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GLOBAL RATES OF CONVERGENCE IN LOG-CONCAVE
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The estimation of a log-concave density on R
d represents a central prob-

lem in the area of nonparametric inference under shape constraints. In this pa-
per, we study the performance of log-concave density estimators with respect
to global loss functions, and adopt a minimax approach. We first show that no
statistical procedure based on a sample of size n can estimate a log-concave
density with respect to the squared Hellinger loss function with supremum
risk smaller than order n−4/5, when d = 1, and order n−2/(d+1) when d ≥ 2.
In particular, this reveals a sense in which, when d ≥ 3, log-concave density
estimation is fundamentally more challenging than the estimation of a den-
sity with two bounded derivatives (a problem to which it has been compared).
Second, we show that for d ≤ 3, the Hellinger ε-bracketing entropy of a class
of log-concave densities with small mean and covariance matrix close to the
identity grows like max{ε−d/2, ε−(d−1)} (up to a logarithmic factor when
d = 2). This enables us to prove that when d ≤ 3 the log-concave maximum
likelihood estimator achieves the minimax optimal rate (up to logarithmic
factors when d = 2,3) with respect to squared Hellinger loss.

1. Introduction. Log-concave densities on R
d , namely those expressible as

the exponential of a concave function that takes values in [−∞,∞), form a par-
ticularly attractive infinite-dimensional class. Gaussian densities are of course log-
concave, as are many other well-known families, such as uniform densities on
convex sets, Laplace densities and many others. Moreover, the class retains several
of the properties of normal densities that make them so widely-used for statistical
inference, such as closure under marginalisation, conditioning and convolution op-
erations. On the other hand, the set is small enough to allow fully automatic estima-
tion procedures, for example, using maximum likelihood, where more traditional
nonparametric methods would require troublesome choices of smoothing parame-
ters. Log-concavity therefore offers statisticians the potential of freedom from re-
strictive parametric (typically Gaussian) assumptions without paying a hefty price.
Indeed, in recent years, researchers have sought to exploit these alluring features to
propose new methodology for a wide range of statistical problems, including the
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detection of the presence of mixing [Walther (2002)], tail index estimation [Müller
and Rufibach (2009)], clustering [Cule, Samworth and Stewart (2010)], regression
[Dümbgen, Samworth and Schuhmacher (2011)], Independent Component Anal-
ysis [Samworth and Yuan (2012)] and classification [Chen and Samworth (2013)].

However, statistical procedures based on log-concavity, in common with other
methods based on shape constraints, present substantial theoretical challenges and
these have therefore also been the focus of much recent research. For instance, the
maximum likelihood estimator of a log-concave density, first studied by Walther
(2002) in the case d = 1, and by Cule, Samworth and Stewart (2010) for gen-
eral d , plays a central role in all of the procedures mentioned in the previous para-
graph. Through a series of papers [Cule and Samworth (2010), Dümbgen and Ru-
fibach (2009), Dümbgen, Samworth and Schuhmacher (2011), Pal, Woodroofe and
Meyer (2007), Schuhmacher and Dümbgen (2010), Seregin and Wellner (2010)],
we now have a fairly complete understanding of the global consistency properties
of the log-concave maximum likelihood estimator (even under model misspecifi-
cation).

Results on the global rate of convergence in log-concave density estimation
are, however, less fully developed, and in particular have been confined to the
case d = 1. For a fixed true log-concave density f0 belonging to a Hölder ball
of smoothness β ∈ [1,2], Dümbgen and Rufibach (2009) studied the supremum
distance over compact intervals in the interior of the support of f0. They proved
that the log-concave maximum likelihood estimator f̂n based on a sample of size
n converges in these metrics to f0 at rate Op(ρ

−β/(2β+1)
n ), where ρn := n/ logn;

thus f̂n attains the same rates in the stated regimes as other adaptive nonparametric
estimators that do not satisfy the shape constraint. Very recently, Doss and Wellner
(2016) introduced a new bracketing argument to obtain a rate of convergence of
Op(n−4/5) in squared Hellinger distance [defined in (3) below] in the case d = 1,
again for a fixed true log-concave density f0.

In this paper, we present several new results on global rates of convergence in
log-concave density estimation, with a focus on a minimax approach. We begin
by proving, in Theorem 1 in Section 2, a minimax lower bound which shows that
for the squared Hellinger loss function, no statistical procedure based on a sample
of size n can estimate a log-concave density with supremum risk smaller than
order n−4/5 when d = 1, and order n−2/(d+1) when d ≥ 2. The surprising feature
of this result is that it is often thought that estimation of log-concave densities
should be similar to the estimation of densities with two bounded derivatives, for
which the minimax rate is known to be n−4/(d+4) for all d ∈ N [Ibragimov and
Khas’minskii (1983)]. The reasoning for this intuition appears to be Aleksandrov’s
theorem [Aleksandrov (1939)], which states that a convex function on R

d is twice
differentiable (Lebesgue) almost everywhere in its domain, and the fact that for
twice continuously differentiable functions, convexity is equivalent to a second
derivative condition, namely that the Hessian matrix is nonnegative definite. Thus,
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the minimax lower bound in Theorem 1 reveals that while this intuition is valid
when d ≤ 2 [note that 4/(d + 4) = 2/(d + 1) = 2/3 when d = 2], log-concave
density estimation in three or more dimensions is fundamentally more challenging
in this minimax sense than estimating a density with two bounded derivatives.

The second main purpose of this paper is to provide bounds on the supremum
risk with respect to the squared Hellinger loss function of a particular estimator,
namely the log-concave maximum likelihood estimator f̂n. The empirical process
theory for studying maximum likelihood estimators is well known [e.g., van de
Geer (2000), van der Vaart and Wellner (1996)], but relies on obtaining a brack-
eting entropy bound, which therefore becomes our main challenge. A first step
is to show that after standardising the data and using the affine equivariance of
the estimator, we can reduce the problem to maximising over a class G of log-
concave densities having a small mean and covariance matrix close to the identity;
see Lemma 6 in Section A.2. In Corollary 3 in Section 3, we present an integrable
envelope function for such classes.

The first part of Section 4 is devoted to developing the key bracketing entropy
results for the class G. In particular, we show that for d ≤ 3, the ε-bracketing
entropy of G in Hellinger distance h, denoted logN[·](ε,G, h) and defined at the
beginning of Section 4, satisfies

(1) logN[·](ε,G, h) � max
{
ε−d/2, ε−(d−1)}

as ε ↘ 0, up to a multiplicative logarithmic factor when d = 2. Incidentally, the
lower bound in (1) holds for all dimensions d . The second term on the right-hand
side of (1), which dominates the first when d ≥ 3, is somewhat unexpected in
view of standard entropy bounds for classes of convex functions on a compact
domain taking values in [0,1] [e.g., Guntuboyina and Sen (2013), van der Vaart
and Wellner (1996)], where only the first term on the right-hand side of (1) appears.
Roughly speaking, it arises from the potential complexity of the domains of the
log-densities and the fact that these log-densities are not bounded below. These
upper bounds rely on intricate calculations of the bracketing entropy of classes of
bounded, concave functions on an arbitrary closed, convex domain. Further details
on these bounds can be found in Section 4.

In the second part of Section 4, we apply the bracketing entropy bounds de-
scribed above to deduce that

(2) sup
f0∈Fd

Ef0

{
h2(f̂n, f0)

} =

⎧⎪⎪⎨
⎪⎪⎩

O
(
n−4/5)

, if d = 1,

O
(
n−2/3 logn

)
, if d = 2,

O
(
n−1/2 logn

)
, if d = 3,

where Fd denotes the set of upper semi-continuous, log-concave densities on R
d .

