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We study the problem of variable selection in convex nonparametric re-
gression. Under the assumption that the true regression function is convex
and sparse, we develop a screening procedure to select a subset of variables
that contains the relevant variables. Our approach is a two-stage quadratic
programming method that estimates a sum of one-dimensional convex func-
tions, followed by one-dimensional concave regression fits on the residuals.
In contrast to previous methods for sparse additive models, the optimization
is finite dimensional and requires no tuning parameters for smoothness. Un-
der appropriate assumptions, we prove that the procedure is faithful in the
population setting, yielding no false negatives. We give a finite sample sta-
tistical analysis, and introduce algorithms for efficiently carrying out the re-
quired quadratic programs. The approach leads to computational and statis-
tical advantages over fitting a full model, and provides an effective, practical
approach to variable screening in convex regression.

1. Introduction. Shape restrictions such as monotonicity, convexity and con-
cavity provide a natural way of limiting the complexity of many statistical esti-
mation problems. Shape-constrained estimation is not as well understood as more
traditional nonparametric estimation involving smoothness constraints. Even the
one-dimensional case is interesting and challenging, and has been of recent inter-
est [10].

In this paper, we study the problem of variable selection in multivariate convex
regression. Assuming that the regression function is convex and sparse, our goal is
to identify the relevant variables. We show that it suffices to estimate a sum of one-
dimensional convex functions, leading to significant computational and statistical
advantages. This is in contrast to general nonparametric regression, where fitting
an additive model can result in false negatives. Our approach is based on a two-
stage quadratic programming procedure. In the first stage, we fit an convex additive
model, imposing a sparsity penalty. In the second stage, we fit a concave function
on the residual for each variable. As we show, this nonintuitive second stage is in
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general necessary. Our first result is that this procedure is faithful in the population
setting, meaning that it results in no false negatives, under mild assumptions on
the density of the covariates. Our second result is a finite sample statistical analy-
sis of the procedure, where we upper bound the statistical rate of variable screening
consistency. An additional contribution is to show how the required quadratic pro-
grams can be formulated to be more scalable. We give simulations to illustrate our
method, showing that it performs in a manner that is consistent with our analy-
sis.

Estimation of convex functions arises naturally in several applications. Exam-
ples include geometric programming [3], computed tomography [22], target re-
construction [17], image analysis [9] and circuit design [11]. Other applications
include queuing theory [4] and economics, where it is of interest to estimate con-
cave utility functions [20]. See [18] for other applications. Beyond cases where
the assumption of convexity is natural, convexity can be attractive as a tractable,
nonparametric relaxation of the linear model.

Recently, there has been increased research activity on shape-constrained esti-
mation. Guntuboyina and Sen [10] analyze univariate convex regression and show
surprisingly that the risk of the MLE is adaptive to the complexity of the true
function. Seijo and Sen [26] and Lim and Glynn [18] study maximum likelihood
estimation of multivariate convex regression and independently establish its con-
sistency. Cule, Samworth and Stewart [7] and Kim and Samworth [14] analyze
log-concave density estimation and prove consistency of the MLE; the latter fur-
ther show that log-concave density estimation has minimax risk lower bounded
by n=2/(+D for d > 2, refuting a common notion that the condition of convex-
ity is equivalent, in estimation difficulty, to the condition of having two bounded
derivatives. Additive shape-constrained estimation has also been studied; Pya and
Wood [23] propose a penalized B-spline estimator while Chen and Samworth [5]
show the consistency of the MLE. To the best of our knowledge, however, there
has been no work on variable selection and estimation of high-dimensional convex
functions.

Variable selection in general nonparametric regression or function estimation
is a notoriously difficult problem. Lafferty and Wasserman [16] develop a greedy
procedure for adjusting bandwidths in a local linear regression estimator, and show
that the procedure achieves the minimax rate as if the relevant variables were iso-
lated in advance. But the method only provably scales to dimensions p that grow
logarithmically in the sample size n, that is, p = O(logn). This is in contrast
to the high-dimensional scaling behavior known to hold for sparsity selection in
linear models using ¢; penalization, where n is logarithmic in the dimension p.
Bertin and Lecué [1] develop an optimization-based approach in the nonparamet-
ric setting, applying the lasso in a local linear model at each test point. Here again,
however, the method only scales as p = O(logn), the low-dimensional regime.
An approximation theory approach to the same problem is presented in [8], using
techniques based on hierarchical hashing schemes, similar to those used for “junta”



2626 M. XU, M. CHEN AND J. LAFFERTY

problems [21]. Here, it is shown that the sample complexity scales as n > log p if
one adaptively selects the points on which the high-dimensional function is evalu-
ated.

Comminges and Dalalyan [6] show that the exponential scaling n = O (log p)
is achievable if the underlying function is assumed to be smooth with respect to a
Fourier basis. They also give support for the intrinsic difficulty of variable selection
in nonparametric regression, giving lower bounds showing that consistent variable
selection is not possible if n < log p or if n < exps, where s is the number of
relevant variables. Variable selection over kernel classes is studied by Koltchinskii
and Yuan [15].

Perhaps more closely related to the present work is the framework studied by
Raskutti, Wainwright and Yu [24] for sparse additive models, where sparse regres-
sion is considered under an additive assumption, with each component function be-
longing to an RKHS. An advantage of working over an RKHS is that nonparamet-
ric regression with a sparsity-inducing regularization penalty can be formulated as
a finite dimensional convex cone optimization. On the other hand, smoothing pa-
rameters for the component Hilbert spaces must be chosen, leading to extra tuning
parameters that are difficult to select in practice. There has also been work on es-
timating sparse additive models over a spline basis, for instance, the work of [13],
but these approaches also require the tuning of smoothing parameters.

While nonparametric, the convex regression problem is naturally formulated us-
ing finite dimensional convex optimization, with no additional tuning parameters.
The convex additive model can be used for convenience, without assuming it to
actually hold, for the purpose of variable selection. As we show, our method scales
to high dimensions, with a dependence on the intrinsic dimension s that scales
polynomially, rather than exponentially as in the general case analyzed in [6].

In the following section, we give a high-level summary of our technical re-
sults, including additive faithfulness, variable selection consistency and high-
dimensional scaling. In Section 3, we give a detailed account of our method and
the conditions under which we can guarantee consistent variable selection. In Sec-
tion 4, we show how the required quadratic programs can be reformulated to be
more efficient and scalable. In Section 5, we give the details of our finite sample
analysis, showing that a sample size growing as n = O (poly(s) log p) is sufficient
for variable selection. In Section 6, we report the results of simulations that il-
lustrate our methods and theory. The full proofs are given in the supplementary
material [28].

2. Overview of results. In this section, we provide a high-level description of
our technical results. The full technical details, the precise statement of the results
and their detailed proofs are provided in following sections.

Our main contribution is an analysis of an additive approximation for identi-
fying relevant variables in convex regression. We prove a result that shows when
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and how the additive approximation can be used without introducing false nega-
tives in the population setting. In addition, we develop algorithms for the efficient
implementation of the quadratic programs required by the procedure.

We first establish some notation, to be used throughout the paper. If x is a vector,
we use X_ to denote the vector with the kth coordinate removed. If v € R”, then
v(1) denotes the smallest coordinate of v in magnitude, and v(;) denotes the jth
smallest; 1,, € R” is the all ones vector. If X € R? is a random variable and S C
{1,..., p}, then Xy is the subvector of X restricted to the coordinates in S. Given
n samples X M .. X™ we use X to denote the sample mean. Given a random
variable X and a scalar x;, we use E[- | x] as a shorthand for E[- | X} = x¢]. If
we say a function is integrable, we mean it is Lebesgue integrable.

2.1. Faithful screening. The starting point for our approach is the observation
that least squares nonparametric estimation under convexity constraints is equiv-
alent to a finite dimensional quadratic program. Specifically, the infinite dimen-
sional optimization

n
minimize Z(Yi — f(x,~))2
=1
@2.1) ’
subject to fRPF >R is convex

is equivalent to the finite dimensional quadratic program

n
minimize f, g Z(Y,- — f,-)2
i=1
(2.2) . .
subject to fi=fi+B xj—x;) forall i, j.

Here, f; is the estimated function value f(x;), and the vectors §; € R4 repre-
sent supporting hyperplanes to the epigraph of f. See [3], Section 6.5.5. Impor-
tantly, this finite dimensional quadratic program does not have tuning parameters
for smoothing the function.

This formulation of convex regression is subject to the curse of dimensional-
ity. Moreover, attempting to select variables by regularizing the subgradient vec-
tors B; with a group sparsity penality is not effective. Intuitively, the reason is
that all p components of the subgradient §; appear in every convexity constraint
fi=fi+ ,BiT (xj —x;); small changes to the subgradients may not violate the con-
straints. Experimentally, we find that regularization with a group sparsity penality
will make the subgradients of irrelevant variables small, but may not zero them out
completely.

This motivates us to consider an additive approximation. As we show, this leads
to an effective variable selection procedure. The shape constraints play an essential
role. For general regression, using an additive approximation for variable selection
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may make errors. In particular, the nonlinearities in the regression function may re-
sult in an additive component being wrongly zeroed out. We show that this cannot
happen for convex regression under appropriate conditions.

