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SUB-GAUSSIAN MEAN ESTIMATORS

BY LUC DEVROYE1,∗, MATTHIEU LERASLE†,
GABOR LUGOSI2,3,‡ AND ROBERTO I. OLIVEIRA2,4,5,§

McGill University∗, CNRS—Université Nice Sophia Antipolis†,
ICREA and Universitat Pompeu Fabra‡ and IMPA§

We discuss the possibilities and limitations of estimating the mean of
a real-valued random variable from independent and identically distributed
observations from a nonasymptotic point of view. In particular, we define
estimators with a sub-Gaussian behavior even for certain heavy-tailed distri-
butions. We also prove various impossibility results for mean estimators.

1. Introduction. Estimating the mean of a probability distribution P on the
real line based on a sample Xn

1 = (X1, . . . ,Xn) of n independent and identically
distributed random variables is arguably the most basic problem of statistics. While
the standard empirical mean

êmpn

(
Xn

1
)= 1

n

n∑
i=1

Xi

is the most natural choice, its finite-sample performance is far from optimal when
the distribution has a heavy tail.

The central limit theorem guarantees that if the Xi have a finite second moment,
this estimator has Gaussian tails, asymptotically, when n → ∞. Indeed,

P

(∣∣êmpn

(
Xn

1
)− μP

∣∣> σP�−1(1 − δ/2)√
n

)
→ δ,(1)

where μP and σ 2
P > 0 are the mean and variance of P (resp.) and � is the cumula-

tive distribution function of the standard normal distribution. This result is essen-
tially optimal: no estimator can have better-than-Gaussian tails for all distributions
in any “reasonable class” (cf. Remark 1 below).
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This paper is concerned with a nonasymptotic version of the mean estimation
problem. We are interested in large, nonparametric classes of distributions, such as

P2 := {all distributions over R with finite second moment},(2)

Pσ 2

2 := {
all distributions P ∈ P2 with variance σ 2

P = σ 2} (
σ 2 > 0

)
,(3)

Pkrt≤κ := {all P ∈ P2 with kurtosis ≤ κ} (κ > 1),(4)

as well as some other classes introduced in Section 3. Given such a class P , we
would like to construct sub-Gaussian estimators. These should take an i.i.d. sample
Xn

1 from some unknown P ∈P and produce an estimate Ên(X
n
1) of μP that satisfies

P

(∣∣Ên

(
Xn

1
)− μP

∣∣> LσP

√
(1 + ln(1/δ))

n

)
≤ δ for all δ ∈ [δmin,1)(5)

for some constant L > 0 that depends only on P . One would like to keep δmin as
small as possible (say exponentially small in n).

Of course, when n → ∞ with δ fixed, (5) is a weaker form of (1) since
�−1(1 − δ/2) ≤ √

2 ln(2/δ). The point is that (5) should hold nonasymptotically,
for extremely small δ, and uniformly over P ∈ P , even for classes P containing
distributions with heavy tails. The empirical mean cannot satisfy this property un-
less either P contains only sub-Gaussian distributions or δmin is quite large (cf.
Section 2.3.1), so designing sub-Gaussian estimators with the kind of guarantee
we look for is a nontrivial task.

In this paper, we prove that, for most (but not all) classes P ⊂ P2 we consider,
there do exist estimators that achieve (5) for all large n, with δmin ≈ e−cPn and a
value of L that does not depend on δ or n. In each case, cP > 0 is a constant that
depends on the class P under consideration, and we also obtain nearly tight bounds
on how cP must depend on P . (In particular, δmin cannot be super-exponentially
small in n.) In the specific case of bounded-kurtosis distributions [cf. (4) above],
we achieve L ≤ √

2 + ε for δmin ≈ e−o((n/κ)2/3). This value of L is nearly optimal
by Remark 1 below.

Before this paper, it was known that (5) could be achieved for the whole class
P2 of distributions with finite second moments, with a weaker notion of estimator
that we call δ-dependent estimator, that is, an estimator Ên = Ên,δ that may also
depend on the confidence parameter δ. By contrast, the estimators that we intro-
duce here are called multiple-δ estimators: a single estimator works for the whole
range of δ ∈ [δmin,1). This distinction is made formal in Definition 1 below. By
way of comparison, we also prove some results on δ-dependent estimators in the
paper. In particular, we show that the distinction is substantial. For instance, there
are no multiple-δ sub-Gaussian estimators for the full class P2 for any nontriv-
ial range of δmin. Interestingly, multiple-δ estimators do exist (with δmin ≈ e−cn)
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for the class Pσ 2

2 (corresponding to fixed variance). In fact, this is true when the
variance is “known up to constants”, but not otherwise.

Why finite variance? In all examples mentioned above, we assume that all dis-
tributions P ∈ P have a finite variance σ 2

P . In fact, our definition (5) implicitly re-
quires that the variance exists for all P ∈ P . A natural question is if this condition
can be weakened. For example, for any α ∈ (0,1] and M > 0, one may consider
the class PM

1+α of all distributions whose (1 + α)th central moment equals M (i.e.,
E[|X −EX|1+α] = M if X is distributed according to any P ∈ PM

1+α). It is natural
to ask whether there exist estimators of the mean satisfying (5) with σP replaced
by some constant depending on P. In Theorem 3.1, we prove that for every sample
size n, δ < 1/2, α ∈ (0,1], and for any mean estimator Ên,δ , there exists a dis-
tribution P ∈ PM

1+α such that with probability at least δ, the estimator is at least

M1/(1+α)(
ln(1/δ)

n
)α/(1+α) away from the target μP.

This result not only shows that one cannot expect sub-Gaussian confidence in-
tervals for classes that contain distributions of infinite variance but also that in such
cases it is impossible to have confidence intervals whose length scales as n−1/2.

Weakly sub-Gaussian estimators. Consider the class PBer of all Bernoulli dis-
tributions, that is, the class that contains all distributions P of the form

P
({1})= 1 − P

({0})= p, p ∈ [0,1].
Perhaps surprisingly, no multiple-δ estimator exists for this class of distributions,
even when δmin is a constant. (We do not explicitly prove this here but it is easy
to deduce it using the techniques of Sections 4.3 and 4.5.) On the other hand, by
standard tail bounds for the binomial distribution (e.g., by Hoeffding’s inequality),
the standard empirical mean satisfies, for all δ > 0 and P ∈ PBer,

P

(∣∣êmpn

(
Xn

1
)− μP

∣∣>
√

ln(2/δ)

2n

)
≤ δ.

Of course, this bound has a sub-Gaussian flavor as it resembles (5) except that the
confidence bounds do not scale by σP(log(1/δ)/n)1/2 but rather by a distribution-
free constant times (log(1/δ)/n)1/2.

In general, we may call an estimate weakly sub-Gaussian with respect to the
class P if there exists a constant σP such that for all P ∈ P ,

P

(∣∣Ên

(
Xn

1
)− μP

∣∣> LσP

√
(1 + ln(1/δ))

n

)
≤ δ for all δ ∈ [δmin,1)

for some constant L > 0. δ-dependent and multiple-δ versions of this definition
may be given in analogy to those of sub-Gaussian estimators.

Note that if a class P is such that supP∈P σP < ∞, then any sub-Gaussian esti-
mator is weakly sub-Gaussian. However, for classes of distributions without uni-
formly bounded variance, this is not necessarily the case and the two notions are
incomparable.
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In this paper, we focus on the notion of sub-Gaussian estimators and we do
not pursue further the characterization of the existence of weakly sub-Gaussian
estimators.

1.1. Related work. To our knowledge, the explicit distinction between δ-
dependent and multiple-δ estimators, and our construction of multiple-δ sub-
Gaussian estimators for exponentially small δ, are all new. On the other hand,
constructions of δ-dependent estimators are implicit in older work on stochastic
optimization of Nemirovsky and Yudin [17] (see also Levin [15] and Hsu [7]),
sampling from large discrete structures by Jerrum, Valiant and Vazirani [10], and
for sketching algorithms, see Alon, Matias and Szegedy [1]. Recently, there has
been a surge of interest in sub-Gaussian estimators, their generalizations to multi-
variate settings, and their applications in a variety of statistical learning problems
where heavy-tailed distributions may be present; see, for example, Catoni [5],
Hsu and Sabato [9], Brownlees, Joly and Lugosi [3], Lerasle and Oliveira [14],
Minsker [16], Audibert and Catoni [2], Bubeck, Cesa-Bianchi and Lugosi [4].
Most of these papers use δ-dependent sub-Gaussian estimators. Catoni’s paper
[5] is close in spirit to ours, as it focuses on sub-Gaussian mean estimation as
a fundamental problem. That paper presents δ-dependent sub-Gaussian estimators
with nearly optimal L = √

2 + o(1) for a wide range of δ and the classes Pσ 2

2
and Pkrt≤κ defined in (3). The δ-dependent sub-Gaussian estimator introduced by
[5] may be converted into a multiple-δ estimators with sub-exponential (instead of
sub-Gaussian) tails for Pσ 2

2 by choosing the single parameter of the estimator ap-
propriately. Loosely speaking, this corresponds to squaring the term ln(1/δ) in (5).
Catoni also obtains multiple-δ estimators for P2 with sub-exponential tails. These
ideas are strongly related to Audibert and Catoni’s paper on robust least-squares
linear regression [2].