Thus, for d ≤ 3, the log-concave maximum likelihood estimator attains the mini-
max optimal rate of convergence with respect to the squared Hellinger loss func-
tion, up to logarithmic factors when d = 2,3. The stated rate when d = 3 is slower
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in terms of the exponent of n than had been conjectured in the literature [e.g.,
Seregin and Wellner (2010), page 3778], and arises as a consequence of the brack-
eting entropy being of order ε−(d−1) = ε−2 for this dimension.

It is interesting to note that the logarithmic penalties that appear in (2) when
d = 2,3 occur for different reasons. When d = 2, the penalty arises from the loga-
rithmic term in the upper bound for the relevant bracketing entropy; cf. Theorem 4.
When d = 3, the bracketing bound is sharp up to multiplicative constants, and the
logarithmic penalty is due to the divergence of the bracketing entropy integral that
plays the crucial role in the empirical process theory. The bracketing entropy lower
bound in (1) suggests (but does not prove) that the log-concave maximum likeli-
hood estimator will be rate suboptimal for d ≥ 4; indeed, Birgé and Massart (1993)
give an example of a situation where a maximum likelihood estimator has a sub-
optimal rate of convergence agreeing with that predicted by the same empirical
process theory from which we derive our rates.

The proofs of our main results are given in the Appendix, with the exception
of the proof of Theorem 1, which is given in the online supplementary material
[Kim and Samworth (2016)], hereafter referred to as the online supplement, along
with several auxiliary results. We conclude this section with some generic notation
used throughout the paper. If C ⊆R

d is convex, let Cc, bd(C) and dim(C) denote
its complement, boundary and dimension, respectively. Let B̄d(x0, δ) denote the
closed Euclidean ball in R

d of radius δ > 0 centred at x0.

2. Minimax lower bounds. Let μd denote Lebesgue measure on R
d , and

recall that Fd denotes the set of upper semi-continuous, log-concave densities with
respect to μd , equipped with the σ -algebra it inherits as a subset of L1(R

d). Thus,
each f ∈ Fd can be written as f = eφ , for some upper semi-continuous, concave
φ : Rd → [−∞,∞); in particular, we do not insist that f is positive everywhere.
Let X1, . . . ,Xn be independent and identically distributed random vectors having
some density f ∈ Fd , and let Pf and Ef denote the corresponding probability and
expectation operators, respectively. An estimator f̃n of f is a measurable function
from (Rd)×n to the class of probability densities with respect to μd , and we write
F̃n for the class of all such estimators. For f,g ∈ L1(R

d), we define their squared
Hellinger distance by

(3) h2(f, g) :=
∫
Rd

(
f 1/2 − g1/2)2

dμd.

This metric is both affine invariant and particularly convenient for studying max-
imum likelihood estimators. Adopting a minimax approach, we define the supre-
mum risk

R(f̃n,Fd) := sup
f0∈Fd

Ef0

{
h2(f̃n, f0)

};
our aim in this section is to provide a lower bound for the infimum of R(f̃n,Fd)

over f̃n ∈ F̃n.
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THEOREM 1. For each d ∈ N, there exists cd > 0 such that for sufficiently
large n ∈ N,

inf
f̃n∈F̃n

R(f̃n,Fd) ≥
{
c1n

−4/5, if d = 1,

cdn−2/(d+1), if d ≥ 2.

Theorem 1 reveals that when d ≥ 3, the minimax lower bound rate for squared
Hellinger loss is different from that for interior point estimation established under
the local strong log-concavity condition in Seregin and Wellner (2010).

In our proof for the case d = 1, given in the online supplement, we apply The-
orem 1 of Yang and Barron (1999), which provides a minimax lower bound for
general parameter spaces and wide classes of squared loss functions L2. It re-
lies on an upper bound for the ε-covering number of the space with respect to
Kullback–Leibler divergence, as well as a lower bound on the ε-packing number
of the space with respect to L (which is the Hellinger distance in our case). We can
readily obtain such upper and lower bounds, of the same order in ε, for a subset of
F1 consisting of densities that are compactly supported and bounded away from
zero on their support. For d ≥ 2, we can reduce the problem to that of estimat-
ing a uniform density on a closed, convex set (since such densities belong to Fd ).
The lower bound constructions in the convex set estimation proofs of Korostelëv
and Tsybakov (1993), Mammen and Tsybakov (1995), Brunel (2013, 2016) can
therefore be applied to yield the rate n−2/(d+1).

As can be seen from the above descriptions, the same lower bounds hold for
the (smaller) class of upper semi-continuous densities on R

d that are concave on
their support. Moreover, a minimax lower bound can also be obtained for the L2

2
loss function. Note that in this case, the loss function is not affine invariant, so it
makes sense to restrict attention to log-concave densities f with a lower bound on
the determinant of the corresponding covariance matrix �f . The result obtained is
that there exist c′

d > 0 such that for every κ > 0,

inf
f̃n∈F̃n

sup
f0∈Fd :det(�f0 )≥κ2

Ef0L
2
2(f̃n, f0) ≥

{
c′

1n
−4/5/κ, if d = 1,

c′
dn−2/(d+1)/κ, if d ≥ 2.

3. Integrable envelopes for classes of log-concave densities. In this section,
we recall recent results on envelopes for certain classes of log-concave densities
developed in the probability literature. The following result, part (a) of which is
due to Fresen (2013), Lemma 13 and part (b) of which is due to Lovász and
Vempala [(2007), Theorem 5.14(a)], is used in the proof of Lemma 6 in Sec-
tion A.2. In particular, part (a) gives us uniform control of tail probabilities and
moments of log-concave densities with zero mean and identity covariance matrix;
part (b) facilitates a lower bound for the smallest eigenvalue of the covariance
matrix corresponding to the log-concave projection of a distribution whose own
covariance matrix is close to the identity. For f ∈ Fd , let μf := ∫

Rd xf (x) dx and
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�f := ∫
Rd (x − μf )(x − μf )T f (x) dx. For μ ∈ R

d and a symmetric, positive-
definite, d × d matrix �, let

Fμ,�
d := {f ∈ Fd : μf = μ,�f = �}.

THEOREM 2. (a) For each d ∈ N, there exist A0,d ,B0,d > 0 such that for all
x ∈ R

d , we have

sup
f ∈F0,I

d

f (x) ≤ e−A0,d‖x‖+B0,d .

(b) We have

inf
f ∈F0,I

d

inf
x:‖x‖≤1/9

f (x) > 0.

In fact, it will be convenient to have the corresponding envelopes for slightly
larger classes in order to establish our bracketing entropy bounds in Section 4. We
write λmin(�) and λmax(�) for the smallest and largest eigenvalues respectively
of a positive-definite, symmetric d × d matrix �. For ξ ≥ 0 and η ∈ (0,1), let

F̃ ξ,η
d := {

f̃ ∈ Fd : ‖μ
f̃
‖ ≤ ξ and 1 − η ≤ λmin(�f̃

) ≤ λmax(�f̃
) ≤ 1 + η

}
.

COROLLARY 3. (a) For each d ∈ N, there exist A0,d ,B0,d > 0 such that for
every ξ ≥ 0, every η ∈ (0,1) and every x ∈R

d , we have

sup
f̃ ∈F̃ξ,η

d

f̃ (x) ≤ (1 − η)−d/2 exp
{
− A0,d‖x‖

(1 + η)1/2 + A0,dξ

(1 + η)1/2 + B0,d

}
.

