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TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
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Contingency table analysis routinely relies on log-linear models, with la-
tent structure analysis providing a common alternative. Latent structure mod-
els lead to a reduced rank tensor factorization of the probability mass function
for multivariate categorical data, while log-linear models achieve dimension-
ality reduction through sparsity. Little is known about the relationship be-
tween these notions of dimensionality reduction in the two paradigms. We
derive several results relating the support of a log-linear model to nonnega-
tive ranks of the associated probability tensor. Motivated by these findings, we
propose a new collapsed Tucker class of tensor decompositions, which bridge
existing PARAFAC and Tucker decompositions, providing a more flexible
framework for parsimoniously characterizing multivariate categorical data.
Taking a Bayesian approach to inference, we illustrate empirical advantages
of the new decompositions.

1. Introduction. Parsimonious models for contingency tables are of growing
interest due to the routine collection of data on moderate to large numbers of cate-
gorical variables. We study the relationship between two paradigms for inference
in contingency tables: the log-linear model [1, 4, 17] and latent structure models [2,
20, 21, 23, 32, 35, 42] that induce a tensor decomposition of the joint probability
mass function [3, 15]. We aim to understand situations where the joint probabil-
ity corresponding to a sparse log-linear model has a low rank tensor factorization.
Connecting the seemingly distinct notions of parsimony in the two parameteriza-
tions can motivate the use of factorizations having a combination of computational
tractability and flexibility.

Let V = {1, . . . , p} denote a set of p categorical variables. We use (yj , j ∈ V ) to
denote variables, with yj ∈ Ij having dj = |Ij | levels. Without loss of generality,
we assume Ij = {1, . . . , dj }. Let IV = ×j∈V Ij . Elements of IV are referred to
as cells of the contingency table; there are

∏p
j=1 dj cells in total. We generically

denote a cell by i, with i = (i1, . . . , ip) ∈ IV . The joint probability mass function
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of y = (y1, . . . , yp) is denoted by π , with

πi1,...,ip = Pr(y1 = i1, . . . , yp = ip), i ∈ IV .(1)

A p-way tensor M ∈ R
d1×···×dp is a multiway-array which generalizes matrices

to higher dimensions [29]. Two common forms of tensor decomposition which
extend the matrix singular value decomposition are the PARAFAC [24] and Tucker
[10, 11, 43] decompositions. Note that π = (πi1,...,ip )i∈IV

can be identified with a
R

d1×···×dp -probability tensor, which is a nonnegative tensor with entries summing
to one. Given n i.i.d. replicates of y, let n(i) denote the cell-count of cell i. We
assume the cell counts are multinomially distributed according to the probabilities
in π .

Inference for contingency tables often employs log-linear models that express
the logarithms of the entries in π as a linear function of parameters related to the
index of each cell. Most of these parameters relate to interactions between the
variables [1]. A saturated log-linear model has as many parameters as π has cells.
To reduce dimensionality, it is common to assume a large subset of the interac-
tion parameters are zero, and estimate the model using L1 regularization [37, 38],
decomposition approaches [6] or Bayesian model averaging [12, 13, 36]. Zero
interaction terms are easily interpreted in terms of conditional and marginal in-
dependence relationships among the variables. A significant literature exists on
Bayesian inference for log-linear models, focusing mainly on the development of
novel conjugate priors [8, 36], model selection/averaging [25, 33] and stochastic
search algorithms to explore the model space (e.g., [14]).

An alternative approach is to assume that the p variables are conditionally inde-
pendent given one or more discrete latent class indices, with dependence induced
upon marginalization over the latent variable(s). The attractiveness of such latent
class models arises partly from easy model fitting using data-augmentation, with
a Bayesian nonparametric formulation allowing the number of latent classes to be
learned from the data [15]. Dunson and Xing [15] showed that a single latent class
model is equivalent to a reduced-rank nonnegative PARAFAC decomposition of
the joint probability tensor π , while the multiple latent class model in [3] implied
a Tucker decomposition. See also [44] and [30] for extensions of these models to
more complex settings.

Latent class models and log-linear models can be unified within a larger class
of graphical models with observed and unobserved variables (see, e.g., [26, 31]).
In particular, [19] describes relationships between the number of components in
a PARAFAC expansion of π and the topological structure of the corresponding
parameter space of a log-linear model, with consequences for estimation and se-
lection in latent structure models. Others have established additional connections
between latent structure models and the algebraic topology of the log-linear model
[16, 18, 33, 39–41].

These two classes of models impose sparsity (or parsimony) in seemingly dif-
ferent ways, and to best of our knowledge, no connection has been established yet
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in this regard. The class of sparse log-linear models is often considered a desir-
able data generating class in high-dimensional settings for flexibility and ease of
interpretation, and it is important to determine whether there exist low rank expan-
sions for probability tensors corresponding to sparse log-linear models. Determin-
ing whether a nontrivial relationship exists is a major focus of the paper. Working
with a class of weakly hierarchical log-linear models, we provide precise bounds
on the tensor ranks of sparse log-linear models. There are limited results on ranks
of higher-order tensors, and the techniques developed here may be of independent
interest.

The complementary goal of this work is to leverage insights from our theoretical
study to develop improved classes of factorization models that provide computa-
tionally tractable alternatives to sparse log-linear models. Sparse log-linear models
are appealing in terms of interpretation and flexibility but unfortunately cannot be
implemented practically in high dimensions. Motivated by our theoretical results
that usual latent class models require many extra parameters to characterize sparse
log-linear models, we propose a new class of collapsed Tucker (c-Tucker) fac-
torizations. These factorizations can parsimoniously characterize complex interac-
tions in categorical data, including data generated from sparse log-linear models.
We propose Bayesian methods for analyzing data under c-Tucker models, demon-
strating advantages over usual PARAFAC-type latent class models.

This paper is organized as follows. Section 2 introduces notation and provides
background relevant to log-linear models and latent structure models. Section 3
provides our main theoretical results on the rank of probability tensors correspond-
ing to sparse log-linear models, and defines classes of sparse log-linear models
corresponding to relatively low rank probability tensors. Section 4 introduces and
motivates the proposed collapsed Tucker model. Section 5 presents a numerical
study of the Bayesian collapsed Tucker model, focusing on its performance in
estimation of π and the parameters of a log-linear model; we also show close
agreement to an alternative method on a real data example. Section 6 gives further
discussion of results and implications.

2. Notation and background. We introduce some notation and background
on log-linear models and tensor decompositions. Additional notation will be intro-
duced in Section 3. See Table 1 in the Appendix for a list of notation.

2.1. Log-linear models. A standard approach to contingency table analysis
parametrizes π as a log-linear model satisfying certain constraints. For a subset
of variables E ⊂ V , we adopt the notation of [36] to denote by iE the cells in the
marginal E-table, so that iE ∈ IE := ×j∈E Ij . Let θE(iE) denote the interaction
among the variables in E corresponding to the levels in iE . With this notation,
a log-linear model assumes the form

log(πi) = ∑
E⊂V

θE(iE).(2)
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As a convention, θ∅ corresponds to E = ∅. To identify the model, we choose the
corner parameterization [1, 36], which sets θE(iE) = 0 if there exists j ∈ E such
that ij = 1. In the binary setting (dj = 2 for all j ) with corner parametrization, any
E for which θE(iE) �= 0 must have every element of iE equal to 2. In this case, we
will represent θE(iE) as θE since there is no ambiguity. When d > 2, the notation
θE refers to the collection of parameters {θE(iE) : iE ∈ IE}, and θE = 0 indicates
θE(iE) = 0 for all iE ∈ IE .

Let θ = {θE(iE) : iγ �= 1, ∀γ ∈ E} denote the collection of free model param-
eters and Sθ denote the collection of nonzero elements of θ . A saturated model
includes all free model parameters, so that |Sθ | = ∏

j dj − 1. Although any model
that is not saturated is technically sparse, when we refer to sparse log-linear models
we have in mind settings where |Sθ | � ∏

j dj − 1. We will be primarily concerned
with how the degree and structure of sparsity affects the nonnegative tensor rank
of π .

An attractive feature of log-linear models is that the parameters are interpretable
as defining conditional and marginal independence relationships between the yj ’s.
A log-linear model is hierarchical [7, 9, 36] if for every E ⊂ V for which θE = 0,
we have θF = 0 for all F ⊇ E. Here, we work with a more general class of log-
linear models that contains hierarchical models. We refer to this class as weakly
hierarchical.

DEFINITION 2.1. A log-linear model is weakly hierarchical when the follow-
ing condition is satisfied: if θE(iE) = 0 for E ⊂ V and iE ∈ IE , then θF (i′F ) = 0
for every F ⊇ E and i′F ∈ IF such that i′j = ij for all j ∈ E.

When dj = 2 for all j , weakly hierarchical models and hierarchical models de-
fine identical subsets of log-linear models, but if any dj > 2, the collection of hi-
erarchical models is a proper subset of the collection of weakly hierarchical mod-
els. To see this, suppose a model is weakly hierarchical. Assume θE = 0. Then
θE(iE) = 0 for all iE ∈ IE . Let F ⊇ E. For any i′F ∈ IF , θF (i′F ) = 0 by weak hier-
archicality, since θE(i′E) = 0. Since i′F is arbitrary, we must have θF = 0, proving
hierarchicality.

The essential difference between hierarchical and weakly hierarchical models
is illustrated by the following example. Let V = {1,2,3} and d1 = d2 = d3 = 4.
Suppose

Sθ = {
θ{1}(2), θ{2}(2), θ{3}(2), θ{1,2}(2,2), θ{1,3}(2,2), θ{2,3}(2,2),

θ{1,2,3}(2,2,2)
}
.

In other words, any interactions that correspond to all variables in E taking level 2
are nonzero, and all others are zero. This model is weakly hierarchical but not hier-
archical. For a model to be hierarchical, the collection of nonzero parameters must
be uniquely specified by a generator—a collection of subsets of V . For weakly
hierarchical models, some interactions corresponding to a single subset E may be
zero and others nonzero, so long as Definition 2.1 is satisfied.
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2.2. Tensor factorization models. An alternative to log-linear models is latent
structure analysis [2, 20, 21, 23, 32, 35, 42], which assumes the y1, . . . , yp are
conditionally independent given one or more latent class variables. In marginaliz-
ing out the latent class variables, one obtains a tensor decomposition of π . Latent
structure models inducing PARAFAC and Tucker decompositions are briefly re-
viewed below.

