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Common high-dimensional methods for prediction rely on having either
a sparse signal model, a model in which most parameters are zero and there
are a small number of nonzero parameters that are large in magnitude, or
a dense signal model, a model with no large parameters and very many small
nonzero parameters. We consider a generalization of these two basic models,
termed here a “sparse + dense” model, in which the signal is given by the sum
of a sparse signal and a dense signal. Such a structure poses problems for tra-
ditional sparse estimators, such as the lasso, and for traditional dense estima-
tion methods, such as ridge estimation. We propose a new penalization-based
method, called lava, which is computationally efficient. With suitable choices
of penalty parameters, the proposed method strictly dominates both lasso and
ridge. We derive analytic expressions for the finite-sample risk function of
the lava estimator in the Gaussian sequence model. We also provide a devia-
tion bound for the prediction risk in the Gaussian regression model with fixed
design. In both cases, we provide Stein’s unbiased estimator for lava’s predic-
tion risk. A simulation example compares the performance of lava to lasso,
ridge and elastic net in a regression example using data-dependent penalty pa-
rameters and illustrates lava’s improved performance relative to these bench-
marks.

1. Introduction. Many recently proposed high-dimensional modeling tech-
niques build upon the fundamental assumption of sparsity. Under sparsity, we can
approximate a high-dimensional signal or parameter by a sparse vector that has
a relatively small number of nonzero components. Various �1-based penalization
methods, such as the lasso and soft-thresholding, have been proposed for signal
recovery, prediction and parameter estimation within a sparse signal framwork.
See [5–7, 9, 15, 18, 19, 21, 22, 29, 30, 36, 39, 41–44] and others. By virtue of be-
ing based on �1-penalized optimization problems, these methods produce sparse
solutions in which many estimated model parameters are set exactly to zero.

Another commonly used shrinkage method is ridge estimation. Ridge estima-
tion differs from the aforementioned �1-penalized approaches in that it does not
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produce a sparse solution but instead provides a solution in which all model pa-
rameters are estimated to be nonzero. Ridge estimation is thus suitable when the
model’s parameters or unknown signals contain many very small components, that
is, when the model is dense. See, for example, [25]. Ridge estimation tends to work
better than sparse methods whenever a signal is dense in such a way that it cannot
be well approximated by a sparse signal.

In practice, we may face environments that have signals or parameters which
are neither dense nor sparse. The main results of this paper provide a model that is
appropriate for this environment and a corresponding estimation method with good
estimation and prediction properties. Specifically, we consider models where the
signal or parameter, θ , is given by the superposition of sparse and dense signals:

θ = β︸︷︷︸
dense part

+ δ︸︷︷︸
sparse part

.(1)

Here, δ is a sparse vector that has a relatively small number of large entries, and β

is a dense vector having possibly many small, nonzero entries. Traditional sparse
estimation methods, such as lasso, and traditional dense estimation methods, such
as ridge, are tailor-made to handle respectively sparse signals and dense signals.
However, the model for θ given above is “sparse + dense” and cannot be well
approximated by either a “dense only” or “sparse only” model. Thus, traditional
methods designed for either sparse or dense settings are not optimal within the
present context.

Motivated by this signal structure, we propose a new estimation method, called
“lava.” Let �(data, θ) be a general statistical loss function that depends on unknown
parameter θ , and let p be the dimension of θ . To estimate θ , we propose the “lava”
estimator given by

θ̂lava = β̂ + δ̂,(2)

where β̂ and δ̂ solve the following penalized optimization problem:2

(β̂, δ̂) = arg min
(β ′,δ′)′∈R2p

{
�(data, β + δ) + λ2‖β‖2

2 + λ1‖δ‖1
}
.(3)

In the formulation of the problem, λ2 and λ1 are tuning parameters correspond-
ing to the �2- and �1-penalties which are respectively applied to the dense part of
the parameter, β , and the sparse part of the parameter, δ. The resulting estimator is
then the sum of a dense and a sparse estimator. Note that the separate identification
of β and δ is not required in (1), and the lava estimator is designed to automati-
cally recover the combination β̂ + δ̂ that leads to the optimal prediction of β + δ.

2This combination of �1 and �2 penalties for regularization is similar to the robust loss function
of [26] for prediction errors, though the two uses are substantially different and are motivated from
a very different set of concerns. In addition, we have to choose penalty levels λ1 and λ2 to attain
optimal performance.
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FIG. 1. Exact risk and relative risk functions of lava, post-lava, ridge, lasso, elastic net and
maximum likelihood in the Gaussian sequence model with “sparse + dense” signal structure and
p = 100, using the oracle (risk minimizing) choices of penalty levels. See Section 2.5 for the descrip-
tion of the model. The size of “small coefficients,” q , is shown on the horizontal axis. The size of these
coefficients directly corresponds to the size of the “dense part” of the signal, with zero correspond-
ing to the exactly sparse case. Relative risk plots the ratio of the risk of each estimator to the lava
risk. Note that the relative risk plot is over a smaller set of sizes of small coefficients to accentuate
comparisons over the region where there are the most interesting differences between the estimators.

Moreover, under standard conditions for �1-optimization, the lava solution exists
and is unique. In naming the proposal “lava,” we emphasize that it is able, or at
least aims, to capture or wipe out both sparse and dense signals.

The lava estimator admits the lasso and ridge shrinkage methods as two extreme
cases by respectively setting either λ2 = ∞ or λ1 = ∞.3 In fact, it continuously
connects the two shrinkage functions in a way that guarantees it will never produce
a sparse solution when λ2 < ∞. Of course, sparsity is not a requirement for making
good predictions. By construction, lava’s prediction risk is less than or equal to
the prediction risk of the lasso and ridge methods with oracle choice of penalty
levels for ridge, lasso and lava; see Figure 1. Lava also tends to perform no worse
than, and often performs significantly better than, ridge or lasso with penalty levels
chosen by data-dependent rules; see Figures 4, 5 and 6.

Note that our proposal is rather different from the elastic net method, which also
uses a combination of �1 and �2 penalization. The elastic net penalty function is
θ �→ λ2‖θ‖2

2 + λ1‖θ‖1, and thus the elastic net also includes lasso and ridge as
extreme cases corresponding to λ2 = 0 and λ1 = 0, respectively. In sharp contrast
to the lava method, the elastic net does not split θ into a sparse and a dense part
and will produce a sparse solution as long as λ1 > 0. Consequently, the elastic net
method can be thought of as a sparsity-based method with additional shrinkage
by ridge. The elastic net processes data very differently from lava (see Figure 2
below), and consequently has very different prediction risk behavior (see Figure 1
below).

3With λ1 = ∞ or λ2 = ∞, we set λ1‖δ‖1 = 0 when δ = 0 or λ2‖β‖2
2 = 0 when β = 0 so the

problem is well defined.
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FIG. 2. Shrinkage functions. Here, we plot shrinkage functions implied by lava and various com-
monly used penalized estimators. These shrinkage functions correspond to the case where penalty
parameters are set as λ2 = λr = 1/2 and λ1 = λl = 1/2. In each figure, the light blue dashed line
provides the 45-degree line coinciding to no shrinkage.

We also consider the post-lava estimator which refits the sparse part of the
model:

θ̂post-lava = β̂ + δ̃,(4)

where δ̃ solves the following penalized optimization problem:

δ̃ = arg min
δ∈Rp

{
�(data, β̂ + δ) : δj = 0 if δ̂j = 0

}
.(5)

This estimator removes the shrinkage bias induced by using the �1 penalty in es-
timation of the sparse part of the signal. Removing this bias sometimes results in
further improvements of lava’s risk properties.

We provide several theoretical and computational results about lava in this pa-
per. First, we provide analytic expressions for the finite-sample risk function of
the lava estimator in the Gaussian sequence model and in a fixed design regres-
sion model with Gaussian errors. Within this context, we exhibit “sparse + dense”
examples where lava significantly outperforms both lasso and ridge. Stein’s unbi-
ased risk estimation plays a central role in our theoretical analysis, and we thus
derive Stein’s unbiased risk estimator (SURE) for lava. We also characterize lava’s
“Efron’s” degrees of freedom [17]. Second, we give deviation bounds for the pre-
diction risk of the lava estimator in regression models akin to those derived by [5]
for lasso. Third, we show that the lava estimator can be computed by an application
of lasso on suitably transformed data in the regression case, where the transforma-
tion is related to ridge regression. This formulation leads to a computationally effi-
cient, practical algorithm, which we employ in our simulation experiments. Fourth,
we illustrate lava’s performance relative to lasso, ridge and elastic net through sim-
ulation experiments using penalty levels chosen via either minimizing the SURE
or by k-fold cross-validation for all estimators. In our simulations, lava outper-
forms lasso and ridge in terms of prediction error over a wide range of regression
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models with coefficients that vary from having a rather sparse structure to having
a very dense structure. When the model is very sparse, lava performs as well as
lasso and outperforms ridge substantially. As the model becomes more dense in
the sense of having the size of the “many small coefficients” increase, lava outper-
forms lasso and performs just as well as ridge. This performance is consistent with
our theoretical results.

Our proposed approach complements other recent approaches to structured
sparsity problems such as those considered in fused sparsity estimation ([37] and
[13]) and structured matrix estimation problems ([10, 12, 20] and [28]). The lat-
ter line of research studies estimation of matrices that can be written as low rank
plus sparse matrices. Our new results are related to but are sharply different from
this latter line of work since our focus is on regression problems. Specifically,
our chief objects of interest are regression coefficients along with the associated
regression function and predictions of the outcome variable. Thus, the target sta-
tistical applications of our developed methods include prediction, classification,
curve-fitting and supervised learning. Another noteworthy point is that it is im-
possible to recover the “dense” and “sparse” components separately within our
framework; instead, we recover the sum of the two components. By contrast, it
is possible to recover the low-rank component of the matrix separately from the
sparse part in some of the structured matrix estimation problems. This distinction
serves to highlight the difference between structured matrix estimation problems
and the framework discussed in this paper. Due to these differences, the mathemat-
ical development of our analysis needs to address a different set of issues than are
addressed in the aforementioned structured matrix estimation problems.

Our work also complements papers that provide high-level general results for
penalized estimators such as [8, 11, 32, 40] and [1]. Of these, the most directly
related to our work are [40] and [27], which formulate the general problem of es-
timation in settings where the signal may be split into a superposition of different
types θ = ∑L

�=1 θ� through the use of penalization of different types for each of
the components of the superposition of the form

∑L
�=1 penalty�(θ�). Within the

general framework, [40] and [27] proceed to focus their study on several leading
cases in sparse estimation, emphasizing the interplay between group-wise spar-
sity and element-wise sparsity and considering problems in multi-task learning.
By contrast, we propose and focus on another leading case, which emphasizes
the interplay between sparsity and density in the context of regression learning.
Our estimators and models are never sparse, and our results on finite-sample risk,
SURE, degrees of freedom, sharp deviation bounds and computation heavily rely
on the particular structure brought by the use of �1 and �2 norms as penalty func-
tions. In particular, we make use of the fine risk characterizations and tight bounds
obtained for �1-penalized and �2 penalized estimators by previous of research on
lasso and ridge, for example, [4, 25], in order to derive the above results. The an-
alytic approach we take in our case may be of independent interest and could be
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useful for other problems with superposition of signals of different types. Overall,
the focus of this paper and its results are complementary to the focus and results
in the aforementioned research.

Organization. In Section 2, we define the lava shrinkage estimator in a canon-
ical Gaussian sequence model and derive its theoretical risk function. In Section 3,
we define and analyze the lava estimator in the regression model. In Section 4, we
provide simulation experiments. In Section 5, we collect final remarks, and in the
Appendix, we collect proofs.