(b) For every ξ ≥ 0 and η ∈ (0,1) satisfying ξ ≤ (1 − η)1/2/9, we have

inf
f̃ ∈F̃ξ,η

d

inf
x:‖x‖≤ 1

9 (1−η)1/2−ξ

f̃ (x) > 0.

4. Bracketing entropy bounds and global rates of convergence of the log-
concave maximum likelihood estimator. Let G be a class of functions on R

d ,
and let ρ be a semi-metric on G. For ε > 0, let N[·](ε,G, ρ) denote the ε-bracketing
number of G with respect to ρ. Thus, N[·](ε,G, ρ) is the minimal N ∈ N such
that there exist pairs {(gL

j , gU
j )}Nj=1 with the properties that ρ(gL

j , gU
j ) ≤ ε for all

j = 1, . . . ,N and, for each g ∈ G, there exists j∗ ∈ {1, . . . ,N} satisfying gL
j∗ ≤

g ≤ gU
j∗ . We call logN[·](ε,G, ρ) the ε-bracketing entropy of G. The following

entropy bound is key to establishing the rate of convergence of the log-concave
maximum likelihood estimator in Hellinger distance.



2762 A. K. H. KIM AND R. J. SAMWORTH

THEOREM 4. Let ηd > 0 be taken from Lemma 6 in Section A.2.
(i) There exist K1,K2,K3 ∈ (0,∞) such that

logN[·]
(
ε, F̃1,ηd

d , h
) ≤

⎧⎪⎪⎨
⎪⎪⎩

K1ε
−1/2, when d = 1,

K2ε
−1 log3/2

++(1/ε), when d = 2,

K3ε
−2, when d = 3,

for all ε > 0, where log++(x) := max(1, logx).
(ii) For every d ∈ N, there exist εd ∈ (0,1] and Kd ∈ (0,∞) such that

logN[·]
(
ε, F̃1,ηd

d , h
) ≥ Kd max

{
ε−d/2, ε−(d−1)}

for all ε ∈ (0, εd ].
Note that in this theorem, ηd depends only on d . The proof of the upper bound

in Theorem 4 is long, so we give a broad outline here. We first consider the prob-
lem of finding a set of Hellinger brackets for the class of restrictions of densities
f̃ ∈ F̃1,ηd

d to [0,1]d . The main challenge here is that the effective domain of f̃

is unknown, and indeed the shape of this domain affects the bracketing entropy
significantly [Gao and Wellner (2015), Guntuboyina and Sen (2013)]. In Propo-
sition 4 in the online supplement, we derive new bracketing entropy bounds for
bounded concave functions defined on a general convex domain when d = 2,3.
This is achieved by constructing inner layers of convex polyhedral approximations
where the number of simplices required to triangulate the region between succes-
sive layers can be controlled using results from discrete convex geometry. It is the
absence of corresponding convex geometry results for d ≥ 4 that means we are
currently unable to provide bracketing entropy bounds in these higher dimensions.

Since the logarithms of densities in F̃1,ηd

d can take the value −∞, we combine
an inductive argument with Proposition 4 in the online supplement to derive brack-
eting bounds for the restrictions of F̃1,ηd

d to [0,1]d . Translations of these brackets

can be used to cover the restrictions of densities f̃ ∈ F̃1,ηd

d to other unit boxes. We

use our integrable envelope function for the class F̃1,ηd

d from Corollary 3 to allow
us to use fewer brackets as the boxes move further from the origin, yet still cover
with higher accuracy, enabling us to obtain the desired conclusion.

We are now in a position to state our main result on the supremum risk of the
log-concave maximum likelihood estimator for the squared Hellinger loss func-
tion.

THEOREM 5. Let X1, . . . ,Xn be independent and identically distributed ran-
dom vectors with density f0 ∈ Fd , and let f̂n denote the corresponding log-
concave maximum likelihood estimator. Then

R(f̂n,Fd) =

⎧⎪⎪⎨
⎪⎪⎩

O
(
n−4/5)

, if d = 1,

O
(
n−2/3 logn

)
, if d = 2,

O
(
n−1/2 logn

)
, if d = 3.
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The proof of this theorem first involves standardising the data and using affine
equivariance to reduce the problem to that of bounding the supremum risk over the
class of log-concave densities with mean vector 0 and identity covariance matrix.
Writing ĝn for the log-concave maximum likelihood estimator for the standardised
data, we show in Lemma 6 in Section A.2 that

sup
g0∈F0,I

d

Pg0

(
ĝn /∈ F̃1,ηd

d

) = O
(
n−1)

.

As well as using various known results on the relationship between the mean vector
and covariance matrix of the log-concave maximum likelihood estimator in rela-
tion to its sample counterparts, the main step here is to show that, provided none of
the sample covariance matrix eigenvalues are too large, the only way an eigenvalue
of the covariance matrix corresponding to the maximum likelihood estimator can
be small is if an eigenvalue of the sample covariance matrix is small.

The other part of the proof of Theorem 5 is to control

sup
g0∈F0,I

d

E
{
h2(ĝn, g0)1{ĝn∈F̃1,ηd

d }
}
.

This can be done by appealing to empirical process theory for maximum likeli-
hood estimators, and using the Hellinger bracketing entropy bounds developed in
Theorem 4.

APPENDIX

A.1. Proofs from Section 3.

PROOF OF COROLLARY 3. (a) Let f̃ ∈ F̃ ξ,η
d . Then we can let f (x) :=

|det�
f̃
|1/2f̃ (�

1/2
f̃

x + μ
f̃
), so that f ∈ F0,I

d . Thus, by Theorem 2(a), there ex-

ist A0,d ,B0,d > 0 such that

f (x) ≤ e−A0,d‖x‖+B0,d

for all x ∈ R
d . We deduce that, for all x ∈R

d ,

f̃ (x) = |det�
f̃
|−1/2f

(
�

−1/2
f̃

(x − μ
f̃
)
)

≤ (1 − η)−d/2 exp
{
−A0,d |‖x‖ − ‖μ

f̃
‖|

(1 + η)1/2 + B0,d

}

≤ (1 − η)−d/2 exp
{
− A0,d‖x‖

(1 + η)1/2 + A0,dξ

(1 + η)1/2 + B0,d

}
.

(b) If f̃ ∈ F̃ ξ,η
d , then as above, we can let f (x) := |det�

f̃
|1/2f̃ (�

1/2
f̃

x + μ
f̃
),

so that f ∈ F0,I
d . Moreover, if ξ ≤ (1 −η)1/2/9 and ‖x0‖ ≤ (1 −η)1/2/9 − ξ , then

∥∥�−1/2
f̃

(x0 − μ
f̃
)
∥∥2 ≤ (‖x0‖ + ξ)2

1 − η
≤ 1

81
.
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It follows that

f̃ (x0) = |det�
f̃
|−1/2f

(
�

−1/2
f̃

(x0 − μ
f̃
)
) ≥ (1 + η)−d/2 inf

f ∈F0,I
d

inf
x:‖x‖≤1/9

f (x),

so the result follows by Theorem 2(b). �

A.2. Proofs from Section 4.

PROOF OF THEOREM 4. (i) Step 1: Preliminaries. Let ε00 ∈ (0, e−1]. Fix
ε ∈ (0, ε00] and set yk := 2k/2 for k = 0,1, . . . , k0, where k0 := min{k ∈ N : yk ≥
log(ε00/ε)}. Let  denote the class of upper semi-continuous, concave functions
φ : [0,1]d → [−∞,−y0], and let D denote the class of closed, convex subsets D

of [0,1]d . For D ∈ D, let 0(D) =∅ and for k = 1, . . . , k0, define

k(D) := {
φ ∈  : dom(φ) = D and φ(x) ≥ −yk for all x ∈ D

}
.