2.2.1. PARAFAC models. An m-component nonnegative PARAFAC decom-
position [24] of a probability tensor π is given by

π =
m∑

h=1

νhλ
(1)
h ⊗ · · · ⊗ λ

(p)
h =

m∑
h=1

νh

p⊗
j=1

λ
(j)
h ,(3)

where ⊗ denotes an outer product,3 each λ
(j)
h ∈ �(dj−1) is an element of

the (dj − 1) dimensional simplex,4 and ν ∈ �(m−1). Element wise, πi1,...,ip =∑m
h=1 νh

∏p
j=1 λ

(j)
hij

. By constraining ν and the λ
(j)
h ’s to be probability vectors, it is

ensured that the entries of π are nonnegative and sum to one. The vectors λ
(j)
h are

referred to as the arms of the tensor decomposition.
A probabilistic PARAFAC decomposition [15] of π can be induced by a single

index latent class model

yj |z ind.∼ Multi
({1, . . . , dj }, λ(j)

z1 , . . . , λ
(j)
zdj

)
,

(4)
Pr(z = h) = νh, h = 1, . . . ,m.

Marginalizing over the latent variable z, we obtain expression (3).
Unlike matrices, there is no unambiguous definition of the rank of a tensor.

A notion of tensor rank is derived restricting attention to PARAFAC expansions.
The nonnegative PARAFAC rank of a nonnegative tensor M is the minimal value
of m for which there exist nonnegative vectors λ̃

(j)
h such that

M =
m∑

h=1

p⊗
j=1

λ̃
(j)
h .(5)

We will denote the nonnegative PARAFAC rank of a tensor M as rnk+
P (M). In the

case of probability tensors, the definition in (5) is equivalent to the minimum m

such that (3) holds, since the weights νh can be absorbed into the arms λ
(j)
h . For

3{⊗p
j=1 λ

(j)
h }i1,...,ip = ∏p

j=1 λ
(j)
hij

.
4�(r−1) = {x ∈R

r : xj ≥ 0 ∀j,
∑r

j=1 xj = 1}.
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probability tensors, we can always write a trivial PARAFAC expansion exploiting
the probabilistic structure as

πi1,...,ip = Pr(y1 = i1|y2 = i2, . . . , yp = ip)Pr(y2 = i2, . . . , yp = ip)

= ∑
c2∈I2

· · · ∑
cp∈Ip

Pr(y1 = i1|y2 = c2, . . . , yp = cp)1(c2=i2,...,cp=ip)(6)

× Pr(y2 = c2, . . . , yp = cp).

To see the correspondence with (3), introduce one level of h for each distinct
value of the multiindex (c2, . . . , cp) so that m = ∏p

j=2 dj , and set νh = Pr(y2 =
c2, . . . , yp = cp), λ

(1)
hi1

= Pr(y1 = i1|y2 = c2, . . . , yp = cp) and λ
(j)
hij

= 1(ij=cj ) for

j = 2, . . . , p. As a consequence, we obtain an upper bound of dp−1 on the non-
negative PARAFAC rank rnk+

P (π) when dj = d for all j . Thus, every nonnegative
tensor has finite nonnegative PARAFAC rank, and the single latent class model has
full support.

2.2.2. Tucker models. An m-component nonnegative Tucker decomposition
[10, 43] alternatively expresses the entries in π as

πc1,...,cp =
m∑

h1=1

· · ·
m∑

hp=1

φh1,...,hp

p∏
j=1

λ
(j)
hj cj

,(7)

where φ is an mp core probability tensor and λ
(j)
h ∈ �dj−1 for every h and j . The

Tucker decomposition can be thought of as a weighted sum of mp tensors each
having PARAFAC rank one with weights given by the entries in φ; conversely,
the PARAFAC is a special case of the Tucker decomposition where the core is an
m × 1 probability vector.

A probabilistic Tucker expansion of a probability tensor π can be induced by a
latent class model with a vector of latent class indicators z = (z1, . . . , zp),

yj |z ind.∼ Multi
({1, . . . , dj }, λ(j)

zj 1, . . . , λ
(j)
zj dj

)
,

(8)
Pr(z1 = h1, . . . , zp = hp) = φh1,...,hp .

From this, it is clear that φ parametrizes the joint distribution of the latent vari-
ables z1, . . . , zp . See [3] for a class of hierarchical models that induce a structured
Tucker decomposition of a probability tensor.

The Tucker decomposition gives rise to an alternative definition of the nonneg-
ative tensor rank of a tensor M as the minimal value of m such that M can be
expressed exactly by an expansion of the form in (7). We will denote the non-
negative Tucker rank of a tensor M as rnk+

T (M). In the case where dj = d for
all j , an argument similar to the one in (6) shows that for probability tensors π ,
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rnk+
T (π) ≤ d . The scale of Tucker ranks is quite different from that of PARAFAC

ranks because the core itself has dimension mp . Therefore, in modeling it is com-
mon to choose a parsimonious representation of the core, an issue we revisit in
Section 4.

3. Main results: PARAFAC rank of sparse log-linear models.

3.1. PARAFAC rank result for general p and d . We now provide bounds on
the nonnegative PARAFAC rank of joint probability tensors. There are few results
on ranks of tensors beyond three dimensions and the techniques developed here
are likely to be of independent interest. All proofs are deferred to the Appendix. In
addition to the bounds developed in this section based on probabilistic arguments,
we provide algebraic constructions in the two-dimensional case in a supplementary
document (see [28]).

In the results that follow, we exploit the fact that a PARAFAC expansion of a
probability tensor has a dual representation as a latent variable model (4), and the
PARAFAC rank of a probability tensor can be defined in terms of the support of the
corresponding latent class variable. Remark 3.1 re-expresses an observation from
[34] that formalizes this relationship. For a nonnegative integer-valued random
variable w, denote spt(w) = {h : Pr(w = h) > 0}.

REMARK 3.1. Suppose π is a
∏p

j=1 dj probability tensor, and let y1, . . . , yp

be categorical random variables with joint distribution defined by π . Then
rnk+

P (π) = ∧
z∈Z |spt(z)|, where Z is the collection of all finitely-supported, dis-

crete latent variables z such that

Pr(y1 = i1, . . . , yp = ip|z = h) =
p∏

j=1

Pr(yj = ij |z = h),(9)

for all h ∈ spt(z) and i ∈ IV .

Therefore, if a latent variable z satisfying (9) can be constructed, then the
rank of π can be at most |spt(z)|. Our recipe to create such discrete random
variables z is to partition the probability space Y on which (y1, . . . , yp) is de-
fined and assign z a constant value on each partition set. Since y is a mapping
from Y to IV , for any partition of IV , the inverse images of the partition sets
under the mapping y define a partition of Y . We shall restrict our attention to
such partitions of Y . As a convention to simplify notation, we shall continue to
use Pr to denote probabilities under the probability measure induced on IV via
the measurable map y. For subsets Bj ⊂ Ij , it follows from a standard prop-
erty that Pr(y1 ∈ B1, . . . , yp ∈ Bp) = Pr(×p

j=1 Bj), with the first probability de-
fined on the σ -algebra on Y and the second on the product σ -algebra on IV . We
shall henceforth identify the event {y1 ∈ B1, . . . , yp ∈ Bp} in Y with the event
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×p
j=1 Bj in IV . For a set A ∈ IV , Pr(y1 ∈ B1, . . . , yp ∈ Bp|A) is defined as

Pr[(×p
j=1 Bj) ∩ A]/Pr(A).

We now elaborate on the construction of z. For a partition P of IV , with
{A1, . . . ,A|P|} denoting an (arbitrary) enumeration of the sets in P , we define
a discrete random variable z = zP on Y corresponding to P as

z = h1Ah
(y), h = 1, . . . , |P|.(10)

In particular, for partitions Pj of Ij , we can define the product partition P as

P =
p×

j=1
Pj :=

{
p×

j=1
Bj : Bj ∈ Pj

}
.(11)

It follows from properties of the Cartesian product that P indeed forms a partition
of IV and |P| = ∏p

j=1 |Pj |.
Clearly, for any z as in (10), (9) is equivalent to

Pr(y1 = i1, . . . , yp = ip|Ah) =
p∏

j=1

Pr(yj = ij |Ah),(12)

for all h = 1, . . . , |P| and i ∈ IV . We now proceed to create partitions P satisfy-
ing (12). First, observe that the trivial PARAFAC expansion in (6) corresponds to
the product partition (11) with P1 = I1 and Pj = {{cj } : cj ∈ Ij } for j ≥ 2, so that
the event {z = h} for each h designates an event of the form I1 ×{c2}× · · ·× {cp}.
Clearly, |P| = dp−1; the trivial upper bound. Our main target is to show that much
tighter bounds can be achieved under the assumption of weak hierarchicality.

We introduce some additional notation here. For a variable j ∈ V , let C
(j)
θ de-

note the levels of variable j that share a nonzero two-way or higher order inter-
action with at least one other variable. For weakly hierarchical models, it is suf-
ficient to only search over the nonzero two-way interactions, so that C

(j)
θ = {cj ∈

Ij : there exists j ′ �= j and cj ′ ∈ Ij ′ such that θ{j,j ′}(cj , cj ′) �= 0}. For any θ , let
Cθ := {(E, iE) : |E| ≥ 2, θE(iE) �= 0} and Cθ,2 := {(E, iE) : |E| = 2, θE(iE) �= 0}.
Note that Cθ is not the collection of nonzero second or higher order interactions;
elements of Cθ are tuples (E, iE) such that there is a nonzero interaction among
variables in E corresponding to the levels in iE . Cθ,2 is constructed similarly for
the nonzero two-way interactions only.

If the model is weakly hierarchical, it follows from Definition 2.1 that for
any subset C′ of (C

(j)
θ )c, yj1C′(yj ) ⊥ y[−j ], where y[−j ] = (y1, . . . , yj−1,

yj+1, . . . , yp) and for random variables x1, x2, x1 ⊥ x2 indicates marginal inde-
pendence. Thus, instead of having to let the levels of z vary over all events of
the form {{c2} ∩ · · · ∩ {cp}}, one can coarsen the partition P in (11) by pooling

together all the levels in (C
(j)
θ )c to form a single element of Pj . Further improve-

ment can be achieved by scanning through the variables in a particular order and
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only considering the subset of C
(j)
θ that correspond to nonzero two-way interac-

tions with variables that appear later in the ordering. We formalize this observation
in Theorem 3.1 below.

THEOREM 3.1. Suppose π is a dp probability tensor corresponding to a
weakly hierarchical log-linear model. Let σ be a permutation on V . For each
j = 1, . . . , p − 1, denote G

(j)
σ = {σ(j + 1), . . . , σ (p)} and define Bσ(j) to be the

following subset of C
(j)
θ :

Bσ(j) = {
iσ (j) ∈ Iσ(j) : ∃f ∈ G(j)

σ and if ∈ If s.t. θ{σ(j),f }(iσ(j), if ) �= 0
}
.

Then the PARAFAC rank rnk+
P (π) of π is at most

∧
σ

p−1∏
j=1

(|Bσ(j)| + 1
)
.