1.2. Main proof ideas. The negative results we prove in this paper are min-
imax lower bounds for simple families of distributions such as scaled Bernoulli
distributions (Theorem 3.1), Laplace distributions with fixed scale parameter for
δ-dependent (Theorem 4.3), and the Poisson family for multiple-δ estimators (The-
orem 4.4). The main point about the latter choices is that it is easy to compare the
probabilities of events when one changes the values of the parameter. Interestingly,
Catoni’s lower bounds in [5] also follow from a one- dimensional family (in that
case, Gaussians with fixed variance σ 2 > 0).

Our constructions of estimators use two main ideas. The first one is that, while
one cannot turn δ-dependent into multiple-δ estimators, one can build multiple-δ
estimators from the slightly stronger concept of sub-Gaussian confidence inter-
vals. That is, if for each δ > 0 one can find an empirical confidence interval for μP
with “sub-Gaussian length,” one may combine these intervals to produce a single
multiple-δ estimator. This general construction is presented in Section 4.2 and is
related at a high level to Lepskii’s adaptation method [12, 13].
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Although general, this method of confidence intervals loses constant factors.
Our second idea for building estimators, which is specific to the bounded kurto-
sis case (see Theorem 3.6 below), is to use a data-driven truncation mechanism
to make the empirical mean better behaved. By using preliminary estimators of
the mean and variance, we truncate the random variables in the sample and ob-
tain a Bennett-type concentration inequality with sharp constant L = √

2 + o(1).
A crucial point in this analysis is to show that our truncation mechanism is fairly
insensitive to the preliminary estimators being used.

1.3. Organization. The remainder of the paper is organized as follows. Sec-
tion 2 fixes notation, formally defines our problem and discusses previous work in
light of our definition. Section 3 states our main results. Several general methods
that we use throughout the paper are collected in Section 4. Proofs of the main
results are given in Sections 5 to 7. Section 8 discusses several open problems.

2. Preliminaries.

2.1. Notation. We write N = {0,1,2, . . .}. For a positive integer n, denote
[n] = {1, . . . , n}. |A| or #A denote the cardinality of the finite set A.

We treat R and R
n as measurable spaces with the respective Borel σ -fields kept

implicit. Elements of Rn are denoted by xn
1 = (x1, . . . , xn) with x1, . . . , xn ∈ R.

Probability distributions over R are denoted P. Given a (suitably measurable)
function f = f (X, θ) of a real-valued random variable X distributed according to
P and some other parameter θ , we let

Pf = Pf (X, θ) =
∫
R

f (x, θ)P(dx)

denote the integral of f with respect to X. Assuming PX2 < ∞, we use the sym-
bols μP = PX and σ 2

P = PX2 − μ2
P for the mean and variance of P.

Z =d P means that Z is a random object (taking values in some measurable
space) and P is the distribution of this object. Xn

1 =d P⊗n means that Xn
1 =

(X1, . . . ,Xn) is a random vector in R
n with the product distribution corresponding

to P. Moreover, given such a random vector Xn
1 and a nonempty set B ⊂ [n], P̂B

is the empirical measure of Xi , i ∈ B:

P̂B = 1

|B|
∑
i∈B

δXi
.

We write P̂n instead of P̂[n] for simplicity.

2.2. The sub-Gaussian mean estimation problem. In this section, we begin
a more formal discussion of the main problem in this paper. We start with the
definition of a sub-Gaussian estimator of the mean.
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DEFINITION 1. Let n be a positive integer, L > 0, δmin ∈ (0,1). Let P be a
family of probability distributions over R with finite second moments.

1. δ-dependent sub-Gaussian estimation: A δ-dependent L-sub-Gaussian esti-
mator for (P, n, δmin) is a measurable mapping Ên : Rn × [δmin,1) →R such that
if P ∈ P , δ ∈ [δmin,1), and Xn

1 = (X1, . . . ,Xn) is a sample of i.i.d. random vari-
ables distributed as P, then

P

(∣∣Ên

(
Xn

1 , δ
)− μP

∣∣> LσP

√
(1 + ln(1/δ))

n

)
≤ δ.(6)

We also write Ên,δ(·) for Ên(·, δ).
2. Multiple-δ sub-Gaussian estimation: A multiple-δ L-sub-Gaussian estimator

for (P, n, δmin) is a measurable mapping Ên : Rn → R such that, for each δ ∈
[δmin,1), P ∈ P and i.i.d. sample Xn

1 = (X1, . . . ,Xn) distributed as P,

P

(∣∣Ên

(
Xn

1
)− μP

∣∣> LσP

√
(1 + ln(1/δ))

n

)
≤ δ.(7)

It transpires from these definitions that multiple-δ estimators are preferable
whenever they are available, because they combine good typical behavior with
nearly optimal bounds under extremely rare events. By contrast, the need to com-
mit to a δ in advance means that δ-dependent estimators may be too pessimistic
when a small δ is desired. The main problem addressed in this paper is the follow-
ing:

Given a family P (or more generally a sequence of families Pn), find the smallest
possible sequence δmin = δmin,n such that multiple-δ L-sub-Gaussian estimators for
(P, n, δmin,n) [resp., (Pn,n, δmin,n)] exist for all large n, and with a constant L that
does not depend on n.

REMARK 1 (Optimality of sub-Gaussian estimators). Call a class P “reason-
able” when it contains all Gaussian distributions with a given variance σ 2 > 0.
Catoni [5], Proposition 6.1, shows that, if δ ∈ (0,1), P is reasonable and some
estimator Ên,δ achieves

P

(
Ên,δ

(
Xn

1
)− μP >

rσP√
n

)
≤ δ whenever P ∈ P,

then r ≥ �−1(1 − δ). The same result holds for the lower tail. Since �−1(1 − δ) ∼√
2 ln(1/δ) for small δ, this means that, for any reasonable class P , no constant

L <
√

2 is achievable for small δmin, and no better dependence on n or δ is pos-
sible. In particular, sub-Gaussian estimators are optimal up to constants, and esti-
mators with L ≤ √

2 + o(1) are “nearly optimal.”
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2.3. Known examples from previous work. In what follows, we present some
known estimators of the mean and discuss their sub-Gaussian properties (or lack
thereof).

2.3.1. Empirical mean as a sub-Gaussian estimator. For large n, σ 2 > 0 fixed
and δmin → 0, the empirical mean

êmpn

(
xn

1
)= 1

n

n∑
i=1

xi

is not a L-sub-Gaussian estimator for the class Pσ 2

2 of all distributions with vari-
ance σ 2. This is a consequence of [5], Proposition 6.2, which shows that the devi-
ation bound obtained from Chebyshev’s inequality is essentially sharp.

Things change under slightly stronger assumptions. For example, a nonuni-
form version of the Berry–Esséen theorem ([18], Theorem 14, page 125) im-
plies that, for large n, êmpn is a multiple-δ (

√
2 + ε)-sub-Gaussian estimator for

(P3,η, n, δmin,n), where

P3,η = {
P ∈P2 : P|X − μP|3 ≤ (ησ )3}

for some η > 1 and δmin,n  n−1/2(logn)−3/2. Similar results (with worse con-
stants) hold for the class Pkrt≤κ [cf. (4)] when δmin  1/n and κ is bounded [5],
Proposition 5.1. Catoni ([5], Proposition 6.3) shows that the sub-Gaussian property
breaks down when δmin = o(1/n). Exponentially small δmin can be achieved under
much stronger assumptions. For example, Bennett’s inequality implies that êmpn

is (
√

2 + ε)-sub-Gaussian for the triple (P∞,η, n, δmin), with δmin = e−ε2n/η2
and

P∞,η := {
P ∈ P2 : |X − μP| ≤ ησP a.s.

}
.

2.3.2. Median of means. Quite remarkably, as it has been known for some
time, one can do much better than the empirical mean in the δ-dependent setting.
The so-called median of means construction gives L-sub-Gaussian estimators Ên,δ

(with L some constant) for any triple (P2, n, e1−n/2) where n ≥ 6. The basic idea is
to partition the data into disjoint blocks, calculate the empirical mean within each
block, and finally take the median of them. This construction with a basic perfor-
mance bound is reviewed in Section 4.1, as it provides a building block and an
inspiration for the new constructions in this paper. We emphasize that, as pointed
out in the Introduction, variants of this result have been known for a long time;
see Nemirovsky and Yudin [17], Levin [15], Jerrum, Valiant and Vazirani [10],
and Alon, Matias and Szegedy [1]. Note that this estimator has good performance
even for distributions with infinite variance (see the remark following Theorem 3.1
below).
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2.3.3. Catoni’s estimators. The constant L obtained by the median-of-means
estimator is larger than the optimal value

√
2 (see Remark 1). Catoni [5] designs

δ-dependent sub-Gaussian estimators with nearly optimal L = √
2 + o(1) for the

classes Pσ 2

2 (known variance) and Pkrt≤κ (bounded kurtosis). A variant of Catoni’s
estimator is a multiple-δ estimator, however, with sub-exponential instead of sub-
Gaussian tails [i.e., the

√
ln(1/δ) term in (7) appears squared]. Both estimators

work for exponentially small δ, although the constant in the exponent for Pkrt≤κ

depends on κ .

3. Main results. Here, we present the main results of the paper. Proofs are
deferred to Sections 4–7.

3.1. On the nonexistence of sub-Gaussian mean estimators. Recall that for
any α,M > 0, PM

1+α denotes the class of all distributions on R whose (1 + α)th
central moment equals M (i.e., E[|X − EX|1+α] = M). We start by pointing out
that when α < 1, no sub-Gaussian estimators exist (even if one allows δ-dependent
estimators).