Now let Fk(D) := {eφ : φ ∈ ⋃
D∈D k(D)}, where we adopt the convention that

e−∞ = 0. Write

K∗
1,k :=

(
1 + 5

k∑
j=1

e−yj−1

)1/2

and

K∗
2,k,1 :=

k∑
j=1

{
e−yj−1/2K1 + 8e−yj−1/4 + K◦

1y
1/2
j e−yj−1/4}

,

K∗
2,k,2 :=

k∑
j=1

{
K2e

−yj−1/2 + K◦
2yj e

−yj−1/2}
,

K∗
2,k,3 :=

k∑
j=1

{
K3e

−yj−1 + K◦
3y2

j e−yj−1
}
,

where Kd and K◦
d are the constants defined in the proofs of Propositions 2 and 4

in the online supplement, respectively. Let

hd(ε) :=

⎧⎪⎪⎨
⎪⎪⎩

ε−1/2, when d = 1,

ε−1 log3/2
++(1/ε), when d = 2,

ε−2, when d = 3.

Step 2. Recall that h(f, g) = L2(f
1/2, g1/2) for any f,g ∈ L1(R

d). It will there-
fore suffice to derive an L2-bracketing entropy bound for the set {f̃ 1/2 : f̃ ∈
F̃1,ηd

d }. As a first step towards this goal, we claim that for k = 1, . . . , k0 and
d = 1,2,3, we have

(4) logN[·]
(
K∗

1,kε,Fk(D),L2
) ≤ K∗

2,k,dhd(ε),
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and prove this by induction. First, consider the case k = 1. Let NS,1,1 :=
�eK1−y0ε−2� and NS,1,d := �exp(Kde−(d−1)y0/2ε−(d−1))� for d = 2,3. By Propo-
sition 2 in the online supplement, we can find pairs of measurable subsets
{(AL

j,1,A
U
j,1) : j = 1, . . . ,NS,1,d} of [0,1]d with the properties that L1(1AU

j,1
,

1AL
j,1

) ≤ ε2ey0 for j = 1, . . . ,NS,1,d and, if A is a closed, convex subset of

[0,1]d , then there exists j∗ ∈ {1, . . . ,NS,1,d} such that AL
j∗,1 ⊆ A ⊆ AU

j∗,1. Note

that by replacing AL
j,1 with the closure of its convex hull if necessary, there is

no loss of generality in assuming that each AL
j,1 is closed and convex. More-

over, by Proposition 4 in the online supplement, for each j = 1, . . . ,NS,1,d for
which AL

j,1 is d-dimensional, there exists a bracketing set {[ψL
j,�,1,ψ

U
j,�,1] : � =

1, . . . ,NB,1,d} for 1(A
L
j,1), where NB,1,d := �exp{K◦

dhd(εey0/2/y1)}�, such that

−y1 ≤ ψL
j,�,1 ≤ ψU

j,�,1 ≤ −y0, that L2(ψ
U
j,�,1,ψ

L
j,�,1) ≤ 2εey0/2 and such that

for every φ ∈ 1(A
L
j,1), we can find �∗ ∈ {1, . . . ,NB,1,d} with ψL

j,�∗,1 ≤ φ ≤
ψU

j,�∗,1. If dim(AL
j,1) < d , we define a trivial bracketing set {[ψL

j,�,1,ψ
U
j,�,1] :

� = 1, . . . ,NB,1,d} for 1(A
L
j,1) by ψL

j,�,1(x) := −y1 and ψU
j,�,1(x) := −y0 for

x ∈ AL
j,1. Note that whenever dim(AL

j,1) < d , we have L2(ψ
U
j,�,1,ψ

L
j,�,1) = 0.

This enables us to define a bracketing set {[f L
j,�,1, f

U
j,�,1] : j = 1, . . . ,NS,1,d , � =

1, . . . ,NB,1,d} for F1(D) by

f L
j,�,1(x) := e

ψL
j,�,1(x)1{x∈AL

j,1},

f U
j,�,1(x) := e

ψU
j,�,1(x)1{x∈AL

j,1} + e−y01{x∈AU
j,1\AL

j,1}

for x ∈ [0,1]d . Note that

L2
2
(
f U

j,�,1, f
L
j,�,1

) =
∫
AL

j,1

(
e
ψU

j,�,1 − e
ψL

j,�,1
)2

dμd + e−2y0μd

(
AU

j,1 \ AL
j,1

)

≤ e−2y0L2
2
(
ψU

j,�,1,ψ
L
j,�,1

) + e−2y0L1(1AU
j,1

,1AL
j,1

)

≤ (
K∗

1,1
)2

ε2.

Moreover, when d = 1 the cardinality of this bracketing set is

NS,1,1NB,1,1 ≤ eK1−y0ε−2 exp
{
K◦

1h1

(
εey0/2

y1

)}

≤ exp
{
e−y0/2K1ε

−1/2 + 8e−y0/4ε−1/2 + K◦
1h1

(
εey0/2

y1

)}

≤ e
K∗

2,1,1ε
−1/2

,
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where we have used the facts that ey0/2ε1/2 ≤ eyk0−1/2ε1/2 ≤ ε
1/2
00 ≤ 1 and

2ey0/4ε1/2 log(1/ε) ≤ 8eyk0−1/4ε1/4 ≤ 8ε
1/4
00 ≤ 8. When d = 2,

NS,1,2NB,1,2 ≤ exp
{
K2e

−y0/2ε−1 + K◦
2h2

(
εey0/2

y1

)}

≤ e
K∗

2,1,2ε
−1 log3/2

++(1/ε)
.

Finally, when d = 3, the cardinality of the bracketing set is

NS,1,3NB,1,3 ≤ exp
{
K3e

−y0ε−2 + K◦
3h3

(
εey0/2

y1

)}
≤ e

K∗
2,1,3ε

−2
.

This proves the claim (4) when k = 1. Now suppose the claim is true for some
k − 1 < k0 − 1, so there exist brackets {[f L

j ′,k−1, f
U
j ′,k−1] : j ′ = 1, . . . ,N ′

k−1,d}
for Fk−1(D), where N ′

k−1,d := �exp{K∗
2,k−1,dhd(ε)}�, such that L2(f

U
j ′,k−1,

f L
j ′,k−1) ≤ K∗

1,k−1ε, and for every f ∈ Fk−1(D), there exists (j ′)∗ ∈ {1, . . . ,

N ′
k−1,d} such that f L

(j ′)∗,k−1 ≤ f ≤ f U
(j ′)∗,k−1. Let BU

j ′,k−1 := {x ∈ [0,1]d :
f U

j ′,k−1(x) > 0}. We also define NS,k,1 := �eK1−yk−1ε−2� and NS,k,d :=
�exp(Kde−yk−1(d−1)/2ε−(d−1))� for d = 2,3. Using Proposition 2 in the online
supplement again, we can find pairs of measurable subsets {(AL

j,k,A
U
j,k) : j =

1, . . . ,NS,k,d} of [0,1]d , where AL
j,k is closed and convex, with the properties that

L1(1AU
j,k

,1AL
j,k

) ≤ ε2eyk−1 for j = 1, . . . ,NS,k,d and, if A is a closed, convex sub-

set of [0,1]d , then there exists j∗ ∈ {1, . . . ,NS,k,d} such that AL
j∗,k ⊆ A ⊆ AU

j∗,k .
Using Proposition 4 in the online supplement again, for each j = 1, . . . ,NS,k,d

for which dim(AL
j,k) = d , there exists a bracketing set {[ψL

j,�,k,ψ
U
j,�,k] : � =

1, . . . ,NB,k,d} for k(A
L
j,k), where NB,k,d := �exp{K◦

dhd(εeyk−1/2

yk
)}�, such that

−yk ≤ ψL
j,�,k ≤ ψU

j,�,k ≤ −y0, that L2(ψ
U
j,�,k,ψ

L
j,�,k) ≤ 2εeyk−1/2 and that for ev-

ery φ ∈ k(A
L
j,k), we can find �∗ ∈ {1, . . . ,NB,k,d} with ψL

j,�∗,k ≤ φ ≤ ψU
j,�∗,k .