We say that a differentiable function f* depends on variable x; if 9y, f # 0 with
probability greater than zero. An additive approximation is given by

P 2
(23) {ff},n* = argmin {E(f(X) —u=y fk(xk>> E fic(Xi) = 0}.
Sises fpom k=1

We say that f is additively faithful in case f;" =0 implies that f does not depend
on coordinate k. Additive faithfulness is a desirable property since it implies that
an additive approximation may allow us to screen out irrelevant variables.

Our first result shows that convex multivariate functions are additively faithful
under the following assumption on the distribution of the data.

DEFINITION 2.1. Let p(x) be a density supported on [0, 1]7. Then p satisfies
the boundary flatness condition if it satisfies certain regularity conditions (see the
precise statement in Definition 3.2) and if for all j, and for all x_;,

p(x—jlxj) _ px_jlxj) _

) 2
0x; axj

0 atxj =0and x; =1.

As discussed in Section 3, this is a relatively weak condition. Our first result is
that this condition suffices in the population setting of convex regression.

THEOREM 1. Let p(x) be a positive density supported on C = [0, 117 that
satisfies the boundary flatness property. If f is convex with a bounded second
derivative on an open set around C, then f is additively faithful under p.

Intuitively, an additive approximation zeroes out variable k when, fixing xj,
every “slice” of f integrates to zero. We prove this result by showing that “slices”
of convex functions that integrate to zero cannot be “glued together” while still
maintaining convexity.

While this shows that convex functions are additively faithful, it is difficult to
estimate the optimal additive functions. The difficulty is that f* need not be a
convex function, as we show through a counterexample in Section 3. It may be
possible to estimate f;* with smoothing parameters, but for the purpose of variable
screening, it is sufficient in fact to approximate f;* by a convex additive model.

Our next result states that a convex additive fit, combined with a series of uni-
variate concave fits, is faithful. We abuse notation in Theorem 2 and let the notation
fi¥ represent convex additive components.
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THEOREM 2. Suppose p(X) is a positive density on C = [0, 1]? that satisfies
the boundary flatness condition. Suppose that f is convex and continuously twice-
differentiable on an open set around C and that the derivatives Oy, f, 0y, p(X— |
Xxx), and 83,( p(X_x | xx) are all continuous as functions on C. Define

s 2
[V, u* = arg min {E<f(X) —u=> fk<Xk>> : frecl,
{fi}n =l
(2.4)
Efi(Xx) = 0},

where C\ is the set of univariate convex functions. Using the fi's above, define

2
i =argminfB( 00 — " = T f1000) - X)) 1gxe L,
(2.5 7
Egi(Xp) = 0},

with -C! denoting the set of univariate concave functions. Then fi=0and g; =0
implies that f does not depend on xy, that is, 0y, f (X) = 0 with probability one.

This result naturally suggests a two-stage screening procedure for variable se-
lection. In the first stage, we fit a sparse convex additive model {ﬁ}. In the second
stage, we fit a concave function g to the residual for each variable having a zero
convex component ﬁ If both ﬁ =0 and g; = 0, we can safely discard variable
Xxr. As a shorthand, we refer to this two-stage procedure as AC/DC. In the AC
stage, we fit an additive convex model. In the DC stage, we fit decoupled concave
functions on the residuals. The decoupled nature of the DC stage allows all of the
fits to be carried out in parallel. The entire process involves no smoothing param-
eters. Our next result concerns the required optimizations, and their finite sample
statistical performance.

2.2. Optimization. Given samples (y;, X;), AC/DC becomes the following
optimization:

n

_ 1 p 22
{fidier = arg. min — Z()’i -y->_ fk(Xik)) + 2> M felloos
k=1

feechh i k=1
1 - 2
Vk, gk = arg min — Z(yi —y = fuXiw) — gk<xik>) + Mgk lloos
greCt 12 k'K

where ¥ is the empirical mean of y. Our estimate of the relevant variables is S =
{k: 11 fcll > O or [Igkll > 0}.
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We present the optimization algorithms in Section 4. The convex constraints for
the additive functions, analogous to the multivariate constraints (2.2), are that each
component fi(-) can be represented by its supporting hyperplanes, that is,

(2.6) Jrir = fri + Bri (Xkir — Xki) forall i,i’,

where fi; := fi(xxi) and By; is the subgradient at point xz;. While this apparently
requires O(n”p) equations to impose the supporting hyperplane constraints, in
fact, only O(np) constraints suffice. This is because univariate convex functions
are characterized by the condition that the subgradient, which is a scalar, must
increase monotonically. This observation leads to a reduced quadratic program
with O (np) variables and O (np) constraints.

Directly applying a QP solver to this optimization is still computationally ex-
pensive for relatively large n and p. We thus develop a block coordinate descent
method, where in each step we solve a sparse quadratic program involving O (n)
variables and O (n) constraints. This is efficiently solved using optimization pack-
ages such as MOSEK. The details of these optimizations are given in Section 4.

2.3. Finite sample analysis. In Section 5, we analyze the finite sample variable
selection consistency of AC/DC under the model

yi = fo(Xi) + w; fori=1,...,n,

without assuming that the true regression function fy is additive. Our analysis first
establishes a sufficient deterministic condition for variable selection consistency,
and then considers a stochastic setting. Our proof technique decomposes the KKT
conditions for the optimization in a manner that is similar to the now standard
primal-dual witness method [27].

We prove separate results that allow us to analyze false negative rates and false
positive rates. To control false positives, we analyze scaling conditions on the reg-
ularization parameter A, for group sparsity needed to zero out irrelevant variables
k € S¢, where S C {1, ..., p} is the set of variables selected by the AC/DC algo-
rithm in the population setting. To control false negatives, we analyze the restricted
regression where the variables in S are zeroed out, following the primal-dual strat-
egy.

Each of our theorems uses a subset of the following assumptions:

Al: Xg, Xge are independent.

A2: fp is convex with a bounded second derivative. [E fo(X) = 0.

A3: || folloo <sB and || f{llcc < B for all k.

A4: The noise is mean-zero sub-Gaussian with scale o, independent of X.

A5: The density p(x) is bounded away from /oo and satisfies the boundary flat-
ness condition.
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In assumption A3, f* =73, f;* denotes the optimal additive projection of fq in
the population setting.

Our analysis involves parameters o4+ and «_, which are measures of the signal
strength of the weakest variable:

o, = inf [E(fo(X) = FXO): —E(foX) — f*(X))*},

feCP:supp(f)Ssupp(f*)

a- = min {E(fo(X)— f*(X))* —E(fo(X) — f*(X) - g{ (X0))’}.
keS:gi+#0

Intuitively, if o4 is small, then it is easier to make a false omission in the additive
convex stage of the procedure. If o_ is small, then it is easier to make a false
omission in the decoupled concave stage of the procedure.

We make strong assumptions on the covariates in Al in order to make very
weak assumptions on the true regression function fo in A2; in particular, we do
not assume that fj is additive. Relaxing this condition is an important direction for
future work. We also include an extra boundedness constraint to use new bracket-
ing number results [14].

Our main result is the following.

THEOREM 3. Suppose assumptions A1-AS5 hold. Let {ﬁ} be any AC solution
and let {gx} be any DC solution, both estimated with regularization parameter A

scaling as A = ©(sc ,/ % log2 np). Suppose in addition that

3
2.7) ar/oc > cB? v log? np,

4
(2.8) o /a >cB"\ | —7= 4/5 1og 2np,

where @ = max(o, B) and c is a constant dependent only on b, c1. Then, for suffi-
ciently large n, with probability at least 1 — -

fc#0 or 2#0  forallkeS,
ﬁ:O and g =0 forallk ¢ S.

This shows that variable selection consistency is achievable under exponential
scaling of the ambient dimension, p = O(exp(cn)) for some 0 < ¢ < 1, as for
linear models. The cost of nonparametric estimation is reflected in the scaling with
respect to s = | S|, which can grow only as o(n*'?).

We remark that Comminges and Dalayan [6] show that, even under the prod-
uct distribution, variable selection is achievable under traditional smoothness con-
straints only if n > O(e*). Here, we demonstrate that convexity yields the scaling

n = O(poly(s)).
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3. Population level analysis: Additive faithfulness. For a general regression
function, an additive approximation may result in a relevant variable being incor-
rectly marked as irrelevant. Such mistakes are inherent in the approximation and
may persist even in the population setting. In this section, we give examples of this
phenomenon, and then show how the convexity assumption changes the behavior
of the additive approximation. We work with C = [0, 1]? as the support of the
distribution in this section but all of our results apply to general hypercubes. We
begin with a lemma that characterizes the components of the additive approxima-
tion under mild conditions.

LEMMA 3.1. Let P be a distribution on C = [0, 1] with a positive density
function p(x). Let f : C — R be in L>(P). Let

floo fpm

p 2
= argmin{E(f(X) —n= fk(xk>> : fie € LA(P), Efi(X0) =0, Vk}.

k=1
With 1* = E£(X),

(3.1) 70 =E[£00 = ¥ f ) [ w] - Er o0,

k' £k

and this solution is unique.

Lemma 3.1 follows from the stationarity conditions of the optimal solution. This
result is known, and criterion (3.1) is used in the backfitting algorithm for fitting
additive models. We include a proof as our results build on it.