Notation. The notation an � bn means that an ≤ Cbn for all n, for some con-
stant C that does not depend on n. The �2 and �1 norms are denoted by ‖ · ‖2 (or
simply ‖ · ‖) and ‖ · ‖1, respectively. The �0-“norm,” ‖ · ‖0, denotes the number of
nonzero components of a vector, and the ‖ · ‖∞ norm denotes a vector’s maximum
absolute element. When applied to a matrix, ‖ · ‖ denotes the operator norm. We
use the notation a ∨ b = max(a, b) and a ∧ b = min(a, b). We use x′ to denote the
transpose of a column vector x.

2. The lava estimator in a canonical model.

2.1. The one dimensional case. Consider the simple problem where a scalar
random variable is given by

Z = θ + ε, ε ∼ N
(
0, σ 2).

We observe a realization z of Z and wish to estimate θ . Estimation will often in-
volve the use of regularization or shrinkage via penalization to process input z into
output d(z), where the map z �→ d(z) is commonly referred to as the shrinkage (or
decision) function. A generic shrinkage estimator then takes the form θ̂ = d(Z).

The commonly used lasso method uses �1-penalization and gives rise to the
lasso or soft-thresholding shrinkage function:

dlasso(z) = arg min
θ∈R

{
(z − θ)2 + λl|θ |} = (|z| − λl/2

)
+ sign(z),

where y+ := max(y,0) and λl ≥ 0 is a penalty level. The use of the �2-penalty in
place of the �1 penalty yields the ridge shrinkage function:

dridge(z) = arg min
θ∈R

{
(z − θ)2 + λr |θ |2} = z

1 + λr

,

where λr ≥ 0 is a penalty level. The lasso and ridge estimators then take the form

θ̂lasso = dlasso(Z), θ̂ridge = dridge(Z).

Other commonly used shrinkage methods include the elastic-net [44], which uses
θ �→ λ2|θ |2 +λ1|θ | as the penalty function, hard-thresholding and the SCAD [19],
which uses a nonconcave penalty function.
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Motivated by points made in the Introduction, we proceed differently. We de-
compose the signal into two components θ = β + δ, and use different penalty
functions—the �2 and �1—for each component in order to predict θ better. We
thus consider the penalty function

(β, δ) �→ λ2|β|2 + λ1|δ|,
and introduce the “lava” shrinkage function z �→ dlava(z) defined by

dlava(z) := d2(z) + d1(z),(6)

where d1(z) and d2(z) solve the following penalized prediction problem:(
d2(z), d1(z)

) := arg min
(β,δ)∈R2

{[z − β − δ]2 + λ2|β|2 + λ1|δ|}.(7)

Although the decomposition θ = β + δ is not unique, the optimization problem (7)
has a unique solution for any given (λ1, λ2). The proposal thus defines the lava
estimator of θ :

θ̂lava = dlava(Z).

For large signals such that |z| > λ1/(2k), lava has the same bias as the lasso.
This bias can be removed through the use of the post-lava estimator

θ̂post-lava = dpost-lava(Z),

where dpost-lava(z) := d2(z) + d̃1(z), and d̃1(z) solves the following penalized pre-
diction problem:

d̃1(z) := arg min
δ∈R

{[
z − d2(z) − δ

]2 : δ = 0 if d1(z) = 0
}
.(8)

The removal of this bias will result in improved risk performance relative to the
original estimator in some contexts.

From the Karush–Kuhn–Tucker conditions, we obtain the explicit solution
to (6).

LEMMA 2.1. For given penalty levels λ1 ≥ 0 and λ2 ≥ 0,

dlava(z) = (1 − k)z + k
(|z| − λ1/(2k)

)
+sign(z)(9)

=
⎧⎪⎨
⎪⎩

z − λ1/2, z > λ1/(2k),

(1 − k)z, −λ1/(2k) ≤ z ≤ λ1/(2k),

z + λ1/2, z < −λ1/(2k),

(10)

where k := λ2
1+λ2

. The post-lava shrinkage function is given by

dpost-lava(z) =
{

z, |z| > λ1/(2k),

(1 − k)z, |z| ≤ λ1/(2k).
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The left panel of Figure 2 plots the lava shrinkage function along with various
alternative shrinkage functions for z > 0. The top panel of the figure compares lava
shrinkage to ridge, lasso and elastic net shrinkage. It is clear from the figure that
lava shrinkage is different from lasso, ridge and elastic net shrinkage. The figure
also illustrates how lava provides a bridge between lasso and ridge, with the lava
shrinkage function coinciding with the ridge shrinkage function for small values
of the input z and coinciding with the lasso shrinkage function for larger values of
the input. Specifically, we see that the lava shrinkage function is a combination of
lasso and ridge shrinkage that corresponds to using whichever of the lasso or ridge
shrinkage is closer to the 45-degree line.

It is also useful to consider how lava and post-lava compare with the post-
lasso or hard-thresholding shrinkage: dpost-lasso(z) = z1{|z| > λl/2}. These differ-
ent shrinkage functions are illustrated in the right panel of Figure 2.

From (9), we observe some key characteristics of the lava shrinkage function:

(1) The lava shrinkage admits the lasso and ridge shrinkages as two extreme
cases. The lava and lasso shrinkage functions are the same when λ2 = ∞, and the
ridge and lava shrinkage functions coincide if λ1 = ∞.

(2) The lava shrinkage function dlava(z) is a weighted average of data z and the
lasso shrinkage function dlasso(z) with weights given by 1 − k and k.

(3) The lava never produces a sparse solution when λ2 < ∞: If λ2 < ∞,
dlava(z) = 0 if and only if z = 0. This behavior is strongly different from elastic
net which always produces a sparse solution once λ1 > 0.

(4) The lava shrinkage function continuously connects the ridge shrinkage
function and the lasso shrinkage function. When |z| < λ1/(2k), lava shrinkage is
equal to ridge shrinkage; and when |z| > λ1/(2k), lava shrinkage is equal to lasso
shrinkage.

(5) The lava shrinkage does exactly the opposite of the elastic net shrinkage.
When |z| < λ1/(2k), the elastic net shrinkage function coincides with the lasso
shrinkage function; and when |z| > λ1/(2k), the elastic net shrinkage is the same
as ridge shrinkage.

2.2. The risk function of the lava estimator in the one dimensional case. In the
one-dimensional case with Z ∼ N(θ,σ 2), a natural measure of the risk of a given
estimator θ̂ = d(Z) is given by

R(θ, θ̂) := E
[
d(Z) − θ

]2 = σ 2 + E
(
Z − d(Z)

)2 + 2E
[
(Z − θ)d(Z)

]
.(11)

Let Pθ,σ denote the probability law of Z. Let φθ,σ be the density function of Z.
We provide the risk functions of lava and post-lava in the following theorem. We
also present the risk functions of ridge, elastic net, lasso and post-lasso for com-
parison. To the best of our knowledge, the risk function of elastic net is also new
in the literature, while that of ridge, lasso and post-lasso are known.
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THEOREM 2.1 (Risk function of lava and related estimators in the scalar case).
Suppose Z ∼ N(θ,σ 2). Then for w = λ1/(2k), k = λ2/(1 + λ2), h = 1/(1 + λ2),
d = −λ1/(2(1 + λ2)) − θ and g = λ1/(2(1 + λ2)) − θ , we have

R(θ, θ̂lava) = −k2(w + θ)φθ,σ (w)σ 2 + k2(θ − w)φθ,σ (−w)σ 2

+ (
λ2

1/4 + σ 2)Pθ,σ

(|Z| > w
)

+ (
θ2k2 + (1 − k)2σ 2)Pθ,σ

(|Z| < w
)
,

R(θ, θ̂post-lava) = σ 2[−k2w + 2kw − k2θ
]
φθ,σ (w)

+ σ 2[−k2w + 2kw + k2θ
]
φθ,σ (−w)

+ σ 2Pθ,σ

(|Z| > w
)+ (

k2θ2 + (1 − k)2σ 2)Pθ,σ

(|Z| < w
)
,

R(θ, θ̂lasso) = −(λl/2 + θ)φθ,σ (λl/2)σ 2 + (θ − λl/2)φθ,σ (−λl/2)σ 2

+ (
λ2

l /4 + σ 2)Pθ,σ

(|Z| > λl/2
)+ θ2Pθ,σ

(|Z| < λl/2
)
,

R(θ, θ̂post-lasso) = (λl/2 − θ)φθ,σ (λl/2)σ 2 + (λl/2 + θ)φθ,σ (−λl/2)σ 2

+ σ 2Pθ,σ

(|Z| > λr/2
)+ θ2Pθ,σ

(|Z| < λr/2
)
,

R(θ, θ̂ridge) = θ2k̃2 + (1 − k̃)2σ 2, k̃ = λr/(1 + λr),

R(θ, θ̂elastic-net) = σ 2(h2λ1/2 + h2θ + 2dh
)
φθ,σ (λ1/2)

− σ 2(−h2λ1/2 + h2θ + 2gh
)
φθ,σ (−λ1/2)

+ θ2Pθ,σ

(|Z| < λ1/2
)

+ (
(hθ + d)2 + h2σ 2)Pθ,σ (Z > λ1/2)

+ (
(hθ + g)2 + h2σ 2)Pθ,σ (Z < −λ1/2).

These results for the one-dimensional case are derived through an application
of a simple Stein’s integration-by-parts trick for Gaussian random variables and
provide a key building block for results in the multi-dimensional case. In particular,
we build from these results to show that the lava estimator performs favorably
relative to the maximum likelihood estimator, the ridge estimator and �1-based
estimators (such as lasso and elastic-net) in interesting multi-dimensional settings.
We provide more detailed discussions on the derived risk formulas in the multi-
dimensional case in Section 2.5.

2.3. Multi-dimensional case. We consider now the canonical Gaussian model
or the Gaussian sequence model. In this case, we have that

Z ∼ Np

(
θ, σ 2Ip

)
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is a single observation from a multivariate normal distribution where θ =
(θ1, . . . , θp)′ is a p-dimensional vector. A fundamental result for this model is
that the maximum likelihood estimator Z is inadmissible and can be dominated by
the ridge estimator and related shrinkage procedures when p ≥ 3 (e.g., [33]).

In this model, the lava estimator is given by

θ̂lava := (θ̂lava,1, . . . , θ̂lava,p)′ := (
dlava(Z1), . . . , dlava(Zp)

)′
,

where dlava(z) is the lava shrinkage function as in (10). The estimator is designed
to capture the case where

θ = β︸︷︷︸
dense part

+ δ︸︷︷︸
sparse part

is formed by combining a sparse vector δ that has a relatively small number of
nonzero entries which are all large in magnitude and a dense vector β that may
contain very many small nonzero entries. This model for θ is “sparse + dense.”
It includes cases that are not well approximated by “sparse” models—models in
which a very small number of parameters are large and the rest are zero—or by
“dense” models—models in which very many coefficients are nonzero but all co-
efficients are of similar magnitude. This structure thus includes cases that pose
challenges for estimators such as the lasso and elastic net that are designed for
sparse models and for estimators such as ridge that are designed for dense models.

REMARK 2.1. The regression model with Gaussian noise and an orthonormal
design is a special case of the multi-dimensional canonical model. Consider

Y = Xθ + U, U |X ∼ N
(
0, σ 2

u In

)
,

where Y and U are n × 1 random vectors and X is an n × p random or fixed
matrix, with n and p, respectively, denoting the sample size and the dimension
of θ . Suppose 1

n
X′X = Ip a.s. with p ≤ n. Then we have the canonical multi-

dimensional model:

Z = θ + ε, Z = 1

n
X′Y, ε = 1

n
X′U ∼ N

(
0, σ 2Ip

)
, σ 2 = σ 2

u

n
.