The bound in Theorem 3.1 gives the correct upper bound dp−1 when the model
is saturated, since then for any permutation σ we have |Bσ(j)| = (d − 1) for
j = 1, . . . , p − 1. More importantly, it is easy to compute and provides a useful
estimate of the order of the PARAFAC rank in d and/or p when the interactions are
uniformly spread. However, if the interactions are highly structured, Theorem 3.1
may yield the trivial upper bound irrespective of the true rank, as seen in Exam-
ple 3.3 below.

Our next result provides sharper bounds on the PARAFAC rank. In the first part
of Theorem 3.2, we provide a “dimension-free” upper bound that is unaffected by
increasing d as long as the true PARAFAC rank is constant. We then present a tight
upper bound in the second part of Theorem 3.2 which cannot be globally improved
in the class of weakly hierarchical log-linear models.

THEOREM 3.2. Suppose π is a probability tensor corresponding to a weakly
hierarchical log-linear model. Let H = {H1, . . . ,Hp} denote collections of sets
of indices, where each Hj ⊂ Ij . Given H , define T(Cθ ,H) = {(E, iE) ∈ Cθ : ij ∈
Hj for some j ∈ E} and let

H = {H : T(Cθ ,H) = Cθ }.(13)

Assume C
(j)
θ �= ∅ for all j . Then

rnk+
P (π) ≤ ∧

H∈H

( ∏
j∈V

(|Hj | + 1
))

.(14)

For any l ∈ V , set Wl = {j ∈ V \ {l} : |Hj | = d − 1} and W̄l = V \Wl . Then a tight
upper bound on rnk+

P (π) is∧
H∈H

∧
l∈V

( ∏
j∈V

(|Hj | + 1
) −

[ ∏
j∈Wl

(|Hj | + 1
)][ ∏

j∈W̄l

|Hj |
])

.(15)
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The full proof of Theorem 3.2 is provided in the Appendix; Example 3.4 illus-
trates the main ideas of the proof.

REMARK 3.2. By definition, T(Cθ ,H) ⊂ Cθ , so the condition T(Cθ ,H) = Cθ

in the definition of H in (13) equivalently requires that for every (E, iE) ∈ Cθ ,
ij ∈ Hj for some j ∈ E. Moreover, for weakly hierarchical models, T(Cθ ,H) =
Cθ ⇔ T(Cθ,2,H) = Cθ,2.

REMARK 3.3. Theorem 3.2 assumes C
(j)
θ �= ∅ for all j , that is, every variable

shares at least one second-order interaction. Clearly, the set of variables which do
not satisfy the condition are marginally independent of all other variables and do
not contribute to the rank. Letting U = {j : C

(j)
θ = ∅}, the statement of Theo-

rem 3.2 will continue to hold without this assumption as long as we replace all
instances of V by V ∗ = V \ U .

3.2. Illustrative examples. In this subsection, we present two examples to
highlight the refinement of the bounds in Theorem 3.2 over Theorem 3.1 and illus-
trate the main ideas behind the proof of Theorem 3.2.

In the setting of Example 3.3 below, the expressions in (14) and (15) can be
explicitly calculated to illustrate the improvement over Theorem 3.1.

EXAMPLE 3.3. Suppose p = 2 and d1 = d2 = d . Assume θ{1,2}(2, c2) �= 0 for
all c2 ≥ 2, θ{1,2}(c1,2) �= 0 for all c1 ≥ 2 and θ{1,2}(c1, c2) = 0 otherwise. Thus,
level 2 of variable 1 interacts with all levels except 1 of variable 2, and similarly,
level 2 of variable 2 interacts with all levels except 1 of variable 1. In addition, for
convenience of illustration, also assume that all main effects are zero,5 so that

logπi1i2 = θ0 + θ{1,2}(i1, i2)1(ii=2,i2≥2) + θ{1,2}(i1, i2)1(ii≥2,i2=2).

Letting Jd denote the d × d matrix given by v1 ⊗ v2, where {v1}i1 = 1i1 �=2 and
{v2}i2 = 1i2 �=2, we can write π = eθ0Jd + π̃ , where π̃ is a d × d nonnegative
matrix with entries

π̃i1i2 = eθ0+θ{1,2}(i1,2)1(i2=2)+θ{1,2}(2,i2)1(i1=2)1(ii=2 or i2=2).

Note that π̃ is everywhere zero except in the second row and column. In the case
of nonnegative matrices, rnk+

P (A) equals the ordinary matrix rank rnk(A) when
rnk(A) ≤ 2 (see [22]). It is easy to see that the ordinary matrix rank of π̃ is 2,
since there are at most two linearly independent columns. Hence, rnk+

P (π̃) = 2 and

5Here and in several later examples, we assume that the main effects {θE(iE) : |E| = 1} are zero
for notational brevity. While formally these models are not weakly hierarchical, the inclusion of
nonzero main effects do not influence the PARAFAC rank, and hence this assumption can be made
without loss of generality.
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applying Lemma A.1 in the Appendix, we conclude rnk+
P (π) ≤ 1 + rnk+

P (π̃) ≤ 3.
Barring pathological cases, the ordinary rank rnk(π) will always be 3, and since
rnk+

P (A) ≥ rnk(A) for matrices [5], rnk+
P (π) will also be exactly 3.

In applying Theorem 3.1, we have |B1| = |B2| = d − 1, so that we always get
the trivial upper bound d irrespective of the choice of σ .

Next, apply Theorem 3.2. Observe that H = {{2}, {2}} ∈ H , since all of the
interaction terms have either c1 = 2 or c2 = 2, and hence the upper bound in (14)
is reduced to 4 irrespective of the value of d . With this choice of H , the expression
inside the minimum in (15) becomes (|H1|+1)(|H2|+1)−|H1||H2| = 4−1 = 3,
which returns the exact rank.

As in case of Theorem 3.1, the main strategy of proving Theorem 3.2 is to care-
fully construct a partition P of IV and define z as in (10). In this case, generate
a partition utilizing the sets Hj and establish the conditional independence (12)
exploiting the definition of H . Let H̄j = Ij \Hj and let PH,j denote the partition
of Ij consisting of the singleton sets {ij } for ij ∈ Hj and the set H̄j . Define a
partition P0

H of IV as the Cartesian product (11) of the partitions PH,j . It is then
immediate that |Pj | = |Hj | + 1, and hence |P| = ∏p

j=1(|Hj | + 1). The nontrivial
aspect of the proof of (14) is to show that for any H ∈ H , y1, . . . , yp are con-
ditionally independent given any set A in P0

H . The tight upper bound in (15) of
Theorem 3.2 exploits that certain sets in P0

H can be merged without sacrificing
conditional independence. Although detailed proofs of these facts are provided in
the Appendix, we highlight the salient features in Example 3.4, which is an ex-
tension of Example 3.3 to higher dimensions with a more complicated interaction
structure.

EXAMPLE 3.4. Let p = 5 with d ≥ 4 and suppose Sθ is given by

2θ{1,2}(2, c2) �= 0 for c2 ≥ 2, θ{2,3}(2, c3) �= 0 for c3 ≥ 2,

θ{3,4}(2, c4) �= 0 for c4 ≥ 2, θ{4,5}(2, c5) �= 0 for c5 ≥ 2,

θ{1,5}(c1,2) �= 0 for c1 ≥ 2, θ{2,4}(2, c4) �= 0 for c4 ≥ 2,

θ{1,4}(2, c4) �= 0 for c4 ≥ 2, θ{1,2,4}(2,2,4) �= 0,

θ{2,5}(2, c5) �= 0 for c5 ≥ 2, θ{1,5}(2, c5) �= 0 for c5 ≥ 2,

θ{1,2,5}(2,2,4) �= 0,

so there are two nonzero three-way interactions. It is not difficult to see that The-
orem 3.1 gives the trivial bound of d4 for all 5! = 120 permutations. Now, let
Hj = {2} for each j , so that H = {{2}, {2}, {2}, {2}, {2}}. From (3.2), we can ver-
ify that H ∈ H . Hence, the conclusion of (14) holds and rnk+

P (π) ≤ 25 = 32,
a massive reduction.

As an illustration of the proof technique, we now show that:
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1. (12) holds with a specific A ∈ P0
H and a specific cell i ∈ A, providing intu-

ition for the proof of (14);
2. (12) continues to hold when two example sets in P0

H that have (|V |−1) iden-
tical coordinate projections that are singleton sets are merged, providing intuition
for the proof of (15); and,

3. that (12) fails when two example sets in P0
H that do not have (|V | − 1)

identical coordinate projections that are singleton sets are merged, providing a
heuristic for the tightness of (15).

Since Hj = {2}, H̄j = {1,3, . . . , d}; we shall denote this by {�= 2} for brevity.
The partition PH,j of Ij therefore consist of the two sets {2} and {�= 2} for each
j = 1, . . . ,5 and the partition P0

H has 32 elements.

Part 1. Consider the event A = {2} × {2} × {2} × {�= 2} × {�= 2} ∈ P0
H and the

cell i = (2,2,2,4,4). We show that (12) holds with A and i, that is, if A∗ denotes
the event {y = i} then

2 Pr
(
A∗|A) = Pr(y1 = 2|A)Pr(y2 = 2|A)Pr(y3 = 2|A)

× Pr(y4 = 4|A)Pr(y5 = 4|A)(16)

= 1 × 1 × 1 × Pr(y4 = 4|A)Pr(y5 = 5|A).

Now notice that

Pr(y4 = 4|A) = ∑
c5 �=2

π2224c5

Pr(A)
= Pr

(
A∗|A) ∑

c5 �=2

π2224c5

π22244

and similarly

Pr(y5 = 4|A) = ∑
c4 �=2

π222c44

Pr(A)
= Pr

(
A∗|A) ∑

c4 �=2

π222c44

π22244
.

So (16) is equivalent to showing

Pr(A)

π22244
= ∑

c4 �=2

∑
c5 �=2

π2224c5

π22244

π222c44

π22244
.

Since

Pr(A)

π22244
= ∑

c4 �=2

∑
c5 �=2

π222c4c5

π22244
= ∑

c4 �=2

∑
c5 �=2

π222c4c5

π222c44

π222c44

π22244
,

we need to show that
π222c4c5

π222c44
= π2224c5

π22244
.(17)
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All main effects and interactions that correspond to variables y1, . . . , y4 will be
eliminated in the ratios on both sides, so we focus only on those involving y5. This
gives us that the LHS of (17)—assuming c5 �= 4—is

exp
(
θ{5}(c5) − θ{5}(4) + θ{1,5}(2, c5) − θ{1,5}(2,4) + θ{2,5}(2, c5)

− θ{2,5}(2,4) − θ{1,2,5}(2,2,4)
)
.