THEOREM 3.1. Let n > 5 be a positive integer, M > 0, α ∈ (0,1], and δ ∈
(2e−n/4,1/2). Then for any mean estimator Ên,

sup
P∈PM

1+α

P

(∣∣Ên

(
Xn

1 , δ
)− μP

∣∣> (
M1/α ln(2/δ)

n

)α/(1+α))
≥ δ.

The proof is given in Section 4.3. The bound of the theorem is essentially tight.
It is shown in Bubeck, Cesa-Bianchi and Lugosi [4] that for each M > 0, α ∈
(0,1], and δ, there exists an estimator Ên(X

n
1 , δ) such that

sup
P∈PM

1+α

P

(∣∣Ên

(
Xn

1 , δ
)− μP

∣∣> (
8
(12M)1/α ln(1/δ)

n

)α/(1+α))
≤ δ.

The estimator Ên(X
n
1 , δ) satisfying this bound is the median-of-means estimator

with appropriately chosen parameters.
It is an interesting question whether multiple-δ estimators exist with similar

performance. Since our primary goal in this paper is the study of sub-Gaussian
estimators, we do not pursue the case of infinite variance further.

3.2. The value of knowing the variance. Given 0 < σ1 ≤ σ2 < ∞, define the
class of distributions with variance between σ 2

1 and σ 2
2 :

P [σ 2
1 ,σ 2

2 ]
2 = {

P ∈ P2 : σ 2
1 ≤ σ 2

P ≤ σ 2
2
}
.

This class interpolates between the classes of distributions with fixed variance Pσ 2

2
and with completely unknown variance P2. The next theorem is proved in Sec-
tion 5.
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THEOREM 3.2. Let 0 < σ1 < σ2 < ∞ and define R = σ2/σ1.

1. Letting L(1) = (4e
√

2 + 4 ln 2)R and δ
(1)
min = 4e1−n/2, for every n ≥ 6 there

exists a multiple-δ L(1)-sub-Gaussian estimator for (P [σ 2
1 ,σ 2

2 ]
2 , n, δ

(1)
min).

2. For any L ≥ √
2, there exist φ(2) > 0 and δ

(2)
min > 0 such that, when R > φ(2),

there is no multiple-δ L-sub-Gaussian estimator for (P [σ 2
1 ,σ 2

2 ]
2 , n, δ

(2)
min) for any n.

3. For any value of R ≥ 1 and L ≥ √
2, if we let δ

(3)
min = e1−9L2n, there is no

δ-dependent L-sub-Gaussian estimator for (P [σ 2
1 ,σ 2

2 ]
2 , n, δ

(3)
min) for any n.

It is instructive to consider this result when n grows and R = Rn may change
with n. The theorem says that, when supn Rn < ∞, there are multiple-δ L-sub-
Gaussian estimators for all large n, with exponentially small δmin and a constant L.
On the other hand, if Rn → ∞, for any constant L and all large n, no multiple-δ L-
sub-Gaussian estimators exist for any sequence δ = δmin,n → 0. Finally, the third
item says that even when Rn ≡ 1, δ-dependent estimators are limited to δmin =
e−O(n), so the median-of-means estimator is optimal in this sense.

3.3. Regularity, symmetry and higher moments. The following shows that
what we call regularity conditions can substitute for knowledge of the variance.

DEFINITION 2. For P ∈ P2 and j ∈ N \ {0}, let X1, . . . ,Xj be i.i.d. random
variables with distribution P. Define

p−(P, j) = P

( j∑
i=1

Xi ≤ jμP

)
and p+(P, j) = P

( j∑
i=1

Xi ≥ jμP

)
.

Given k ∈ N, we define the k-regular class as follows:

P2,k-reg = {
P ∈ P2 : ∀j ≥ k,min

(
p+(P, j),p−(P, j)

)≥ 1/3
}
.

Note that this family of distributions is increasing in k. Also note that⋃
k∈NP2,k-reg = P2, because the central limit theorem implies p+(P, j) → 1/2

and p−(P, j) → 1/2. Here are two important examples of large families of distri-
butions in this class.

EXAMPLE 3.1. We say that a distribution P ∈ P2 is symmetric around the
mean if, given X =d P, 2μP − X =d P as well. Clearly, if P has this prop-
erty, p+(P, j) = p−(P, j) = 1/2 for all j and thus P ∈ P2,1-reg. In other words,
P2,sym ⊂ P2,1-reg where P2,sym is the class of all P ∈ P2 that are symmetric around
the mean.
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EXAMPLE 3.2. Given η ≥ 1 and α ∈ (2,3], set

Pα,η = {
P ∈ P2 : P|X − μP|α ≤ (ησP)α

}
.(8)

We show in Lemma 6.2 that, for P in this family, min(p+(P, j),p−(P, j)) ≥ 1/3
once j ≥ (Cαη)2α/(α−2) for a constant Cα depending only on α. We deduce

Pα,η ⊂P2,k-reg if k ≥ (Cαη)2α/(α−2).

Our main result about k-regular classes states that sub-Gaussian multiple-δ es-
timators exist for P2,k-reg in the sense of the following theorem, proven in Sec-
tion 6.1.

THEOREM 3.3. Let n, k be positive integers with n ≥ (3 + ln 4)124k. Set
δmin,n,k = 4e3−n/(124k) and L∗ = 4

√
2(1 + 2 ln 2)(1 + 62 ln(3))e5/2. Then there

exists a L∗-sub-Gaussian multiple-δ estimator for (P2,k-reg, n, δmin,n,k).

We also show that the range of δmin = e−O(n/k) in this result is optimal. This
follows directly from stronger results that we prove for Examples 3.1 and 3.2.
In other words, the general family of estimators designed for k-regular classes
has nearly optimal range of δ for these two smaller classes. The next result, for
symmetric distributions, is proven in Section 6.2.

THEOREM 3.4. Consider the class P2,sym defined in Example 3.1. Then:

1. the estimator obtained in Theorem 3.3 for k = 1 is a L∗-sub-Gaussian
multiple-δ estimator for (P2,sym, n, δmin,n,1) when n ≥ (3 + ln 2)124;

2. on the other hand, for any L ≥ √
2, no δ-dependent L-sub-Gaussian estima-

tor can exist for (P2,sym, n, e1−9L2n).

We also have an analogous result for the class Pα,η. The proof may be found in
Section 6.3.

THEOREM 3.5. Fix α ∈ (2,3] and assume η ≥ 31/321/6. Consider the class
Pα,η defined in Example 3.2. Then there exists some Cα > 0 depending only on α

such that if kα = �Cαη(2α)/(α−2)�:

1. the estimator obtained in Theorem 3.3 for k = kα is a L∗-sub-Gaussian
multiple-δ estimator for (Pα,η, n, δmin,n,kα ) when n ≥ (3 + ln 4)124kα ;

2. on the other hand, for any L ≥ √
2, there exist n0,α,L ∈ N and cα,L > 0 such

that no multiple-δ L-sub-Gaussian estimator can exist for (Pα,η, n, e1−cα,Ln/kα )

when n ≥ n0,α,L is large enough;
3. finally, for L ≥ √

2 there is no δ-dependent L sub-Gaussian estimator for
(Pα,η, n, e1−9L2n).
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3.4. Bounded kurtosis and nearly optimal constants. This section shows that
multiple-δ sub-Gaussian estimation with nearly optimal constants can be proved
when the kurtosis

κP = P(X − μP)4

σ 4
P

is uniformly bounded in the class. (We set κP = 1 when σ 2
P = 0.) More specifically,

we consider the class Pkrt≤κ of all distributions P ∈ P2 with κP ≤ κ .
To state the result, let bmax be a positive integer to be specified below. Also

define

ξ = 2
√

2κ
b

3/2
max

n
+ 36

√
κbmax

n
+ 1120

√
κ

bmax

n
.

Note that when bmax = o((n/κ)2/3), ξ = o(1). The main result for classes of dis-
tributions with bounded kurtosis is the following. For the proof, see Section 7.

THEOREM 3.6. Let n ≥ 4, L = √
2(1 + ξ), δ

(4)
min = 4e

e−2e−bmax . There exists
an absolute constant C such that, if κbmax/n ≤ C, then there exists a multiple-δ
L-sub-Gaussian estimator for (Pκ

4 , n, δ
(4)
min).

This result is most interesting in the regime where n → ∞, κ = κn possibly
depends on n and n/κn → ∞. In this case, we may take bmax = o((n/κn)

2/3)

and obtain multiple-δ (
√

2 + o(1))-sub-Gaussian estimators (Pkrt≤κ , n, δ
(4)
min) for

δ
(4)
min ≈ e−bmax . Catoni [5] obtained δ-dependent

√
2+o(1)-estimators for a smaller

value δ
(5)
min ≈ e−n/κ . In Remark 2, we show how one can obtain a similar range of

δ with a multiple-δ estimator, albeit with worse constant L.

4. General methods. We collect here some ideas that recur in the remainder
of the paper. Section 4.1 presents an analysis of median-of-means, as described
in Section 2.3.2 above. Section 4.2 presents a “black-box method” of deriving
multiple-δ estimators from confidence intervals; the latter being δ-dependent ob-
jects that are easier to construct.