All of the shrinkage estimators discussed in Section 2.1 generalize to the multi-
dimensional case. Let z �→ de(z) be the shrinkage function associated with estima-
tor e in the one-dimensional setting where e can take values in the set

E = {lava,post-lava, ridge, lasso,post-lasso, elasticnet}.
We then have a similar estimator in the multi-dimensional case given by

θ̂e := (θ̂e,1, . . . , θ̂e,p)′ := (
de(Z1), . . . , de(Zp)

)′
.

The following corollary is a trivial consequence of Theorem 2.1 and additivity of
the risk function.
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COROLLARY 2.1 (Risk function of lava and related estimators in the multi-
dimensional case). If Z ∼ N(0, σ 2Ip), then for any e ∈ E we have that risk func-
tion R(θ, θ̂e) := E‖θ − θ̂e‖2

2 is given by R(θ, θ̂e) = ∑p
j=1 R(θj , θ̂e,j ), where R(·, ·)

is the uni-dimensional risk function characterized in Theorem 2.1.

These multivariate risk functions are shown in Figure 1 in a prototypical
“sparse + dense” model generated according to the model discussed in detail in
Section 2.5. The tuning parameters used in this figure are the best possible (risk
minimizing or oracle) choices of the penalty levels found by minimizing the risk
expression R(θ, θ̂e) for each estimator. As guaranteed by the construction of the
estimator, the figure illustrates that lava performs no worse than, and often sub-
stantially outperforms, ridge and lasso with optimal penalty parameter choices.
We also see that lava uniformly outperforms the elastic net.

2.4. Canonical plug-in choice of penalty levels. We now discuss simple, rule-
of-thumb choices for the penalty levels for lasso (λl), ridge (λr ) and lava (λ1, λ2).
In the Gaussian model, a canonical choice of λl is λl = 2σ
−1(1 − c/(2p)),
which satisfies

P
(
max
j≤p

|Zj − θj | ≤ λl/2
)

≥ 1 − c;
see, for example, [15]. Here, 
(·) denotes the standard normal cumulative dis-
tribution function, and c is a pre-determined significance level which is often set
to 0.05. The risk function for ridge is simple, and an analytic solution to the risk
minimizing choice of ridge tuning parameter is given by λr = σ 2(p/‖θ‖2

2).
As for the tuning parameters for lava, recall that the lava estimator in the Gaus-

sian model is

θ̂lava = (θ̂lava,1, . . . , θ̂lava,p)′, θ̂lava,j = β̂j + δ̂j , j = 1, . . . , p,

(β̂j , δ̂j ) = arg min
(βj ,δj )∈R2

(Zj − βj − δj )
2 + λ2|βj |2 + λ1|δj |.

If the dense component β were known, then following [15] would suggest setting

λ1 = 2σ
−1(1 − c/(2p)
)

as a canonical choice of λ1 for estimating δ. If the sparse component δ were known,
one could adopt

λ2 = σ 2(p/‖β‖2
2
)

as a choice of λ2 for estimating β following the logic for the standard ridge esti-
mator.

We refer to these choices as the “canonical plug-in” tuning parameters and use
them in constructing the risk comparisons in the following subsection (to comple-
ment comparisons given in Figure 1 under oracle tuning parameters). We note that
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the lasso choice is motivated by a sparse model and does not naturally adapt to or
make use of the true structure of θ . The ridge penalty choice is explicitly tied to
risk minimization and relies on using knowledge of the true θ . The lava choices
for the parameters on the �1 and �2 penalties are, as noted immediately above, mo-
tivated by the respective choices in lasso and ridge. As such, the motivations and
feasibility of these canonical choices are not identical across methods, and the risk
comparisons in the following subsection should be interpreted within this light.

2.5. Some risk comparisons in a canonical Gaussian model with canonical tun-
ing. To compare the risk functions of lava, lasso and ridge estimators, we con-
sider a canonical Gaussian model, where

θ1 = 3, θj = q, j = 2, . . . , p,

for some index q ≥ 0. We set the noise level to be σ 2 = 0.12. The parameter θ can
be decomposed as θ = β + δ, where the sparse component is δ = (3,0, . . . ,0)′,
and the dense component is

β = (0, q, . . . , q)′,

where q is the “size of small coefficients.” The canonical tuning parame-
ters are λl = λ1 = 2σ
−1(1 − c/(2p)), λr = σ 2p/(3 + q2(p − 1)) and λ2 =
σ 2p/(q2(p − 1)).

Figure 1 (given in the introduction) compares risks of lava, lasso, ridge, elastic
net and the maximum likelihood estimators as functions of the size of the small
coefficients q , using the ideal (risk minimizing or oracle choices) of the penalty
levels. Figure 3 compares risks of lava, lasso, ridge and the maximum likelihood
estimators using the “canonical plug-in” penalty levels discussed above. Theoreti-
cal risks are plotted as a function of the size of the small coefficients q . We see from
these figures that regardless of how we choose the penalty levels—ideally or via
the plug-in rules—lava strictly dominates the competing methods in this “sparse +
dense” model. Compared to lasso, the proposed lava estimator does about as well
as lasso when the signal is sparse and does significantly better than lasso when the
signal is nonsparse. Compared to ridge, the lava estimator does about as well as
ridge when the signal is dense and does significantly better than ridge when the
signal is sparse.

In Section 4, we further explore the use of data-driven choices of penalty levels
via cross-validation and SURE minimization; see Figures 4, 5 and 6. We do so in
the context of the Gaussian regression model with fixed and random regressors.
With either cross-validation or SURE minimization, the ranking of the estimators
remains unchanged, with lava consistently dominating lasso, ridge and the elastic
net.

Stein [33] proved that a ridge estimator strictly dominates maximum likelihood
in the Gaussian sequence model once p ≥ 3. In the comparisons above, we also
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FIG. 3. Exact risk functions of lava, post-lava, ridge, lasso and maximum likelihood in the Gaussian
sequence model with “sparse + dense” signal structure and p = 100 using the canonical “plug-in”
choices of penalty levels given in the text with c = 0.05. See Section 2.5 for the description of penalty
levels and the model. The size of “small coefficients,” q , is shown on the horizontal axis. The size
of these coefficients directly corresponds to the size of the “dense part” of the signal, with zero
corresponding to the exactly sparse case. Relative risk plots the ratio of the risk of each estimator
to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava). Note that the relative risk plot is over a smaller set of sizes to
accentuate comparisons over the region where there are the most interesting differences between the
estimators.

see that the lava estimator strictly dominates the maximum likelihood estimator;
and one wonders whether this domination has a theoretical underpinning similar
to Stein’s result for ridge. The following result provides some (partial) support
for this phenomenon for the lava estimator with the plug-in penalty levels. The
result shows that, for a sufficiently large p, lava does indeed uniformly domi-
nate the maximum likelihood estimator on the set {θ = β + δ : ‖β‖∞ < M,s =∑p

j=1 1{δj 
= 0} � p/ logp}.

LEMMA 2.2 (Relative risk of lava vs. maximum likelihood). Let Z ∼
Np(θ, σ 2Ip), and (λ1, λ2) be chosen with the plug-in rule given in Section 2.4.
Fix a constant M > 0, and define f (M,σ) := 15(1 + M2/σ 2)2 + 9/

√
2πσ 2. In

addition, suppose σ
√

logp > 5M + 33σ + 20σ 2, and 2p > πc2logp ≥ 1. Then
uniformly for θ inside the following set:

A(M, s) :=
{
θ = β + δ : ‖β‖∞ < M,s =

p∑
j=1

1{δj 
= 0}
}
,

we have

RR := E‖θ̂lava(Z) − θ‖2
2

E‖Z − θ‖2
2

≤ ‖β‖2
2

σ 2p + ‖β‖2
2

+ 4√
2πp1/16

+ 2f (M,σ)
s logp

p
.

REMARK 2.2. Note that this lemma allows unbounded sparse components
(i.e., elements of δ are unrestricted), and only requires the dense components to be
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uniformly bounded ‖β‖∞ < M , which seems reasonable. We note that

R2
d = ‖β‖2

2

σ 2p + ‖β‖2
2

measures the proportion of the total variation of Z − δ around 0 that is explained
by the dense part of the signal. If R2

d is bounded away from 1 and M and σ 2 > 0
are fixed, then the risk of lava becomes uniformly smaller than the risk of the
maximum likelihood estimator on a compact parameter space as p → ∞ and
s logp/p → 0. Indeed, if R2

d is bounded away from 1 and M is fixed,

4√
2πp1/16

+ 2f (M,σ)
s logp

p
→ 0 �⇒ RR = R2

d + o(1) < 1.

Moreover, we have RR → 0 if R2
d → 0—namely, in the case that dense compo-

nent plays a progressively smaller role in explaining the variation of Z − δ, the
lava estimator becomes infinitely more asymptotically efficient than the maximum
likelihood estimator in terms of relative risk.

REMARK 2.3 (Risks of lava and lasso in the sparse case). We mention some
implications of Corollary 2.1 in the sparse case. When θ is sparse, we have β = 0,
and hence the canonical choice for the tuning parameter becomes λ2 = ∞, and k =
1 and w = λ1/2. It then immediately follows from Theorem 2.1 and Corollary 2.1
that R(θ, θ̂lava) = R(θ, θ̂lasso). Therefore, in the sparse model, the risk functions of
lava and lasso are the same with canonical choices of the tuning parameters. It is
useful to analyze the risk function in this case. Applying the same arguments as
those in the proof of Lemma 2.2, it can be shown that R(θj , θ̂lasso,j ) in Theorem 2.1
is given by (for some a > 0):

R(θj , θ̂lasso,j ) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ2

l

4
+ σ 2

)
Pθj ,σ

(
|Zj | > λl

2

)

=
(

λ2
l

4
+ σ 2

)
c

p
, θj = 0,

(
λ2

l

4
+ σ 2

)
Pθj ,σ

(
|Zj | > λl

2

)

+ θ2
j Pθj ,σ

(
|Zj | < λl

2

)
+ O

(
σ 2p−a), θj 
= 0,

where the O(·) is uniform in j = 1, . . . , p. Hence, for s = ∑p
j=1 1{θj 
= 0},

R(θ, θ̂lava) = R(θ, θ̂lasso) � λ2
l

{
s + (1 − s/p)

}
� 22σ 2(
−1(1 − c/(2p)

)2{
s + (1 − s/p)

}
,

which is a canonical bound for lasso risk in sparse models.
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2.6. Stein’s unbiased risk estimation for lava. Stein [34] proposed a useful
risk estimate based on the integration by parts formula, now commonly referred to
as Stein’s unbiased risk estimate (SURE). This subsection derives SURE for the
lava shrinkage in the multivariate Gaussian model. Note that

E‖θ̂lava − θ‖2
2 = −pσ 2 + E‖Z − θ̂lava‖2

2 + 2E
[
(Z − θ)′θ̂lava

]
.(12)

Stein’s formula is essential to calculating the key term E[(Z − θ)′θ̂lava].
THEOREM 2.2 (SURE for lava). Suppose Z = (Z1, . . . ,Zp)′ ∼ Np(θ, σ 2Ip).

Then

E
[
(Z − θ)′θ̂lava

] = p(1 − k)σ 2 + kσ 2
p∑

j=1

Pθj ,σ

(|Zj | > λ1/(2k)
)
.