The RHS differs only in the value of y4, but since there are no {4,5} interactions
at these levels of the variables and the level of y4 is the same in the numerator
and denominator on the RHS, equality holds in (17), despite the fact that there are
nonzero three-way interactions. Note that θ{1,2,4}(2,2,4) cancelled on the RHS
and was either zero or cancelled on the LHS as well (the latter occurring when
c4 = 4).

Part 2. Fix l = 5. The partition P0
H contains the sets

Aδ = {{2} × {2} × {2} × {2} × {2}},
Aβ = {{2} × {2} × {2} × {2} × {�= 2}}.

These sets share |V | − 1 = 4 coordinate projections that are singleton sets, for
example, the set {2} corresponding to variables 1 through 4. Now set

Aε = Aδ ∪ Aβ = {{2} × {2} × {2} × {2} × I5
}

and put P1
H = (P0

H \ Aβ,Aδ) + Aε . Following the argument in the display af-
ter (11), we have conditional independence given Aε . Since this is the only set in
P1

H that is not in P0
H , P1

H satisfies (12). Therefore, we see that it is possible to
merge two sets that have (|V | − 1) identical coordinate projections that are sin-
gleton sets to create a coarser partition that continues to satisfy (12). Though we
do not show it rigorously in this example, it is only possible to merge two sets of
this form in P0

H while maintaining conditional independence, giving us the upper
bound rnk+

P (π) = 25 − 1 = 31. The same value is given by (15).

Part 3. We now utilize the same setup to demonstrate the key argument as
to why (15) is tight. This principle can be described succinctly as the failure of
conditional independence upon replacing sets in the partition A0

H with their union
when these sets do not have in common at least |V | − 1 identical singleton events.
Let Aβ and A∗ be as in Parts 2 and 1, respectively, and set

Aγ = {{2}, {2}, {2}, {�= 2}, {�= 2}}
and note that Aγ and Aβ share 3 = |V | − 2 identical coordinate projections which
are singleton events. Then

Aγ ∪ Aβ = {{2}, {2}, {2},I4, {�= 2}}.
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Since Aγ and Aβ share only |V | − 2 singleton coordinate projections, (12) should
fail if we merge these sets. So we want to show that

Pr
(
A∗|A) �= Pr(I4|A)Pr

({�= 2}|A)
.

This will be true iff
π222c4c5

π222c44
�= π2224c5

π22244
(18)

for one or more values of c4 ∈ A4, c5 ∈ A5. Here, unlike our previous example
using this setup, c4 can take any value in I4, including the value 2. However,
θ{4,5}(2, c5) �= 0 for any c5 ≥ 2. So now on the LHS of (18) we get

exp
{
θ{5}(c5) − θ{5}(4) + θ{1,5}(2, c5) − θ{1,5}(2,4) + θ{2,5}(2, c5)

− θ{2,5}(2,4) − θ{1,2,5}(2,2,4) + θ{4,5}(2, c5) − θ{4,5}(2,4)
}
,

when c4 = 2 and c5 �= 4. But on the RHS we still get

exp
{
θ{5}(c5) − θ{5}(4) + θ{1,5}(2, c5) − θ{1,5}(2,4)

+ θ{2,5}(2, c5) − θ{2,5}(2,4) − θ{1,2,5}(2,2,4)
}

always, so there are events contained in A where the equality fails and, therefore,
conditional independence does not hold.

As a concluding comment, in all the examples where we could calculate the
exact rank explicitly, the bound in (15) produced the exact rank. However, to show
that (15) provides the exact rank, we need an additional condition; see Remark 3.4
below (a proof is provided in the supplement [28]).

REMARK 3.4. Suppose for every H ∈ H for which there exists H ∗ ∈ H
such that H ∗

j ⊆ Hj for every j , the smallest partition P inf
H satisfying (9) that can

be formed from unions of the events in P0
H satisfies |P inf

H | ≥ |P inf
H ∗ |. Then (15)

gives the exact value of rnk+
P (π).

3.3. Practical consequences of rank results. We provide corollaries to Theo-
rem 3.1 that give insight into cases where a relatively low PARAFAC rank can be
expected. These corollaries motivate subsequent analysis of the statistical proper-
ties of latent class models. The number of parameters in a PARAFAC decomposi-
tion is given by (k − 1) + k

∑p
j=1 dj , where k = rnk+

P (π). Hence, the PARAFAC
rank determines precisely the parameter complexity of the related latent class
model, and bounding the rank is sufficient to bound parameter complexity.

The results in this section make some additional assumptions about the sup-
port of the log-linear model. As a basis for comparison across the different cases,
we will consider the order of the PARAFAC rank as a function of p or d under
different scenarios for the support of the log-linear model. This provides a rough
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indication of the extent of dimension reduction that is achievable with PARAFAC
decompositions in different cases.

Corollary 3.5 shows that when the maximum number of interacting levels of all
variables is small relative to d the rank will be substantially reduced.

COROLLARY 3.5. If |C(j)
θ | < η − 1 for all j , rnk+

P (π) < ηp−1.

PROOF. This follows immediately from Theorem 3.1 by noting that the con-
dition |C(j)

θ | < η − 1 implies that |Bσ(j)| < η − 1 for every permutation σ and
every j . �

In the case where η � d , the condition in Corollary 3.5 reduces the PARAFAC
rank by a factor of (d/η)p−1. However, the PARAFAC rank is still exponential
in p, so this assumption is unhelpful in controlling the PARAFAC rank as a func-
tion of p. By Theorem 3.2, the exact rank is also exponential in p, so in general
the order of the exact PARAFAC rank as a function of p is the same as that given
by Corollary 3.5, which relies on Theorem 3.1.

If we also assume that certain types of conditional independence exist, useful
bounds on the PARAFAC rank as a function of both d and p can be obtained.
Corollary 3.6 gives one such result.

COROLLARY 3.6. Suppose that the conditions in Corollary 3.5 hold and for
J ⊂ V , set y(J ) = {yj : j ∈ J }. Then if y(J c) are independent given the variables
y(J ), rnk+

P (π) ≤ η|J |.

The simplest such case is represented by the graphical log-linear model in Ex-
ample 1 of Figure 1: a single star-graph, where y7 is the hub variable.6 More gener-
ally, if we consider the special case of graphical models, the setting in Corollary 3.6
has a graphical representation where all edges involve at least one of the variables
in J . The PARAFAC rank is then exponential in |J |, not p. With η ≤ logd and
|J | ≤ logp, we obtain rnk+

P (π) ≤ (logd)logp , so the rank becomes at most expo-
nential in logp.

Similar bounds can be obtained when marginal independence exists, which is
represented by the graphical model in Example 2 in Figure 1 and formalized for
general weakly hierarchical models in Corollary 3.7.

COROLLARY 3.7. Suppose the conditions of Corollary 3.5 hold, and suppose
there exists J ⊂ V with the property that j ∈ J c ⇒ yj ⊥ y[−j ]. Then rnk+

P (π) ≤
η(|J |).

6While we use graphical representations to simplify exposition, none of the results presented in
this section require that the log-linear model is graphical; it is sufficient that it be weakly hierarchical.
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FIG. 1. Graphical representations of certain sparse log-linear models. Example 1 and Example 2
are graphs associated with sparse weakly hierarchical log-linear models that have low PARAFAC
rank. The model need not be graphical for the rank to be low; any weakly hierarchical log-linear
model with these dependence graphs will have low rank relative to the maximal rank. Example 1
is a canonical example of extensive conditional independence, which, by Corollary 3.6 leads to low
PARAFAC rank. Example 2 has extensive marginal independence, as discussed in Corollary 3.7.
Example 3 corresponds to a sparse log-linear model that has high PARAFAC rank (one half of the
maximal rank).

Thus, in this case the PARAFAC rank will depend only on the number of vari-
ables that are not marginally independent; the same result that we obtained in
Corollary 3.6 with conditional independence. It follows we can also achieve the
(logd)logp order of the PARAFAC rank in p and d with the same assumptions on
η and |J |.

The previous results in this section were corollaries to Theorem 3.1, which pro-
vides a relatively easy way to calculate bounds on the PARAFAC rank and allows
us to clarify cases in which the PARAFAC rank of weakly hierarchical log-linear
models will be small. However, this bound is not tight, as illustrated in Exam-
ple 3.3, and thus when a specific weakly hierarchical interaction structure or class
of structures is under consideration, it is necessary to utilize Theorem 3.2 to obtain
a tight bound on the rank. We illustrate below through a concrete example that the
conclusion of Theorem 3.2 is not simply of theoretical importance, the posterior
distribution on the number of components indeed increasingly concentrates on the
upper bound implied by Theorem 3.2 as sample size increases.

EXAMPLE 3.8. Set p = 5 and dj = d = 5, so that we have a 55 = 3125 cell
tensor. Let n ∼ Multinomial(N,π0), where π0 corresponds to the weakly hierar-
chical log-linear model with all main effects nonzero and

θ{1,2}(2, c2) �= 0 for all c2 ≥ 2, θ{1,2}(c1,2) �= 0 for all c1 ≥ 2,

θ{1,3}(2, c3) �= 0 for all c3 ≥ 2, θ{2,3}(2, c3) �= 0 for all c3 ≥ 2,

θ{1,2,3}(2,2, c3) �= 0 for all c3 ≥ 2,

with all other interaction terms identically zero and θ{∅} = 0 for identification. It
can be verified that the minimal H for this model is {{2}, {2},∅,∅,∅}, so the
PARAFAC rank is at most 4.
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FIG. 2. Boxplot of posterior mean of cumulative sum of largest h class probabilities for
h = 1, . . . ,10 from PARAFAC model estimated on data generated from ten replicate simulations
from the log-linear model in Example 3.8. The boxes within each panel are the posterior means for∑

l≤h νl for h = 1, . . . ,10 and the different panels represent sample sizes N = 1000 (left), N = 5000
(center) and N = 10,000 (right).

A simulation study was performed to assess performance of the Bayes’
PARAFAC model when the data are generated by the sparse weakly hierarchi-
cal log-linear model in Example 3.8. The nonzero entries of θ were sampled from
N(0,1), truncated to lie in the set (−∞,−0.2] ∪ [0.2,∞). The sampling of the θ

parameters was repeated ten times, and for each sample of the log-linear model pa-
rameters, n was sampled independently for N = 1000,5000 and 10,000—sample
sizes that range from about one-third of the number of cells in the table to about
three times the number of cells. We then performed MCMC computation for the
Bayes’ PARAFAC model using the Gibbs’ sampling algorithm in [15]. For com-
parison, we also fit a regularized log-linear model using Lasso with ten-fold cross-
validation to select the penalty, as implemented in the glmnet package for R,
and the oracle model—that is, a log-linear model for only the nonzero entries of
θ—by maximum likelihood. These comparison methods are used in all subsequent
simulation examples.