We then present several lower bounds. In Section 4.3, we use scaled Bernoulli
distributions to prove the impossibility of designing (weakly) sub-Gaussian esti-
mators for families of distributions with unbounded variance. Section 4.4 uses the
family of Laplace distributions to lower bound δmin for δ-dependent estimators.
Finally, Section 4.5 uses the Poisson family to derive lower bounds on δmin for
multiple-δ estimators. A combination of the methods in this section will allow us
to derive the sharp range for ln(1/δmin) for almost all families of distributions we
consider.
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4.1. Median of means. Given a positive integer b and a vector xb
1 ∈ R

b, we let
q1/2 denote the median of the numbers x1, x2, . . . , xb, that is,

q1/2
(
xb

1
)= xi where #

{
k ∈ [b] : xk ≤ xi

}≥ b

2
and #

{
k ∈ [b] : xk ≥ xi

}≥ b

2
.

(If several i fit the above description, we take the smallest one.)
To build our estimator for a given δ ∈ [e1−n/2,1), we first choose

b = ⌈
ln(1/δ)

⌉
and note that b ≤ n/2.

Now divide [n] into b blocks (i.e., disjoint subsets) Bi , 1 ≤ i ≤ b, each of size
|Bi | ≥ k = �n/b� ≥ 2. Given xn

1 ∈ R
n, we define

yn,δ

(
xn

1
)= (

yn,δ,i

(
xn

1
))b

i=1 ∈ R
b with coordinates yn,δ,i

(
xn

1
)= 1

|Bi |
∑
j∈Bi

xj

and define the median-of-means estimator by Ên,δ(x
n
1 ) = q1/2(yn,δ(x

n
1 )).

The next result is a well-known performance bound for the median-of-means
estimator; see, for example, Hsu [7].

THEOREM 4.1. For any n ≥ 4 and L = 2
√

2e the median-of-means estima-
tor by Ên,δ(x

n
1 ) = q1/2(yn,δ(x

n
1 )) is a δ-dependent L-sub-Gaussian estimator for

(P2, n, e1−n/2).

4.2. The method of confidence intervals for multiple-δ estimators. In this sec-
tion, we detail how sub-Gaussian confidence intervals may be combined to pro-
duce multiple-δ estimators. This will be our main tool in defining all multiple-δ
estimators whose existence is claimed in Theorems 3.2 and 3.3. First, we need a
definition.

DEFINITION 3. Let n be a positive integer, δ ∈ (0,1) and let P be a
class of probability distributions over R. A measurable closed interval În,δ(·) =
[ân,δ(·), b̂n,δ(·)] consists of a pair of measurable functions ân,δ, b̂n,δ : Rn → R

with ân,δ ≤ b̂n,δ . We let �̂n,δ = b̂n,δ − ân,δ denote the length of the interval. We say
{În,δ}δ∈[δmin,1) is a collection L-sub-Gaussian confidence intervals for (n,P, δmin)

if for any P ∈ P , if Xn
1 =d P⊗n, then for all δ ∈ [δmin,1),

P

(
μP ∈ În,δ

(
Xn

1
)

and �̂n,δ

(
Xn

1
)≤ LσP

√
1 + ln(1/δ)

n

)
≥ 1 − δ.

The next theorem shows how one can combine sub-Gaussian confidence inter-
vals to obtain a multiple-δ sub-Gaussian mean estimator.
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THEOREM 4.2. Let n be a positive integer and let P be a class of probabil-
ity distributions over R. Assume that there exists a collection of L-sub-Gaussian
confidence intervals for (n,P, δmin). Then there exists a multiple-δ estimator
Ên : Rn → R that is L′-sub-Gaussian for (n,P,2−m), where L′ = L

√
1 + 2 ln 2

and m = �log2(1/δmin)� − 1 ≥ log2(1/δmin) − 2 (in particular, 2−m ≤ 4δmin).

PROOF. Our choice of m implies that, for each k = 1,2,3, . . . ,m + 1 there
exists a measurable closed interval Îk(·) = [âk(·), b̂k(·)] with length �̂k(·), with the
property that, if P ∈P and Xn

1 =d P⊗n, the event

Gk :=
{
μP ∈ Îk

(
Xn

1
)

and �̂k

(
Xn

1
)≤ LσP

√
1 + k ln 2

n

}
(9)

has probability P(Gk) ≥ 1 − 2−k . To define our estimator, define, for xn
1 ∈ R

n,

k̂n

(
xn

1
)= min

{
k ∈ [m + 1] :

m+1⋂
j=k

Îj

(
xn

1
) �= ∅

}
.

One can easily check that

m+1⋂
j=k̂n(xn

1 )

Îj

(
xn

1
)

is always a nonempty closed interval,

so it makes sense to define the estimator Ên(x
n
1 ) as its midpoint.

We claim that Ên is the sub-Gaussian estimator we are looking for. To prove
this, we let 2−m ≤ δ ≤ 1 and choose the smallest k ∈ {1,2, . . . ,m+1} with 21−k ≤
δ. Assume Xn

1 =d P⊗n with P ∈ P . Then:

1. P(
⋂m+1

j=k Gj ) ≥ 1 − 2−k − 2−k−1 ≥ · · · ≥ 1 − 21−k ≥ 1 − δ by (9) and the
choice of k.

2. When
⋂m+1

j=k Gj holds, μP ∈ Îj (X
n
1) for all k ≤ j ≤ m + 1, so μP ∈⋂m+1

j=k Îj (X
n
1). In particular,

⋂m+1
j=k Îj (X

n
1) �= ∅ and k̂n(X

n
1) ≤ k.

3. Now when k̂n(X
n
1) ≤ k, Ên(X

n
1) ∈ ⋂m+1

j=k Îj (X
n
1) as well, so both Ên(X

n
1)

and μP belong to Îk(X
n
1). It follows that |Ên(X

n
1) − μP| ≤ �̂k(X

n
1).

4. Finally, our choice of k implies 21−k ≤ δ ≤ 22−k , so, under
⋂m+1

j=k Gj we
have

�̂k

(
Xn

1
)≤ LσP

√
1 + ln(2k)

n
≤ LσP

√
1 + 2 ln 2 + ln(1/δ)

n
≤ L′σP

√
1 + ln(1/δ)

n

with L′ = L
√

1 + 2 ln 2 as in the statement of the theorem.
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Putting it all together, we conclude

P

(∣∣Ên

(
Xn

1
)− μP

∣∣≤ L′σP

√
1 + ln(1/δ)

n

)
≥ P

(
m+1⋂
j=k

Gj

)
≥ 1 − δ,

and since this holds for all P ∈ P and all 2−m ≤ δ ≤ 1/2, the proof is complete.
�

4.3. Scaled Bernoulli distributions and single-δ estimators. In this subsection,
we prove Theorem 3.1. In order to do so, we derive a simple minimax lower bound
for single-δ estimators for the class Pc,p = {P+,P−} of distributions that contains
two discrete distributions defined by

P+
({0})= P−

({0})= 1 − p, P+
({c})= P−

({−c})= p,

where p ∈ [0,1] and c > 0. Note that μP+ = pc, μP− = −pc and that for any
α > 0, the (1 + α)th central moment of both distributions equals

M = c1+αp(1 − p)
(
pα + (1 − p)α

)
.(10)

For i = 1, . . . , n, let (Xi, Yi) be independent pairs of real-valued random vari-
ables such that

P{Xi = Yi = 0} = 1 − p and P{Xi = c,Yi = −c} = p.

Note that Xi
L∼ P+ and Yi

L∼ P−. Let δ ∈ (0,1/2). If δ ≥ 2e−n/4 and p =
(2/n) log(2/δ), then [using 1 − p ≥ exp(−p/(1 − p))],

P
{
Xn

1 = Yn
1
}= (1 − p)n ≥ 2δ.

Let Ên,δ be any mean estimator, possibly depending on δ. Then

max
(
P
{∣∣Ên,δ

(
Xn

1
)− μP+

∣∣> cp
}
,P
{∣∣Ên,δ

(
Yn

1
)− μP−

∣∣> cp
})

≥ 1
2P
{∣∣Ên,δ

(
Xn

1
)− μP+

∣∣> cp or
∣∣Ên,δ

(
Yn

1
)− μP−

∣∣> cp
}

≥ 1
2P
{
Ên,δ

(
Xn

1
)= Ên,δ

(
Yn

1
)}

≥ 1
2P
{
Xn

1 = Yn
1
}≥ δ.

From (10), we have that cp ≥ M1/(1+α)(p/2)α/(1+α) and, therefore,

max
(
P

{∣∣Ên,δ

(
Xn

1
)− μP+

∣∣> (
M1/α

n
log

2

δ

)α/(1+α)}
,

P

{∣∣Ên,δ

(
Yn

1
)− μP−

∣∣> (
M1/α

n
log

2

δ

)α/(1+α)})
≥ δ.

Theorem 3.1 simply follows by noting that Pc,p ⊂ PM
1+α .
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4.4. Laplace distributions and single-δ estimators. This section focuses on
the class of all Laplace distributions with scale parameter equal to 1. To define
such a distribution, let λ ∈ R and let Laλ be the probability measure on R with
density

d Laλ

dx
(x) = e−|x−λ|

2
.

Denote by PLa = {Laλ : λ ∈ R} the class of all such distributions.
A simple calculation reveals that for all λ ∈ R, the mean, variance and central

third moment are μLaλ = λ, σ 2
Laλ

= 2 and Laλ |X − λ|3 = 6 ≤ (ησLaλ)
3 with η =

31/321/6.
The next result proves that δ-dependent L-sub-Gaussian estimators are limited

to exponentially small δ even over the one-dimensional family PLa.

THEOREM 4.3. If n ≥ 3 then, for any constant L ≥ √
2, there are no δ-

dependent L-sub-Gaussian estimators for (PLa, n, e1−9L2n).