In addition, let {Zij }ni=1 be identically distributed as Zj for each j . Then

R̂(θ, θ̂lava) = (1 − 2k)pσ 2 + 1

n

n∑
i=1

∥∥Zi − dlava(Zi)
∥∥2

2

+ 2kσ 2 1

n

n∑
i=1

p∑
j=1

1
{|Zij | > λ1/(2k)

}

is an unbiased estimator of R(θ, θ̂lava).

3. Lava in the regression model.

3.1. Definition of lava in the regression model. Consider a fixed design regres-
sion model:

Y = Xθ0 + U, U ∼ N
(
0, σ 2

u In

)
,

where Y = (y1, . . . , yn)
′, X = (X1, . . . ,Xn)

′, and θ0 is the true regression coeffi-
cient. Following the previous discussion, we assume that θ0 = β0 + δ0 is “sparse +
dense” with sparse component δ0 and dense component β0. Again, this coefficient
structure includes cases which cannot be well approximated by traditional sparse
models or traditional dense models and will pose challenges for estimation strate-
gies tailored to sparse settings, such as lasso and similar methods, or strategies
tailored to dense settings, such as ridge.

In order to define the estimator, we shall rely on the normalization condition
that

n−1[X′X
]
jj = 1, j = 1, . . . , p.(13)

Note that without this normalization, the penalty terms below would have to be
modified in order to insure equi-variance of the estimator to changes of scale in
the columns of X.
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The lava estimator θ̂lava of θ0 solves the following optimization problem:

θ̂lava := β̂ + δ̂,
(14)

(β̂, δ̂) := arg min
(β ′,δ′)′∈R2p

{
1

n

∥∥Y − X(β + δ)
∥∥2

2 + λ2‖β‖2
2 + λ1‖δ‖1

}
.

The lava program splits parameter θ into the sum of β and δ and penalizes these
two parts using the �2 and �1 penalties. Thus, the �1-penalization regularizes the
estimator of the sparse part δ0 of θ0 and produces a sparse solution δ̂. The �2-
penalization regularizes the estimator of the dense part β0 of θ0 and produces a
dense solution β̂ . The resulting estimator of θ0 is the sum of the sparse estimator
δ̂ and the dense estimator β̂ .

3.2. A key profile characterization and some insights. The lava estimator can
be computed in the following way. For a fixed δ, define

β̂(δ) = arg min
β∈Rp

{
1

n

∥∥Y − X(β + δ)
∥∥2

2 + λ2‖β‖2
2

}
.

This ridge program has the solution

β̂(δ) = (
X′X + nλ2Ip

)−1
X′(Y − Xδ).

By substituting β = β̂(δ) into the objective function, we then define an �1-
penalized quadratic program which we can solve for δ̂:

δ̂ = arg min
δ∈Rp

{
1

n

∥∥Y − X
(
β̂(δ) + δ

)∥∥2
2 + λ2

∥∥β̂(δ)
∥∥2

2 + λ1‖δ‖1

}
.(15)

The lava solution is then given by θ̂ = β̂(δ̂) + δ̂. The following result provides a
useful and somewhat unexpected characterization of the profiled lava program.

THEOREM 3.1 (A key characterization of the profiled lava program). Define
ridge-projection matrices,

Pλ2 = X
(
X′X + nλ2Ip

)−1
X′ and Kλ2 = In − Pλ2,

and transformed data, Ỹ = K
1/2
λ2

Y and X̃ = K
1/2
λ2

X. Then

δ̂ = arg min
δ∈Rp

{
1

n
‖Ỹ − X̃δ‖2

2 + λ1‖δ‖1

}
, Xθ̂lava = Pλ2Y + Kλ2Xδ̂.(16)

The theorem shows that solving for the sparse part δ̂ of the lava estimator is
equivalent to solving a standard lasso problem using transformed data Ỹ and X̃.
This computational characterization is key to both computation and our theoretical
analysis of the estimator.
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REMARK 3.1 (Insights derived from Theorem 3.1). Suppose δ0 were known.
Let W = Y −Xδ0 be the response vector after removing the sparse signal, and note
that we equivalently have W = Xβ0 + U . A natural estimator for β0 in this setting
is then the ridge estimator of W on X: β̂(δ0) = (X′X +nλ2Ip)−1X′W . Denote the
prediction error based on this ridge estimator as

Dridge(λ2) = Xβ̂(δ0) − Xβ0 = −Kλ2Xβ0 + Pλ2U.

Under mild conditions on β0 and the design matrix, [25] showed that
1
n
‖Dridge(λ2)‖2 = oP (1).4 Using Theorem 3.1, the prediction error of lava can

be written as

Xθ̂lava − Xθ0 = Pλ2Y + Kλ2Xδ̂ − Xβ0 − Xδ0 = Dridge(λ2) + Kλ2X(δ̂ − δ0).(17)

Hence, lava has vanishing prediction error as long as

1

n

∥∥Kλ2X(δ̂ − δ0)
∥∥2

2 = oP (1).(18)

Condition (18) is related to the performance of the lasso in the transformed
problem (16). Examination of (16) shows that it corresponds to a sparse regression
model with approximation errors K

1/2
λ2

Xβ0, akin to those considered in [2, 5]: For

Ũ = K
1/2
λ2

U , decompose Ỹ = X̃δ0 + Ũ + K
1/2
λ2

Xβ0. Under conditions such as those
given in [25], the approximation error obeys

1

n

∥∥K1/2
λ2

Xβ0
∥∥2

2 = oP (1).(19)

It is known that the lasso estimator performs well in sparse models with vanishing
approximation errors. The lasso estimator attains rates of convergence in the pre-
diction norm that are the sum of the usual rate of convergence in the case without
approximation errors and the rate at which the approximation error vanishes; see,
for example, [2]. Thus, we anticipate that (18) will hold.

To help understand the plausibility of condition (19), consider an orthogonal de-

sign where 1
n
X′X = Ip . In this case, it is straightforward to verify that K

1/2
λ2

= Kλ∗
2

where λ∗
2 = √

λ2/(
√

1 + λ2 −√
λ2). Hence, X̃β0 = Kλ∗

2
Xβ0 is a component of the

prediction bias Dridge(λ
∗
2) = −Kλ∗

2
Xβ0 + Pλ∗

2
U from a ridge estimator with tuning

parameter λ∗
2 and vanishes under some regularity conditions [25]. We present the

formal analysis for the general case in Section 3.5.

4We show in the proof of Theorem 3.3 that ∀ε > 0, with probability at least 1 − ε,
1
n‖Dridge(λ2)‖2 ≤ B3 + B4(β0), where B3 and B4(β0) are respectively defined in Theorem 3.3

below. Hence, a sufficient condition for 1
n‖Dridge(λ2)‖2 = oP (1) is that λ2 and β0 are such that

B3 + B4(β0) = o(1).
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3.3. Degrees of freedom and SURE. Degrees of freedom is often used to quan-
tify model complexity and to construct adaptive model selection criteria for select-
ing tuning parameters. In a Gaussian linear regression model Y ∼ N(Xθ0, σ

2
u In)

with a fixed design, [17] define the degrees of freedom of the mean fit Xθ̂ to be

df(θ̂) = 1

σ 2
u

E
[
(Y − Xθ0)

′Xθ̂
];

and this quantity is also an important component of the mean squared prediction
risk:

E
1

n
‖Xθ̂ − Xθ0‖2

2 = −σ 2
u + E

1

n
‖Xθ̂ − Y‖2

2 + 2σ 2
u

n
df(θ̂).

Stein’s [34] SURE theory provides a tractable way of deriving an unbiased
estimator of the degrees of freedom, and thus the mean squared prediction risk.
Specifically, write θ̂ = d(Y,X) as a function of Y , conditional on X. Suppose
d(·,X) : Rn → R

p is almost differentiable; see [31] and [18]. For f : Rn → R
n

differentiable at y, define

∂yf (y) := [
∂fij (y)

]
, (i, j) ∈ {1, . . . , n}2, ∂fij (y) := ∂

∂yj

fi(y),

∇y · f (y) := tr
(
∂yf (y)

)
.

Let X′
i denote the ith row of X, i = 1, . . . , n. Then, from [34], we have that

1

σ 2
u

E
[
(Y − Xθ0)

′Xd(Y,X)
] = E

[∇y · (Xd(Y,X)
)] = E tr

(
∂y

[
Xd(Y,X)

])
.

An unbiased estimator of the term on the right-hand side of the display may then
be constructed using its sample analog.

In this subsection, we derive the degrees of freedom of the lava, and thus a
SURE of its mean squared prediction risk. By Theorem 3.1,

∇y · (Xdlava(y,X)
) = tr(Pλ2) + ∇y · (Kλ2Xdlasso

(
K

1/2
λ2

y,K
1/2
λ2

X
))

(20)

= tr(Pλ2) + tr
(
Kλ2∂y

[
Xdlasso

(
K

1/2
λ2

y, X̃
)])

,(21)

where dlava(y,X) is the lava estimator on the data (y,X) and dlasso(K
1/2
λ2

y,K
1/2
λ2

X)

is the lasso estimator on the data (K
1/2
λ2

y,K
1/2
λ2

X) with the penalty level λ1. The

almost differentiability of the map y �→ dlasso(K
1/2
λ2

y,K
1/2
λ2

X) follows from the al-

most differentiability of the map u �→ dlasso(u,K
1/2
λ2

X), which holds by the results
in [16] and [38].

The following theorem presents the degrees of freedom and SURE for lava. Let
Ĵ = {j ≤ p : δ̂j 
= 0} be the active set of the sparse component estimator δ̂ with

cardinality denoted by |Ĵ |. Recall that X̃ = K
1/2
λ2

X. Let X̃
Ĵ

be an n×|Ĵ | submatrix
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of X̃ whose columns are those corresponding to the entries in Ĵ . Let A− denote
the Moore–Penrose pseudo-inverse of a square matrix A.

THEOREM 3.2 (SURE for lava in regression). Suppose Y ∼ N(Xθ0, σ
2
u In).

Let

K̃
Ĵ

= I − X̃
Ĵ

(
X̃′

Ĵ
X̃

Ĵ

)−
X̃′

Ĵ

be the projection matrix onto the unselected columns of X̃. We have that

df(θ̂lava) = E
[
rank(X̃

Ĵ
) + tr(K̃

Ĵ
Pλ2)

]
.

Therefore, the SURE of E 1
n
‖Xθ̂lava − Xθ0‖2

2 is given by

−σ 2
u + 1

n
‖Xθ̂lava − Y‖2

2 + 2σ 2
u

n
rank(X̃

Ĵ
) + 2σ 2

u

n
tr(K̃

Ĵ
Pλ2).

3.4. Post-lava in regression. We can also remove the shrinkage bias in the
sparse component introduced by the �1-penalization via a post-selection proce-
dure. Specifically, let (β̂, δ̂) respectively denote the lava estimator of the dense and
sparse components. Define the post-lava estimator as follows:

θ̂post-lava = β̂ + δ̃, δ̃ = arg min
δ∈Rp

{
1

n
‖Y − Xβ̂ − Xδ‖2

2 : δj = 0 if δ̂j = 0
}
.

Let X
Ĵ

be an n × |Ĵ | submatrix of X whose columns are selected by Ĵ . Then

we can partition δ̃ = (δ̃
Ĵ
,0)′, where δ̃

Ĵ
= (X′

Ĵ
X

Ĵ
)−X′

Ĵ
(Y − Xβ̂). Write P

Ĵ
=

X
Ĵ
(X′

Ĵ
X

Ĵ
)−X′

Ĵ
and K

Ĵ
= In − P

Ĵ
. The post-lava prediction for Xθ is

Xθ̂post-lava = P
Ĵ
Y + K

Ĵ
Xβ̂.