PROOF OF LEMMA 3.1. Let ff,..., f;, u* be the minimizers as defined;
they exist since the set of mean zero additive functions is a closed subspace of
L?(P). We first show that the optimal p is u* =E f(X) for any fi,..., fx such
that E fi, (Xx) = 0. This follows from the stationarity condition, which states that
w*=E[f(X) — >k fi(X)]=E[f(X)]. Uniqueness is apparent because the sec-
ond derivative is strictly larger than zero and strong convexity is guaranteed.

We now turn our attention toward the f;*’s. It must be that f;* minimizes

2
(3.2) rr}iknE<f(X) = Y F ) - fk<xk>)

k' £k

subject to E fi (Xx) = 0. Fixing x;, we will show that the value

Xk] —

(3.3) E[foo ~ Y )

k' £k
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uniquely minimizes

2
GaH  min [ p(X)<f(X)— kafockf)—fk(xk)—u*) dx_s.
) Jx_p

Sie (e K2k

The first-order optimality condition gives us

P(X) fr(xx) dX_

X_k

= [ (50— X s — ) dxes,
Xk

k' £k

(3.5)

(3.6)  p(a) filxe) = / PO (X |xk>(f<x> -3 i) —u*) dx_,

Xk Kk

BT felw) = /

X

P | xk)(f(x) ~ Y FiGuw) — u) ds_s.
—k

k' £k

To prove uniqueness, suppose f = Zle f] is another additive function that
achieves the same square error. Let v € [0, 1], and consider the expectation
E(f(X)—u*—(f*+ v(f— £)))? as a function of v. The objective is strongly
convex if E(f — f*)2, and so E(f — f*)2 = 0 by the assumption that f* and f
are both optimal solutions. By Lemma 1.3 in the supplement, we conclude that
E(f]f“ — fj)z =0 as well, and thus, fjf" = f] almost everywhere.

We note that E[ f(X) — Zk/# fk"i(Xk/) | xx] — E f(X) has mean zero as a func-
tion of xj, which shows that the fk*s are feasible. [

In the case that the distribution in Lemma 3.1 is a product distribution, the ad-
ditive components take on a simple form.

COROLLARY 3.1. Let p(x) be a positive density on C = [0, 1]17. Let u*,
fi(xx) be defined as in Lemma 3.1. Then p* = Ef(X) and f(x) =
E[f(X) | xx] — Ef(X) and this solution is unique.

In particular, under the uniform distribution, f*(xx) = [ f(xk, X_) dX_ —

[ f(x)dx.

EXAMPLE 3.1. Using Corollary 3.1, we give two examples of additive un-
faithfulness under the uniform distribution—where relevant variables are erro-
neously marked as irrelevant under an additive approximation. First, consider the
following function:

(3.8) f(x1,x2) =sin(2mxy) sin(2m x3) (egg carton)
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(a) egg carton (b) tilting slope

FI1G. 1. Two additively unfaithful functions. Relevant variables are zeroed out under an additive
approximation because every “slice” of the function integrates to zero.

defined for (x1, x2) € [0, 1]2. Then fxz f(x1,x2)dxy =0and fx1 f(x1,x2)dx; =0
for each x| and x». An additive approximation would set f; =0 and f> = 0. Next,
consider the function

(3.9 fx1,x2) =x1x2 (tilting slope)

defined for x| € [—1, 1], xo € [0, 1]. In this case fx1 f(x1,x2)dx; =0 for each x»;
therefore, we expect f, = 0 under the additive approximation. This function, for
every fixed x», is a zero-intercept linear function of x; with slope x,. See Figure 1.

In order to exploit additive models in variable selection, it is important to un-
derstand when the additive approximation accurately captures all of the relevant
variables. We call this property additive faithfulness. We first formalize the con-
cept that a multivariate function f does not depend on a coordinate xy.

DEFINITION 3.1. Let C =[0, 1]” and let f : C — R. We say that f does not
depend on coordinate k if for all x_j, f(xr,X—x) is a constant as a function of xy.
If f is differentiable, then f does not depend on k if 0y, f (xx, X_y) is O for all x_.

In addition, suppose we have a distribution P over C and the additive approxi-
mation

p 2
(3.10) f¢,u":= argmin {E[(f(X) — > fiu(Xp) - M) ] (Efie(Xi) =0}-

S1seess fp,ll- k=1

We say that f is additively faithful under P if f;* =0 implies that f does not
depend on coordinate k.

Additive faithfulness is an attractive property because it implies that, in the pop-
ulation setting, the additive approximation yields a consistent variable screening.
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3.1. Additive faithfulness of convex functions. We now show that under a gen-
eral class of distributions which we characterize below, convex multivariate func-
tions are additively faithful. To simplify the presentation, we restrict our attention
to densities bounded away from 0/00, that is, 0 < inf p(x) < sup p(x) < o0.

DEFINITION 3.2. Let p(x) be a density supported on [0, 1]7. We say that p(x)
satisfies the boundary flatness condition if for all j and for all x_;:

1) the derivatives exist and are bounded, for all x; €
j

pG—jlxj) p&x—jlxj)
ax; 82xj

[0,e) U (1 — g, 1] with ¢ > 0 arbitrarily small,

dp(x—jlx)) _ 2px—jlx) _

ox; 2
Xj 8xj

(i1) forx; =0and x; =1,

The boundary flatness condition intuitively states that two conditional densities
p(x_;|x;)and p(x_; | x}) are similar when x; and x’; are both close to the same
boundary point. It is thus much more general than requiring the density to be a
product density. Boundary flatness is a weak condition because it affects only an
e-small region around the boundary; p(x_; | x;) can take arbitrary shapes away
from the boundary. Boundary flatness also allows arbitrary correlation structure
between the variables [provided p(x) > 0]. In Section 3.2, we give a detailed dis-
cussion of the boundary flatness condition and show examples of boundary flat
densities. In particular, we show that any density supported on a compact set can
be approximated arbitrarily well by boundary flat densities.

The following theorem is the main result of this section.

THEOREM 3.1. Let p(x) be a density supported on C = [0, 11? and bounded
away from 0/o0 that satisfies the boundary flatness property. Suppose f is a convex

function with bounded second derivatives on an open set containing C. Then f is
additively faithful under p(x).

We let the domain of f be slightly larger than C for a technical reason—it is so
we can say in the proof that the Hessian of f is positive semidefinite even at the
boundary of C.

We pause to give some intuition before we present the full proof. Suppose that
the underlying density is a product density. We know from Lemma 3.1 that the
additive approximation zeroes out k when, fixing xi, every “slice” of f integrates
to zero, but “slices” of convex functions that integrate to zero cannot be “glued
together” while still maintaining convexity. Since the behavior of the whole convex
function is constrained by its behavior at the boundary, the same result holds even
if the underlying density is not a product density but merely resembles a product
density at the boundary, which is exactly the notion formalized by the boundary
flatness condition.
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PROOF OF THEOREM 3.1. Fixing k and using the result of Lemma 3.1, we
need only show that for all xi, E[ f(X) — > v fiy (Xx') | xk] — E f(X) =0 implies
that f does not depend on coordinate k, that is, 9y, f(x) =0 for all x.

Let us use the shorthand notation that r (x_;) = > K'£k frr (xgr) and assume with-
out loss of generality that u* = E[ f(X)] = 0. We then assume that, for all xy,

(B.11)  E[f(X) —r(X 1) | xt] E/ P | x) (f(x) —r(x-4)) =0.
X—k

)
We let p’(x_i | xx) denote %Xﬂx") and p”(x_g | x¢) denote % and like-
k
wise for f’(xx,X_x) and [ (xg, X_g).

We differentiate with respect to x; at x; = 0, 1 under the integral. The details
necessary to verify the validity of this operation are technical and given in Sec-
tion 1.4.1 of the supplementary material.

(3.12) / Pk 2 (f () = r(x—1) + pXi | x0) [/ (xx, Xg) dX_; =0,
X_k

P Xk | xi) (f(X) — r(x—k)) + 2p" Xk | x0) f/ (X, X—k)
X_k

(3.13)
+ pX—i | xp) £ (i, X—k) dx—g = 0.

By the boundary flatness condition, we have that p”(x_x | x¢) and p’(X_x | xx)
are zero at xy = x,? = 0. The integral equations then reduce to the following:

(3.14) / P [ X)) (x2, x_x) dx_t =0,
X_k

(3.15) / p(x_g | xP) f(x2, x_4) dx_; = 0.
X_k

Because f is convex, f(xg,X_x) must be a convex function of x; for all x_g.
Therefore, for all x_, f”(x,?, X_x) > 0. Since p(X_y | x,?) > (0 by the assumption
that p(x) is a positive density, we have that ¥x_, f”(x?, x_) = 0 necessarily.

The Hessian of f at (x,?, X_) then has a zero at the kth main diagonal entry.
A positive semidefinite matrix with a zero on the kth main diagonal entry must
have only zeros on the kth row and column; see Proposition 7.1.10 of [12]. Thus,
at all x_g, the gradient of f’ (x,?, X_) with respect to X_; must be zero. Therefore,
f (x,?, X_x) must be constant for all x_j. By equation (3.14), we conclude that
I (x,?, x_x) = 0 for all x_;. We can use the same reasoning for the case where
Xp = x,l and deduce that f/(x,!, X_z) =0 for all x_y.