PROOF. We proceed by contradiction, assuming that there exist L-sub-
Gaussian δ-dependent estimators Ên,δ for (PLa, n, δ) where δ = e1−9L2n and arbi-
trarily large n. We set

λ = 2L

√
2
(
1 + ln(1/δ)

)
/n

and consider Xn
1 =d La⊗n

0 and Yn
1 =d La⊗n

λ . The triangle inequality applied to the
exponents of d Laλ /dx and d La0 /dx shows that the densities of the two product
measures satisfy, for all xn

1 ∈ R
n,

d La0

dxn
1

(
xn

1
)≥ e−ηn d Laλ

dxn
1

(
xn

1
)

and, therefore,

P

(
Ên,δ

(
Xn

1
)≥ λ

2

)
≥ e−λn

P

(
Ên,δ

(
Yn

1
)≥ λ

2

)
.(11)

Using the definition of λ and the fact that μLaλ = λ and σ 2
Laλ

= 2, we see that the
right-hand side above is simply

e−λn
P

(
Ên,δ

(
Yn

1
)≥ μLaλ − LσLaλ

√
1 + ln(1/δ)

n

)
≥ e−λn(1 − δ).

On the other hand, the left-hand side in (11) is

P

(
Ên,δ

(
Xn

1
)≥ μLa0 + LσLa0

√
1 + ln(1/δ)

n

)
≤ δ.
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We deduce

e−λn ≤ δ

1 − δ
≤ 2δ.

If we use again the definition of λ, we see that

e−2L
√

2n(1+ln(1/δ)) ≤ 2δ,

or

e−2
√

18L2n ≤ 2e1−9L2n ⇒ n ≤ 1 + ln 2

L2(9 − 2
√

18)
.

For L ≥ √
2, some simple estimates show that this leads to a contradiction when

n ≥ 3. �

4.5. Poisson distributions and multiple-δ estimators. We use the family of
Poisson distributions for bounding the range of confidence values of multiple-δ
estimators. Denote by Poλ the Poisson distribution with parameter λ > 0. Given
0 < λ1 ≤ λ2 < ∞, define

P [λ1,λ2]
Po = {

Poλ : λ ∈ [λ1, λ2]}.
THEOREM 4.4. There exist positive constants c0, s0 and a function φ :

R+ → R+ such that the following holds. Assume L ≥ √
2 and n > 0 are given.

Then there exists no multiple-δ L-sub-Gaussian estimator for (P [c/n,φ(L)c/n]
Po , n,

e1−s0(L lnL)2c).

PROOF. We prove the following stronger result: there exist constants c0, s > 0
such that, when c ≥ c0, L ≥ √

2 and C = �s(L2 lnL)�, there is no multiple-δ sub-
Gaussian estimator for

(�) = (
P [c/n,((1+2C)c)/n]

Po , n, e1−C2c/L2)
.

The theorem then follows by taking 2C = φ(L) − 1 = sL2 lnL and s0 = s2.
We proceed by contradiction. Assume

Xn
1 =d Po⊗n

c/n, Y n
1 =d Po⊗n

(1+2C)c/n

and that there exists an L-sub-Gaussian estimator Ên : Rn → R for (�) above. We
use the following well-known facts about Poisson distributions:

F0: μPoc/n = σ 2
Poc/n

= c/n and μPo(1+2C)c/n
= σ 2

Po(1+2C)c/n
= (1 + 2C)c/n.

F1: SX = X1 + X2 + · · · + Xn =d Poc and SY = Y1 + Y2 + · · · + Yn =d

Po(1+2C)c.
F2: Given any k ∈ N, the distribution of Xn

1 conditioned on SX = k is the same
as the distribution of Yn

1 conditioned on SY = k.
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F3: P(SY = (1 + 2C)c) ≥ 1/4
√

(1 + 2C)c if C > 0 and c ≥ c0 for some c0.
[This follows from the fact that Pom({m}) = e−mmm/m! is asymptotic to 1/

√
2πm

when m → ∞, by Stirling’s formula.]
F4: There exists a function h with 0 < h(C) ≈ (1 + C) ln(1 + C) such that, for

all c ≥ c0, P(SX = (1 + 2C)c) ≥ e−h(C)c. This follows from another asymptotic
estimate proven by Stirling’s formula: as c → ∞

Poc

({
(1 + 2C)c

})= e−c c(1+2C)c

[(1 + 2C)c]! ∼ e−[(1+2C) ln(1+2C)−2C]c
√

2π(1 + 2C)c
.

We apply the sub-Gaussian property for the triple (�) to δ = 1/4
√

(1 + 2C)c.
This is possible because, for C = �s(L2 lnL)� with a large enough s, this value
is ≈ 1/L

√
s lnLc, which is much larger than the minimum confidence parameter

e1−C2c/L2
allowed by (�) (at least if c ≥ c0 with a large enough c0). Recalling F0,

we obtain

P
(
nÊn

(
Yn

1
)
< (1 + 2C)c − L

√
(1 + 2C)c

(
1 + ln

(
8
√

(1 + 2C)c
)))

≤ 1

4
√

(1 + C)c
.

Therefore, by F3,

P
(
nÊn

(
Yn

1
)
< (1 + 2C)c − L

√
(1 + 2C)c

(
1 + ln

(
8
√

(1 + 2C)c
))|SY = (1 + C)c

)
≤ 1/2.

Now F1 implies that the left-hand side is the same if we switch from Y to X. In
particular, by looking at the complementary event we obtain

P
(
nÊn

(
Xn

1
)≥ (1 + 2C)c − L

√
(1 + 2C)c

(
1 + ln

(
8
√

(1 + 2C)c
))|

SX = (1 + 2C)c
)

(12)

≥ 1/2.

Since we are taking c ≥ c0 and C ≥ sL2 lnL, a calculation reveals

L

√
(1 + 2C)c

(
1 + ln

(
8
√

(1 + 2C)c
))= O

(√
C2c(lnC + ln c)

lnC

)
= O(C

√
c ln c).

Therefore, by taking a large enough c0 we can ensure that

L

√
(1 + 2C)c

(
1 + ln

(
8
√

(1 + 2C)c
))≤ Cc.

So (12) gives

P
(
nÊn

(
Xn

1
)≥ (1 + C)c|SX = (1 + 2C)c

)≥ 1/2.
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We may combine this with F4 to deduce

P
(
nÊn

(
Xn

1
)≥ (1 + C)c

)≥ e−h(C)c

2
.(13)

We now use F0 to rewrite the previous probability as

P
(
nÊn

(
Xn

1
)≥ (1 + C)c

)= P

(
Ên

(
Xn

1
)− μP ≥ LσP

√
1 + ln(1/δ0)√

n

)
,

where

δ0 = e1−C2c/L2
.

Since we assumed Ên is L-sub-Gaussian for the triple (�), we obtain

e−h(C)c

2
≤ P

(
nÊ

(
Xn

1
)≥ (1 + C)c

)≤ e1−C2c/(4L2).

Comparing the left- and right-hand sides, and recalling c ≥ c0, we obtain h(C) ≥
C2/4L2 −1−(ln 2/c0). This is a contradiction if C  L2 lnL because h(C) grows
like C lnC (cf. F4). This contradiction shows that there does not exist a L-sub-
Gaussian estimator for (�), as desired. �

5. Degrees of knowledge about the variance. In this section, we present the
proof of Theorem 3.2. This is mostly a matter of combining the main results in the
previous section. Recall that we consider the class

P [σ 2
1 ,σ 2

2 ]
2 = {

P ∈ P2 : σ 2
1 ≤ σ 2

P ≤ σ 2
2
}
.

and that R = σ2/σ1. The three parts of the theorem are proven separately.
Part 1. (Existence of a multiple-δ estimator with constant depending on R.)

Theorem 4.1 ensures that, irrespective of σ1 or σ2, for all δ ∈ (e1−n/2,1) there
exists a δ-dependent estimator Ên,δ :Rn →R with

P

(∣∣Ên,δ

(
Xn

1
)− μP

∣∣> 2
√

2eσP

√
1 + ln(1/δ)

n

)
≤ δ(14)

whenever Xn
1 = P⊗n for some P ∈ P2. We define a confidence interval for each δ

via

În,δ

(
xn

1
)=

[
Ên,k

(
xn

1
)− 2

√
2eσ2

√
1 + ln(1/δ)

n
,

Ên,k

(
xn

1
)+ 2

√
2eσ2

√
1 + ln(1/δ)

n

]
.
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Clearly, (14) and the fact that σ2 ≤ RσP for all P [σ 2
1 ,σ 2

2 ]
2 imply that {În,δ}δ∈[e1−n/2,1)

is a 4
√

2eR-sub-Gaussian confidence interval for (P [σ 2
1 ,σ 2

2 ]
2 , n, e1−n/2). Applying

Theorem 4.2 gives the desired result.
Part 2. [Nonexistence of multiple-δ estimators when R > φ(2)(L).] We use

Theorem 4.4. By rescaling, we may assume σ 2
1 = c0/n, where c0 is the constant

appearing in Theorem 4.4. We also set φ(2)(L) := √
φ(L) for φ(L) as in Theo-

rem 4.4. The assumption on R ensures that P [c0/n,φ(L)c0/n]
Po ⊂ P [σ 2

1 ,σ 2
2 ]

2 , so there

cannot be a L-sub-Gaussian estimator when δ
(2)
min(L) = e1−s(L lnL)2c0 .