In addition, note that the lava estimator satisfies Xβ̂ = Pλ2(Y −Xδ̂). We then have
the following expression of Xθ̂post-lava.

LEMMA 3.1. Let Û := Y − Xθ̂lava. Then Xθ̂post-lava = Xθ̂lava + P
Ĵ
Û .

The above lemma reveals that the post-lava corrects the �1-shrinkage bias of
the original lava fit by adding the projection of the lava residual onto the subspace
of the selected regressors. This correction is in the same spirit as the post-lasso
correction for shrinkage bias in the standard lasso problem; see [2].

REMARK 3.2. We note that SURE for post-lava may not exist, though an
estimate of the upper bound of the risk function may be available, because of
the impossibility results for constructing unbiased estimators for discontinuous
functionals [23].
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3.5. Deviation bounds for prediction errors. In the following, we develop de-
viation bounds for the lava prediction error: 1

n
‖Xθ̂lava − Xθ0‖2

2. We continue to
work with the decomposition θ0 = β0 + δ0 and will show that lava performs well
in terms of rates on the prediction error in this setting. According to the discussion
in Section 3.2, there are three sources of prediction error: (i) Dridge(λ2), (ii) X̃β0

and (iii) Kλ2X(δ̂ − δ0). The behavior of the first two terms is determined by the
behavior of the ridge estimator of the dense component β0, and the behavior of the
third term is determined by the behavior of the lasso estimator on the transformed
data.

We assume that U ∼ N(0, σ 2
u In) and that X is fixed. As in the lasso analysis of

[5], a key quantity is the maximal norm of the score:


 =
∥∥∥∥2

n
X̃′Ũ

∥∥∥∥∞
=

∥∥∥∥2

n
X′Kλ2U

∥∥∥∥∞
.

Following [2], we set the penalty level for the lasso part of lava in our theoretical
development as

λ1 = c
1−α with 
1−α = inf
{
l ∈R : P(
 ≤ l) ≥ 1 − α

}
(22)

and c > 1 a constant. Note that [2] suggest setting c = 1.1 and that 
1−α is easy
to approximate by simulation.

Let S := X′X/n and V̄λ2 be the maximum diagonal element of

Vλ2 := (S + λ2Ip)−1S(S + λ2Ip)−1λ2
2.

Then by the union bound and Mill’s inequality:


1−α < 
̄1−α := 2σu

√
V̄λ2 log(2p/α)

n
.(23)

Thus, the choice 
1−α is strictly sharper than the union bound-based, classical
choice 
̄1−α . Indeed, 
1−α is strictly smaller than 
̄1−α even in orthogonal design
cases since union bounds are not sharp. In collinear or highly-correlated designs,
it is easy to give examples where 
1−α = o(
̄1−α); see [4]. Thus, the gains from
using the more refined choice can be substantial.

We define the following design impact factor: For X̃ = K
1/2
λ2

X,

ι(c, δ0, λ1, λ2) := inf
�∈R(c,δ0,λ1,λ2)

‖X̃�‖2/
√

n

‖δ0‖1 − ‖δ0 + �‖1 + c−1‖�‖1
,

where R(c, δ0, λ1, λ2) = {� ∈ R
p \ {0} : ‖X̃�‖2

2/n ≤ 2λ1(‖δ0‖1 − ‖δ0 + �‖1 +
c−1‖�‖1)} is the restricted set, and where ι(c, δ0, λ1, λ2) := ∞ if δ0 = 0.

The design impact factor generalizes the restricted eigenvalues of [5] and is
tailored for bounding estimation errors in the prediction norm (cf. [4]). Note that
in the best case, when the design is well behaved and λ2 is a constant, we have that

ι(c, δ0, λ1, λ2) ≥ 1√‖δ0‖0
κ,(24)

where κ > 0 is a constant. Remarks given below provide further discussion.
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The following theorem provides the deviation bounds for the lava prediction
error.

THEOREM 3.3 (Deviation bounds for lava in regression). We have that with
probability 1 − α − ε

1

n
‖Xθ̂lava − Xθ0‖2

2

≤ 2

n

∥∥K
1/2
λ2

X(δ̂ − δ0)
∥∥2

2‖Kλ2‖ + 2

n

∥∥Dridge(λ2)
∥∥2

2

≤ inf
(δ′

0,β
′
0)

′∈R2p :δ0+β0=θ0

{(
B1(δ0) ∨ B2(β0)

)‖Kλ2‖ + B3 + B4(β0)
}
,

where ‖Kλ2‖ ≤ 1 and

B1(δ0) = 23λ2
1

ι2(c, δ0, λ1, λ2)
≤ 25σ 2

u c2V̄ 2
λ2

log(2p/α)

nι2(c, δ0, λ1, λ2)
,

B2(β0) = 25

n

∥∥K
1/2
λ2

Xβ0
∥∥2

2 = 25λ2β
′
0S(S + λ2I )−1β0,

B3 = 22σ 2
u

n

[√
tr
(
P2

λ2

)+ √
2
√∥∥P2

λ2

∥∥√log(1/ε)
]2

,

B4(β0) = 22

n
‖Kλ2Xβ0‖2

2 = 22β ′
0Vλ2β0 ≤ 23B2(β0)‖Kλ2‖.

REMARK 3.3. As noted before, the “sparse + dense” framework does not
require the separate identification of (β0, δ0). Consequently, the prediction upper
bound is the infimum over all the pairs (β0, δ0) such that β0 + δ0 = θ0. The upper
bound thus optimizes over the best “split” of θ0 into sparse and dense parts, δ0
and β0. The bound has four components. B1 is a qualitatively sharp bound on

the performance of the lasso for K
1/2
λ2

-transformed data. It involves two important
factors: V̄λ2 and the design impact factor ι(c, δ0, λ1, λ2). The term B3 is the size of
the impact of the noise on the ridge part of the estimator, and it has a qualitatively
sharp form as in [25]. The term B4 describes the size of the bias for the ridge
part of the estimator and appears to be qualitatively sharp as in [25]. We refer the
reader to [25] for the in-depth analysis of noise term B3 and bias term B4. The term
B2‖Kλ2‖ appearing in the bound is also related to the size of the bias resulting from
ridge regularization. In examples like the Gaussian sequence model, we have

B4(β0) � B2(β0)‖Kλ2‖ � B4(β0).(25)

This result holds more generally whenever ‖K−1
λ2

‖‖Kλ2‖ � 1, which occurs if λ2
dominates the eigenvalues of S (see Supplementary Material [14] for the proof).
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REMARK 3.4 (Comments on performance in terms of rates). It is worth dis-
cussing heuristically two key features arising from Theorem 3.3.

(1) In dense models where ridge would work well, lava will work similarly to
ridge. Consider any model where there is no sparse component (so θ0 = β0), where
the ridge-type rate B∗ = B4(β0)+B3 is optimal (e.g., [25]), and where (25) holds.
In this case, we have B1(δ0) = 0 since δ0 = 0, and the lava performance bound
reduces to

B2(β0)‖Kλ2‖ + B3 + B4(β0) � B4(β0) + B3 = B∗.

(2) Lava works similarly to lasso in sparse models that have no dense compo-
nents whenever lasso works well in those models. For this to hold, we need to
set λ2 � n ∨ ‖S‖2. Consider any model where θ0 = δ0 and with design such that
the restricted eigenvalues κ of [5] are bounded away from zero. In this case, the
standard lasso rate

B∗ = ‖δ0‖0 log(2p/α)

nκ2

of [5] is optimal. For the analysis of lava in this setting, we have that B2(β0) =
B4(β0) = 0. Moreover, we can show that B3 � n−1 and that the design impact
factor obeys (24) in this case. To bound V̄λ2 in B1(δ0) in this case, by the definition
of Vλ2 in Section 3.5,

S − Vλ2 := Aλ2, Aλ2 = (S + λ2Ip)−2S2(S + 2λ2Ip).

As long as λ2 � ‖S‖2, we have ‖Aλ2‖ � 1. Therefore, by the definition of V̄λ2 ,

V̄λ2 ≤ max
j≤p

Sjj + ‖Aλ2‖ � 1,

where Sjj denotes the j th diagonal element of S. Note that this upper bound of
V̄λ2 allows a diverging ‖S‖ as p → ∞, which is not stringent in high-dimensional
models. Thus,

B1(δ0) � ‖δ0‖0 log(2p/α)

nκ2 = B∗,

and (B1(δ0) ∨ B2(β0))‖Kλ2‖ + B3 + B4(β0) � B∗ follows due to ‖Kλ2‖ ≤ 1.
Note that we see lava performing similarly to lasso in sparse models and per-

forming similarly to ridge in dense models in the simulation evidence provided in
the next section. This simulation evidence is consistent with the observations made
above.

REMARK 3.5 (On the design impact factor). The definition of the design im-
pact factor is motivated by the generalizations of the restricted eigenvalues of [5]
proposed in [4] to improve performance bounds for lasso in badly behaved designs.
The concepts above are strictly more general than the usual restricted eigenvalues
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formulated for the transformed data. Let J (δ0) = {j ≤ p : δ0j 
= 0}. For any vec-
tor � ∈ R

p , respectively write �J(δ0) = {�j : j ∈ J (δ0)} and �Jc(δ0) = {�j : j /∈
J (δ0)}. Define

A(c, δ0) = {
v ∈ R

p \ {0} : ∥∥�Jc(δ0)
∥∥

1 ≤ (c + 1)/(c − 1)‖�J(δ0)‖1
}
.

The restricted eigenvalue κ2(c, δ0, λ2) is given by

κ2(c, δ0, λ2) = inf
�∈A(c,δ0)

‖X̃�‖2
2/n

‖�J(δ0)‖2
2

= inf
�∈A(c,δ0)

X′Kλ2X/n

‖�J(δ0)‖2
2

.

Note that R(c, δ0, λ1, λ2) ⊂ A(c, δ0) and that

ι(c, δ0, λ1, λ2) ≥ inf
�∈A(c,δ0)

‖X̃�‖2/
√

n

‖�J(δ0)‖1
≥ 1√‖δ0‖0

κ(c, δ0, λ2).

Now note that X′Kλ2X/n = λ2S(S + λ2Ip)−1. When λ2 is relatively large,
X′Kλ2X/n = λ2S(S + λ2Ip)−1 is approximately equal to S. Hence, κ2(c, δ0, λ2)

behaves like the usual restricted eigenvalue constant as in [5], and we have a
bound on the design impact factor ι(c, δ0, λ1, λ2) as in (24). To understand how
κ2(c, δ0, λ2) depends on λ2 more generally, consider the special case of an or-
thonormal design. In this case, S = Ip and X′Kλ2X/n = kIp with k = λ2/(1+λ2).
Then κ2(c, δ0, λ2) = k, and the design impact factor becomes

√
k/

√‖δ0‖0.
Thus, the design impact factor scales like 1/

√‖δ0‖0 when restricted eigenval-
ues are well behaved, for example, bounded away from zero. This behavior cor-
responds to the best possible case. Note that design impact factors can be well
behaved even if restricted eigenvalues are not. For example, suppose we have
two regressors that are identical. Then κ(c, δ0, λ2) = 0, but ι(c, δ0, λ1, λ2) > 0;
see [4].