Because f(xr,X_j) as a function of xj is convex, it must be that, for all x; €
(0, 1) and for all x_,

(3.16) 0=f"(x0.x=k) < f' Gk, Xp) < (x4, x24) =0.
Therefore, f does not depend on x;. [
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Theorem 3.1 plays an important role in our finite sample analysis, where we
show that the additive approximation is variable screening consistent, even when
the true function is not additive.

REMARK 3.1. We assume twice differentiability in Theorems 3.1 to simplify
the proof. We expect, however, that this smoothness condition is not necessary—
every convex function can be approximated arbitrarily well by a smooth convex
function.

REMARK 3.2.  We have not found natural conditions under which the opposite
direction of additive faithfulness holds—conditions implying that if f does not de-
pend on coordinate k, then f;* will be zero in the additive approximation. Suppose,
for example, that f is only a function of X1, X5, and that (X1, X», X3) follows
a degenerate three-dimensional distribution where X3 = f (X1, X2) — f*(Xy) —
/5 (X2). In this case X3 exactly captures the additive approximation error. The best
additive approximation of f would have a component f3(x3) = x3 even though f
does not depend on x3.

REMARK 3.3. In Theorem 3.1, we do not assume a parametric form for the
additive components; the additive approximations may not be faithful if we take
a parametric form. For example, suppose we approximate a mean-zero convex
function f(X) by a linear form Xg. The optimal linear function in the population
setting is B* = > Cov(X, f(X)) where ¥ = EXTX is the covariance matrix.
Suppose the X’s are independent, centered and have a symmetric distribution with
unit variance, and suppose f(x) = x% — E[X%]. Then 1 =E[X f(X)] = IE[X% —
XiE[X}1=0.

3.2. Boundary flatness examples. In this section, we give more examples of
boundary flat densities (see Definition 3.2) and discuss extending the notion of
boundary flatness to densities with a more general support. We first start with a
sufficient condition on the joint density that ensures boundary flatness.

EXAMPLE 3.2. Boundary flatness is satisfied if the joint density becomes flat
at the boundary. To be precise, let p(x) be a joint density bounded away from 0/co
with a bounded second derivative. Suppose also, for all j,

O, p(xj,X—j) =85 p(xj,Xx-;) =0 atx;=0,1.

It is then straightforward to show boundary flatness. One can first verify that the

derivatives of the marginal density p(x;) vanish at x; =0, 1 and then apply the

p(xj.X—j)
p(xj)

quotient rule on to show that 8xjp(x_j | xj) = afjp(x_j | x;) =0 at

x;=0,1as well.
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The next example shows that any bounded density over a hypercube can be
approximated arbitrarily well by boundary flat densities.

EXAMPLE 3.3. Suppose p.(x) is a bounded density over [g, 1 — ¢]? for some
0 <& < 1/2. Let g(x) be an arbitrary boundary flat density over [0, 1]? (one can
take the uniform density for instance). Define a mixture p; .(x) = Ag(x) + (1 —
A)pe(X) where 0 < A < 1; then p; _.(x) is boundary flat over [0, 1]7.

Now, let p(x) be a bounded density over [0, 1]7. Let p.(x) be the density
formed from truncating p(x) in [¢, 1 — £]” and proper re-normalization. The cor-
responding mixture p; .(X) then approximates p(x) when A and ¢ are both small.

Since p; (x) remains boundary flat for arbitrarily small ¢ and A, p(x) can be
approximated arbitrarily well (e.g., in L) by boundary flat densities.

In the discussion so far we have restricted our attention to densities supported
and positive on the hypercube [0, 1]” to minimize extraneous technical details. It
may also be possible to extend the analysis to densities whose support is a convex
and compact set so long as the marginal density p(x;) > O for all x; in the support.
A rigorous analysis of this, however, is beyond the scope of this paper.

It may also be possible to formulate a similar result to densities with unbounded
support, by using a limit condition limy, |-« sz’;m‘) = 0. Such a limit condi-
tion, however, is not obeyed by a correlated multivariate Gaussian distribution. The
next example shows that certain convex functions are not additively faithful under
general multivariate Gaussian distributions.

EXAMPLE 3.4. Consider a two-dimensional quadratic function f(x) =

x!" HX + ¢ with zero mean where H = (Zg Zg) is positive definite and a Gaus-

sian distribution X ~ N (0, £) where £ = (! %). As we show in Section 2 of the
supplementary material [28], the additive approximation has the following closed
form:

T —T2a2
fixn) = (W>x12 +ci,

T, — Tlo[2
fr(x2) = (W)JC% + e,

where T} = Hyj + 2H oo + Haoa?, To = Hap + 2Hppa + Hyjo2, ¢1, ¢p are con-

stants such that f* and f;° both have mean zero. Let H = (lf 52), then it is easy to

check that if @ = —1, then f;* = 0 and additive faithfulness is violated, if o > 7,
then f}" is a concave function. We take the setting where o = —0.5, compute the
optimal additive functions via numerical simulation, and show the results in Fig-
ure 2(a). Here, f|" is zero as expected.
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Optimal Additive Function for Gaussian Density Optimal Additive Function for Boundary—Flat Density
___component 1: f*1 ___component 1: f‘1
___component 2: f*2 ___component 2: f'2
marginal density (scaled) marginal density (scaled)
-5 0 5 -5 0 5
support x support x
(a) Gaussian distribution (b) Mixture approximation

FI1G. 2. Optimal additive projection of the quadratic function described in Example 3.4 under both
the Gaussian distribution described in Example 3.4 and the approximately Gaussian mixture distri-
bution described in Example 3.5. For the mixture approximation, we used b =5, ¢ = 0.3, A = 0.0001
where the parameters are defined in Example 3.5. This example shows the effect and the importance
of the boundary flatness condition.

Although the Gaussian distribution does not satisfy the boundary flatness con-
dition, it is possible to approximate the Gaussian distribution arbitrarily well with
distributions that do satisfy the boundary flatness condition. We use an idea similar
to that of Example 3.3.

EXAMPLE 3.5. Let X be as in Example 3.4 with « = —0.5 so that f* =0.
Consider a mixture AU[—(b + &), b + €]*> + (1 — )N, (0, ) where Np(0, T) is
the density of a truncated bivariate Gaussian bounded in [—b, b]? and U [—(b+
€), b + €]* is the uniform distribution over a square. The uniform distribution is
supported over a slightly larger square to satisfy the boundary flatness condition.

When b is large, ¢ is small and A is small, the mixture closely approximates
the Gaussian distribution but is still additively faithful for convex functions. Fig-
ure 2(b) shows the optimal additive components under the mixture distribution,
computed by numerical integration with b =5,& = 0.3, x = 0.0001. True to our
theory, f|*, which is zero under the Gaussian distribution, is nonzero under the
mixture approximation to the Gaussian distribution. We note that the magnitude
Eff(X D2, although nonzero, is very small, consistent with the fact that the mix-
ture distribution closely approximates the Gaussian distribution.

3.3. Convex additive models. Although convex functions are additively faith-
ful—under appropriate conditions—it is difficult to estimate the optimal additive
functions f}s as defined in equation (3.10). The reason is that f;* need not be
a convex function, as Examples 3.4 and Example 3.5 show. It may be possible
to estimate f;" via smoothing, but we prefer an approach that is free of smoothing
parameters. Since the true regression function f is convex, we approximate the ad-
ditive model with a convex additive model. Without loss of generality, we assume
in this section that E f(X) = 0.
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We abuse notation and, for the rest of the paper, use the notation f;* to represent
convex additive fits:

P 2
(3.17) {fk*},i;l=argmin!E(f<X)—ka(xk))  fe e CLE fi(Xp) =01,

k=1

where C! is the set of univariate convex functions.

If p(x) is a product density, then E[ f (X) | xx] is convex in x; and the additive
projection is simultaneously the convex additive projection. Thus, in this case,
additive faithfulness trivially holds for the convex additive projection. For a general
boundary flat density p(x), however, the additive projection need not be convex
and we thus cannot say anything about additive faithfulness of the convex additive
projection.

Luckily, we can restore faithfulness by coupling the f;*s with a set of univariate
concave fits on the residual f — f*:

2
i =argminfB( £ 00 = 3 () — 91X s € -C'
(3.18) e

Egi(Xk) =0}-

THEOREM 3.2. Suppose p(X) is a density on C = [0, 11? bounded away from
0/00 that satisfies the boundary flatness condition. Suppose that f is convex with
a bounded second derivative on an open set around C. Let f;* and g; be as defined
in equations (3.17) and (3.18), then the f;*’s and the gi’s are unique. Furthermore,
£ =0and g =0 implies that 9y, f(x) =0, that is, f does not depend on xj.

Before we can prove the theorem, we need a lemma that generalizes Theo-
rem 3.1.

LEMMA 3.2. Suppose p(x) is a density on C = [0, 1]? bounded away from
0 and oo satisfying the boundary flatness condition. Let f(X) be a convex func-
tion with a bounded second derivative on an open set around C. Let ¢ (X_x) be a
bounded function that does not depend on xj. Then the unconstrained univariate
function

(3.19) i = argnlgnE[(f(X) —¢(X_p) — e (X0)?]
is given by hy (x;) = E[ f (X) —¢(X_) | xi], and hj; = 0 implies that 0y, f (x) = 0.