Part 3. (Nonexistence of δ-dependent estimators when δmin = e1−9L2n.) By
rescaling, we may assume σ 2

1 = 2. Then the class PLa in Theorem 4.3 is contained

in P [σ 2
1 ,σ 2

2 ]
2 , and the theorem implies the desired result directly.

6. The regularity condition, symmetry and higher moments. In this sec-
tion, we prove the results described in Section 3.3.

6.1. An estimator under k-regularity. We start with Theorem 3.3, the general
positive result on k-regular classes.

PROOF OF THEOREM 3.3. By Theorem 4.2, it suffices to build
a 4

√
2(1 + 62 ln(3))e5/2-sub-Gaussian confidence interval for (P2,k-reg, n,

e3−n/(124)k).
To build these intervals, we use an idea related to the proof of Theorem 4.1. Just

like in the case of the median-of-means estimator, we divide the data into blocks,
but instead of taking the median of the means, we look at the 1/4 and 3/4-quantiles
to build an interval.

To make this precise, given α ∈ (0,1), we define the α-quantile qα(yb
1 ) of a

vector yb
1 ∈ R

b as the smallest index i ∈ [b] with

#
{
j ∈ [b] : yj ≤ yi

}≥ αb and #
{
� ∈ [b] : y� ≥ yi

}≥ (1 − α)b.

The next result is proven subsequently.

LEMMA 6.1. Let Yb
1 = (Y1, . . . , Yb) ∈ R

b be a vector of independent random
variables with the same mean μ and variances bounded by σ 2. Assume further
that P(Yi ≤ μ) ≥ 1/3 and P(Yi ≥ μ) ≥ 1/3 for each i ∈ [b]. Then

P
(
μ ∈ [

q1/4
(
Yb

1
)
, q3/4

(
Yb

1
)]

and q3/4
(
Yb

1
)− q1/4

(
Yb

1
)≤ 2L0σ

)≥ 1 − 3e−db,

where d is the numerical constant

d = 1
4 ln

(3
4

)+ 3
4 ln

(9
8

)≈ 0.0164 > 1
62

and L0 = 2e2d+1/2 ≤ 2e5/2.
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Now fix δ ∈ [e3−n/(124k),1). We define a confidence interval În,δ(·) as follows.
First, set b = �62 ln(3/δ)� and note that

b ≤ 62 ln
(
3/e3−n/(124k))+ 1 ≤ n

2k
≤ n/2.(15)

Partition

[n] = B1 ∪ B2 ∪ · · · ∪ Bb

into disjoint blocks of sizes |Bi | ≥ �n/b�. For each i ∈ [b] and xn
1 ∈R

n, we define

yb
1
(
xn

1
)= (

y1
(
xn

1
)
, . . . , yb

(
xn

1
))

where yi

(
xn

1
)= 1

#Bi

∑
j∈Bi

xj

and set, for xn
1 ∈ R

n,

În,δ

(
xn

1
)= [

q1/4
(
yb

1
(
xn

1
))

, q3/4
(
yb

1
(
xn

1
))]

.

CLAIM 1. {În,δ(·)}δ∈[e3−n/(124k),1) is a 4
√

2(1 + 62 ln(3))e5/2-sub-Gaussian
collection of confidence intervals for (P2,k-reg, n, e3−n/(124k)).

To see this, we take a distribution P in this family and assume Xn
1 =d P⊗n. Set

s = �n/b�. Because the blocks Bi are disjoint and have at least s elements each,
the random variables

Yi = yi

(
Xn

1
)= P̂Bi

X,

all have mean μP and variance ≤ σ 2
P /s. Moreover, using (15),

s =
⌊
n

b

⌋
≥ n

b
− 1 ≥ 2k − 1 ≥ k,

so the k-regularity property implies that for all i ∈ [b],
P(Yi ≤ μ) ≥ 1

3 , P(Yi ≥ μ) ≥ 1
3 .

Lemma 6.1 implies

P

(
μP ∈ În,δ

(
Xn

1
)

and length of În,δ

(
Xn

1
)≤ 2L0

σ√
s

)
≥ 1 − 3e−db ≥ 1 − δ(16)

by the choice of b and the fact that d ≥ 1/62. To finish, we use (15) and the
definition of b to obtain

1

s
= 1

�n/b� ≤ 1

(n/b) − 1
≤ 2b

n
≤ 2(�62 ln(3) + 62 ln(1/δ)�)

n

≤ 2(1 + 62 ln 3)
1 + ln(1/δ)

n
.

Plugging this into (16) and recalling L0 ≤ 2e5/2 implies the desired result. �

PROOF OF LEMMA 6.1. Define J = [μ−L0σ,μ+L0σ ]. Assume the follow-
ing three properties hold:
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1. q1/4(Y
b
1 ) ≤ μ.

2. q3/4(Y
b
1 ) ≥ μ.

3. The number of indices i ∈ [b] with Yi ∈ J is at least 3b/4.

Then clearly μ ∈ [q1/4(Y
b
1 ), q3/4(Y

b
1 )]. Moreover, item 3 implies that q1/4(Y

b
1 ),

q3/4(Y
b
1 ) ∈ J , so that

q3/4
(
Yb

1
)− q1/4

(
Yb

1
)≤ (length of J ) = 2L0σ.

It follows that

P
(
μ /∈ [

q1/4
(
Yb

1
)
, q3/4

(
Yb

1
)]

or q3/4
(
Yb

1
)− q1/4

(
Yb

1
)
> 2L0σ

)
(17)

≤ P
(
q1/4

(
Yb

1
)
> μ

)+ P
(
q3/4

(
Yb

1
)
< μ

)+ P
(
#
{
i ∈ [b] : Yi /∈ J

}
> b/4

)
.

We bound the three terms by e−bd separately. By assumption, P(Yi ≤ μ) ≥ 1/3 for
each i ∈ [b]. Since there events are also independent, we have that

∑b
i=1 1{Yi ≤ μ}

stochastically dominates a binomial random variable Bin(b,1/3). Thus,

P
(
q1/4

(
Yb

1
)
> μ

)= P

(
b∑

i=1

1{Yi ≤ μ} < b/4

)
≤ P

(
Bin(b,1/3) < b/4

)≤ e−db

by the relative entropy version of the Chernoff bound and the fact that d is the
relative entropy between two Bernoulli distributions with parameters 1/4 and 1/3.
A similar reasoning shows that P(q3/4(Y

b
1 ) > μ) ≤ e−db as well.

It remains to bound P(#{i ∈ [b] : Yi /∈ J } > b/4). To this end note that for all
i ∈ [b],

P(Yi /∈ J ) = P
(|Yi − μ| ≥ L0σ

)≤ 1

L2
0

,(18)

and these events are independent. It follows that

P
(
#
{
i ∈ [b] : Yi /∈ J

}
> b/4

)≤ P

( ⋃
A⊂[b],|A|=�b/4�

⋂
i∈A

{Yi /∈ J }
)
,

(union bound) ≤
(

b

�b/4�
)

max
A⊂[b],|A|=�b/4�P

(⋂
i∈A

{Yi /∈ J }
)
,

[
independence of Yi + (18)

]≤
(

b

�b/4�
)(

1

L2
0

)−�b/4�
,

((b
k

)≤ (eb/k)k for all 1 ≤ k ≤ b
)≤

(
eb

L2
0�b/4�

)�b/4�
,

(
b ≤ 4�b/4� and L2

0 = 4e4d+1)≤ e−4d�b/4� ≤ e−bd . �



2716 DEVROYE, LERASLE, LUGOSI AND OLIVEIRA

6.2. Symmetric distributions. To prove Theorem 3.4, notice that the existence
of the multiple-δ sub-Gaussian estimator follows from Theorem 3.3. The second
part is a simple consequence of Theorem 4.3 and the fact that Laplace distributions
are symmetric around their means.

6.3. Higher moments. In this section, we first prove that Pα,η ⊂ P2,k-reg

for large enough k, and then prove Theorem 3.5. We recall the definition of
min(p+(P, j)) and p−(P, j) from Definition 2.

LEMMA 6.2. For all α ∈ (2,3], there exists C = Cα such that, if j ≥
(Cαη)2α/(α−2), then min(p+(P, j),p−(P, j)) ≥ 1/3.

PROOF. We only consider p+(P, j), as p− is similar. Let N be standard nor-
mal and X

j
1 =d P⊗j for some P ∈ Pα,η with positive variance. Define

Mj := 1

σP
√

j

j∑
i=1

(Xi − μP).

Let h : R → R be Lipschitz function with 0 ≤ h(x) ≤ 1[0,+∞) and E[h(N)] ≥
5/12 > 1/3. We have p+(P, j) = P(Mj ≥ 0) ≥ E[h(Mj)] ≥ 5/12 − |E[h(N)] −
E[h(Mj)]|. Theorem 3.2 in [6] shows that there exists a universal c > 0 (depending
on h) with

∣∣E[h(N)
]−E

[
h(Mj)

]∣∣≤ cjE

[(
X1

σP
√

j

)2

∨
(

X1

σP
√

j

)3]
≤ E[|X1|α]

jα/2 ≤ c
ηα

j (α−2)/2 .

Therefore, E[h(Mj)] ≥ 1/3 for all j ≥ (Cαη)2α/(α−2). �

PROOF OF THEOREM 3.5. The positive result follows directly from Theo-
rem 3.3 plus Lemma 6.2, which guarantees p±(P, j) ≥ 1/3 for j ≥ kα . For the
second part, we first assume η > η0 for a sufficiently large constant η0. We use the
Poisson family of distributions from Section 4.5. For λ = o(1) and α ∈ (2,3], we
have that

Poλ |X − λ|α = (
1 + o(1)

)
λ = (

1 + o(1)
)
σα

Poλ
λ−(α−2)/2.

