥∥(‖ζ‖2 + 4dγ 2),
where the second inequality follows from Von Neumann’s trace inequality and the
last inequality follows from (2). It follows that

P

{
sup

u∈[0,R]K
∣∣�1(u)

∣∣> r1

}
≤ P

{
K1/2LR

2Mr1

∥∥V �V
∥∥(‖ζ‖2 + 4dγ 2)> 1

}

≤ K1/2LR

2Mr1

∥∥V �V
∥∥E(‖ζ‖2 + 4dγ 2)(27)

≤ 8K1/2LRdγ 2

2Mr1

∥∥V �V
∥∥.

To bound the term in (26) that depends on �2(u), we use the Hanson–Wright
inequality [Theorem 1.1 of Rudelson and Vershynin (2013)], which implies that
there is an absolute constant c > 0, such that

P

{
sup

u∈[0,R]K
∣∣�2(u)

∣∣> r2

}

= P
[∣∣ζ�Q(0)ζ −E

{
ζ�Q(0)ζ

}∣∣> r2
]

(28)

≤ 2 exp
[
−c min

{
r2

2

γ 4‖Q(0)‖2
HS

,
r2

γ 2‖Q(0)‖
}]

≤ 2 exp
[
−c min

{
r2

2

γ 4‖V �V ‖2‖T (0)‖2
HS

,
r2

γ 2‖V �V ‖‖T (0)‖
}]

(specifically, the first inequality above follows from the Hanson–Wright inequality;
the second inequality follows from basic bounds on matrix norms).
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Finally, we bound the term in involving �3(u) in (26). Let s1, . . . , sK ≥ 0 satisfy
s1 + · · · + sK = 1. Then

P

{
sup

u∈[0,R]K
∣∣�3(u)

∣∣> r3

}

≤
M∑

j=1

P

{
sup

u∈[0,R]K
∣∣ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ

−E
[
ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ
]∣∣> sj r3

}
.

By construction, for each j = 1, . . . ,M and i = 1, . . . ,K , there is a k = 1, . . . ,2J

such that u̇ij = k2−jR. Thus, for each j = 1, . . . ,M and i = 1, . . . ,K , there are
2jK possible pairs (u̇j , u̇j−1) and it follows that

P

{
sup

u∈[0,R]K
∣∣ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ −E

[
ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ
]∣∣> sj r3

}

≤ 2jK max
(u̇j ,u̇j−1)

P
{∣∣ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ

−E
[
ζ�{Q(u̇j ) − Q(u̇j−1)

}
ζ
]∣∣> skr3

}

≤ 2jK+1 max
(u̇j ,u̇j−1)

exp
[
−c min

{ s2
j r2

3

γ 4‖Q(u̇j ) − Q(u̇j−1)‖2
HS

,

sj r3

γ 2‖Q(u̇j ) − Q(u̇j−1)‖
}]

≤ 2jK+1 exp
[
−c min

{ 4j s2
j r2

3

γ 4‖V �V ‖2KL2R2m
,

2j sj r3

γ 2‖V �V ‖K1/2LR

}]
,

where we have used the Hanson–Wright inequality again in the third line above.
We conclude that

P

{
sup

u∈[0,R]K
∣∣�3(u)

∣∣> r3

}

≤
M∑

j=1

2jK+1 exp
[
−c min

{ 4j s2
j r2

3

γ 4‖V �V ‖2KL2R2m
,

2j sj r3

γ 2‖V �V ‖K1/2LR

}]
.

Now take sj = (1/3) · (3/4)j , for j = 1, . . . ,M − 1, and sM = 1 − (s1 + · · · +
sM−1) > (1/3) · (3/4)M . Then

P

{
sup

u∈[0,R]K
∣∣�3(u)

∣∣> r3

}

≤
M∑

j=1

2jK+1 exp
[
−c min

{
(9/4)j r2

3

9γ 4‖V �V ‖2KL2R2m
,

(3/2)j r3

3γ 2‖V �V ‖K1/2LR

}]
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≤
K∑

k=1

exp
[
(jK + 1) log(2)

− c min
{

(9/4)j r2
3

9γ 4‖V �V ‖2KL2R2m
,

(3/2)j r3

3γ 2‖V �V ‖K1/2LR

}]
.

If

(29)
r2

3

γ 4‖V �V ‖2KL2R2m
≥ 225K2

min{c, c2} ,

then

(jK + 1) log(2) − c min
{

(9/4)j r2
3

9γ 4‖V �V ‖2KL2R2m
,

(3/2)j r3

3γ 2‖V �V ‖K1/2LR

}

≤ −j log(2) − c min
{

r2
3

9γ 4‖V �V ‖2KL2R2m
,

r3

3γ 2‖V �V ‖K1/2LR

}
.