PROOF. In the proof of Theorem 3.1, the only property of r(x_;) we used
was the fact that dy, 7 (x_¢) = 0. Therefore, the proof here is identical to that of
Theorem 3.1 except that we replace r(x_x) with ¢ (x_). U
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PROOF OF THEOREM 3.2. Fix k. Let f;* and g be defined as in equa-
tion (3.17) and equation (3.18). Let ¢ (x—x) = > g4 fi (xxr). Each f}' is convex
and thus continuous on (0, 1). The function fk*, (xx) is defined at xy = 0, 1; thus,
f» must be bounded and ¢ (x_) is bounded.

We have that

it =argmin{ B(£00) — Y- fk,<xk/>—fk) feec',

k' £k
(3.20)
Efi(Xe) = 0},
2
g =argmin{B(£00 — ¥ fi(Xe) — gi) sgre-C'
3.21) e

Egr(Xx) = 0}-
Let us suppose that f;* = g; = 0. It must be then that
. 2
argmin E(f(X) — ¢ (X—x) — ¢(Xz —m3)) =0,
ceR
where m,% = EX,%; this is because c(x,% — m%) is either convex or concave in xji
and it is centered, that is, E[ X} 2 _ m,%] = 0. Since the optimum has a closed form

of = E[(f(X)—¢(X_ k))(Xk mk)]
(EXZ—m?)?

, we deduce that

E[(f(X) = ¢ (X-0))(X; —m{)] =E[(f (X) — p(X-0)) X}]
=E[E[f(X) — ¢(X 1) | Xx]X;] =0.

We denote A} (xi) = E[f(X) — ¢(X_x) | x¢]. Since f(x) and ¢ (x_) are both
bounded, /4 (xx) is bounded as well. Therefore, 4 is square integrable and there
exists a Fourier series s, (xx) convergent to 47 in Lj. Since p(x) is bounded,

Tim E(s,(Xx) — i (X0)* —

as well.

If we can show that Ehj (X )% =0, we can apply Lemma 3.2 and complete the
proof. So let us suppose for sake of contradiction that A} (X 0% >0.

Let 0 < ¢ < 1 be fixed and let n be large enough such that E(s,(Xz) —
hi (Xp)? < EEhZ(Xk)z. Since s, (xg) is twice-differentiable and has a second
derivative bounded away from —oo, there exists a positive scalar o such that
Sp(xp) + a(x,% — m,%) has a nonnegative second derivative and is thus convex.
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Because we assumed f* = g* =0, it must be that

argrlginE( F(X) = ¢(X—p) — c(sn(Xp) — Esy(Xp0) + (X7 — m})))> =0.

This is because c (s, (xr) —Es, (Xx) +oz(x,% — m,%)) is convex for ¢ > 0 and concave

for ¢ <0 and it is a centered function.

E[(f (X)—¢ (X 1)) (50 (Xi)—Essp (X) +e (XF—m}))]
E(sn (X0)—Esp (Xp)+a(X;—m}))?

Again, ¢* = =0, so

E[(f(X) = ¢ (X—) (52 (Xi) — Esn(X0) + (X; —m}))]
=E[(f(X) = ¢(X—k))sn(X1)]
=E[E[f(X) — ¢(X_p) | Xi]sn(Xi)]
= Ehi (Xp)sn (Xk) =0,
where the first equality follows because E[( f(X) — ¢(X_k))(X,% — m%)] =0.
We have chosen s, such that E(h}(Xy) — s, (X1)? < EEhZ(Xk)Z for some
e < 1. But, E(hf(Xx) = $2(Xi))* = Ehf(X1)? — 2ERf (Xi)sn (Xi) + Esn (Xe)? >
En;(X ©)2. This is a contradiction and therefore, En;(X )2 =0.
Now we use Lemma 3.2 with ¢ (x_;) = Zk/# /> (x) and conclude that f;* =
0 and g; = 0 together imply that f does not depend on x;. 5
Now we turn to uniqueness. Suppose for sake of contradiction that f* and f are
optimal solutions to (3.17) and E(f — f*)> > 0. f*+A(f — f*) forany A € [0, 1]
must then also be an optimal solution by convexity of the objective and constraint.
However, the second derivative of the objective E(f — f* — A(f — f *))? with
respect to A is 2E(f — £*)2 > 0. The objective is thus strongly convex and E( f* —
f )2 = 0. We now apply Lemma 1.3 in the supplement by letting ¢y = = ﬁ We

conclude that E( " — ﬁ)z =0 for all k. The uniqueness of g* is proved similarly.
0

3.4. Estimation procedure. Theorem 3.2 naturally suggests a two-stage
screening procedure for variable selection in the population setting. In the first
stage, we fit a convex additive model,

p 2
(3.22) fio.. ff= argmin IE(f(X) — - kao(k)) ,

S fp€CY 1 k=1

where we denote Cé (—Cé) as the set of one-dimensional convex (resp. concave)
functions with population mean zero. In the second stage, for every variable
marked as irrelevant in the first stage, we fit a univariate concave function sep-
arately on the residual for that variable. For each k such that f* =0,
2
623 g =agminB( 00— 1" = R0 - 6 (X))
k/

1
8k€-C
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AC/DC ALGORITHM FOR VARIABLE SELECTION IN CONVEX REGRESSION

Input: (X1, y1), ..., (Xn, Yn), regularization parameter A.

AC Stage: Estimate a sparse additive convex model:

R _ 1o p 2 p
(3.25) fi,..., fp, A= argmin —Z(yi—u—ka(x,-w) +23 N fieloo-

Fronfpect iz k=1 k=1

DC Stage: Estimate concave functions for each &k such that ||ﬁ< loo = 0:

n

2
(3.26)  gx =argmin — Z(yi —= ) frxir) — g (m)) + Algklloo-
k/

gy izt
Output: Component functions {ﬁ} and relevant variables S where

(3.27) S¢={k: | fxll =0and |g|| =0}.

F1G. 3. The AC/DC algorithm for variable selection in convex regression. The AC stage fits a sparse
additive convex regression model, using a quadratic program that imposes an group sparsity penalty
for each component function. The DC stage fits decoupled concave functions on the residuals, for
each component that is zeroed out in the AC stage.

We screen out SC, any variable k that is zero after the second stage, and output S:
(3.24) §¢={k: ff =0and g =0}.

We refer to this procedure as AC/DC (additive convex/decoupled concave). The-
orem 3.2 guarantees that the true set of relevant variables So must be a subset of S.

It is straightforward to construct a finite sample variable screening procedure,
which we describe in Figure 3. We use an £,/£{; penalty in equation (3.25) and
an £ penalty in equation (3.23) to encourage sparsity. Other penalties can also
produce sparse estimates, such as a penalty on the derivative of each of the com-
ponent functions. The || - || norm is convenient for both theoretical analysis and
implementation.

After selecting the variable set S, one can refit a low-dimensional nonadditive
convex function to build the best predictive model. If refitting is undesirable for
whatever reason, the AC/DC outputs can also be used for prediction. Given a new
sample x, welety =3 Fre(x0) + >« 8k(Xx). Note that gx = 0 for k such that f #
0 in AC/DC. The next section describes how to compute this function evaluation.

The optimization in (3.25) appears to be infinite dimensional, but it is equiva-
lent to a finite dimensional quadratic program. In the following section, we give
the details of this optimization, and show how it can be reformulated to be more
computationally efficient.
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4. Optimization. We now describe in detail the optimization algorithm for
the additive convex regression stage. The second decoupled concave regression
stage follows a very similar procedure.

Let x; € R? be the covariate, let y; be the response and let €; be the mean zero
noise. The regression function f(-) we estimate is the sum of univariate func-
tions fi(-) in each variable dimension and a scalar offset ;. We impose additional
constraints that each function fi(-) is convex, which can be represented by its
supporting hyperplanes, that is,

4.1) firk = fik + Bix(xXirk — Xik) foralli,i’=1,...,n,

where fix := fi(xix) is the function value and B;x is a subgradient at point x;.
This ostensibly requires O (n?p) constraints to impose the supporting hyperplane
constraints. In fact, only O (np) constraints suffice, since univariate convex func-
tions are characterized by the condition that the subgradient, which is a scalar,
must increase monotonically. This observation leads to the optimization

2
1 & p p
min — Ly — : ey
{fi.Be} i 2n ;()’1 K l; ﬁk) /; | filloo
subject to forallk=1,..., p:

S+ 0k = frpik + By ik X+ 1)k — X ()k)

4.2)

fori=1,....,.n—1

n

> fik=0,

i=1

,Bnk(i—i-l)k Z,Bnk(i)k fori=1,...,n—2.
Here, fx denotes the vector fix = (fik, f2,,.--» fuo)T € R" and the indices
{m (1), mx (2), ..., mx(n)} are from the sorted ordering of the values of coordi-
nate k:
4.3) XDk < Xk <00+ < Xk

We can solve for u explicitly as u = % Y7, yi =Y. This follows from the KKT
conditions and the constraints Y, fix = 0.