If we compare this to Example 3.2, we see that Poλ ∈ Pα,η if λ ≥ h/η2α/(α−2) for
some constant h = hα > 0 (recall we are assuming that η ≥ η0 is at least a large
constant). Now take c > 0 such that c/n = h/η2α/(α−2). If c > c0 for the constant
c0 in the statement of Theorem 4.4, we can apply the theorem to deduce that there
is no multiple-δ estimator for (P [c/n,φ(L)c/n]

Po , n, e−c). Noting that c is of the order
n/kα completes the proof in this case.
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Now assume η ≤ η0. In this case, we use the Laplace distributions in Sec-
tion 4.4. Since 2 < α ≤ 3, we may apply the fact that the central third moment
of a Laplace distribution satisfies Laλ |X − λ|3 = 6 ≤ (31/321/6σLaλ)

3 to obtain

Laλ |X − λ|α ≤ (
Laλ |X − λ|3)α/3 ≤ (

31/321/6σLaλ

)α
.

Our assumption on η implies that PLa ⊂ Pα,η. Thus, Theorem 4.3 implies
that there is no δ-dependent or multiple-δ sub-Gaussian estimator for (Pα,η, n,

e1−9L2n). This is the desired result since kα is bounded when η ≤ η0.
Finally, the third part of the theorem follows from the same reasoning as in the

previous paragraph. �

7. Bounded kurtosis and nearly optimal constants. In this section, we
prove Theorem 3.6. Throughout the proof, we assume X =d P and Xn

1 =d P⊗n

for some P ∈ Pkrt≤κ , and let bmax, C, ξ be as in Section 3.4. Our proof is divided
into four steps:

1. Preliminary estimates for mean and variance. Median-of-means gives pre-
liminary estimates for μP and σ 2

P . With high probability, they are not too far off.
2. Truncation at the ideal point. We introduce a two-parameter family of

truncation-based estimators for μP, and analyze their behavior under knowledge
of μP and σP.

3. Truncated estimators are insensitive. We use a chaining argument to show
that this two-parameter family is insensitive to the choice of parameters.

4. Wrap up. The insensitivity property means that the preliminary estimates
from step 1 are good enough to “make everything work”.

Remark 2 at the end of the section shows how one could obtain a broader range of
δmin with a worse constant L.

Step 1. (Preliminary estimates via median of means.) First, we need the follow-
ing elementary fact, also used in the proof of Theorem 4.1. The proof is omitted.

LEMMA 7.1. Let Yb
1 = (Y1, . . . , Yb) ∈ R

b be independent random variables
with the same mean μ and variances bounded by σ 2. Assume L0 > 1 is given and
Mb = q1/2(Y

b
1 ). Then P(|Mb − μ| > 2L0σ) ≤ L−b

0 .

Denote by μ̂bmax = μ̂bmax(X
n
1) the estimator given by Theorem 4.1 with δ =

e−bmax , which is possible if C ≥ 6/(1 − log 2). The next lemma provides an esti-
mator of the variance.

LEMMA 7.2. Let B1, . . . ,Bbmax denote a partition of [n] into blocks of size
|Bi | ≥ k = �n/bmax� ≥ 2. For each block Bi with i ∈ [bmax], define

σ̂ 2
i = 1

|Bi |(|Bi | − 1)

∑
j �=k∈Bi

(Xj − Xk)
2 and ν̂2

bmax
= q1/2(σ̂1, . . . , σ̂bmax).
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Then

P

(∣∣̂ν2
bmax

− σ 2
P
∣∣≤ 2e

√
6(κ + 3)σ 2

P

√
bmax

n

)
≥ 1 − e−bmax .

In particular, if

96e(κ + 3)bmax

n
≤ 1,

then

P

(
|μ̂bmax − μP| ≤ 2

√
2eν̂bmax

√
bmax

n
and ν̂2

bmax
≤ 3

2
σ 2

P

)
≥ 1 − 2e−bmax .

PROOF. Compute

E
[
σ̂ 4

i

]= 1

|Bi |2(|Bi | − 1)2

∑
(j,k)∈B

(2)
i

E
[
(Xj − Xk)

4]

+ 6

|Bi |2(|Bi | − 1)2

∑
(j,k,l)∈B

(3)
i

E
[
(Xj − Xk)

2(Xj − Xl)
2]

+ 1

|Bi |2(|Bi | − 1)2

∑
(j,k,l,m)∈B

(4)
i

E
[
(Xj − Xk)

2(Xl − Xm)2].
Expanding all the squares, using independence and noticing that E[Xj − μP] = 0,
we get

E
[
(Xj − Xk)

4]= 2(κP + 3)σ 4
P ,

E
[
(Xj − Xk)

2(Xj − Xl)
2]= (κP + 3)σ 4

P ,

E
[
(Xj − Xk)

2(Xl − Xm)2]= 4σ 4
P .

Therefore,

E
[
σ̂ 4

i

]≤
(

3(κP + 3)

|Bi | + 1
)
σ 4

P ≤ E
[
σ̂ 2

i

]2 + 6(κ + 3)σ 4
P
bmax

n
.

Lemma 7.1 with L0 = e gives then

P

(∣∣̂ν2
bmax

− σ 2
P
∣∣> 2e

√
6(κ + 3)σ 2

P

√
bmax

n

)
≤ e−bmax .

In particular, we get

P

(
1

2
σ 2

P ≤ ν̂2
bmax

≤ 3

2
σ 2

P

)
≥ 1 − e−bmax .
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The theorem follows by the definition of μ̂bmax and an application of Theorem 4.1.
�

Step 2. (Two-parameter family of estimators at the ideal point.) Given μ and R

define, for all x ∈ R,

�μ,R(x) = μ +
(

R

|x − μ| ∧ 1
)
(x − μ).

LEMMA 7.3. Assume bmax ≥ t , R = σP
√

n/bmax and μ = μP. Then, with
probability at least 1 − 2e−t ,

|̂Pn�μ,R − μP| ≤ 2
√

2κPσP

(
bmax

n

)3/2

+
√

2t

n
σP

(
1 + 1

3
√

2

√
κPt

n
+ 5

48

κPt

n

)
.

PROOF. The proof is a consequence of Bennett’s inequality. It suffices to esti-
mate the moments of �μ,R(X) − μP. For the first moment,∣∣E[�μ,R(X) − μP

]∣∣= ∣∣∣∣E[(1 ∧ R

|X − μP| − 1
)
(X − μP)

]∣∣∣∣
≤ E

[(
1 − R

|X − μP|
)

+
|X − μP|

]
≤ E

[|X − μP|1{|X − μP| > R
}]

≤ E
[|X − μP|4]1/4

P
(|X − μP| > R

)3/4 ≤ κPσ 4
P

R3 ,

where we used Hölder’s inequality. On the other hand,

E
[(

�μ,R(X) − μP
)2]≤ σ 2

P .

By the Cauchy–Schwarz inequality, and using the bounded kurtosis assumption,

E
[∣∣�μ,R(X) − μP

∣∣3]= E

[∣∣∣∣1 ∧ R

|X − μP|
∣∣∣∣3|X − μP|3

]
≤ E

[|X − μP|3]≤ √
κPσ 3

P.

Finally, for any p ≥ 4, since |�μ,R(X) − μP| ≤ R,

E
[∣∣�μ,R(X) − μP

∣∣p]≤ Rp−4
E
[∣∣�μ,R(X) − μP

∣∣4]= Rp−4κPσ 4
P .

For s = √
2nt/σP, we have |sR|/n ≤ 1 and, therefore,

E
[
e(s/n)(�μ,R(X)−μP)]

≤ 1 + s

n

κPσ 4
P

R3 + s2

2n2 σ 2
P + s3

6n3

√
κPσ 3

P + s4

24n4 κPσ 4
P

(
1 + ∑

p≥5

4!
p!
)

≤ exp
(

2
√

2
s

n
κPσP

(
bmax

n

)3/2

+ s2

2n2 σ 2
P + s3

6n3

√
κPσ 3

P + 5s4

96n4 κPσ 4
P

)
.
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By Chernoff’s bound,

P

(
P̂n�μ,R − μP > 2

√
2κPσP

(
bmax

n

)3/2

+ s

n
σ 2

P + s2

6n2

√
κPσ 3

P + 5s3

96n3 κPσ 4
P

)
≤ e−(s2σ 2

P )/(2n)

or, equivalently,

P

(
P̂n�μ,R − μP > 2

√
2κPσP

(
bmax

n

)3/2

+
√

2t

n
σP

(
1 + 1

3
√

2

√
κPt

n
+ 5

48

κPt

n

))
≤ e−t .

Repeat the same computations with s = −√
2nt/σP to prove the lower bound. �

Step 3. (Insensitivity of the estimators.) Given εμ, εR ∈ (0,1/2), define

R = {
(μ,R) : |μ − μP| ≤ εμσP,

∣∣R − σP

√
n/(2bmax)

∣∣≤ εRσP
}
,

�μ,R = P̂n(�μ,R − �μP,σP
√

n/(2bmax)
).