Hence, if (29) holds,

P

{
sup

u∈[0,R]K
∣∣�3(u)

∣∣> r3

}
(30)

≤ exp
[
−c min

{
r2

3

9γ 4‖V �V ‖2KL2R2m
,

r3

3γ 2‖V �V ‖K1/2LR

}]
.

To complete the proof, we combine (26)–(28) and (30), and let K → ∞, to
obtain

P

[
sup

u∈[0,R]K
∣∣ζ�Q(u)ζ −E

{
ζ�Q(u)ζ

}∣∣> r
]

≤ 2 exp
[
−c min

{
r2

2

γ 4‖V �V ‖2‖T (0)‖2
HS

,
r2

γ 2‖V �V ‖‖T (0)‖
}]

+ exp
[
−c min

{
r2

3

9γ 4‖V �V ‖2KL2R2m
,

r3

3γ 2‖V �V ‖K1/2LR

}]
,

whenever (29) holds. The theorem follows by taking, say, r1 = r2 = r3 = r/3.

APPENDIX B: PROOF OF THEOREM 2

We follow the proof of Theorem 2.1 in Reinert and Röllin (2009), and use
Stein’s method with exchangeable pairs. Let f :R2K →R be a three-times differ-
entiable function. By Lemma 2.6 in Reinert and Röllin (2009), there is a 3-times
differentiable function g : R2K →R satisfying the Stein identity

(31) E
{
f (w)

}−E
{
f
(
V 1/2w

)}= E
{∇�V ∇g(w) − w�∇g(w)

}
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and | ∂kg(x)∏k
j=1 ∂xij

| ≤ 1
k
| ∂kf (x)∏k

j=1 ∂xij

| for all x = (x1, . . . , x2K)� ∈ R
2K , k = 1,2,3, and

ij ∈ {1, . . . ,2K}. To prove the theorem, we bound

(32) S = E
{∇�V ∇g(w) − w�∇g(w)

}
.

Next, we use exchangeability. Let ζ ′ = (ζ ′
1, . . . , ζ

′
d)� be an independent copy

of ζ , and let i ∈ {1, . . . , d} be an independent and uniformly distributed random
index. Define the vector w′ ∈ R

2K exactly as we defined w, except that ζi is re-
placed with ζ ′

i throughout. More precisely, let ei ∈ R
d be the ith standard basis

vector in R
d and define

w′
k = {

ζ + (
ζ ′
i − ζi

)
ei

}�
Qk

{
ζ + (

ζ ′
i − ζi

)
ei

}
(33)

= wk + 2
(
ζ ′
i − ζi

)
e�
i Qkζ + e�

i Qkei

(
ζ ′
i − ζi

)2
,

qw′
k = {

ζ + (
ζ ′
i − ζi

)
ei

}�
qQk

{
ζ + (

ζ ′
i − ζi

)
ei

}− tr(Qk)
(34)

= qwk + e�
i Qkei

{(
ζ ′
i

)2 − ζ 2
i

}
,

for k = 1, . . . ,K . Then w′ = (w′
1, qw′

1, . . . ,w
′
K, qw′

K)� ∈ R
2K .

Let us compute E(w′
k − wk|ζ ) and E( qw′

k − qwk|ζ ). By (33)–(34),

E
(
w′

k − wk|ζ )= E

{
2
(
ζ ′
i − ζi

) d∑
j=1

q
(k)
ij ζj + q

(k)
ii

(
ζ ′
i − ζi

)2∣∣∣∣ζ
}

= − 2

d

d∑
i,j=1

q
(k)
ij ζiζj + 1

d

N∑
i=1

q
(k)
ii ζ 2

i + 1

N
tr(Qk)

= − 2

d
wk + 1

d
qwk

and E( qw′
k − qwk|ζ ) = E[q(k)

ii {(ζ ′
i )

2 − ζ 2
i }|ζ ] = − 1

d
qwk . The identity (4), which was

stated in the main text, follows.
Next, we will work our way back to the Stein identity (32) and take advantage

of (4). Define G(x′,x) = 1
2(x′ − x)��−�

K {∇g(x′) + ∇g(x)}, for x,x′ ∈ R
2K . By

exchangeability, E{G(w′,w)} = 0. Thus,

0 = 1

2
E
[(

w′ − w
)�

�−�
K

{∇g
(
w′)+ ∇g(w)

}]
= E

{(
w′ − w

)�
�−�

K ∇g(w)
}

(35)

+ 1

2
E
[(

w′ − w
)�

�−�
K

{∇g
(
w′)− ∇g(w)