Similar to the k = 1 case, whenever dim(AL
j,k) < d , we define ψL

j,�,k(x) :=
−yk and ψU

j,�,k(x) := −y0 for x ∈ AL
j,k . We can now define a bracketing set

{[f L
j,�,j ′,k, f

U
j,�,j ′,k] : j = 1, . . . ,NS,k,d , � = 1, . . . ,NB,k,d, j

′ = 1, . . . ,N ′
k−1,d} for

Fk(D) by

f L
j,�,j ′,k(x) := e

min{−yk−1,ψ
L
j,�,k(x)}1{x∈AL

j,k\BU
j ′,k−1

} + f L
j ′,k−1(x)1{x∈BU

j ′,k−1
},

f U
j,�,j ′,k(x) := e

min{−yk−1,ψ
U
j,�,k(x)}1{x∈AL

j,k\BU
j ′,k−1

} + f U
j ′,k−1(x)1{x∈BU

j ′,k−1
}

+ e−yk−11{x∈AU
j,k\(BU

j ′,k−1
∪AL

j,k)}
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for x ∈ [0,1]d . Again, we can compute

L2
2
(
f U

j,�,j ′,k, f
L
j,�,j ′,k

) ≤ e−2yk−1L2
2
(
ψU

j,�,k,ψ
L
j,�,k

) + ε2

(
1 + 5

k−1∑
j=1

e−yj−1

)

+ e−2yk−1L1(1AU
j,k

,1AL
j,k

) ≤ (
K∗

1,k

)2
ε2.

When d = 1, the cardinality of this bracketing set is

N ′
k−1,1NS,k,1NB,k,1 ≤ e

K∗
2,k−1,1h1(ε)eK1−yk−1ε−2e

K◦
1 h1(

εe
yk−1/2

yk
) ≤ e

K∗
2,k,1ε

−1/2
,

as required. When d = 2, the cardinality is

N ′
k−1,2NS,k,2NB,k,2

≤ exp
{
K∗

2,k−1,2h2(ε) + K2e
−yk−1/2ε−1 + K◦

2h2

(
εeyk−1/2

yk

)}

≤ e
K∗

2,k,2ε
−1 log3/2

++(1/ε)
.

Finally, when d = 3, the cardinality of the bracketing set is

N ′
k−1,3NS,k,3NB,k,3

≤ exp
{
K∗

2,k−1,3h3(ε) + K3e
−yk−1ε−2 + K◦

3h3

(
εeyk−1/2

yk

)}

≤ e
K∗

2,k,3ε
−2

.

This establishes the claim (4) by induction.
Step 3. For b̃ > 0, write G

d,[0,1]d ,b̃
for the set of functions on [0,1]d of the form

f 1/2, where f is an upper semi-continuous, log-concave function whose domain
is a closed, convex subset of [0,1]d , and for which f 1/2 ≤ b̃. Our next goal is to
derive an L2-bracketing entropy bound for Gd,[0,1]d ,e−1 . Writing F̄k0(D) := {eφ :
φ ∈  \ ⋃

D∈D k0(D)}, we note that since square roots of log-concave functions
are log-concave,

Gd,[0,1]d ,e−1 ⊆ {
eφ : φ ∈ 

} =Fk0(D) ∪ F̄k0(D).

We derived brackets [f L
j,�,j ′, f U

j,�,j ′ ] for Fk0(D) in Step 2 above, and moreover,

a bracketing set for F̄k0(D) is given by {[f̄ L
j,�,j ′, f̄ U

j,�,j ′ ] : j = 1, . . . ,NS,k0,d , � =
1, . . . ,NB,k0,d , j ′ = 1, . . . ,N ′

k0−1,d}, where

f̄ L
j,�,j ′(x) := f L

j,�,j ′,k0
(x),

f̄ U
j,�,j ′(x) := f U

j,�,j ′,k0
(x)1{logf U

j,�,j ′,k0
(x)≥−yk0 } + e−yk0 1{logf U

j,�,j ′,k0
(x)<−yk0 }
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for x ∈ [0,1]d . Observe that

L2
2
(
f̄ U

j,�,j ′, f̄ L
j,�,j ′

) ≤ (
K∗

1,k0

)2
ε2 + e−2yk0 ≤

(
K∗

1,k0
+ 1

ε00

)2
ε2.

Since k0 depends on ε, it is important to observe that for all k = 1, . . . , k0,

K∗
1,k ≤ 4,

K∗
2,k,1 ≤ 2K1 + 32 + 8K◦

1 =: K̄∗
2,1 − log 2,

K∗
2,k,2 ≤ 2K2 + K◦

2
(
8e1/2 + 1

) =: K̄∗
2,2 − log 2,

K∗
2,k,3 ≤ K3 + K◦

3 (8e + 1) =: K̄∗
2,3 − log 2.

In particular, these bounds do not depend on ε, and since ε ∈ (0, ε00] was arbitrary,
we conclude that

logN[·]
((

4 + ε−1
00

)
ε,Gd,[0,1]d ,e−1,L2

) ≤ logN[·]
((

4 + ε−1
00

)
ε,

{
eφ : φ ∈ 

}
,L2

)
≤ K̄∗

2,dhd(ε)

for all ε ∈ (0, ε00] and d = 1,2,3. By a simple scaling argument, we deduce that
for any b > 0,

logN[·]
((

4 + ε−1
00

)
εb1/2,Gd,[0,1]d ,be−1,L2

) ≤ K̄∗
2,dhd

(
ε/b1/2)

for all ε ∈ (0, b1/2ε00].
Step 4. We now show how to translate and scale brackets appropriately for other

cubes, and combine the results to obtain the final bracketing entropy bound for
F̃1,ηd

d . Let A0,d ,B0,d > 0 be as in Corollary 3(a). Define

Td := A0,d(d1/2 + 1)

(1 + ηd)1/2 + B0,d + d

2
log

(
1

1 − ηd

)
+ d + 1,

set ε01,d := min{e−Td , 1
dd ε4

00} and fix ε ∈ (0, ε01,d ]. For j = (j1, . . . , jd) ∈ Z
d , let

C2
j := exp

(
− A0,d‖j‖

(1 + ηd)1/2 + Td

)
,

where ‖j‖2 := ∑d
k=1 j2

k . Note from Corollary 3(a) that

sup
f̃ ∈F̃1,ηd

d

sup
x∈[j1,j1+1]×···×[jd ,jd+1]

f̃ (x)1/2 ≤ Cje
−1.