Figure 2 shows, on the left, a boxplot of the cumulative sum for the largest ten
class probabilities (for the class probabilities in descending order of magnitude).
The first five class probabilities nearly sum to one in every simulation, with the first
four summing to at least 0.95 in each case. Thus, the posterior for the PARAFAC
rank concentrates around the theoretical rank of 4. Figure 3 summarizes perfor-
mance in estimation of θ and π . Specifically, in this and all subsequent simulation
examples, we use the samples of the PARAFAC parameters to obtain samples of π

and of θ—the latter by way of the Möbius transformation (see [36])—then use the
ergodic average and median as point estimates for θ and π , respectively. Normal-
ized root mean squared error (RMSE(θ̂)/ sd(θ)) for estimation of θ , as well as the
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FIG. 3. Left figure: Boxplot of RMSE(θ̂)/ sd(θ) for PARAFAC (P), lasso (L) and oracle MLE
(O) estimated on data generated from ten replicate simulations from the sparse log-linear model
in Example 3.8. The three subpanels of the figure show results for three different sample sizes
N = 1000,5000,10,000. Right figure: identical arrangement, but here the plotted values are the
L1 loss for estimation of π .

L1 loss for estimation of π , are shown in Figure 3. Here, sd(θ) is the true standard
deviation of the entries of θ in the simulations. Also shown for comparison are
the identical quantities for the Lasso estimator and the oracle MLE. PARAFAC is
seen to perform competitively with Lasso for estimating θ and is superior for es-
timation of π , despite the fact that generating data from a sparse log-linear model
seemingly favors Lasso, which also benefits from cross-validation. There are clear
problems with identification for the oracle estimator in the smaller sample sizes
resulting from sparsity of the sampled table.

4. Collapsed Tucker decompositions. Corollaries 3.6 and 3.7 demonstrate
the main ways in which exponential scaling of the PARAFAC rank in p can be
avoided. However, these settings correspond to special cases of conditional inde-
pendence mediated by a few variables or extensive marginal independence. More
generally, Theorem 3.2 shows that low PARAFAC rank requires that all of the
interactions can be accounted for by a small number of levels of the variables,
as is the case in Example 3.8. Outside this relatively limited class, PARAFAC
rank and, therefore, parameter complexity, scales unfavorably in the dimension
of the contingency table. As such, statistical efficiency relative to the log-linear
model is expected to degrade as dimensions increase. This is likely most evi-
dent in poor recovery of log-linear model parameters, as there may exist low
rank expansions that well-approximate π but have quite different values of θ . We
show several simulation examples in the sequel in which this degradation of sta-
tistical performance of the PARAFAC model occurs, particularly for estimation
of θ .
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As p grows, the number of classes in the PARAFAC model must grow rapidly
to represent complex dependence among the variables. The Tucker decomposition,
on the other hand, has p latent class variables, and thus the number of latent classes
does not depend on p at all, as shown in the following corollary to Theorem 3.2.

COROLLARY 4.1. If π is a probability tensor corresponding to a sparse log-
linear model then the Tucker rank

rnk+
T (π) ≤ ∧

H∈H

∨
j∈V

(|Hj | + 1
)
,

where H is the collection defined in the statement of Theorem 3.2.

The parsimony gained in the Tucker model by requiring few latent classes is
offset to varying degrees by the need to model the dependence between the p latent
categorical variables through the [rnk+

T (π)]p core tensor—the parameter φ in (7).
Clearly, unless rnk+

T (π) � maxj dj , the core is nearly as large as π . Therefore,
while PARAFAC rank is an appropriate measure of parameter complexity in single
latent class models, the Tucker rank is less meaningful unless dj is large for most j .
When p is even modest in size, parsimony and effective number of parameters
in a Tucker model is mainly a function of how the core is parametrized. As a
result, it becomes critical to count parameters in hierarchical models that induce
Tucker decompositions of π rather than simply relying on the rank. For example,
[3] used a hierarchical random effects model to borrow information across the
entries in the core tensor, greatly reducing parameter complexity relative to having
an unstructured prior on the entries of φ.

In what follows, we motivate and develop a meta-family of tensor decomposi-
tions obtained by allowing the dimension of the core tensor to be any value be-
tween 1 (the PARAFAC) and p (the Tucker). We refer to these as collapsed Tucker
(c-Tucker) decompositions. These decompositions can be induced by hierarchical
latent class models where the number of latent class variables is between 1 and
p. To control parameter complexity, we choose to model the core through a latent
PARAFAC decomposition. This is a modeling choice, and is not required to induce
a c-Tucker decomposition. For example, one could instead choose an analogue of
the random effects model of [3] to model the core. To illustrate the advantages of
c-Tucker factorizations, we focus on data generated from sparse log-linear models
with groups of variables in which there is arbitrary dependence for variables within
a group but independence or structured dependence across groups.

4.1. Independent PARAFACs. To motivate the c-Tucker decomposition, we
first show how a variation of the PARAFAC decomposition can eliminate the expo-
nential factor of log(p) that appears in Corollary 3.7 in cases where there are mul-
tiple groups of variables that are marginally independent of all the other groups.
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An example of a graphical model with this dependence structure is shown in Ex-
ample 3 in Figure 1: two cliques with empty separators.

Divide y1, . . . , yp into k groups, and let sj indicate the group membership of
variable j . For each s ∈ {1, . . . , k} define a PARAFAC expansion for the marginal
probability tensor corresponding to π(s) = Pr({yj : sj = s}), as

π(s) =
ms∑
h=1

νsh

⊗
j :sj=s

λ
(j)
h .

We define the joint distribution of y1, . . . , yp as

πc1,...,cp =
k∏

s=1

∏
j :sj=s

π(s)
cj

.

This model can be described succinctly as k independent PARAFACs. This is a
generalization of the sparse PARAFAC (sp-PARAFAC) model of [44] to the case
of more than two groups, and gives much stronger control over parameter growth
than PARAFAC when the truth consists of marginally independent groups of vari-
ables. This is shown formally for the special case of graphical models with empty
separators in Theorem 4.2.

THEOREM 4.2. Consider a graphical log-linear model for binary data de-
fined by parameters θ . Let F be the collection of all cliques, and suppose |F | =
O (k). Then if

∨
F∈F |F | = O

(
log2(p)

)
and all separators are empty, the tensor π

can be expressed by k independent tensors π(1), . . . , π(k) with
∑k

s=1 rnk+
P (π(s)) =

O (kp).

REMARK 4.1. In the special case where log2(p) is an integer and all cliques

have identical cardinality, we obtain
∑k

s=1 rnk+
P (π(s)) = O

(
p2/ log2(p)

)
.

REMARK 4.2. The result in Theorem 4.2 also holds for any weakly hierar-
chical log-linear model with the same dependence structure, since the graphical
model has the maximum number of nonzero interaction terms for any set of de-
pendence/independence relationships.

It follows that where marginally independent sets of variables exist, grouping
variables and performing independent PARAFAC decompositions for each of the
marginal probability tensors corresponding to the groups can reduce the effective
number of parameters drastically. Although Theorem 4.2 is stated for the special
case of binary outcomes, conceptually it applies for general dj and the advantage
is borne out empirically, as we show with the following example.
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FIG. 4. Left figure: Boxplot of RMSE(θ̂)/ sd(θ) for PARAFAC (P), independent PARAFAC (IP),
lasso (L) and oracle MLE (O) estimated on data generated from ten replicate simulations from the
log-linear model in Example 4.3. The three subpanels of the figure show results for three different
sample sizes N = 1000,5000,10,000. Right figure: identical arrangement, but here the plotted values
are the L1 loss for estimation of π .

EXAMPLE 4.3. Let π be a d5 probability tensor corresponding to a sparse
log-linear model where all main effects are nonzero and in addition

θ{1,2}(2, c2) �= 0 for c2 ≥ 2, θ{3,4}(c3,2) �= 0 for c3 ≥ 2,

θ{1,2}(c1,2) �= 0 for c1 ≥ 2, θ{3,5}(c3,2) �= 0 for c3 ≥ 2,

θ{3,4}(2, c4) �= 0 for c4 ≥ 2, θ{4,5}(2, c5) �= 0 for c4 ≥ 2,

θ{3,5}(2, c5) �= 0 for c5 ≥ 2, θ{4,5}(c4,2) �= 0 for c4 ≥ 2,

with all other interaction terms equal to zero. Letting H = {{2}, {2}, {2}, {2},
{2}} ∈ H , we know rnk+

P (π) ≤ 25 = 32, so the PARAFAC decomposition has ap-
proximately 31 + 32 × 20 = 674 parameters. The structure of sparsity guarantees
that y1, y2 ⊥ y3, y4, y5. As a result, the number of parameters in two independent
PARAFAC decompositions is only (3 + 4 × 8) + (7 + 8 × 12) = 138.

We simulated data from the model in Example 4.3 with d = 5 using the same
distribution for the nonzero log-linear model parameters as in the simulation study
for Example 3.8. We performed computation by MCMC for the PARAFAC model
as well as the independent PARAFAC model with two variable groups: y1, y2 and
y3, y4, y5. Figure 4 shows normalized RMSE for estimation of θ and L1 loss
for estimation of π for PARAFAC, independent PARAFAC, Lasso and the ora-
cle MLE. PARAFAC performs poorly relative to Lasso in estimation of θ but is
comparable to Lasso for estimation of π , suggesting that the posterior concen-
trates around a lower-rank tensor with entries that are very similar to π but for
which the equivalent log-linear model has a rather different value of θ . This is
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probably a consequence of the fact that the true PARAFAC rank in Example 4.3 is
much larger than the PARAFAC rank in Example 3.8, so that the exact expansion
has high parameter complexity. In contrast, the independent PARAFAC performs
slightly better than Lasso for estimation of θ and substantially better for estima-
tion of π , despite the fact that the data generating model is a sparse log-linear
model.

The approach outlined above is limited to cases in which the variable groups
are marginally independent, which in the special case of graphical models corre-
sponds to empty separators. However, additional flexibility can be gained by in-
troducing another set of parameters to control dependence between the groups.
This is the essence of the collapsed Tucker model, where we project p di-
mensional y to k � p dimensional z and model the joint p.m.f. of z via a
PARAFAC.