}]

= −E
{
w�∇g(w)

}+ 1

2
E
[(

w′ − w
)�

�−�
K

{∇g
(
w′)− ∇g(w)

}]
,
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where we used (4) in the last step. Now we Taylor expand and use some other
basic manipulations to get a direct connection between (32) and (35). Indeed, by
Taylor’s theorem,(

w′ − w
)�

�−�
K

{∇g
(
w′)− ∇g(w)

}
= (

w′ − w
)�

�−�
K ∇2g(w)

(
w′ − w

)+ (
w′ − w

)�
�−�

K r(2)

= tr
[(

w′ − w
)(

w′ − w
)�

�−�
K ∇2g(w)

]+ (
w′ − w

)�
�−�

K r(2),

where r(2) = (r
(2)
1 , . . . , r

(2)
2K)�, r

(2)
k = (w′ − w)�R

(2)
k (w′ − w), and each R

(2)
k =

(R
(2)
ijk) is a 2K × 2K matrix with |R(2)

ijk| ≤ (1/2)|f |3. Thus, by (35),

E
{
w�∇g(w)

}= 1

2
E tr

[(
w′ − w

)(
w′ − w

)�
�−�

K ∇2g(w)
]

(36)

+ 1

2
E
{(

w′ − w
)�

�−�
K r(2)}.

Since

E
{(

w′ − w
)(

w′ − w
)�}= 2E

{
w
(
w − w′)�}

(37)
= 2E

(
ww���

K

)= 2V ��
K,

it follows that

E
{∇�V ∇g(w)

}= 1

2
E
[∇�

E
{(

w′ − w
)(

w′ − w
)�}

�−�
K ∇g(w)

]
(38)

= 1

2
E tr

[
E
{(

w′ − w
)(

w′ − w
)�}

�−�
K ∇2g(w)

]
.

Combining (32) with (36) and (38) yields

S = E
{∇�V ∇g(w) − w�∇g(w)

}
= 1

2
E tr

[
E
{(

w′ − w
)(

w′ − w
)�}

�−�
K ∇2g(w)

]

− 1

2
E tr

{(
w′ − w

)(
w′ − w

)�
�−�

K ∇2g(w)
}

(39)

− 1

2
E
{(

w′ − w
)�

�−�
K r(2)}

= 1

2
S1 + 1

2
S2,

where S1 = −(1/2)E tr{T �−�
K ∇2g(w)}, S2 = −(1/2)E{(w′ − w)��−�

K r(2)}, and
T = E{(w′ − w)(w′ − w)�|ζ } − E{(w′ − w)(w′ − w)�}. Thus, in order to bound
S it suffices to bound S1, S2.
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First, we work with S1. Notice that

∣∣E tr
{
T �−�

K ∇2g(w)
}∣∣≤ |f |2

2

∥∥�−�
K

∥∥
HSE

(‖T ‖HS
)

= |f |2K1/2

2
tr
{(

��
1 �1

)−1}1/2
E
(‖T ‖HS

)

≤ 3

5
K1/2d|f |2E(‖T ‖HS

)
,

where we have used the fact that tr{(��
1 �1)

−1 = (3/2)d2. Thus,

(40) |S1| ≤ 3

10
K1/2d|f |2E(‖T ‖HS

)
.

It requires a bit more work to bound E(‖T ‖HS) in (40).
The matrix T can be written as

T =

⎡
⎢⎢⎢⎣

T11 T12 · · · T1K

T21 T22 · · · T2K

...
...

. . .
...

TK1 TK2 · · · TKK

⎤
⎥⎥⎥⎦ where Tkl =

[
tkl
11 tkl

12

tkl
21 tkl

22

]
,

and

tkl
11 = E

{(
w′

k − wk

)(
w′

l − wl

)|ζ }−E
{(

w′
k − wk

)(
w′

l − wl

)}
,(41)

tkl
12 = E

{(
w′

k − wk

)(
qw′

l − qwl

)|ζ }−E
{(

w′
k − wk

)(
qw′

l − qwl

)}
,(42)

tkl
21 = E

{(
qw′

k − qwk

)(
w′

l − wl

)|ζ }−E
{(

qw′
k − qwk

)(
w′

l − wl

)}
,(43)

tkl
22 = E

{(
qw′

k − qwk

)(
qw′

l − qwl

)|ζ }−E
{(

qw′
k − qwk

)(
qw′

l − qwl

)}
.(44)

We conclude that E(‖T ‖F ) ≤ [∑K
k,l=1

∑2
i,j=1 E{(tkl

ij )2}]1/2 and, furthermore, if we

can control each of the terms E{(tkl
ij )2}, then a bound on E(‖T ‖F ) will follow. For-

tunately, Lemma S2 from the supplemental article gives bounds for on these mo-
ments. Indeed, let c(γ ) = 4096(γ + 1)8 and qmax = maxk=1,...,K ‖Q‖. It follows
from Lemma S2 that

E
(‖T ‖F

)≤ Kq2
max

d1/2

[
8
{
108c(γ )2 + 763c(γ ) + 930

}
+ 4

{
24c(γ )2 + 69c(γ ) + 1

}+ c(γ ) + 4
]1/2

≤ Kq2
max

d1/2

{
65c(γ ) + 104

}
.