The sparse convex additive model optimization in (4.2) is a quadratic program
with O(np) variables and O (np) constraints. Directly applying a QP solver for f
and B is computationally expensive for relatively large n and p. However, notice
that variables in different feature dimensions are only coupled in the squared error
term (y; — @ — Z,f: | fix)?. Hence, we can apply the block coordinate descent
method, where in each step we solve the following QP subproblem for { f, Bk}
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with the other variables fixed. In matrix notation, the optimization is

) 1 2
min —||ry — + A
7 7k — fillz + Avk

Jie>Br i
such that Py fir = diag(Prxy) Bk,
(4.4) Dipr <0,
—Viln < fi < vicla,
1, fe =0,
where B € R"~! is the vector Bx = (Bik, ..., ﬂ(n_l)k)T, and r; € R” is the resid-

ual vector ry = (y; — &t — Zk/# fir)T . In addition, P, € R”~D*" s a permutation
matrix where the ith row is all zeros except for the value —1 in position ¢ (i) and
the value 1 in position (i + 1), and Dy € R"=2*#=D j5 another permutation
matrix where the ith row is all zeros except for a value 1 in position (i) and a
value —1 in position i (i 4+ 1). We denote by diag(v) the diagonal matrix with
diagonal entries v. The extra variable yj is introduced to impose the regularization
penalty involving the £+, norm.

This QP subproblem involves O (n) variables, O (n) constraints and a sparse
structure, which can be solved efficiently using optimization packages. In our ex-
periments, we use MOSEK (www.mosek.com). We cycle through all covariates k
from 1 to p multiple times until convergence. Empirically, we observe that the al-
gorithm converges in only a few cycles. We also implemented an ADMM solver
for (4.2) [2], but found that it is not as efficient as this blockwise QP solver.

After optimization, the function estimate for an input vector x is, according
to (4.1),

p p
“5)  f® =) i) +i=)_ max{fix+ Bi(xx — xit)} + .
k=1 k=1 '

The univariate concave function estimation required in the DC stage is a
straightforward modification of optimization (4.4). It is only necessary to mod-
ify the linear inequality constraints so that the subgradients are nonincreasing:

Bryi+1)k =< Bry (k-

4.1. Alternative formulation. Optimization (4.2) can be reformulated in terms
of the second derivatives. The alternative formulation replaces the order constraints
Bri(i+1)k = Bry ik with positivity constraints, which simplifies the analysis.

Define dy, i)k as the second derivative: dy, (1)k = B, (1)k» and dry i)k = By ik —
Brii—1k for i > 1. The convexity constraint is equivalent to the constraint that
dy ik = 0 foralli > 1.
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It is easy to verify that Bz, ik = 2 j<; dm(j)k and
e iok) = i e i— k) + Bri— 1)k Xy i)k — Xme(i—1)k)
= fiQmk) + D Bk g (j+ 0k — Xy (k)

j<i

= feQm k) + D Y (kG Dk = X (k)
Jj<ij'<j

= fiCme ) + Y dm ik Y, GGk — Xmp(j)k)
j'<i i>j>j

= fe G k) + Y dog i1k Ky 10k — X (57)K)-

Jj'<i
We can write this more compactly in matrix notation as

Se(Cxix)
Ji(x21) |: X1k — Xm k) + - (g — xnk(nl)k)+:|

(Xnk — Xmei)+ o Conk — X (n—1)k) +

fk (J'an)

Ay (1)k
(4.6) Sy BT

drrk(n—l)k

= Apdi + [k,
where Ap is a n x n — 1 matrix such that Ax(i, j) = (Xix — Xz (jHk)+> dk =
(dry (ks - - s drp(n—1)k)> and g = fi (X7, (1)) 1. Because fi has to be centered,
Uik = —%lnlz Ard and, therefore,

1 _
4.7) Apdi + g = Apdy — ;lnlz Ardy = Agdy,

where Ay = Ay — %1,, I,TA;( is Ay with the mean of each column subtracted.
The above derivations prove the following proposition, which states that (4.2)
has an alternative formulation.

PROPOSITION 4.1. Let {fk ,Bk}k 1 p be an opnmal solm‘zon to (4 2) and
suppose Y 0. Define vectors di € R such that drrk(l)k = ,Bnk(l)k and dnk(l)k =
,B,,k(,)k — ﬁnk(, vk fori > 1. Then fk = Akdk and dk is an optimal solution to the
following optimization:

2

+ An ZnAkdknoo
2 k=1

min
{de RNy, 2n

Y — Z Apdy

(4.8)
such that dq o)k, -+ dry(n—1)k =0 (convexity).
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Likewise, suppose {czc}k:1 ,,,,, p is a solution to (4.8), define Bﬂk(i)k = sti Jnk(j)k

and fi = Ardk. Then { fr, Bilk=1
n — 1 matrix defined by (4.7).

p is an optimal solution to (4.2). A is the n by

,,,,,

The decoupled concave postprocessing stage optimization is again similar.
Specifically, suppose dy is the output of optimization (4.8), and define the residual
vector

p
(4.9) F=Y =Y Aed.
k=1
Then for all k such that dy = 0, the DC stage optimization is formulated as

1
min — |7 — Agcxll3 + Anll Akcklloo
c 2n

(4.10)
such that Crrp (ks +++ > Crp(n—1k = 0 (concavity).

We can use either the off-centered A matrix or the centered A matrix because
the concave estimations are decoupled, and hence are not subject to nonidentifia-
bility under additive constants.

5. Analysis of variable screening consistency. Our goal is to show variable
screening consistency. That is, as n, p — o0, P(S =) approaches 1 where S is
the set of variables output by AC/DC in the finite sample setting (Figure 3) and S
is the set of variables output in the population setting (3.24).

We divide our analysis into two parts. We first establish a sufficient determinis-
tic condition for consistency of the sparsity pattern screening procedure. We then
consider the stochastic setting and argue that the deterministic conditions hold with
high probability. Note that in all of our results and analysis, we let ¢, C represent
absolute constants; the actual values of ¢, C may change from line to line. We de-
rived two equivalent optimizations for AC/DC: (4.2) outputs ﬁ, 2 and (4.8) out-
puts the second derivatives d. Their equivalence is established in Proposition 4.1
and we use both dj and ﬁ in our analysis. We will also assume in this section
that the true regression function f has mean-zero and, therefore, we will omit the
intercept term f in our estimation procedure.

In our analysis, we assume that an upper bound B to ||fk||OO is imposed in the
optimization procedure, where B is chosen to also upper bound || f;*[loc (same B as
in assumption A3 in Section 5.2). This B-boundedness constraint is added so that
we may use the convex function bracketing results from [14] to establish uniform
convergence between the empirical risk and the population risk. We emphasize
that this constraint is not needed in practice and we do not use it for any of our
simulations.
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5.1. Deterministic setting. We analyze optimization (4.8) and construct an ad-
ditive convex solution {c/l\k}kzl ,,,,, p that is zero for k € §¢, where S is the set of
relevant variables, and show that it satisfies the KKT conditions for optimality of
optimization (4.8). We define dy for k € S to be a solution to the restricted regres-
sion (defined below). We also show that ¢; = 0 satisfies the optimality condition
of optimization (4.10) for all k£ € S°.

DEFINITION 5.1. We define the restricted regression problem

1
min —
dr n

2
Y= AkdkH + 2 Y I Akdilloo
kesS 2 kesS

suchthat  dr ks - - » dmpn—1)k > 0,

where we restrict the indices k in optimization (4.8) to lie in some set S which
contains the true relevant variables.

THEOREM 5.1 (Deterministic setting). Let {gk}kes be a minimizer of the re-
stricted regression as defined above. Let 7 :=Y — Y icg Ady be the restricted
regression residual.

Let 1y (i) be a reordering of Xy in ascending order so that X, (n)k 1S the largest
entry. Let 1, (i.n) be 1 on the coordinates mwi (i), mp(i + 1), ..., mi(n) and O else-
where. Define range;, = X, (nyk — X (1)k-

Suppose for all k € §¢, foralli=1,...,n, Ay > rangek|3n—2?—r1ﬂk(,~;n)|. Suppose

Xy 4Dk — Xy
c . y (i+Dk 7y (i)k 1
also that for all k € S¢, max;=1 .. n—1 — g =16

Then the following two statements hold:

1. Let c/i\k =0 for k € S°. Then {c’l\k}kzl ,,,,, p is an optimal solution to optimiza-
tion (4.8). Furthermore, any solution to the optimization program (4.8) must be
zero on S°€.

2. Forall k € S¢, the solution ¢, to optimization (4.10) must be zero and unique.

and range; > 1.

Theorem 5.1 states that the estimator produces no false positive so long as A,
upper bounds the partial sums of the residual 7 and that the maximum gap between
ordered values of X} is small.

This result holds regardless of whether or not we impose the boundedness con-
ditions in optimization (4.8) and (4.10). The full proof of Theorem 5.1 is in Sec-
tion 1.1 of the supplementary material [28]. We allow S in Theorem 5.1 to be any
set containing the relevant variables; in Lasso analysis, S is taken to be the set of
relevant variables; we will take S to be the set of variables chosen by the addi-
tive convex and decoupled concave procedure in the population setting, which is
guaranteed to contain the relevant variables because of additive faithfulness.