4.2. Latent class models inducing collapsed Tucker decompositions. We now
define c-Tucker decompositions. Specifically, let

πc1,...,cp =
m∑

h1=1

· · ·
m∑

hk=1

φh1,...,hk

p∏
j=1

λ
(j)

h∗
j cj

,(19)

where h∗
j = hsj with sj ∈ {1, . . . , k} for j = 1, . . . , p and k � p when p is mod-

erate to large. The sj ’s are group indices for {yj : j ∈ V }, with sj = ρ denoting
that yj is allocated to group ρ. For a particular configuration of the sj ’s, the p

variables are assigned to k groups, and sj = sj ′ indicates that yj and yj ′ belong to
the same group. We refer to (19) as a m-component collapsed Tucker (c-Tucker)
factorization.

c-Tucker is a latent class model with k latent class indices. Letting z =
(z1, . . . , zk)

T denote a vector of group indices, the c-Tucker model in (19) has
a hierarchical representation where given z, y1, . . . , yp are conditionally inde-

pendent with Pr(yj = cj |z, sj ) = λ
(j)
zsj

cj . The parameter φ is a mk nonnegative
core tensor; it is a probability tensor that parametrizes the joint distribution of
the latent categorical variables z1, . . . , zk . Clearly, for k = 1 we recover the
PARAFAC decomposition and for k = p we obtain the Tucker decomposition.
Graphical representations of dependence between observed and latent variables
in PARAFAC, Tucker, and c-Tucker models are shown in Figure 8 in the Ap-
pendix.

The number of parameters in the core φ grows exponentially in k, so superfi-
cially the problem of rapidly growing parameter complexity remains. To control
this, we model φ using a PARAFAC decomposition

φh1,...,hk
=

r∑
l=1

ξl

k∏
s=1

ψ
(s)
lhs

,(20)
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where ξ = {ξl} is a vector of probabilities, ψ
(s)
l = {ψ(s)

lh } are probability vectors
of dimension m for s = {1, . . . , k}, and 1 < k < p. If r = 1, we obtain a k-group
independent PARAFAC model as in Section 4.1. Under (20), the number of free
parameters7 in a c-Tucker expansion scales as

r − 1 + r(m − 1)k + m

p∑
j=1

(dj − 1).(21)

This effective parameter count depends not only on the number of components
m but also on r and k, suggesting that unlike in the PARAFAC case the rank is
not useful by itself as a measure of parsimony. Hence, we focus on parameter
count (21) and rank of the core r instead of m in what follows. The first two
terms in (21) are specific to the choice of a PARAFAC factorization for the core φ,
while the term m

∑p
j=1(dj − 1) appears in the parameter count for any c-Tucker

factorization.
We can obtain insight into what types of log-linear models might be parsimo-

nious in the c-Tucker representation but not the PARAFAC representation by con-
sidering the setup in Theorem 4.2: binary variables consisting of k independent
groups each with at most log2(p) members. In general, if k marginally indepen-
dent groups of variables exist and all outcomes are binary, the PARAFAC rank will
be of the order 2p−k . The proof of this is straightforward and is omitted. Therefore,
Theorem 4.2 gives conditions under which the ordinary PARAFAC rank is ap-
proximately 2p−k , with parameter complexity 2p−k − 1 + p2p−k . Under the same
conditions, c-Tucker has parameter complexity of approximately kp − k +p2, ob-
tained from (21) with r = 1, m = p and dj = 2 for all j .8 This is quadratic in p

instead of exponential.

5. Estimation and applications for c-Tucker models. We present an al-
gorithm for inference and computation for c-Tucker models in the Bayesian
paradigm. The model is illustrated in simulation studies and an application to the
functional disability data from the national long term care survey (NLTCS).

5.1. Bayesian inference for c-Tucker models. Bayesian inference for c-Tucker
models requires priors on the parameters of the core, arms and the group mem-
berships of the variables. We choose conjugate Dirichlet priors on the arms λ

(j)

h∗
j cj

.

We specify truncated stick-breaking priors [27] on the latent class probabilities
Pr(zis = h) and fix the maximum number of latent classes. A similar approach is

7These are upper bounds rather than exact expressions. That the effective dimension of the pa-
rameter space for a PARAFAC model can in some cases be smaller than the nominal number of
parameters in the expansion has been well documented; see, for example, [19] and [16].

8The difference between this expression and that in Theorem 4.2 is simply a result of the latter
being the sum of PARAFAC ranks and the former a count of free parameters.
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used for the arms {ζ (s)
h } in the PARAFAC expansion of the core. When group mem-

berships are inferred, we use a Dirichlet(1/k, . . . ,1/k) prior on variable group
membership probabilities.

The Bayesian c-Tucker model can be expressed in hierarchical form as

yij |zi1, . . . , zik, λ(j) ∼ Multi
({1, . . . , dj }, λ(j)

zihsj
1, . . . , λ

(j)
zihsj

dj

)
,

λ
(j)
h ∼ Diri(ah1, . . . , ahdj

),

zis |wi, ψ (s) ∼ Multi
({1, . . . ,m},ψ(s)

wi1
, . . . ,ψ(s)

wim

)
,

pr(wi = l) = ν∗
l

∏
t<l

(
1 − ν∗

t

)
, ν∗

l ∼ beta(1, β),

ψ
(s)
lh = ζ

(s)
lh

∏
h′<h

(
1 − ζ

(s)
lh′

)
, ζ

(s)
lh ∼ beta(1, δs),

s1, . . . , sp ∼ Multi
({1, . . . , k}, ξ1, . . . , ξk

)
,

ξ ∼ Dirichlet(1/k, . . . ,1/k),

where the index i = 1, . . . , n is a scalar subject index—not the multiindex i of
a cell of the corresponding contingency table—and yi is a p-vector of categori-
cal observations for the ith subject. Bayesian computation for this model can be
performed using a straightforward Gibbs sampler. Details of the computation are
given in the supplement [28].

5.2. Simulation studies and application for c-Tucker model. We revisit Exam-
ple 4.3 to illustrate the performance of the c-Tucker model in the case of marginally
independent variable groups. Using data from the simulation procedure in Sec-
tion 4.1, we performed computation for the c-Tucker model by MCMC using the
algorithm in [28], first by fixing two variable groups (y1, y2 and y3, y4, y5) and
letting the algorithm learn the rank of the core, and then by setting the number of
groups to be two and allowing the algorithm to learn both the groups and the rank
of the core. In the latter case, the group membership was initialized by performing
agglomerative clustering using one minus the pairwise Cramér’s V statistic as a
dissimilarity matrix for the variables.

Figure 5 shows boxplots of
∑

l≤h νl (for ν in descending magnitude order)
for the PARAFAC and c-Tucker model with fixed groups. When N = 1000, the
PARAFAC has approximate posterior rank five—judged by counting the minimal
number of classes such that the cumulative class probability is at least 0.99—as
does the c-Tucker core tensor, φ. However, as the sample size increases, the ap-
proximate PARAFAC rank grows, whereas the rank of the c-Tucker core φ de-
creases. With N = 10,000, the approximate rank of the c-Tucker core decreases
to three, with most of the weight on the largest class, whereas the approximate
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FIG. 5. Left figure: Boxplots of posterior mean of
∑

l≤h νl for h = 1, . . . ,10 for the PARAFAC
model estimated on data from over ten replicate simulations from the log-linear model in Exam-
ple 4.3. The boxes within each panel are the posterior means of

∑
l≤h νl for h = 1, . . . ,10, and the

three panels correspond to sample sizes N = 1000 (left), N = 5000 (center) and N = 10,000 (right).
Right figure: the same posterior summary shown for the collapsed Tucker model with fixed groups;
here, νl are the component weights in the PARAFAC expansion of the core tensor φ.

PARAFAC rank increases to seven, and the weight on the largest class decreases.
Recalling that the PARAFAC rank in this example is 32, while the rank of the c-
Tucker core is one, this result is consistent with the ranks converging toward their
true values as the sample size grows.

Figure 6 shows performance of PARAFAC, independent PARAFAC, c-Tucker
with fixed groups, and c-Tucker with learned groups in estimation of θ and π (the
results for PARAFAC and independent PARAFAC are identical to those in Figure 4
but are shown for ease of comparison). The performance of c-Tucker is seen to be

FIG. 6. Left figure: Boxplot of RMSE(θ̂)/ sd(θ) for PARAFAC (P), independent PARAFAC (IP),
c-Tucker with fixed groups (C) and c-Tucker with learned groups (CL) estimated on data from ten
replicate simulations from the log-linear model in Example 4.3. The three subpanels of the figure
show results for three different sample sizes N = 1000,5000,10,000. Right figure: identical arrange-
ment, but here the plotted values are the L1 loss for estimation of π .



26 J. E. JOHNDROW, A. BHATTACHARYA AND D. B. DUNSON

FIG. 7. Left figure: Boxplot of RMSE(θ̂)/ sd(θ) for PARAFAC (P), c-Tucker with learned groups
(CL), Lasso (L) and oracle MLE (O) estimated on data from ten replicate simulations from the
log-linear model in Example 3.4. The three subpanels of the figure show results for three different
sample sizes N = 1000,5000,10,000. Right figure: identical arrangement, but here the plotted values
are the L1 loss for estimation of π .

virtually identical to that of independent PARAFAC at each sample size, regard-
less of whether groups are fixed or learned, showing that the enhanced flexibility
of c-Tucker need not result in loss of performance when the truth is exactly an in-
dependent PARAFAC. Recalling that independent PARAFAC is superior to Lasso
in this simulation on these loss functions, this indicates better performance for c-
Tucker as well. PARAFAC performs poorly relative to methods that incorporate
variable grouping, which is as expected for the reasons described in Section 4.1.
The superior performance of c-Tucker is consistent with the theoretical results in
Sections 3 and 4. In this example, the effective posterior parameter complexity
in the PARAFAC and c-Tucker models—computed using (21)—is roughly equiv-
alent, as shown in Figure S.2 in [28]. Thus, c-Tucker provides lower estimation
error with similar parameter complexity.

A final simulation illustrates the c-Tucker model in the more challenging case
when there are no marginally independent groups of variables, based on Exam-
ple 3.4. The nonzero entries of θ were sampled as described in Section 4.1, and ten
replicates of each simulation were performed for sample sizes N = 1000,5000 and
10,000. We perform computation by MCMC for both PARAFAC and c-Tucker,
and in the latter, we set the number of variable groups to three, allowing learning
of the group memberships. Normalized RMSE for estimation of θ and L1 loss for
estimation of π are shown in Figure 7. c-Tucker outperforms PARAFAC with re-
spect to MSE for estimating θ , while showing similar performance for estimation
of π . Lasso is superior for estimation of θ , but similar to PARAFAC and c-Tucker
for estimation of π . That PARAFAC performs similarly to Lasso on either met-
ric is surprising given that π corresponds to a sparse log-linear model (only 57
nonzero parameters of 3125), whereas the PARAFAC rank is relatively high (a
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rank of 32, corresponding to 671 free parameters).9 This is consistent with the
result for Example 3.8 and merits a similar interpretation.