4. Simulation study. In this section, we provide simulation evidence on the
performance of the lava estimator. Before proceeding to the simulation settings
and results, we review the lava and post-lava estimation procedure. The lava and
post-lava algorithm can be summarized as follows:

(1) Fix λ1, λ2, and define Kλ2 = In − X(X′X + nλ2Ip)−1X′.
(2) For Ỹ = K

1/2
λ2

Y , and X̃ = K
1/2
λ2

X, solve for δ̂ = arg minδ∈Rp{ 1
n
‖Ỹ − X̃δ‖2

2 +
λ1‖δ‖1}.

(3) Define β̂(δ) = (X′X + nλ2Ip)−1X′(Y − Xδ). The lava estimator is θ̂lava =
β̂(δ̂) + δ̂.

(4) For W = Y − Xβ̂(δ̂), solve for δ̃ = arg minδ∈Rp{ 1
n
‖W − Xδ‖2

2, δj =
0 if δ̂j = 0}.

(5) The post-lava estimator is θ̂post-lava = β̂(δ̂) + δ̃.
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The computation of K
1/2
λ2

is carried by using the eigen-decomposition of XX′: Let
M be an n × n matrix whose columns are the eigenvectors of the n × n matrix
XX′. Let {v1, . . . , vn} be the eigenvalues of XX′. Then K

1/2
λ2

= MAM ′, where

A is an n × n diagonal matrix with Ajj = (nλ2/(vj + nλ2))
1/2, j = 1, . . . , n.

Supplementary Material [14] proves this assertion.
We present a Monte–Carlo analysis based on a Gaussian linear regression

model: Y = Xθ + U , U |X ∼ N(0, In). The parameter θ is a p-vector defined
as

θ = (3,0, . . . ,0)′ + (0, q, . . . , q)′,
where q ≥ 0 is the “size of small coefficients.” When q is zero or small, θ can be
well approximated by the sparse vector (3,0, . . . ,0). When q is relatively large,
θ cannot be approximated well by a sparse vector. We report results for three set-
tings that differ in the design for X. For each setting, we set n = 100 and compare
the performance of Xθ̂ formed from one of five methods: lasso, ridge, elastic net,
lava and post-lava. For the first two designs for X, we set p = 2n and consider
a fixed design matrix for X by generating the design matrix X once and fixing it
across simulation replications. We draw our realization of X by drawing rows of
X independently from a mean zero multivariate normal with covariance matrix �.
For the first setting, we set � = Ip , and we use a factor covariance structure with
� = LL′ + Ip where the rows of L are independently generated from a N(0, I3)

for the second setting. In the latter case, the columns of X depend on three com-
mon factors. In order to verify that the comparisons continue to hold with random
design, we also consider the third design, where X is redrawn within each simula-
tion replication by drawing rows of X independently from a mean zero multivariate
normal with covariance matrix Ip . In the third setting, we set p = 5n.5 All results
are based on B = 100 simulation replications.

Within each design, we report two sets of results. For the first set of results, we
select the tuning parameters for each method by minimizing SURE. The SURE
formula depends on the error variance σ 2

u which we take as known in all simula-
tions.6 In the second set of results, all tuning parameters are selected by minimizing
5-fold cross-validation.

5Results with p = n/2, where OLS is also included, and results with p ∼ en in the Gaussian se-
quence model also are available in the supplementary material. We also simulated a model with a
highly correlated design where a group of regressors are strongly correlated. The results are qualita-
tively similar to those given here even when p is very large, with lava and post-lava dominating all
other procedures.

6In practice, one could obtain an estimator of σ 2
u using an iterative method as in [2]. We expect

that this procedure can be theoretically justified along the lines of [2], and we leave it as a future
research direction. In supplementary material, we do provide simulation results where we use SURE
with a conservative pre-estimate of σ 2

u given by taking the estimate of σ 2
u obtained using coefficients

given by 5-fold cross-validated lasso. The results from using this conservative plug-in in calculating
SURE are qualitatively similar to those reported with known σ 2

u in the sense that lava and post-lava
dominate the other considered estimators.
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FIG. 4. Risk comparison with tuning done by minimizing SURE in the fixed design simulations. In
this figure, we report simulation estimates of risk functions of lava, post-lava, ridge, lasso and elastic
net in a Gaussian regression model with “sparse + dense” signal structure over the regression
coefficients. We select tuning parameters for each method by minimizing SURE. The size of “small
coefficients” (q) is shown on the horizontal axis. The size of these coefficients directly corresponds to
the size of the “dense part” of the signal, with zero corresponding to the exactly sparse case. Relative
risk plots the ratio of the risk of each estimator to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).

To measure performance, we consider the risk measure R(θ, θ̂) = E[ 1
n
‖Xθ̂ −

Xθ‖2
2], where the expectation E is conditioned on X for the first two settings. For

each estimation procedure, we report the simulation estimate of this risk measure
formed by averaging over the simulation replications. We plot the risk measure for
the fixed design settings in Figures 4 and 5 and for the random design setting in
Figure 6. Each figure shows the simulation estimate of R(θ, θ̂) for each estimation
method as a function of q . In Figure 4, we report results for the two fixed-design
settings with tuning parameters chosen via minimizing the SURE as defined in
Theorem 3.2. We then report results for the two fixed-design settings with tuning
parameters chosen by 5-fold cross-validation in Figure 5. Figure 6 contains the
results for the random design setting with the two upper panels giving results with
tuning parameters selected by minimizing SURE and the lower two panels with
tuning parameters selected by minimizing 5-fold cross validation.

The comparisons are similar in all figures with lava and post-lava dominating
the other procedures. It is particularly interesting to compare the performance of
lava to lasso and ridge. With feasible, data-dependent penalty parameter choices,
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FIG. 5. Risk comparison with tuning done by 5-fold cross-validation in the fixed design simulations.
In this figure, we report simulation estimates of risk functions of lava, post-lava, ridge, lasso, and
elastic net in a Gaussian regression model with “sparse + dense” signal structure over the regression
coefficients. We select tuning parameters for each method by minimizing 5-fold cross-validation. The
size of “small coefficients” (q) is shown on the horizontal axis. The size of these coefficients directly
corresponds to the size of the “dense part” of the signal, with zero corresponding to the exactly sparse
case. Relative risk plots the ratio of the risk of each estimator to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).

we still have that the lava and post-lava estimators perform about as well as lasso
when the signal is sparse and perform significantly better than lasso when the
signal is nonsparse. We also see that the lava and post-lava estimators perform
about as well as ridge when the signal is dense and perform much better than ridge
when the signal is sparse using data-dependent tuning. When the tuning parameters
are selected via cross-validation, the post-lava performs slightly better than the lava
when the model is sparse. The gain is somewhat more apparent in the independent
design.7

5. Discussion. We propose a new method, called “lava,” which is designed
specifically to achieve good prediction and estimation performance in “sparse +
dense” models. In such models, the high-dimensional parameter is represented as
the sum of a sparse vector with a few large nonzero entries and a dense vector with

7In the supplement, we also report the percentage of out-of-sample variation explained as an ad-
ditional risk measure in the random design setting. The qualitative conclusions are similar as those
obtained by looking at the risk measure reported here.
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FIG. 6. Risk comparison in the random design simulations. In this figure, we report simulation
estimates of risk functions of lava, post-lava, ridge, lasso and elastic net in a Gaussian regression
model with “sparse + dense” signal structure over the regression coefficients. In the upper panels,
we report results with tuning parameters for each method selected by minimizing SURE. In the lower
panels, we report results with tuning parameters for each method selected by minimizing 5-fold
cross-validation. The size of “small coefficients” (q) is shown on the horizontal axis. The size of these
coefficients directly corresponds to the size of the “dense part” of the signal, with zero corresponding
to the exactly sparse case. Relative risk plots the ratio of the risk of each estimator to the lava risk,
R(θ, θ̂e)/R(θ, θ̂lava).

many small entries. This structure renders traditional sparse or dense estimation
methods, such as lasso or ridge, sub-optimal for prediction and other estimation
purposes. The proposed approach thus complements other approaches to struc-
tured sparsity problems such as those considered in fused sparsity estimation ([37]
and [13]) and structured matrix decomposition problems ([10, 12, 20] and [28]).

There are a number of interesting research directions that remain to be consid-
ered. An immediate extension of the present results would be to consider semi-
pivotal estimators akin to the root-lasso/scaled-lasso of [3] and [35]. For instance,
we can define

θ̂root-lava := β̂ + δ̂,

(β̂, δ̂) := arg min
β,δ,σ

{
1

2nσ 2

∥∥Y − X(β + δ)
∥∥2

2 + (1 − a)σ

2
+ λ2‖β‖2

2 + λ1‖δ‖1

}
.



66 V. CHERNOZHUKOV, C. HANSEN AND Y. LIAO

Thanks to the characterization of Theorem 3.1, the method can be implemented
by applying root-lasso on appropriately transformed data. The present work could
also be extended to accommodate non-Gaussian settings and settings with random
designs, and it could also be extended beyond the mean regression problem to more
general M- and Z-estimation problems, for example, along the lines of [32]. There
is also a body of work that considers the use of a sum of penalties in penalized
estimation, for example, [10, 12, 28] among others. These methods are designed
for models with particular types of structures and targeting different estimation
goals than the approach we take in this paper. A more thorough examination of
the tradeoffs and structures that may lead one to prefer one approach to the other
may be worthwhile. Finally, [40] formulate a general class of problems where
the signal may be split into a superposition of different types θ = ∑L

�=1 θ� and
use penalization of different types for each of the components of the signal of
the form

∑L
�=1 penalty�(θ�). Further analysis of various leading cases, within this

class of problems, providing sharp conditions, performance bounds, computational
algorithms, and interesting applications, is an important venue for future work.

APPENDIX A: PROOFS FOR SECTION 2

A.1. Proof of Lemma 2.1. Fixing δ, the solution for β is given by β̂(δ) =
(z − δ)/(1 + λ2). Substituting back to the original problem, we obtain

d1(z) = arg min
δ∈R

[
z − β̂(δ) − δ

]2 + λ2
∣∣β̂(δ)

∣∣2 + λ1|δ|

= arg min
δ∈R k(z − δ)2 + λ1|δ|.

Hence, d1(z) = (|z|−λ1/(2k))+ sign(z), and d2(z) = β̂(d1(z)) = (z1 −d1(z))(1−
k). Consequently, dlava(z) = d1(z) + d2(z) = (1 − k)z + kd1(z).

A.2. A useful lemma. The proofs rely on the following lemma.

LEMMA A.1. Consider the general piecewise linear function:

F(z) = (hz + d)1{z > w} + (ez + m)1
{|z| ≤ w

}+ (f z + g)1{z < −w}.
Suppose Z ∼ N(θ,σ 2). Then

E
[
F(Z)2] = [

σ 2(h2w + h2θ + 2dh
)− σ 2(e2w + e2θ + 2me

)]
φθ,σ (w)

+ [
σ 2(−e2w + e2θ + 2me

)− σ 2(−f 2w + f 2θ + 2gf
)]

φθ,σ (−w)

+ (
(hθ + d)2 + h2σ 2)Pθ,σ (Z > w)

+ (
(f θ + g)2 + f 2σ 2)Pθ,σ (Z < −w)

+ (
(eθ + m)2 + e2σ 2)Pθ,σ

(|Z| < w
)
.
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PROOF. We first consider an expectation of the following form: for any −∞ ≤
z1 < z2 ≤ ∞, and a, b ∈ R, by integration by part,

E(θ − Z)(aZ + b)1{z1 < Z < z2}
= σ 2

∫ z2

z1

θ − z

σ 2 (az + b)φθ,σ (z) dz

(26)
= σ 2(az + b)φθ,σ (z)|z2

z1
− σ 2a

∫ z2

z1

φθ,σ (z) dz

= σ 2[(az2 + b)φθ,σ (z2) − (az1 + b)φθ,σ (z1)
]− σ 2aPθ,σ (z1 < Z < z2).