Let j0 := max{‖j‖ : j ∈ Z
d,Cj ≥ ε{log(1/ε)}−(d−1)/2}, so we may assume

j0 ≥ 1. For j = (j1, . . . , jd) ∈ Z
d such that ‖j‖ ≤ j0, let Nj := N[·]((4 +
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ε−1
00 )εC

1/2
j ,Gd,[0,1]d ,Cje

−1,L2), and let {[f L
j,�, f

U
j,�], � = 1, . . . ,Nj}, denote a brack-

eting set for Gd,[0,1]d ,Cje
−1 with L2(f

U
j,�, f

L
j,�) ≤ (4+ε−1

00 )εC
1/2
j . Such a bracketing

set can be found because when ‖j‖ ≤ j0, we have

ε ≤ C
1/2
j ε1/2{

log(1/ε)
}d/4 ≤ C

1/2
j ε1/2(

dε−(1/d))d/4 ≤ C
1/2
j ε00.

Finally, for {� = (�j) ∈×j:‖j‖≤j0
{1, . . . ,Nj}}, we define a bracketing set for {f̃ 1/2 :

f̃ ∈ F̃1,ηd

d } by

f L
� (x) := ∑

j:‖j‖≤j0

f L
j,�j

(x − j)1{x∈[j1,j1+1)×···×[jd ,jd+1)},

f U
� (x) := ∑

j:‖j‖≤j0

f U
j,�j

(x − j)1{x∈[j1,j1+1)×···×[jd ,jd+1)}

+ e−1
∑

j:‖j‖>j0

Cj1{x∈[j1,j1+1)×···×[jd ,jd+1)}

for x ∈ R
d . Note that

L2
(
f U

� , f L
�

) ≤ (
4 + ε−1

00

)
ε

( ∑
j∈Zd

Cj

)1/2
+

( ∑
j:‖j‖>j0

C2
j

)1/2
e−1

≤ (
4 + ε−1

00

)
ε
e

A0,d d1/2

4(1+ηd )1/2 + Td
4
d1/2πd/4

�(1 + d/2)1/2

{∫ ∞
0

rd−1e
− rA0,d

2(1+ηd )1/2
dr

}1/2

+ e

A0,d d1/2

2(1+ηd )1/2 + Td
2 −1

d1/2πd/4

�(1 + d/2)1/2

{∫ ∞
j0

rd−1e
− rA0,d

(1+ηd )1/2
dr

}1/2

≤ ε(B1 + B2),

where

B1 := (
4 + ε−1

00

)e A0,d d1/2

4(1+ηd )1/2 + Td
4
d1/2πd/4

�(1 + d/2)1/2

× {(d − 1)!}1/22d/2(1 + ηd)d/4

A
d/2
0,d

,

B2 := e

A0,d d1/2

2(1+ηd )1/2 + Td
2 −1

d1/2πd/4

�(1 + d/2)1/2

(1 + ηd)d/4

A
d/2
0,d

e
− Td

2 + A0,d

2(1+ηd )1/2
(d + 2)d/2.
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Note that to obtain the expression for B2, we have used the fact that

1

ε

∫ ∞
j0

rd−1e
− rA0,d

(1+ηd )1/2
dr

= (1 + ηd)d/4

A
d/2
0,d

{
(d − 1)!}1/2

e
− j0A0,d

2(1+ηd )1/2

{
d−1∑
k=0

jk
0 Ak

0,d

(1 + ηd)k/2k!
}1/2

ε−1

≤ (1 + ηd)d/4

A
d/2
0,d

e
− Td

2 + A0,d

2(1+ηd )1/2
(d + 2)d/2,

using the definition of j0 and ε01,d . Moreover, the cardinality of the bracketing set
is ∏

j:‖j‖≤j0

Nj = exp
{
K̄∗

2,d

∑
j:‖j‖≤j0

hd

(
ε

C
1/2
j

)}
≤ exp

{
K̄∗

2,dB3,dhd(ε)
}
,

where

B3,1 := ∑
j:‖j‖≤j0

C
1/4
j ≤ eT1/8e

A0,1
8(1+ηd )1/2 16(1 + ηd)1/2

A0,1
,

B3,2 := 23/2
∑

j:‖j‖≤j0

C
1/2
j ≤ eT2/425/2πe

A0,2
23/2(1+ηd )1/2 16(1 + ηd)

A2
0,2

,

B3,3 := ∑
j:‖j‖≤j0

Cj ≤ eT3/24πe

31/2A0,3
2(1+ηd )1/2 8(1 + ηd)3/2

A3
0,3

.

Since ε ∈ (0, ε01,d ] was arbitrary, we conclude that

logN[·]
(
ε, F̃1,ηd

d , h
) = logN[·]

(
ε,

{
f̃ 1/2 : f̃ ∈ F̃1,ηd

d

}
,L2

) ≤ Kdhd(ε),

for all ε ∈ (0, ε02,d ], where ε02,d := ε01,d (B1 + B2) and where

Kd := K̄∗
2,dB3,d max

{
(B1 + B2)

d/2, (B1 + B2)
d−1}{

2 + 2 log++(B1 + B2)

log++(e/(B1 + B2))

}
,

where, as in the proof of Proposition 2 in the online supplement, we have used the
fact that log++(a/ε) ≤ {2 + 2 log++(a)

log++(e/a)
} log++(1/ε) for all a, ε > 0. Now let

ε03,d := max
{
ε02,d ,

[
(1 + ηd)d/2

(1 − ηd)d/2 e

A0,d

(1+ηd )1/2 +B0,d d!πd/2

�(1 + d/2)Ad
0,d

]1/2}
,

and let Kd := Kdhd(ε02,d )/hd(ε03,d ). For ε ∈ (ε02,d , ε03,d ], we have

logN[·]
(
ε, F̃1,ηd

d , h
) ≤ logN[·]

(
ε02,d , F̃1,ηd

d , h
) ≤ Kdhd(ε02,d ) = Kdhd(ε03,d )

≤ Kdhd(ε).
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Finally, if ε > ε03,d , we can use a single bracketing pair {f L,f U }, with f L(x) :=
0 and f U(x) defined to be the integrable envelope function from Corollary 3(a)
with ξ = 1 and η = ηd there. Note that h(f U ,f L) ≤ ε03,d . This proves the upper
bound.

(ii) For this part of the proof, we use the Gilbert–Varshamov theorem, treating
d = 1 and d ≥ 2 separately, to construct a finite subset of F̃1,ηd

d of the desired
cardinality where each pair of functions is well separated in Hellinger distance.
In the case d = 1, this is achieved by constructing densities that are perturbations
of a semicircle (it is convenient to raise the semicircle to be bounded away from
zero on its domain). In the case d ≥ 2, we instead construct uniform densities on
perturbations of a closed Euclidean ball B , in an almost identical fashion to Brunel
(2013) (we simply need to choose the radius to ensure that the mean and variance
restrictions are satisfied). Further details can be found in the arxiv version of this
paper [Kim and Samworth (2015), Theorem 8(ii)]. �

PROOF OF THEOREM 5. Let μ := E(X1) and � := Cov(X1). Note that since
f0 ∈ Fd , we have that � is a finite, positive definite matrix. We can therefore de-
fine Zi := �−1/2(Xi − μ) for i = 1, . . . , n, so that E(Z1) = 0 and Cov(Z1) = I .
We also set g0(z) := (det�)1/2f0(�

1/2z + μ), so g0 ∈ F0,I
d , and let ĝn(z) :=

(det�)1/2f̂n(�
1/2z + μ), so by affine equivariance [Dümbgen, Samworth and

Schuhmacher (2011), Remark 2.4], ĝn is the log-concave maximum likelihood
estimator of g0 based on Z1, . . . ,Zn.