We apply the c-Tucker model with learned groups to analysis of functional dis-
ability data from the national long term care survey (NLTCS). The data take the
form of a 216 contingency table, and are extensively described in [13], who applied
a novel copula Gaussian graphical model. Their model is extremely flexible while
favoring parsimony, but has the primary disadvantage of being highly computa-
tionally intensive, lacking scalability beyond relatively small tables. Our interest
here is in assessing whether the much more computationally efficient c-Tucker
model can perform comparably to the [13] approach for these data. We performed
posterior computation using the MCMC algorithm described in [28]. Table S.1
in [28] shows the posterior means of pairwise Cramér’s V and Pr(H1,ρ |y), where
H1,ρ = 1(ρ > 0.1) and ρ is the pairwise Cramér’s V. For comparison, we repro-
duce the same results based on posterior samples for the copula Gaussian graphi-
cal model from [13] in Table S.2 in [28]. Our results demonstrate close agreement
with [13].

6. Conclusion. The relationship between the sparsity of a log-linear model
and the rank of the associated probability tensor derived here makes clear that a
large class of very sparse log-linear models nonetheless has high PARAFAC tensor
rank. The statistical consequence of this result is that estimation performance for
single latent class models for the joint distribution of multivariate categorical data
will tend to degrade as the number of variables grows large, unless dependence
in the true model can be accounted for by a small number of levels of the vari-
ables, as is the case when marginal independence or highly structured conditional
independence exists.

This motivates development of more flexible tensor factorizations that can par-
simoniously characterize a broader class of interactions in multivariate categorical
data. Tucker factorizations are promising in this regard, and we obtain theory on
parameter complexity of Tucker factorizations of sparse log-linear models. These
results lead naturally to a novel meta-class of tensor decompositions we refer to as
collapsed Tucker. These decompositions are considerably more flexible than either
Tucker or PARAFAC, and are highly promising in broad applications. We illus-
trate some of this promise in simulation examples and an application to real data
showing similar results to those obtained with sophisticated graphical modeling
methods, which are much more computationally intensive. In fact, computational
algorithms for estimation in tensor factorization models in the classes we consider
are vastly more scalable to high-dimensional data than algorithms for estimation of
sparse log-linear models, so the theoretical results and methods developed here are
of substantial practical consequence for high-dimensional statistics with discrete
data.

9The effective dimension may be smaller than this—see [19].
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TABLE 1
Notation reference

Symbol Definition

V Set of variables, usually {1, . . . , p}
Ij Levels of j th variable, by default {1, . . . , dj }
i (i1, . . . , ip) with ij ∈ Ij , generic notation to denote a cell
IV ×j∈V Ij , the collection of all cells

y (y1, . . . , yp), collection of p variables with yj ∈ Ij

π Joint p.m.f. of y, πi = πi1,...,ip = Pr(y1 = i1, . . . , yp = ip) for i ∈ IV

IE Marginal E-table, ×j∈E Ij

iE A cell in the marginal E-table
θE(iE) Interactions among variables in E corresponding to the levels in iE
θ Free log-linear model parameters in corner parameterization
spt(z) Support of a discrete random variable, that is, {h : Pr(z = h) > 0}
Sθ Collection of nonzero parameters in θ

C
(j)
θ Collection of levels cj ∈ Ij with a nonzero two-way interaction

Cθ Collection of tuples (E, iE) such that θE(iE) �= 0
Cθ,2 Collection of tuples (E, iE) with |E| = 2 such that θE(iE) �= 0
H Collection of sets of indices {H1, . . . ,Hp} with Hj ⊂ Ij

TCθ ,H Set of (E, iE) ∈ Cθ such that ij ∈ Hj for some j ∈ E

H {H : T(Cθ ,H) = Cθ }
PH,j Partition of Ij consisting of singletons {cj } for cj ∈ Hj and the set H̄j = Ij \ Hj

P0
H The product partition ×j∈V PH,j

rnk+
P (π) The nonnegative PARAFAC rank of a nonnegative tensor π

rnk+
T (π) The nonnegative Tucker rank of a nonnegative tensor π

APPENDIX: PROOFS AND AUXILIARY RESULTS

A.1. Notation. Table 1 provides a summary of notation used throughout the
paper.

A.2. Auxiliary results. We state and prove Lemma A.1 which is used to prove
Theorem 3.1.

LEMMA A.1. Let π and ψ be two nonnegative dp tensors. Then rnk+
P (π ◦

ψ) ≤ rnk+
P (π)rnk+

P (ψ), where ◦ denotes a Hadamard product, and rnk+
P (π +

ψ) ≤ rnk+
P (π) + rnk+

P (ψ).

PROOF. Let rnk+
P (π) = m, rnk+

P (ψ) = k and φ = π ◦ ψ . For 1 ≤ j ≤ p, there

exist nonnegative vectors λ
(j)
h ∈ R

d+, h = 1, . . . ,m and ζ
(j)
l ∈ R

d+, l = 1, . . . , k,

such that π = ∑m
h=1 λ

(1)
h ⊗ · · · ⊗ λ

(p)
h and ψ = ∑k

l=1 ζ
(1)
h ⊗ · · · ⊗ ζ

(p)
h . Then it is
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easy to see that

φ =
m∑

h=1

k∑
l=1

γ
(1)
hl ⊗ · · · ⊗ γ

(p)
hl ,

where γ
(j)
hl = λ

(j)
h ◦ ζ

(j)
l for 1 ≤ j ≤ p. Clearly, for any j , γ

(j)
hl ∈ R

d+ for h =
1, . . . ,m; l = 1, . . . , k. Thus, rnk+

P (φ) ≤ mk.
In particular, if rnk+

P (ψ) = 1, we have rnk+
P (φ) ≤ m. This bound cannot be

globally improved, or in other words, the upper bound can be achieved. Take for
example, ψ = ζ (1) ⊗ · · · ⊗ ζ (p), with ζ (j) = (1, . . . ,1)T for all j .

Finally, we note that if

π =
m1∑
h=1

p⊗
j=1

λ̃
(j)
h and ψ =

m2∑
h=1

p⊗
j=1

ζ̃
(j)
h

then

π + ψ =
m1∑
h=1

p⊗
j=1

λ̃
(j)
h +

m2∑
h=1

p⊗
j=1

ζ̃
(j)
h

so rnk+
P (π + ψ) = m1 + m2 = rnk+

P (π) + rnk+
P (ψ). �

Proof of Theorem 3.1. Without loss of generality, we assume σ is the iden-
tity permutation and drop the corresponding subscripts. Let P(1) be the parti-
tion of I1 consisting of the singleton sets {c} for c ∈ B1 and the set (B1)

c.
Weak hierarchicality ensures that y11(y1∈A) ⊥⊥ y[−1] for any A ∈ P(1). Using
the fact that for any two random variables Z1,Z2 and any measurable set A,
Z11(Z1∈A) ⊥⊥ Z2 ⇔ Z1 ⊥⊥ Z2|A, we have y1 ⊥⊥ y[−1]|A for any A ∈ P(1). Enu-
merating the sets in P(1) as A1, . . . ,Am1 , with m1 = |P(1)| = |B1| + 1, we can
write π as

πc1,...,cp =
m1∑
h=1

νhλhc1ψhc2,...,cp ,(23)

where for each 1 ≤ h ≤ m1, νh = Pr(Ah), λh ∈ �(d−1) with λhc = Pr(y1 = c|Ah)

and ψh is a dp−1 nonnegative tensor representing the joint probability of y[−1]|Ah,
that is,

ψhc2,...,cp = Pr(y2 = c2, . . . , yp = cp|Ah).

Define dp tensors {π(1)
h } and {π(2)

h } by

π
(1)
h = λh ⊗ 1 ⊗ · · · ⊗ 1,(

π
(2)
h

)
c1,...,cp

= νhψhc2,...,cp .
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The expansion of π in (23) can now be written in tensor notation as π =∑m1
h=1 π

(1)
h ◦π

(2)
h . Clearly, rnk+

P (π
(1)
h ) = 1 and it is easily verified that rnk+

P (π
(2)
h ) ≤

rnk+
P (ψh) for all h. Therefore, using Lemma A.1 we have that rnk+

P (π) ≤ m1r ,
where r = rnk+

P (ψh).
Recursively applying this process for the variables y2, . . . , yp , we can show that

r ≤ ∏p
j=2 mj = ∏p

j=2(|Bj | + 1), so that

rnk+
P (π) ≤

p∏
j=1

(|Bj | + 1
)
.

For any permutation σ , we can obtain a result as in the above display by scanning
through the variables in the sequence σ(1), . . . , σ (p). Taking the minimum over
all permutations σ , we obtain the desired result.

Proof of (14) in Theorem 3.2. Fix H ∈ H . Let H̄j = Ij \ Hj and let PH,j

denote the partition of Ij consisting of the singleton sets {ij } for ij ∈ Hj and the
set H̄j . Define a partition P0

H of IV as the Cartesian product of the partitions PH,j

as in (11). We show that for any set A ∈P0
H , (12) is satisfied, that is,

Pr(y1 = i1, . . . , yp = ip|A) =
p∏

j=1

Pr(yj = ij |A),(24)

for any i ∈ IV . Based on the discussion in Section 3.1, the random variable z = z0
H

corresponding to the partition P0
H defined via (10) will then satisfy (9), implying

rnk+
P (π) ≤ ∣∣P0

H

∣∣ =
p∏

j=1

|PH,j | =
p∏

j=1

(|Hj | + 1
)
.

We now proceed to establish (24). Fix A ∈ P0
H . By construction,

A = ×
k∈J̄

{ck} × ×
j∈J

H̄j(25)

for some J ⊂ V , J̄ = V \ J and ck ∈ Hk for all k ∈ J̄ . Without loss of generality,
we assume J = {q, . . . , p} for some integer q ≥ 1.

Let ĨV denote the subset of IV consisting of cells i such that ik = ck for all
k ∈ J̄ and ij ∈ H̄j for all j ∈ J . It is easy to see that for any i /∈ ĨV , (24) is satis-
fied trivially since both sides are reduced to zero or one simultaneously. Hence, it
suffices to show that (24) holds for any i ∈ ĨV .

Fix i ∈ ĨV . Let Ai denote the subset of IV corresponding to the event {yj =
ij , j ∈ V } in Y , so that

Ai = ×
j∈V

{ij }, Pr(Ai) = πi.



TENSOR RANK OF LOG-LINEAR MODELS 31

Clearly, Ai ⊂ A, which implies Pr(Ai|A) = πi/Pr(A). Further, Pr(yk = ik|A) = 1
for any k ∈ J̄ , since ik = ck for k ∈ J̄ . Therefore, (24) reduces to showing

πi

Pr(A)
= ∏

l∈J

Pr(yl = il|A).(26)

For E ⊂ V , we introduce the notation

H̄E = ∏
j∈E

H̄j .

We shall use α to generically denote an element of H̄J , that is, α is a |J |-vector
of indices with αj the entry in α corresponding to variable j ∈ J . For l ∈ J , J (−l)

shall denote the set J \ {l}. We use α(l) to generically denote an element of H̄J (−l) ,
with α

(l)
j the entry in α(l) corresponding to variable j ∈ J (−l).