Theorem 5.1 allows us to separately analyze the false negative rates and false
positive rates. To control false positives, Theorem 5.2 verifies that the conditions in
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Theorem 5.1 hold in a stochastic setting. To control false negatives, Theorem 5.3
analyzes the restricted regression with only |S| variables.

The proof of Theorem 5.1 analyses the KKT conditions of optimization (4.8).
This parallels the now standard primal-dual witness technique [27]. The conditions
in Theorem 5.1 are analogues of the mutual incoherence conditions. Our condi-
tions are much more strict, however, because the estimation is nonparametric—
even the low-dimensional restricted regression has s(n — 1) variables.

The details of the proof are given in Section 1.1 of the supplementary mate-
rial [28].

5.2. Probabilistic setting. In the probabilistic setting, we treat the covariates
as random. We adopt the following standard setup:

1. Thedata XV, ..., X ~ P arei.i.d. from a distribution P with a density p(x)
that is supported on X =[—1, 1]7.

2. The response is ¥ = fo(X) + W where W is independent, zero-mean noise;
thus Y = fo(XD) 4+ w®,

3. The regression function fy satisfies fo(X) = fo(Xs,), where So = {1, ..., s0}
is the set of relevant variables.

Let C! denote the set of univariate convex functions supported on [—1, 1], and
let Cf denote the set of convex additive functions ij ={f:f= 21?:1 S, fx €
ClY. Let f*(x) = Z,f:] S (xi) be the population risk minimizer in Clp ,

(5.1) = arg min E(fo(X) - F0)

f* is the unique minimizer by Theorem 3.2. Similarly, we define -C! as the set of
univariate concave functions supported on [—1, 1] and define

(52) gk =arg min B(fo(X) = /*(X) — g(X0)"
gk E-
The gi’s are unique minimizers as well. We let S=1{k=1,...,p: ff #0 or

g¢ # 0} and let s = |S]. By additive faithfulness (Theorem 3.2), it must be that
So C S, and thus s > s¢. In some cases, such as when X, X s¢ are independent, we
have § = Sp. Each of our theorems will use a subset of the following assumptions:

Al: Xg, Xsc are independent.

A2: fy is convex with a bounded second derivative on an open set around
[—1,1]7. E fo(X) =0.

A3: | folleo <sB and || flloc < B for all k.

A4: W is mean-zero sub-Gaussian, independent of X, with scale o; that is, for all
teR, EetW < 12,

AS5: The density p(x) satisfies the boundary flatness condition (Definition 3.2),
and 0 < ¢; <inf p(x) < sup p(x) < ¢, < oo for two constants ¢y, ¢;.
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By assumption Al, f;* must be zero for k ¢ S. We define oy, @_ as a measure of
the signal strength of the weakest variable:

@p=  min (E(foX) - F(X0))* = E(fo(X) — F5(X))*},
(5.3) J €Cy :supp(f) Ssupp(f*)

o= min {E(fo(X)— f*X)) —E(foX) — f*(X) - g (X0)*}.
keS:gi#0

The term o4 is a lower bound on the excess risk incurred by any additive convex
function whose support is strictly smaller than f*. oy is achieved by some f # f*
because the set { f € Cf :supp(f) € supp(f™)} is a finite union of closed convex
sets. a4 > 0 since f™* is the unique risk minimizer. Likewise, o lower bounds the
excess risk of any decoupled concave fit of the residual fo— f* that is strictly more
sparse than the optimal decoupled concave fit {g;}; a— > 0 by the uniqueness of
{g{} as well. These quantities play the role of the absolute value of the smallest
nonzero coefficient in the true linear model in lasso theory. Intuitively, if oy is
small, then it is easier to make a false omission in the additive convex stage of
the procedure. If a_ is small, then it is easier to make a false omission in the
decoupled concave stage of the procedure. If p(x) is a product density, then o4 can
be simplified to ming. fi#0 Eff (X )? and «_ becomes unnecessary (see Section 3
in the supplementary material).

REMARK 5.1. We make strong assumptions on the covariates in Al in order
to make weak assumptions on the true regression function fy in A2. In particular,
we do not assume that fj is additive. An important direction for future work is
to weaken assumption Al. Our simulation experiments indicate that the procedure
can be effective even when the relevant and irrelevant variables are correlated.

THEOREM 5.2 (Controlling false positives). Suppose assumptions A1-AS
hold. Define ¢ = max(o, B) and define range; = X (myk — X (1)k- Suppose
p < O(exp(cn)) and n > C for some positive constants C and 0 < ¢ < g—’z Sup-
pose also

1 2
(5.4) Ay > 76855 2 "P.

n

Then with probability at least 1 — 2n—4,f0r allk € 8¢, foralli’ =1, ...,n,

32
(5.5) An > range | —7 ' L(irmy,
n

’

Xﬂ v =X it —~
L@+ Dk~ X (iDk 1 ; -
— ange = 167 range;, > 1, and both the AC solution fy from opti

mization (4.8) and the DC solution g from optimization (4.10) are zero.

max; =<
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Here, we use 1(;.,) to denote a vector that is 1 on the i’th to the nth coordinates
and O elsewhere.

The proof of Theorem 5.2 exploits independence of 7 and X under assumption
Al; when 7 and X; are independent, ?Tl(i/;n) is the sum of n — i’ + 1 random
coordinates of 7. We can then use concentration of measure results for sampling
without replacement to argue that |}1?T1(ir;”)| is small with high probability. The
result of Theorem 5.1 is then used. The full proof of Theorem 5.2 is in Section 1.2
of the supplementary material [28].

THEOREM 5.3 (Controlling false negatives). Suppose assumptions A1-AS
hold. Let fbe any AC solution to the restricted regression with B-boundedness
constraint, and let g be any DC solution to the restricted regression with B-
boundedness constraint. Let ¢ denote max(o, B). Suppose

1 2
(5.6) A, < 76855, 2 P

n

and that n is sufficiently large so that, for some constant ¢’ > 1,

4/5
(5.7) N S B
lognp
Assume that the signal-to-noise ratio satisfies
o sScyl?
(5.8) — = cBY — - log’np.
2 5.1/2
a” s
(5.9) — = ¢BY\ =75 lognp,

where c is a constant. Then with probability at least 1 — % for some constant C,

fe#00r g #0 forallk € S.

This is a finite sample version of Theorem 3.1. We need stronger assumptions
in Theorem 5.3 to use our additive faithfulness result, Theorem 3.1. The full proof
of Theorem 5.3 is in Section 1.3 of the supplement [28].

Combining Theorems 5.2 and 5.3, we obtain the following result.

COROLLARY 5.1. Suppose the assumptions of Theorem 5.2 and Theorem 5.3
hold. Then with probability at least 1 — %

(5.10) fe#£0 or 2c#0  forallke S,
(5.11) fe=0 and 3=0  forallk¢S

for some constant C.
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The above corollary implies that consistent variable selection is achievable with
an exponential scaling of the ambient dimension scaling, p = O (exp(cn)) for
some 0 < ¢ < 1, just as in parametric models. The cost of nonparametric modeling
through shape constraints is reflected in the scaling with respect to the number of
relevant variables, which can scale as s = o(n?/ 25 ).

REMARK 5.2. Comminges and Dalalyan [6] have shown that under tradi-
tional smoothness constraints, even with a product distribution, variable selec-
tion is achievable only if n > O(e*). It is interesting to observe that because of
additive faithfulness, the convexity assumption enables a much better scaling of
n = O(poly(sg)), demonstrating that geometric constraints can be quite different
from the previously studied smoothness conditions.

6. Experiments. We perform both synthetic and real data experiments.

6.1. Simulations. We first illustrate our methods using a simulation of the
model

Yi = fo(xis) + wi i=12,...,n).

Here, x; denotes data sample i drawn from some distribution P, and fj is the true
regression function. The variables x;s are a subset of x; with dimension |S| = s,
where S represents the set of relevant variables, and w; is additive noise drawn
from N(0, 0%). For all simulations, we set o2 so that the signal-to-noise ratio
[SNR, Stdgﬁ] is 5. Also, for all simulations except the sixth, we choose the set of
relevant variables S uniformly at random among all variables {1, ..., p}.

We study both the independent case where P = N (0, I,,) and the correlated case
where P is a correlated Gaussian copula modified slightly to satisfy the boundary
flatness condition. We measure the probability of exact selection in the indepen-
dent case and the probability of screening in the correlated case. We also study both
cases where the regression function is parametric (quadratic) and cases where the
regression function is nonparametric (softmax of linear forms). In all our experi-
ments, we mark a variable as selected if either the AC estimate || ]‘; loo Or the DC

log? np
n

estimate || g || is larger than 107 We set . = 0.5 for all the simulations.
For the first three simulations, we use a quadratic form as the true regression

function,
) — L O
fO(xlS) =X;s Ox;s.

The matrix Q is a symmetric positive definite matrix of dimension s x s. Note
that if Q is diagonal, then the true function is convex additive; otherwise the true
function is convex but not additive.
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FI1G. 4.  Support recovery results.