LEMMA 7.4. Assume
√

n/(2bmax) ≥ 2(εμ+εR) then for any t > 0, with prob-
ability at least 1 − e−t , for all (μ,R) ∈ R,

|�μ,R| ≤ (εμ + εR)σP

(
56bmax

n
+ 4

√
bmaxt

n
+ 2t

3n

)
.

PROOF. Start with the trivial bound∣∣�μ,R(x) − �μ′,R′(x)
∣∣≤ ∣∣μ − μ′∣∣+ ∣∣R − R′∣∣

that holds for all (μ,R), (μ′,R′) ∈ R and x ∈R. Moreover, assume that |x−μP| ≤
σP

√
n/(8bmax). Then

|x − μ| ≤ |x − μP | + εμσP ≤ σP
(
2
√

n/(8bmax) − εR

)≤ R.

Hence, for any x ∈R such that |x − μP| ≤ σP
√

n/(8bmax) and for all (μ,R) ∈ R,

�μ,R(x) = x.

Therefore, for any (μ,R) and (μ′,R′) in R and for any x ∈ R,∣∣�μ,R(x) − �μ′,R′(x)
∣∣≤ (∣∣μ − μ′∣∣+ ∣∣R − R′∣∣)1{|x − μP| > σP

√
n/(8bmax)

}
.

By Chebyshev’s inequality, this implies that, for any positive integer p,

P|�μ,R − �μ′,R′ |p ≤ (∣∣μ − μ′∣∣+ ∣∣R − R′∣∣)p 8bmax

n
.
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By Bennett’s inequality,

P

( |�μ,R − �μ′,R′ |
|μ − μ′| + |R − R′| >

8bmax

n
+ 4

√
bmaxt

n
+ t

3n

)
≤ 2e−t .

To apply a chaining argument, consider the sequence (Dj )j≥0 of subsets of R ob-
tained by the following construction. D0 = {(μP, σP

√
n/(2bmax))}. For any j ≥ 1,

divide R into 4j pieces by dividing each axis into 2j pieces of equal sizes. Define
then Dj as the set of lower left corners of the 4j rectangles. Then |Dj | = 4j and,
for any (μ,R) ∈ R, there exists a point πj (μ,R) ∈ Dj such that the �1-distance
between (μ,R) and πj (μ,R) is upper-bounded by 2−j (εμ + εR)σP. Therefore,

sup
(μ,R)∈R

|�(μ,R)| ≤
∑
j≥1

sup
(μ,R)∈Dj

|�(μ,R) − �πj−1(μ,R)|.

A union bound in Bennett’s inequality gives that, with probability at least 1 −
21−j e−t , for any (μ,R) ∈ Dj ,

|�μ,R − �πj−1(μ,R)|

≤ (εμ + εR)σP

(
16bmax

2jn
+ 8

√
bmax(t + j log 8)

2jn
+ 2t + 2j log 8

3n2j

)
.

Summing up these inequalities gives the desired bound. �

COROLLARY 7.1. Assume t ≥ 1,
√

n/(2bmax) ≥ 2(εμ +εR). Then, with prob-
ability at least 1 − 2e−t − 2e−bmax , for all (μ,R) ∈ R,

|̂Pn�μ,R − μP| ≤ σP√
n

(√
2t(1 + ξ1) + ξ2

)
,

where

ξ1 = 1

3
√

2

√
κPt

n
+ 5

48

κPt

n
+ 2(εμ + εR)

(√
2bmax

n
+ 1

3

√
t

n

)
,

ξ2 = 2
√

2κP
b

3/2
max

n
+ 56(εμ + εR)

bmax

n
.

Step 4. (Wrap-up.) Define now

(μ̂n, R̂n) =
(
μ̂bmax, ν̂bmax

√
n

2bmax

)
.

From Lemma 7.2, with probability at least 1 − 2e−bmax ,

|μ̂n − μ| ≤ 2
√

2eσP

√
bmax

n
,

∣∣̂ν2
bmax

− σ 2
P
∣∣≤ 2e

√
6(κ + 3)σ 2

P

√
bmax

n
.
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The second inequality gives√√√√1 − 2e
√

6(κP + 3)

√
bmax

n
≤ ν̂bmax

σP
≤
√√√√1 + 2e

√
6(κP + 3)

√
bmax

n
.

Since we can assume that

2e
√

6(κP + 3)

√
bmax

n
≤ 1,

we deduce that

|̂νbmax − σP| ≤ e
√

12(κP + 3)σP

√
2bmax

n
.

This means that, with probability at least 1 − 2e−bmax , (μ̂n, R̂n) belongs to R if we
define

εμ = 2
√

2e

√
bmax

n
≤ √

κP, εR = 2e
√

3(κP + 3) ≤ 19
√

κP.

By an appropriate choice of the constant C, we can always assume that√
n/(2bmax)κP is at least some large constant, to ensure that 2(εμ + εR) ≤√
n/(2bmax). So Corollary 7.1 applies and gives

P

(
|̂Pn�μ̂n,R̂n

− μP| ≤ σP√
n

(√
2t(1 + ξ1) + ξ2

))≥ 1 − 2e−t − 4e−bmax,

where

ξ1 = 36

√
κPbmax

n
, ξ2 = 2

√
2κP

b
3/2
max

n
+ 1120

√
κP

bmax

n
.

In particular, if δ > 4e
e−2e−bmax , we get

P

(
|̂Pn�μ̂n,R̂n

− μP| ≤ σP√
n

(√
2
(
1 + ln(1/δ)

)
(1 + ξ1) + ξ2

))

≥ 1 −
(

2

e
+ 4

4e/(e − 2)

)
δ = 1 − δ.

REMARK 2. Let us quickly sketch how one may get a smaller value of δmin
at the expense of a larger constant L. The idea is to redo the proof of part 1 of
Theorem 3.2 (cf. Section 5). We build δ-dependent estimators for μP via median-
of-means, as in (14), but then use the value 2σ̂b(X

n
1) from Lemma 7.2 instead of

the value σ 2
2 when building the confidence interval, with a choice of b ≈ ln(1/δ).

Then one obtains an empirical confidence interval that contains μP and has the
appropriate length with probability ≥ 1 − 2δ whenever ln(1/δ) ≤ cn/κ for some
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constant c > 0. Using Theorem 4.2 as in Section 5 then gives a multiple-δ L-sub-
Gaussian estimator for (Pkrt≤κ, n, e1−cn/κ) for large enough values of n/κ , where
L does not depend on n or κ . It is an open question whether one can obtain a
similar value of δmin with L = √

2 + o(1).

8. Open problems. We conclude with some especially interesting open prob-
lems.

Sharper estimators. For what families P and what values of δmin can one find
multiple-δ estimators with sharp constant L = √

2 + o(1)? What about estimators
that satisfy the stronger property

P

(∣∣Ên

(
Xn

1
)− μP

∣∣> σP
�−1(1 − δ/2)√

n

)
≤ (

1 + o(1)
)
δ?

Sub-Gaussian confidence intervals. The notion of sub-Gaussian confidence in-
terval introduced in Section 4.2 seems interesting on its own right. For which
classes of distributions P can one find sub-Gaussian confidence intervals? Can
one reverse the implication in Theorem 4.2, and build sub-Gaussian confidence
intervals from multiple-δ estimators?

Multivariate settings. There has been some work on sub-Gaussian δ-dependent
estimates for vectors; see [9, 11, 16]. A natural question is whether one can obtain
similar multiple-δ estimators. By way of comparison, let X1, . . . ,Xn ∈ R

p be i.i.d.
random Gaussian (column) vectors with law P, mean μP and covariance matrix
�P := P(X − μP)(X − μP)†. Then Gaussian concentration implies

P

(∥∥(̂Pn − P)X
∥∥

2 >

√
Tr(�P)

n
+
√

2
‖�P‖2→2 ln(1/δ)

n

)
≤ δ,

where ‖ ·‖2 is the Euclidean norm, Tr is the trace and ‖ ·‖2→2 is the corresponding
operator norm. Slightly stronger bounds are also available for certain sub-Gaussian
ensembles [8]. Can some multiple-δ estimator Ên(X1, . . . ,Xn) achieve similar
properties under much heavier tails? One natural path toward these results would
be to work with higher dimensional analogues of quantiles, kurtosis and k-regular
classes P2,k−reg. (We thank an anonymous referee for suggesting this problem.)

Empirical risk minimization. Suppose now that the Xi are i.i.d. random vari-
ables that live in an arbitrary measurable space and have common law P. In a
prototypical risk minimization problem, one wishes to find an approximate min-
imum θ̂n(X

n
1) over choices of θ ∈ � of a loss functional �(θ) := Pf (X, θ). The

usual way to do this is via empirical risk minimization, which consists of minimiz-
ing the empirical risk �̂n(θ) := P̂nf (X, θ) instead. Under strong assumptions on
the family F := {f (·, θ)}θ∈� (such as uniform boundedness), the fluctuations of
the empirical process {(̂Pn −P)f (X, θ)}θ∈� can be bounded in terms of geometric
or combinatorial properties of F .

One may try to extend these results to heavier-tailed functions by replacing
P̂nf (X, θ) by one of our multiple-δ sub-Gaussian estimates. However, this is not
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straightforward: our estimators are nonlinear in the sample, and usual chaining
breaks down. There are (artificial) ways around this, we do not know of any natural
method for doing empirical risk minimization with our estimators. These difficul-
ties were overcome by Brownlees et al. [3] via Catoni’s multiple-δ sub-exponential
estimator, at the cost of obtaining weaker concentration. Can one do something
similar and achieve truly sub-Gaussian results, preferably at low computational
cost?
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