Finally, for a partition of V into J1, J2, J3, denote10

π
(J1,J2,J3)
fj gkhl

:= Pr
[ ×
j∈J1

{fj } × ×
k∈J2

{gk} × ×
l∈J3

{hl}
]
.(27)

For any l ∈ J ,

Pr(yl = il|A) =
Pr

[×k∈J̄ {ck} × {il} ××j∈J (−l) H̄j

]
Pr(A)

(28)

= πi

Pr(A)

∑
α(l)∈H̄

J (−l)

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

πi
.

In the above display, we adopt the notation in (27), with V partitioned into
(J̄ , {l}, J (−l)) and

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

= Pr
[×
k∈J̄

{ck} × {il} × ×
j∈J (−l)

{
α

(l)
j

}]
.

From (28), we have

∏
l∈J

Pr(yl = il|A) =
[

πi

Pr(A)

]|J | ∑
α(q)∈H̄

J (−q)

· · · ∑
α(p)∈H̄

J (−p)

∏
l∈J

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

πi
.

10Recall our convention, noted in Section 3.1, of identifying the event {y1 ∈ B1, . . . , yp ∈ Bp} with

the event ×p
j=1 Bj in the discrete σ -algebra generated by IV .
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Substituting this in (26), we have (26) is equivalent to showing[
Pr(A)

πi

]|J |−1
= ∑

α(q)∈H̄
J (−q)

· · ·

(29)

× ∑
α(p)∈H̄

J (−p)

∏
l∈J

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

πi
.

Recalling the set A from (25), we have

Pr(A)

πi
= ∑

α∈H̄J

π
(J̄ ,J )
ckαj

πi
,

implying

[
Pr(A)

πi

]|J |−1
= ∑

αq∈H̄J

· · · ∑
αp−1∈H̄J

∏
l∈J (−p)

π
(J̄ ,J )
ckαlj

πi
,(30)

where αq, . . . ,αp−1 denote |J | − 1 independent copies of the running index α,
and αlj is the entry in αl corresponding to variable j .

It now amounts to show that the expressions in the RHS of (29) and (30) are the
same. We first argue that both expressions contain the same number of terms. To
see this, let |H̄j | = mj . The expression of Pr(yl = il|A) in (28) is a sum over∏

j �=l mj terms, and so
∏

l∈J Pr(yl = il|A) has
∏

l∈J

∏
j �=l mj = ∏

l∈J m
(|J |−1)
l

terms. Accordingly, the RHS in (29) has
∏

l∈J m
(|J |−1)
l many terms. On the other

hand, Pr(A)/πi is a sum over
∏

j∈J mj terms, and hence {Pr(A)/πi}(|J |−1) in (30)

also has
∏

j∈J m
(|J |−1)
j terms.

Therefore, it now amounts to show that each term inside the summation in the
RHS of (29) has a one-to-one correspondence with a term in the RHS of (30). We
establish this by showing

∏
l∈J

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

πi
= ∏

l∈J (−p)

π
(J̄ ,J )
ckαlj

πi
,(31)

when for each l, α
(l)
j = αlj for all j �= l. Introducing additional notation, let E =

{E = E1 ∪ {j} : E1 ⊂ J̄ , j ∈ J2},E (−l) = {E = E1 ∪ {j} : E1 ⊂ J̄ , j ∈ J (−l)} and
E (l) = {E = E1 ∪ {l} : E1 ⊂ J̄ }. For any l, clearly E is a disjoint union of E (−l)

and E (l). Let i(l) denote the cell such that i
(l)
k = ck for k ∈ J̄ and i

(l)
j = αlj for

j ∈ J .
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First, consider the expression in the RHS of (31). We have

π
(J̄ ,J )
ckαlj

πi
= exp

[ ∑
E⊂V

{
θE

(
i(l)E

) − θE(iE)
}]

= exp
[ ∑
E⊂E

{
θE

(
i(l)E

) − θE(iE)
}]

(32)

= exp
[ ∑
E⊂E(−l)

{
θE

(
i(l)E

) − θE(iE)
}]

exp
[ ∑
E⊂E(l)

{
θE

(
i(l)E

) − θE(iE)
}]

.

The second equality in the above display simply follows from the expression of
the cell probabilities for log-linear models in (2). The third equality is the key one
which uses (i) since i

(l)
k = ik = ck for all k ∈ J̄ , all interaction terms corresponding

to E ⊂ J̄ cancel out; and (ii) any E ⊂ V such that |E∩J | ≥ 2, θE(i(l)E ) = θE(iE) =
0, given weak hierarchically and the condition Cθ = TCθ ,H . To see this, suppose
that there exists E ⊂ V with |E ∩ J | ≥ 2 such that θE(iE) �= 0 for some i ∈ A.
By weak hierarchicality, there must be j, j∗ ∈ J such that θ{j,j∗}(αj ,αj∗) �= 0 for
some (αj ,αj∗) ∈ H̄j × H̄j∗ . Then θ{j,j∗}(αj ,αj∗) /∈ TCθ ,H , contradicting Cθ =
TCθ ,H .

Using the same argument and additionally the fact that α
(l)
j = αlj for all j �= l,

we can simplify the expression in LHS of (31) as

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

πi
= exp

[ ∑
E⊂E(−l)

{
θE

(
i(l)E

) − θE(iE)
}]

.(33)

Therefore,

∏
l∈J (−p)

π
(J̄ ,J )
ckαlj

πi

= ∏
l∈J (−p)

exp
[ ∑
E⊂E(−l)

{
θE

(
i(l)E

) − θE(iE)
}]

× ∏
l∈J (−p)

exp
[ ∑
E⊂E(l)

{
θE

(
i(l)E

) − θE(iE)
}]

= ∏
l∈J

exp
[ ∑
E⊂E(−l)

{
θE

(
i(l)E

) − θE(iE)
}] = ∏

l∈J

π
(J̄ ,{l},J (−l))

ckilα
(l)
j

πi
,

establishing (31). The second inequality in the above display used∏
l∈J (−p)

exp
[ ∑
E⊂E(l)

{
θE

(
i(l)E

) − θE(iE)
}] = exp

[ ∑
E⊂E(−p)

{
θE

(
i(l)E

) − θE(iE)
}]

,
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since E (−p) = ⋃
l �=p E (l) is a disjoint union.

Proof of (15) in Theorem 3.2. The main idea in this part of the proof is that
we can merge certain sets in P0

H to create a coarser partition without sacrificing
the conditional independence.

For a set A =×j∈V Aj in P0
H and J ⊂ V , let �J (A) denote

�J (A) = ∏
j∈J

Aj .

With a slight abuse of notation, we shall use �l(A) to denote the lth coordinate
projection, that is, �l(A) = Al .

Fix l ∈ V and let V (−l) = V \ {l}. In this proof, we shall use α to denote a
V (−l)-cell suppressing the dependence on l. Given α, let

Pα
H,l =

{
A ∈P0

H : �V (−l) (A) = ×
j �=l

{αj }
}
.(34)

Let A denote the collection of all V (−l)-cells α such that Pα
H,l is nonempty. For

α ∈ A, let

Bα = ⋃
A∈Pα

H,l

A.(35)

Note that for any α ∈ A, |Pα
H,l| = |Hl| + 1, since �l(A) ranges over the elements

of PH,l , that is, {il} for il ∈ Hl and H̄l . It is also evident that Bα =×j �=l{αj }×Il .

We now create a coarser partition P(l)
H out of P0

H by replacing the collection of
sets Pα

H,l by the single set Bα for every α ∈ A, so that

PH,l = ⋃
α∈A

[(
P0

H \Pα
H,l

) ∪ {
Bα}]

.(36)

The main idea is that if (|V | − 1) coordinate projections �j(A) are singletons
{αj }, we can simply set the lth coordinate projection of A to be Il and achieve
conditional independence (24). This follows immediately from the expression in
the display after (11). However, our construction of P0

H clearly contains sets of
the form ×j �=l{αj }× {il} for il ∈ Hl and ×j �=l{αj }× H̄l which are redundant. To
avoid this redundancy, we merge these sets in Pα

H,l to form Bα = ×j �=l{αj } × Il

for every α ∈A.
It only remains to calculate the cardinality of PH,l now. As pointed out in the

previous paragraph, |Pα
H,l| = |Hl| + 1 for all α ∈ A, and hence the net reduction

in the number of elements from P0
H to PH,l is

P0
H −PH,l = |A||Hl|.

It thus remains to calculate |A|. We need to count the number of distinct α such
that (34) is satisfied. Recall that for any A ∈ P0

H and any j ∈ V , �j(A) ranges over
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the elements of the partition PH,j . The number of singleton sets in PH,j is |Hj | as
long as |Hj | < (d − 1) (the sets {ij } for ij ∈ Hj ). However, when |Hj | = (d − 1),
H̄j is also a singleton set, and hence the number of singleton sets in PH,j in that
case becomes |Hj | + 1. Therefore, we conclude

A =
[ ∏
j �=l:|Hj |=d−1

(|Hj | + 1
)][ ∏

j �=l:|Hj |<d−1

|Hj |
]
.

The proof is completed by noting |A||Hl| = ∏
j∈Wl

(|Hj |+ 1)
∏

j∈W̄l
|Hj | and tak-

ing minimum over l ∈ V and H ∈ H .

Proof of Theorem 4.2. The condition that
∨

F∈F |F | = O
(
log2(p)

)
gives that

for each clique F the number of terms in the PARAFAC expansion corresponding
to that clique is linear in p. This follows because the maximum PARAFAC rank
corresponding to the joint distribution of the variables in each clique is bounded by
2�log2(p)−1� = O (p). So the joint distribution can be represented by the Hadamard
product of k probability tensors π(1), . . . , π(k), with rnk+

P (π(l)) = O (p) for ev-
ery l = 1, . . . , k. Thus,

∑k
s=1 rnk+

P (π(s)) = O (kp). Note that in the special case
where log2(p) is an integer and all cliques have identical size, this will give∑k

s=1 rnk+
P (π(s)) = p2/ log2(p).

Dependence graphs associated with PARAFAC and c-Tucker.

FIG. 8. Graphical representations of hierarchical models inducing PARAFAC, c-Tucker and Tucker
decompositions of π . Dashed edges indicate that there may or may not be an edge between nodes.
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SUPPLEMENTARY MATERIAL

Supplement to: “Tensor decompositions and sparse log-linear models”
(DOI: 10.1214/15-AOS1414SUPP; .pdf). We provide a supplement with three
parts. In the first part, we provide a proof of Remark 3.4 and a constructive proof
of a bound on nonnegative rank for d2 tensors corresponding to sparse log-linear
models. The second part provides an MCMC algorithm for posterior computation
in c-Tucker models and the third part provides supplementary figures and tables
for Section 5.
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