Combining this bound on E(‖T ‖F ) with (40) yields

(45) |S1| ≤ 4
{
5c(γ ) + 8

}
K3/2d1/2|f |2q2

max.
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Next, we bound S2. First, consider the basic inequalities

|S2| ≤ 1

2

∥∥�−�
K

∥∥E(∥∥w′ − w
∥∥∥∥r(2)

∥∥)

≤ d

4

∥∥∥∥
[
1 0
1 2

]∥∥∥∥E
{∥∥w′ − w

∥∥3

( 2K∑
k=1

∥∥R(2)
k

∥∥2

)1/2}
(46)

≤ 5 · 21/2

8
K3/2d|f |3E(∥∥w′ − w

∥∥3)
.

Now focus on bounding E(‖w′ − w‖3). Each inequality in the following chain is
elementary:

E
(∥∥w′ − w

∥∥3)

= E

[{
K∑

k=1

(
w′

k − wk

)2 +
K∑

k=1

(
qw′

k − qwk

)2}3/2]

= E

[{
K∑

k=1

(
2
(
ζ ′
i − ζi

)
e�
i Qkζ + e�

i QkeI

(
ζ ′
i − ζi

)2)2

+
K∑

k=1

(
e�
i QkeI

)2{(
ζ ′
i

)2 − ζ 2
i

}2

}3/2]

≤ 23/2
E

[{
8

K∑
k=1

{(
ζ ′
i

)2 + ζ 2
i

}(
e�
I Qkζ

)2 + 9
K∑

k=1

‖Qk‖2{(ζ ′
i

)4 + ζ 4
i

}}3/2]

= 23/2

d

d∑
i=1

E

[{
8

K∑
k=1

{(
ζ ′
i

)2 + ζ 2
i

}(
e�
i Qkζ

)2

+ 9
K∑

k=1

‖Qk‖2{(ζ ′
i

)4 + ζ 4
i

}}3/2]

≤ 150K1/2

d

d∑
i=1

K∑
k=1

E
{(∣∣ζ ′

i

∣∣3 + |ζi |3)∣∣e�
i Qkζ

∣∣3}

+ 300K1/2

d

d∑
i=1

K∑
k=1

‖Qk‖3
E
(
ζ 6
i

)

≤ 300K1/2c(γ )1/2

d

d∑
i=1

K∑
k=1

√
E
{(

e�
i Qkζ

)6}+ 300K3/2c(γ )q3
max.
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It remains to bound E{(e�
i Qkζ )6}. This is accomplished by a version of Khint-

chine’s inequality, given in Corollary 5.12 of Vershynin (2012). It implies
that there is an absolute constant C1 > 0 such that E{(e�

i Qkζ )6} ≤ C2
1(γ +

1)6{∑d
j=1(q

(k)
ij )2}3. Thus,

E
(∥∥w′ − w

∥∥3)≤ 300CK1/2c(γ )1/2(γ + 1)3

d

K∑
k=1

d∑
i=1

{
d∑

j=1

(
q

(k)
ij

)2}3/2

+ 300K3/2c(γ )q3
max

≤ 300K3/2{C1c(γ )1/2(γ + 1)3 + c(γ )
}
q3

max.

Combining this with (46) yields

(47) |S2| ≤ 266K3q3
max

{
C1c(γ )1/2(γ + 1)3 + c(γ )

}|f |3d.

Finally, combining (31)–(32), (39), (45) and (47), we obtain∣∣E{f (w)
}−E

{
f
(
V 1/2z

)}∣∣≤ C(γ + 1)8(K3/2d1/2|f |2q2
max + K3d|f |3q3

max
)

for some absolute constant C > 0, which proves the theorem.

SUPPLEMENTARY MATERIAL

Supplement to “Flexible results for quadratic forms with applications to
variance components estimation” (DOI: 10.1214/16-AOS1456SUPP; .pdf). The
supplementary document Dicker and Erdogdu (2016b) contains proofs of Propo-
sitions 1–4, along with statements and proofs of additional auxiliary results.
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