6.1.1. First simulation. In the first simulation [Figure 4(a)], we vary the am-
bient dimension p. We set Q to be one on the diagonal and 1/2 on the off-
diagonal with 0.5 probability, set s =5, and p = 64, 128, 256 and 512. We draw
X ~ N(0, I,). For each (n, p) combination, we generate 100 independent trials.
In Figure 4(a), we plot the probability of exact support recovery. We observe that
the algorithm performs consistent variable selection even if the dimensionality is
large. To give the reader a sense of the running speed, for a dataset with n = 1000
and p = 512, the code runs in roughly two minutes on a machine with a 2.3 GHz
Intel Core i5 CPU and 4 GB memory.

6.1.2. Second simulation. In the second simulation [Figure 4(b), (c)], we vary
the sparsity of the Q matrix, thus varying the extent to which the true function is
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nonadditive. We generate four Q matrices plotted in Figure 4(c), where the diag-
onal elements are all one and the off-diagonal elements are % with probability «
(¢ =0,0.2,0.5, 1 for the four cases). We show the four Q matrices we used in
Figure 4(c). We fix p =128, s =5, and X ~ N(0, I,). We again run the AC/DC
optimization on 100 independent trials and plot the probability of exact recovery
in Figure 4(b). The results demonstrate that AC/DC performs consistent variable
selection even if the true function is not additive (but still convex).

In the third, fourth and fifth simulation, we use a correlated design. We gen-
erate X from a non-Gaussian boundary flat distribution with covariance . The
distribution we used is a mixture of a uniform distribution and a Gaussian copula,

X ~yU([-2,2]”) + (1 — y) Copula(0, X, F).

The Gaussian copula is a way to customize the marginal distributions of a Gaussian
random variable while maintaining the same covariance. Gaussian copula results
when one applies a monotone transformation F~'® onto each of the variables
of a Gaussian random vector where & is the normal CDF and F is the CDF of
the new marginal distribution. In all our experiments, we set y = 0.05 and set
the marginal CDF F so that marginal density of the copula is bimodal and sup-
ported on [—1.8, 1.8]. The resulting marginal density of the mixture is shown in
Figure 5. Notice that boundary flatness holds because the distribution is uniform
in the boundary area [—2, 2]7 \ [—1.8, 1.8]7.

6.1.3. Third simulation. In the third simulation [Figure 4(d), Figure 6(a)], we
use the non-Gaussian distribution described above and set the covariance to be
i = vli=il for v = 0,0.2,0.5,0.9. We use the nonadditive 0, same as in the
first experiment, with « = 0.5 and fix p = 128, s = 5. In Figure 4(d), we say that
a trial is successful if all relevant variables were recovered, that is, there are no
false negatives. In Figure 6(a), we also show the total number of selected vari-
ables versus the sample size as boxplots; since the true sparsity level is 5, these
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FI1G. 5. Marginal density of the Gaussian copula and uniform mixture.
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FI1G. 6. Recovered support size in correlated design cases.

plots show the number of false positives. We use the same X as before. The prob-
abilities of success are computed from 40 independent trials and plotted against
various values of v in Figure 4(d). As seen, for all correlation levels, AC/DC can
successfully recover the relevant variables with only a small number of false pos-
itives. For v =0, 0.2, 0.5, the number of false positives steadily decrease with the
sample size, but for v = 0.9, the number of false positives stays roughly constant.
The latter phenomenon does not contradict our theory, which assumes Xg L Xgec
for some set S O Sy, but it does demonstrate a weakness of our method when the
design is highly correlated.

In the fourth and fifth simulation, we use a softmax function as the ground truth,

K
(6.1) folxis) = log<Z exp(B{ xis)) — 1.
k=1
We generate K random unit vectors {8; € R*};=1.... x and choose u so that fj has
mean-zero. We set K =7 for all the experiments.

6.1.4. Fourth simulation. For the fourth simulation [Figure 4(e), Figure 6(b)],
we let fo be the softmax function and let X be drawn from the boundary flat mix-
ture distribution described earlier with the Toeplitz covariance %;; = pli=il for
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v =0.5. We set s =5 and vary p = 128,256,512. We use the same faithful recov-
ery criterion as in the third simulation and plot the probability of faithful recovery
against the number of samples in Figure 4(e). The probabilities are computed over
30 independent trials. Also, we show the number of selected variables versus the
sample size as boxplots in Figure 6(b). The softmax function is more challenging
to estimate than the quadratic function, regardless, we see that increasing the am-
bient dimension p does not significantly affect the recovery probability. We also
see from Figure 6(b) that larger p does not lead to more number of false positives.

6.1.5. Fifth simulation. For the fifth simulation (Figure 7), we compare the
variables selected via the AC stage and the variables selected via the DC stage. We
use the softmax regression function and X drawn from the boundary flat mixture
distribution with a Toeplitz covariance and correlation level v = —0.7. We set s =
5, n =500 and p = 128. We perform 30 independent trials and plot the frequency
of variable selection in Figure 7. The true variables are X ; for j =5,6,7,8,9, 10.
We plot the frequency of selection among only the first 20 variables, that is, X ;
for j =1,...,20. We do not plot selection frequencies for variables 21 to 128
because they are almost never selected by either the AC or DC stage. As can be
seen, the DC stage is slightly helpful in recovering the true variables but its effect
is not significant. We thus believe that the DC stage, though important in theory, is
not as important in practice; it may be omitted without significant detriment to the
overall result.

6.2. Boston housing data. We next use the Boston housing data rather than
simulated data. This data set contains 13 covariates, 506 samples and one response

AC vs. DC selection

Probability of Being Selected
o
o

15 20 25
First 20 Variables

FIG. 7. Frequency of variable selection among the first 20 variables (X j for j =1, ...,20) in the
AC stage vs. in the DC stage. The true variables are [5,6,7,8,9, 10].
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variable indicating housing values in suburbs of Boston. The data and a detailed
description can be found on the UCI Machine Learning Repository website.>

We first use all n = 506 samples (with standardization) in the AC/DC algorithm,
using a set of candidate regularization parameters {1} ranging from A() = 0 (no
regularization) to 2. For each (), we obtain a function value matrix £ with
p = 13 columns and n = 506 rows. The nonzero columns in this matrix indicate
the variables selected using 1),

In Figure 8(a), we plot on the y-axis the norm | f j(l)||OO of every column j

against the regularization strength (). Instead of plotting the value of () on the

x-axis, however, we plot the total norm at 2O normalized against the total norm
®

at 2 (D: Zi 7 o

Ci Wl
strong to weak. For comparison, we plot the LASSO/LARS result in a similar way

in Figure 8(b). From the figures, we observe that the first three variables selected
by AC/DC and LASSO are the same: LSTAT, RM and PTRATIO, consistent with
previous findings [25]. The fourth variable selected by AC/DC is INDUS (with
A® =0.7). We then refit AC/DC with only these four variables without regular-
ization, and plot the estimated additive functions in Figure 8(d). When refitting, we

. Thus, as x moves from 0 to 1, the regularization goes from
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FI1G. 8. Results on Boston housing data showing regularization paths, MSE and fitted functions.

2http://archive.ics.uci.'edu/ml/datasets/Housing.
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constrain a component to be convex if it is nonzero in the AC stage and concave
if it is nonzero in the DC stage. As can be seen, these functions contain clear non-
linear effects which cannot be captured by LASSO. The shapes of these functions,
including the concave shape of the PTRATTO function, are in agreement with those
obtained by SpAM [25].

Next, in order to quantitatively study the predictive performance, we run 5-fold
cross validation three times, following the same procedure described above—
training, variable selection and refitting. A plot of the mean and standard devia-
tion of the predictive mean squared error (MSE) is shown in Figure 8(c). Since for
AC/DC the same regularization level ) may lead to a slightly different number of
selected variables in different folds and runs, the values on the x-axis for AC/DC
are not necessarily integers. The figure clearly shows that AC/DC has a lower pre-
dictive MSE than LASSO. We also compared the performance of AC/DC with that
of Additive Forward Regression (AFR) presented in [19], and found that they are
similar. The main advantages of AC/DC compared with AFR and SpAM are that
there are no smoothing parameters required, and the optimization is formulated as
a convex program, guaranteeing a global optimum.

7. Discussion. We have introduced a framework for estimating high dimen-
sional but sparse convex functions. Because of the special properties of convexity,
variable selection for convex functions enjoys additive faithfulness—it suffices to
carry out variable selection over an additive model, in spite of the approxima-
tion error this introduces. Sparse convex additive models can be optimized using
block coordinate quadratic programming, which we have found to be effective and
scalable. We established variable selection consistency results, allowing exponen-
tial scaling in the ambient dimension. We expect that the technical assumptions
we have used in these analyses can be weakened; this is one direction for future
work. Another interesting direction for building on this work is to allow for ad-
ditive models that are a combination of convex and concave components. If the
convexity/concavity of each component function is known, this again yields a con-
vex program. The challenge is to develop a method to automatically detect the
concavity or convexity pattern of the variables.
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SUPPLEMENTARY MATERIAL

Supplement to “Faithful variable screening for high-dimensional convex
regression” (DOI: 10.1214/15-A0S1425SUPP; .pdf). The supplement provides
detailed proofs of certain technical results, together with further explanation of the
Gaussian example and simplifications when the density is a product.
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