Let μ̂n := ∫
Rd zĝn(z) dz and �̂n := ∫

Rd (z − μ̂n)(z − μ̂n)
T ĝn(z) dz respectively

denote the mean vector and covariance matrix corresponding to ĝn. Then by
Lemma 6 below, there exists ηd ∈ (0,1) and n0 ∈ N, depending only on d , such
that for n ≥ n0, we have

sup
g0∈F0,I

d

Pg0

(
ĝn /∈ F̃1,ηd

d

) ≤ 1

n4/5 .

We can now apply Theorem 5 in Section 3 in the online supplement, which
provides an exponential tail inequality controlling the performance of a maximum
likelihood estimator in Hellinger distance in terms of a bracketing entropy integral.
It is an immediate consequence of Theorem 7.4 of van de Geer (2000), although
our notation is slightly different (in particular her definition of Hellinger distance
is normalised with a factor of 1/

√
2) and we have used the fact (apparent from her

proofs) that, in her notation, we may take C = 213/2.

In Theorem 5 in the online supplement, we take F̄ := { f̃ +g0
2 : f̃ ∈ F̃1,ηd

d }. Note

that if [f L,f U ] are elements of a bracketing set for F̃1,ηd

d , and we set f̄ L := f L+g0
2

and f̄ U := f U+g0
2 , then

h2(
f̄ U , f̄ L) = 1

2

∫
Rd

{(
f U + g0

)1/2 − (
f L + g0

)1/2}2 ≤ 1

2
h2(

f U,f L)
.
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It follows from this and our bracketing entropy bound (Theorem 4) that

logN[·](u, F̄, h) ≤ logN[·]
(
21/2u, F̃1,ηd

d , h
)

≤

⎧⎪⎪⎨
⎪⎪⎩

2−1/4K1u
−1/2, for d = 1,

2−1/2K2u
−1 log3/2

++(1/u), for d = 2,

2−1K3u
−2, for d = 3.

We now consider three different cases, assuming throughout that n ≥ d + 1 so
that, with probability 1, the log-concave maximum likelihood estimator exists and
is unique:

1. For d = 1, we define δn := 2−1/2M
1/2
1 n−2/5, where we let M1 :=

max{(237/2

3 )8/5K
4/5
1 ,233}. Then∫ δn

δ2
n/213

√
logN[·](u, F̄, h) du ≤ 4

21/23
K

1/2
1 M

3/8
1 n−3/10 ≤ 2−16n1/2δ2

n.

Moreover, δn ≤ 2−17M1n
−3/10 = 2−16n1/2δ2

n. We conclude by Theorem 5 in
the online supplement that for t ≥ M1,

sup
g0∈F0,I

d

Pg0

[{
n4/5h2(ĝn, g0) ≥ t

} ∩ {
ĝn ∈ F̃1,ηd

d

}]

≤ 213/2
∞∑

s=0

exp
(
−22s tn1/5

228

)
≤ 215/2 exp

(
− tn1/5

228

)
,

where the final bound follows because tn1/5/228 ≥ log 2.
2. For d = 2, we define δn := 2−1/2M

1/2
2 n−1/3 log1/2 n, where M2 :=

max{223K
2/3
2 54/3/3,233}. Let n0,2 be large enough that δn ≤ 1/e for n ≥ n0,2.

Then, for such n,∫ δn

δ2
n/213

√
logN[·](u, F̄, h) du

≤ 2−1/4K
1/2
2

∫ δn

0
u−1/2 log3/4(1/u)du

= 2−1/4K
1/2
2

∫ ∞
log(1/δn)

s3/4e−s/2 ds

= 2−1/4K
1/2
2

{
2δ1/2

n log3/4
(

1

δn

)
+ 3

2

∫ ∞
log(1/δn)

s−1/4e−s/2 ds

}

≤ 2−1/4K
1/2
2 5δ1/2

n log3/4(1/δn) ≤ 21/23−3/4K
1/2
2 5δ1/2

n log3/4 n

≤ 2−16n1/2δ2
n,
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where we have used the fact that 21/2M
−1/2
2 log−1/2 n ≤ n1/3 in the penultimate

inequality. We conclude that for n ≥ n0,2 and t ≥ M2, we have

sup
g0∈F0,I

d

Pg0

[{
n2/3

logn
h2(ĝn, g0) ≥ t

}
∩ {

ĝn ∈ F̃1,ηd

d

}]

≤ 215/2 exp
(
− tn1/3 logn

228

)
.

3. For d = 3, the entropy integral diverges as δ ↘ 0, so we cannot bound the
bracketing entropy integral by replacing the lower limit with zero. Nevertheless,

we can set δn := 2−1/2M
1/2
3 n−1/4 log1/2 n, where M3 := {233/210K

1/2
3 ,233}.

For t ≥ M3, we have

sup
g0∈F0,I

d

Pg0

[{
n1/2

logn
h2(ĝn, g0) ≥ t

}
∩ {

ĝn ∈ F̃1,ηd

d

}]

≤ 215/2 exp
(
− tn1/2 logn

228

)
.

Let ρ2
n,1 := n4/5, ρ2

n,2 := n2/3(logn)−1 and ρ2
n,3 := n1/2(logn)−1. We conclude

that if n ≥ max(n0, d + 1) (and also n ≥ n0,2 when d = 2), then

ρ2
n,d sup

f0∈Fd

Ef0

{
h2(f̂n, f0)

}

= ρ2
n,d sup

g0∈F0,I
d

Eg0

{
h2(ĝn, g0)

}

≤ sup
g0∈F0,I

d

∫ ∞
0

Pg0

[{
ρ2

n,dh2(ĝn, g0) ≥ t
} ∩ {

ĝn ∈ F̃1,ηd

d

}]
dt

+ 2ρ2
n,d sup

g0∈F0,I
d

Pg0

(
ĝn /∈ F̃1,ηd

d

) ≤ Md + 271/2 + 2,

as required. �

LEMMA 6. There exists ηd ∈ (0,1) such that

sup
g0∈F0,I

d

Pg0

(
ĝn /∈ F̃1,ηd

d

) = O
(
n−1)

as n → ∞, where ĝn denotes the log-concave maximum likelihood estimator based
on a random sample Z1, . . . ,Zn from g0.
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PROOF. For g ∈ Fd , we write μg := ∫
Rd zg(z) dz and �g := ∫

Rd (z − μg)(z −
μg)

T g(z) dz. Note that for n ≥ d + 1, and for any ηd ∈ (0,1),

sup
g0∈F0,I

d

Pg0

(
ĝn /∈ F̃1,ηd

d

) ≤ sup
g0∈F0,I

d

Pg0

(‖μĝn
‖ > 1

)

+ sup
g0∈F0,I

d

Pg0

{
λmax(�ĝn

) > 1 + ηd

}
(5)

+ sup
g0∈F0,I

d

Pg0

{
λmin(�ĝn

) < 1 − ηd

}
.

We treat the three terms on the right-hand side of (5) in turn. By Remark 2.3
of Dümbgen, Samworth and Schuhmacher (2011), we have that μĝn

= n−1 ×∑n
i=1 Zi =: Z̄, where the density of n1/2Z̄ := n1/2(Z̄1, . . . , Z̄d)T belongs to F0,I

d .
Taking A0,d ,B0,d > 0 from Theorem 2(a), it follows that for any t ≥ 0 and
j = 1, . . . , d ,

sup
g0∈F0,I

d

Pg0

(
n1/2|Z̄j | > t

) ≤ 2
∫ ∞
t

e−A0,dx+B0,d dx = 2

A0,d

e−A0,d t+B0,d .

Hence,

sup
g0∈F0,I

d

Pg0

(‖μĝn
‖ > 1

) ≤ sup
g0∈F0,I

d

d∑
j=1

Pg0

(
n1/2|Z̄j | > n1/2

d1/2

)

≤ 2d

A0,d

e
−A0,d n1/2

d1/2 +B0,d = O
(
n−1)

.