This result will be useful in the following calculations. Setting a = −1, b = θ

and a = 0, b = −2(θ + c), respectively, yields

E(θ − Z)21{z1 < Z < z2}
= σ 2[(θ − z2)φθ,σ (z2) − (θ − z1)φθ,σ (z1)

]+ σ 2Pθ,σ (z1 < Z < z2),

2E(Z − θ)(θ + c)1{z1 < Z < z2}
= σ 2[−2(θ + c)φθ,σ (z2) + 2(θ + c)φθ,σ (z1)

]
.

Therefore, for any constant c,

E(Z + c)21{z1 < Z < z2}
= E(θ − Z)21{z1 < Z < z2} + (θ + c)2Pθ,σ (z1 < Z < z2)

+ 2E(Z − θ)(θ + c)1{z1 < Z < z2}(27)

= σ 2(z1 + θ + 2c)φθ,σ (z1) − σ 2(z2 + θ + 2c)φθ,σ (z2)

+ (
(θ + c)2 + σ 2)Pθ,σ (z1 < Z < z2).

If none of h, e, f are zero, by setting z1 = w,z2 = ∞, c = d/h; z1 = −∞, z2 =
−w,c = g/f and z1 = −w,z2 = w,c = m/e, respectively, we have

E(hZ + d)21{Z > w} = σ 2(h2w + h2θ + 2dh
)
φθ,σ (w)

+ (
(θh + d)2 + σ 2h2)Pθ,σ (Z > w),

E(f Z + g)21{Z < −w} = −σ 2(−wf 2 + θf 2 + 2gf
)
φθ,σ (−w)

(28)
+ (

(θf + g)2 + σ 2f 2)Pθ,σ (Z < −w),

E(eZ + m)21
{|Z| < w

} = σ 2(−we2 + θe2 + 2me
)
φθ,σ (−w)

− σ 2(we2 + θe2 + 2me
)
φθ,σ (w)(29)

+ (
(θe + m)2 + σ 2e2)Pθ,σ

(|Z| < w
)
.
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If any of h, e, f is zero, for instance, suppose h = 0, then E(hZ + d)21{Z > w} =
d2Pθ,σ (Z > w), which can also be written as the first equality of (28). Similarly,
when either e = 0 or f = 0, (28) still holds.

Therefore, summing up the three terms of (28) yields the desired result. �

A.3. Proof of Theorem 2.1. Recall that θ̂lava = (1 − k)Z + kdlasso(Z) is a
weighted average of Z and the soft-thresholded estimator with shrinkage parame-
ters λ1/(2k) and k = λ2/(1 + λ2). Since dlasso(Z) is a soft-thresholding estimator,
results from [15] give that E[(Z − θ)dlasso(Z)] = σ 2Pθ,σ (|Z| > λ1/(2k)). There-
fore, for w = λ1/(2k),

2E
[
(Z − θ)dlava(Z)

] = 2(1 − k)σ 2 + 2kσ 2Pθ,σ

(|Z| > w
)
.(30)

Next, we verify that

E
(
Z − dlava(Z)

)2 = −k2(w + θ)φθ,σ (w)σ 2 + k2(θ − w)φθ,σ (−w)σ 2

(31)
+ (

λ2
1/4

)
Pθ,σ

(|Z| > w
)+ k2(θ2 + σ 2)Pθ,σ

(|Z| < w
)
.

By definition,

dlava(z) − z =
⎧⎪⎨
⎪⎩

−λ1/2, z > λ1/(2k),

−kz, −λ1/(2k) < z ≤ λ1/(2k),

λ1/2, z < −λ1/(2k).

(32)

Let F(z) = dlava(z) − z. The claim then follows from applying Lemma A.1 by
setting h = f = m = 0, d = −λ1/2, e = −k, g = λ1/2, and w = λ1/(2k). Hence,

E
(
Z − dlava(Z)

)2 = −k2(w + θ)φθ,σ (w)σ 2 + k2(θ − w)φθ,σ (−w)σ 2

+ (
λ2

1/4
)
Pθ,σ

(|Z| > w
)+ k2(θ2 + σ 2)Pθ,σ

(|Z| < w
)
.

The risk of lasso is obtained from setting λ2 = ∞ and λ1 = λl in the lava risk.
The risk of ridge is obtained from setting λ1 = ∞ and λ2 = λr in the lava risk.

As for the risk of post-lava, note that

dpost-lava(z) − θ =
{

z − θ, |z| > λ1/(2k),

(1 − k)z − θ, |z| ≤ λ1/(2k).

Hence, applying Lemma A.1 to F(z) = dpost-lava(z) − θ , that is, by setting h =
f = 1, e = 1 − k and d = m = g = −θ , we obtain

R(θ, θ̂post-lava)

= σ 2[−k2w + 2kw − k2θ
]
φθ,σ (w) + σ 2[−k2w + 2kw + k2θ

]
φθ,σ (−w)

+ σ 2Pθ,σ

(|Z| > w
)+ (

k2θ2 + (1 − k)2σ 2)Pθ,σ

(|Z| < w
)
.

Finally, the elastic net shrinkage is given by denet(z) = 1
1+λ2

(|z| − λ1/2)+ ×
sgn(z). The risk of elastic net then follows from Lemma A.1 by setting F(z) =
denet(z) − θ , w = λ1/2, h = f = 1/(1 + λ2), e = 0, d = −λ1/(2(1 + λ2)) − θ and
g = λ1/(2(1 + λ2)) − θ .
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A.4. Proof of Lemma 2.2. For θ̂lava = (θ̂lava,j )
p
j=1, we have E‖θ̂lava − θ‖2

2 =∑p
j=1 R(θj , θ̂lava,j ). We bound R(θj , θ̂lava,j ) uniformly over j = 1, . . . , p. Since

Zj ∼ N(θj , σ
2), by Theorem 2.1,

R(θj , θ̂lava,j ) = E(θ̂lava,j − θj )
2 = I + II + III,

I := −k2(w + θj )φθj ,σ (w)σ 2 + k2(θj − w)φθj ,σ (−w)σ 2,

II := (
λ2

1/4 + σ 2)Pθj ,σ

(|Zj | > w
)
,

III := (
θ2
j k2 + (1 − k)2σ 2)Pθj ,σ

(|Zj | < w
)
.

Let L := (1 + M2/σ 2)/2. By Mill’s ratio inequality, if 2p

πc2 ≥ logp ≥ 1
πc2 , then

2
√

2 logp > λ1/σ > 2
√

logp. By definition, w = λ1/(2k), k = λ2/(1 +λ2), λ2 =
σ 2p/‖β‖2

2, and the condition ‖β‖∞ ≤ M , we have σ
√

logp < λ1/2 ≤ w ≤ λ1L ≤
2σ

√
2 logpL.

We divide our discussions into case: (1) δj = 0, (2) 0 < |δj | ≤ 2Lλ1, and
(3) |δj | > 2Lλ1.

(1): δj = 0. In this case, as long as σ
√

logp > 2M , |θj | = |βj | ≤ M < w/2.
To bound I , we note since |θj | < w, we have I < 0. To bound II,

II ≤(1)

(
w2 + σ 2) σ√

2π(w − θj )
e−(w−θj )2/2σ 2

+ (
w2 + σ 2) σ√

2π(w + θj )
e−(w+θj )2/2σ 2

≤(2) 2 × (
w2 + σ 2) 2σ√

2πw
e−w2/(8σ 2)

≤(3)

8wσ 2
√

2πσ
e−w2/(8σ 2) ≤(4)

4σ 2
√

2π
e−w2/(16σ 2) ≤ 4σ 2

√
2πp1/16

.

In the above, (1) follows from the Mill’s ratio inequality:
∫∞
x e−t2/2 dt ≤

x−1e−x2/2 for x ≥ 0. Also note that w ± θj > 0. Hence, we can apply the Mill’s
ratio inequality respectively on Pθj ,σ (Zj > w) and Pθj ,σ (Zj < −w). (2) is due
to w ± θj > w/2. (3) follows since σ 2 ≤ w2 when p ≥ e. Finally, for any
a > 0, and any x > 1 + a−1, ax2 > logx. Set a = 64−1; when

√
logp > 33,

log(2w/σ) < w2/(16σ 2). Hence, 2w
σ

e−w2/(8σ 2) ≤ e−w2/(16σ 2), which gives (4).

To bound III, we note III ≤ β2
j k2 + (1 − k)2σ 2. Therefore,

∑
δj=0

R(θj , θ̂lava,j ) ≤ ‖β‖2
2k

2 + (1 − k)2σ 2p + 4σ 2p√
2πp1/16

= (1 − k)pσ 2 + 4σ 2p√
2πp1/16

,
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where we used the equality (1−k)2σ 2p+k2‖β‖2
2 = (1−k)pσ 2 for k = σ 2p

‖β‖2
2+σ 2p

.

(2): 0 < |δj | ≤ 2Lλ1. To bound I , since |θj | ≤ M + 4σ
√

2 logpL < 5σ ×√
2 logpL,

I ≤ |θj |σ 2(φθj ,σ (w) + φθj ,σ (−w)
) ≤ 5σ

√
2 logpLσ 2 2√

2πσ 2
= 10σ 2L√

π

√
logp.

To bound II + III, we note II + III ≤ λ2
1/4 + 2σ 2 + θ2

j . Hence,∑
0<|δj |≤2Lλ1

R(θj , θ̂lava,j ) ≤ (
λ2

1/4 + 2σ 2 + θ2
j

)
s ≤ (

2σ 2 + (
5L2 + 0.25

)
λ2

1
)
s,

where we used θ2
j ≤ M2 + 2M|δj | + δ2

j ≤ 5L2λ2
1.

(3): |δj | > 2Lλ1. In this case, |w ± θj | ≥ |θj | − w ≥ |δj | − M − w > |δj |/3,
and |w±θj | ≤ w+M +|δj | < 5|δj |/3. Also, |δj | > 2σ

√
logp. To bound I , when√

logp > 20σ , |δj | > 1 + 20σ 2, and |δj | < exp(|δj |2/(20σ 2)). So

I ≤ 5|δj |σ 2(φθj ,σ (w) + φθj ,σ (−w)
)
/3 ≤ 10σ 2

3
√

2πσ 2
|δj |e−|δj |2/(18σ 2)

≤ 10σ 2

3
√

2πσ 2
e−|δj |2/(180σ 2) ≤ 10σ

3
√

2π
p−1/45.

To bound II, we have II ≤ λ2
1/4+σ 2. To bound III, since |θj |2 +σ 2 < 5|δj |2/4,

we have III ≤ 5|δj |2Pθj ,σ (|Zj | < w)/4. Suppose θj > 0, then w − θj ≤ −|δj |/4,
and

III ≤ 1.25|δj |2P
(
N(0,1) < (w − θj )/σ

) ≤ 1.25|δj |2P
(
N(0,1) < −|δj |/(4σ)

)
≤ 1.25|δj |2 1√

2π

4σ

|δj |e
−|δj |2/(32σ 2) ≤ 5σ√

2π
p−1/45.

Therefore,

∑
|δj |>2Lλ1

R(θj , θ̂lava,j ) ≤ s

(
λ2

1/4 + σ 2 + 9σ√
2π

p−1/45
)
.