For the second term, we use Remark 2.3 of Dümbgen, Samworth and Schuhmacher
(2011) again to see that λmax(�ĝn

) ≤ λmax(�̃n), where �̃n := n−1 ∑n
i=1(Zi −

Z̄)(Zi − Z̄)T = n−1 ∑n
i=1 ZiZ

T
i − Z̄Z̄T denotes the sample covariance matrix.

For each j = 1, . . . , d ,

sup
g0∈F0,I

d

∫
Rd

z4
j g0(z) dz ≤ 2

∫ ∞
0

z4
j e

−A0,1zj+B0,1 dzj = 48eB0,1

A5
0,1

.

Writing Zi := (Zi1, . . . ,Zid)
T , we deduce from the Gerschgorin circle theorem

[Gerschgorin (1931), Gradshteyn and Ryzhik (2007)], Chebychev’s inequality and
Cauchy–Schwarz that

sup
g0∈F0,I

d

Pg0

{
λmax(�ĝn

) > 1 + ηd

}

≤ sup
g0∈F0,I

d

Pg0

{
λmax(�̃n) > 1 + ηd

}
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≤ sup
g0∈F0,I

d

Pg0

(
d⋃

j=1

{
1

n

n∑
i=1

Z2
ij − 1

}
>

ηd

3

)

+ sup
g0∈F0,I

d

Pg0

( ⋃
1≤j<k≤d

∣∣∣∣∣1

n

n∑
i=1

ZijZik

∣∣∣∣∣ >
ηd

3d

)

+ sup
g0∈F0,I

d

Pg0

(
‖Z̄‖2 >

ηd

3

)

≤ 432deB0,1

A5
0,1η

2
dn

+ 216d3(d − 1)eB0,1

A5
0,1η

2
dn

+ 2d

A0,d

e
−A0,d η

1/2
d

n1/2

31/2d1/2 +B0,d

= O
(
n−1)

.

The third term on the right-hand side of (5) is the most challenging to handle. Let
P1/10,1/2 denote the class of probability distributions P on R

d such that μP :=∫
Rd x dP (x) and �P := ∫

Rd (x − μP )(x − μP )T dP (x) satisfy ‖μP ‖ ≤ 1/10 and
1/2 ≤ λmin(�P ) ≤ λmax(�P ) ≤ 3/2, and such that

∫
Rd

‖x‖4 dP (x) ≤ 2dπd/2�(d + 4)

�(1 + d/2)

eB0,d

Ad+4
0,d

=: τ4,d ,

say, where A0,d and B0,d are taken from Theorem 2(a). By Theorem 2(a),

sup
g0∈F0,I

d

∫
Rd

‖x‖4g0(x) dx ≤
∫
Rd

‖x‖4e−A0,d‖x‖+B0,d dx

= dπd/2eB0,d

�(1 + d/2)

∫ ∞
0

rd+3e−A0,d r dr = τ4,d

2
.

Recall from Theorem 2.2 of Dümbgen, Samworth and Schuhmacher (2011) that
for P ∈ P1/10,1/2, there exists a unique log-concave projection ψ∗(P ) ∈Fd given
by

ψ∗(P ) := argmax
f ∈Fd

∫
Rd

logf dP.

Our first claim is that there exists M0,d > 0, depending only on d , such that

sup
P∈P1/10,1/2

sup
x∈Rd

logψ∗(P )(x) ≤ M0,d .

To see this, suppose that there exist (Pn) ∈ P1/10,1/2 such that

sup
x∈Rd

logψ∗(Pn)(x) → ∞.



2776 A. K. H. KIM AND R. J. SAMWORTH

Note that for any R > 0,

sup
n∈N

Pn

(
B̄(0,R)c

) ≤ sup
n∈N

1

R2

∫
Rd

‖x‖2 dPn(x)

≤ sup
n∈N

dλmax(�Pn) + ‖μPn‖2

R2

≤ 3d

2R2 + 1

100R2 → 0

as R → ∞, so the sequence (Pn) is tight. We deduce from Prohorov’s theorem
that there exists a subsequence (Pnk

) and a probability measure P on R
d such

that Pnk

d→ P . If (Ynk
) is a sequence of random vectors on the same probabil-

ity space with Ynk
∼ Pnk

, then {‖Ynk
‖ : k ∈ N} is uniformly integrable, because

E(‖Ynk
‖2) ≤ 3d/2 + 1/100. We deduce that

∫
Rd ‖x‖dPnk

(x) → ∫
Rd ‖x‖dP (x).

Together with the weak convergence, this means that Pnk
converges to P in the

Wasserstein distance. Moreover, for any unit vector u ∈ R
d , the family {(uT Ynk

)2 :
k ∈ N} is uniformly integrable, because E{(uT Ynk

)4} ≤ E(‖Ynk
‖4) ≤ τ4,d . Thus,

uT �P u = limk→∞ uT �Pnk
u ≥ 1/2, so in particular, P(H) < 1 for every hyper-

plane H in R
d . We conclude by Theorem 2.15 and Remark 2.16 of Dümbgen,

Samworth and Schuhmacher (2011) that ψ∗(Pnk
) converges to ψ∗(P ) uniformly

on closed subsets of Rd \ disc(ψ∗(P )), where disc(ψ∗(P )) denotes the set of dis-
continuity points of ψ∗(P ). In turn, this implies that

sup
x∈Rd

ψ∗(Pnk
)(x) ≤ sup

x∈Rd

ψ∗(P )(x) + 1

for sufficiently large k, which establishes our desired contradiction.
Moreover, by Theorem 2(b), there exists a0,d > 0, depending only on d , such

that

inf
f ∈F0,I

d

f (0) ≥ a0,d .

It follows that for any μ ∈ R
d ,

inf
f ∈Fμ,�

d

sup
x∈Rd

f (x) ≥ a0,d (det�)−1/2.

Thus, using our claim, if det� < a2
0,de−2M0,d , then {ψ∗(P ) : P ∈ P1/10,1/2} ∩

(
⋃

μ∈Rd Fμ,�
d ) = ∅. Since supP∈P1/10,1/2 λmax(�P ) ≤ 3/2, we deduce that if

λmin(�) < 2d−1a2
0,de−2M0,d /3d−1, then

{
ψ∗(P ) : P ∈ P1/10,1/2} ∩

( ⋃
μ∈Rd

Fμ,�
d

)
=∅.
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Finally, we conclude that if we define ηd := 1 − 2d−2a2
0,d e

−2M0,d

3d−1 , then

sup
g0∈F0,I

d

Pg0

{
λmin(�ĝn

) < 1 − ηd

}

≤ sup
g0∈F0,I

d

Pg0

{
λmin(�̃n) < 1/2

}

+ sup
g0∈F0,I

d

Pg0

{
λmax(�̃n) > 3/2

} + sup
g0∈F0,I

d

Pg0

(‖Z̄‖ > 1/10
)

+ sup
g0∈F0,I

d

Pg0

(∣∣∣∣∣1

n

n∑
i=1

{‖Zi‖4 −E
(‖Z1‖4)}∣∣∣∣∣ >

τ4,d

2

)

= O
(
n−1)

,

using very similar arguments to those used above, as well as Chebychev’s inequal-
ity for the last term. �
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SUPPLEMENTARY MATERIAL

Supplementary material to “Global rates of convergence in log-concave
density estimation” (DOI: 10.1214/16-AOS1480SUPP; .pdf). Proof of Theorem 1
and auxiliary results.
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