Combining the three cases yields:

E‖θ̂lava − θ‖2
2

≤ (1 − k)pσ 2 + 4σ 2p√
2πp1/16

+
(

3σ 2 + (
5L2 + 0.5

)
λ2

1 + 9σ√
2π

p−1/45
)
s

≤ (1 − k)pσ 2 + 4σ 2p√
2πp1/16

+
(

57L2σ 2 logp + 9σ√
2π

p−1/45
)
s,
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where we used 0.5 < 2L2 and λ2
1 ≤ 8σ 2 logp. Since E‖Z − θ‖2

2 = pσ 2, we have

E‖θ̂lava(Z) − θ‖2
2

E‖Z − θ‖2
2

≤ 1 − k + 4√
2πp1/16

+ 15
(
1 + M2/σ 2)2 s logp

p
+ 9√

2πσ

s

p1+1/45

≤ 1 − k + 4√
2πp1/16

+ f (M,σ)
(
logp + p−1/45) s

p

≤ 1 − k + 4√
2πp1/16

+ 2f (M,σ)
s logp

p
.

A.5. Proof of Theorem 2.2. The first result follows from equation (30) in the
proof of Theorem 2.1; the second result follows directly from (12).

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Theorem 3.1. Let Qλ2 = [X′X + nλ2Ip]. Then for any δ ∈ R
p

X
{
β̂(δ) + δ

} = X
{
Q−1

λ2
X′(Y − Xδ) + δ

}
= Pλ2Y + (Ip − Pλ2)Xδ = Pλ2Y + Kλ2Xδ.

The second claim of the theorem immediately follows from this.
Further, to show the first claim, we can write for any δ ∈ R

p ,

∥∥Y − Xβ̂(δ) − Xδ
∥∥2

2 = ∥∥(In − Pλ2)(Y − Xδ)
∥∥2

2=
∥∥Kλ2(Y − Xδ)

∥∥2
2,

nλ2
∥∥β̂(δ)

∥∥2
2 = nλ2

∥∥Q−1
λ2

X′(Y − Xδ)
∥∥2

2.

The sum of these terms is equal to

(Y − Xδ)′
[
K2

λ2
+ nλ2XQ−1

λ2
Q−1

λ2
X′](Y − Xδ) = ∥∥K

1/2
λ2

(Y − Xδ)
∥∥2

2,

where the equality follows from the observation that, since K2
λ2

= In −2XQ−1
λ2

X′ +
XQ−1

λ2
X′XQ−1

λ2
X′ and [X′X + nλ2Ip]Q−1

λ2
= Ip , we have

K2
λ2

+ nλ2XQ−1
λ2

Q−1
λ2

X′ = In − 2XQ−1
λ2

X′ + XQ−1
λ2

[
X′X + nλ2Ip

]
Q−1

λ2
X′

= In − XQ−1
λ2

X′ = I − Pλ2 = Kλ2 .

Therefore, after multiplying by n, the profiled objective function in (15) can be
expressed as: ‖K

1/2
λ2

(Y − Xδ)‖2
2 + nλ1‖δ‖1. This establishes the first claim.
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B.2. Proof of Theorem 3.2. Consider the following lasso problem:

hλ(ỹ) := arg min
δ∈Rp

{
1

n

∥∥ỹ − K
1/2
λ2

Xδ
∥∥2

2 + λ‖δ‖1

}
.

Let gλ(ỹ,X) := X̃hλ(ỹ), where X̃ := K
1/2
λ2

X. By Lemmas 1, 3 and 6 of [38],
y �→ gλ1(y,X) is continuous and almost differentiable, and ∂gλ1(ỹ,X)/∂ỹ =
X̃

Ĵ
(X̃′

Ĵ
X̃

Ĵ
)−X̃′

Ĵ
. Then by Theorem 3.1, X̃dlava(y,X) = X̃hλ1(K

1/2
λ2

y) =
gλ1(K

1/2
λ2

y,X). Therefore,

∇y · (Kλ2Xdlava(y,X)
) = tr

(
K

1/2
λ2

∂gλ1(K
1/2
λ2

y,X)

∂y

)

= tr
(
K

1/2
λ2

X̃
Ĵ

(
X̃′

Ĵ
X̃

Ĵ

)−
X̃′

Ĵ
K

1/2
λ2

)
.

It follows from (20) that

df(θ̂) = tr(Pλ2) + E tr
(
K

1/2
λ2

X̃
Ĵ

(
X̃′

Ĵ
X̃

Ĵ

)−
X̃′

Ĵ
K

1/2
λ2

)
= tr(Pλ2) + E tr

(
X̃

Ĵ

(
X̃′

Ĵ
X̃

Ĵ

)−
X̃′

Ĵ
(I − Pλ2)

)
= tr(Pλ2) + E tr

(
X̃

Ĵ

(
X̃′

Ĵ
X̃

Ĵ

)−
X̃′

Ĵ

)− E tr
(
X̃

Ĵ

(
X̃′

Ĵ
X̃

Ĵ

)−
X̃′

Ĵ
Pλ2

)
= E rank(X̃

Ĵ
) + E tr(K̃

Ĵ
Pλ2).

B.3. Proof of Lemma 3.1. Note that Xθ̂lava + P
Ĵ
Û = P

Ĵ
Y + K

Ĵ
Xθ̂lava =

P
Ĵ
Y + K

Ĵ
Xβ̂ + K

Ĵ
Xδ̂ and Xθ̃post-lava = P

Ĵ
Y + K

Ĵ
Xβ̂ . Hence, it suffices to

show that K
Ĵ
Xδ̂ = 0. In fact, let δ̂

Ĵ
be the vector of zero components of δ̂, then

Xδ̂ = X
Ĵ
δ̂
Ĵ

. So K
Ĵ
Xδ̂ = K

Ĵ
X

Ĵ
δ̂
Ĵ

= 0 since K
Ĵ
X

Ĵ
= 0.

B.4. Proof of Theorem 3.3. Step 1. By (17),

1

n
‖Xθ̂lava − Xθ0‖2

2 ≤ 2

n

∥∥Kλ2X(δ̂ − δ0)
∥∥2

2 + 2

n

∥∥Dridge(λ2)
∥∥2

2

≤ 2

n

∥∥K1/2
λ2

X(δ̂ − δ0)
∥∥2

2‖Kλ2‖ + 2

n

∥∥Dridge(λ2)
∥∥2

2,

since ‖Kλ2‖ ≤ 1 as shown below. Step 2 provides the bound (B1(δ0) ∨ B2(β0)) ×
‖Kλ2‖ for the first term, and Step 3 provides the bound B3 + B4(β0) on the second
term.

Furthermore, since X′Kλ2X = nλ2S(S + λ2I )−1, we have

B2(β0) = 8

n
‖X̃β0‖2

2 = 8

n
β ′

0X
′Kλ2Xβ0 = 8λ2β

′
0S(S + λ2I )−1β0.

Also, to show that ‖Kλ2‖2 ≤ 1, we let Pλ2 = U1D1U
′
1 be the eigen-decomposi-

tion of Pλ2 , then ‖Kλ2‖ = ‖U1(I − D1)U
′
1‖ = ‖I − D1‖. Note that all the nonzero
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eigenvalues of D1 are the same as those of (X′X + nλ2I )−1/2X′X(X′X +
nλ2I )−1/2, and are {dj/(dj + nλ2), j ≤ min{n,p}}, where dj is the j th largest
eigenvalue of X′X. Thus, ‖I − D1‖ = max{maxj nλ2/(dj + nλ2),1} ≤ 1.

Combining these bounds yields the result.
Step 2. Here, we claim that on the event ‖ 2

n
X̃′Ũ‖∞ ≤ c−1λ1, which holds with

probability 1 − α, we have

1

n

∥∥X̃(δ̂ − δ0)
∥∥2

2 ≤ 4λ2
1

ι2(c, δ0, λ1, λ2)
∨ 42‖X̃β0‖2

2

n
= B1(δ0) ∨ B2(β0).

By (16), for any δ ∈ R
p ,

1

n
‖Ỹ − X̃δ̂‖2

2 + λ1‖δ̂‖1 ≤ 1

n
‖Ỹ − X̃δ0‖2

2 + λ1‖δ0‖1.

Note that Ỹ = X̃δ0 + Ũ + X̃β0, which implies the following basic inequality: for
� = δ̂ − δ0, on the event ‖ 2

n
X̃′Ũ‖∞ ≤ c−1λ1,

1

n
‖X̃�‖2

2 ≤ λ1

(
‖δ0‖1 − ‖δ0 + �‖1 +

∣∣∣∣2n�X̃′Ũ
∣∣∣∣
)

+ 2
∣∣∣∣1n(X̃�)′(X̃β0)

∣∣∣∣
≤ λ1

(‖δ0‖1 − ‖δ0 + �‖1 + c−1λ‖�‖1
)+ 2

∥∥∥∥ 1√
n
X̃�

∥∥∥∥
2

∥∥∥∥ 1√
n
X̃β0

∥∥∥∥
2
,

or, equivalently,

1

n
‖X̃�‖2

2

(
1 − 2‖(1/

√
n)X̃β0‖2

‖(1/
√

n)X̃�‖2

)
≤ λ1

(‖δ0‖1 − ‖δ0 + �‖1 + c−1λ‖�‖1
)
.

If ‖ 1√
n
X̃�‖2 ≤ 4‖ 1√

n
X̃β0‖2, then we are done. Otherwise, we have that

1

n
‖X̃�‖2

2 ≤ 2λ1
(‖δ0‖1 − ‖δ0 + �‖1 + c−1‖�‖1

)
.

Thus, � ∈ R(c, δ0, λ1, λ2), and hence by the definition of the design-impact factor

1

n
‖X̃�‖2

2 ≤ 2λ1
(1/

√
n)‖X̃�‖2

ι(c, δ0, λ1, λ2)
�⇒ 1√

n
‖X̃�‖2 ≤ 2λ1

ι(c, δ0, λ1, λ2)
.

Combining the two cases yields the claim.
Step 3. Here, we bound 2

n
‖Dridge(λ2)‖2

2. We have

2

n

∥∥Dridge(λ2)
∥∥2

2 ≤ 4

n
‖Kλ2Xβ0‖2

2 + 4

n
‖Pλ2U‖2

2.

By [25]’s exponential inequality for deviation of quadratic form of sub-Gaussian
vectors, the following bound applies with probability 1 − ε:

4

n
‖Pλ2U‖2

2 ≤ 4σ 2
u

n

[
tr
(
P2

λ2

)+ 2
√

tr
(
P4

λ2

)
log(1/ε) + 2

∥∥P2
λ2

∥∥ log(1/ε)
]
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≤ 4σ 2
u

n

[
tr
(
P2

λ2

)+ 2
√

tr
(
P2

λ2

)∥∥P2
λ2

∥∥ log(1/ε) + 2
∥∥P2

λ2

∥∥ log(1/ε)
]

≤ 4σ 2
u

n

[√
tr
(
P2

λ2

)+ √
2
√∥∥P2

λ2

∥∥√log(1/ε)
]2 = B3,

where the second inequality holds by Von Neumann’s theorem [24], and the last
inequality is elementary.

Furthermore, note that Kλ2X = λ2X(S + λ2I )−1. Hence,

B4(β0) = 4

n
‖Kλ2Xβ0‖2

2 = 4λ2
2β

′
0(S + λ2I )−1S(S + λ2I )−1β0 = 4β ′

0Vλ2β0.

SUPPLEMENTARY MATERIAL

Supplement to “A lava attack on the recovery of sums of dense and sparse
signals” (DOI: 10.1214/16-AOS1434SUPP; .pdf). This supplementary material
contains additional simulation results and omitted proofs.
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