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CONSISTENT MODEL SELECTION CRITERIA FOR
QUADRATICALLY SUPPORTED RISKS

BY YONGDAI KIM1 AND JONG-JUNE JEON

Seoul National University and University of Seoul

In this paper, we study asymptotic properties of model selection criteria
for high-dimensional regression models where the number of covariates is
much larger than the sample size. In particular, we consider a class of loss
functions called the class of quadratically supported risks which is large
enough to include the quadratic loss, Huber loss, quantile loss and logistic
loss. We provide sufficient conditions for the model selection criteria, which
are applicable to the class of quadratically supported risks. Our results ex-
tend most previous sufficient conditions for model selection consistency. In
addition, sufficient conditions for pathconsistency of the Lasso and noncon-
vex penalized estimators are presented. Here, pathconsistency means that the
probability of the solution path that includes the true model converges to 1.
Pathconsistency makes it practically feasible to apply consistent model se-
lection criteria to high-dimensional data. The data-adaptive model selection
procedure is proposed which is selection consistent and performs well for fi-
nite samples. Results of simulation studies as well as real data analysis are
presented to compare the finite sample performances of the proposed data-
adaptive model selection criterion with other competitors.

1. Introduction. High-dimensional data, where the number of covariates
greatly exceeds the sample size, arise frequently in modern applications in biol-
ogy, chemometrics, economics, neuroscience and other scientific fields. To facili-
tate analysis, it is often useful and reasonable to assume that only a small number of
covariates are relevant for modeling the response variable. In this situation, model
selection is a fundamental and important task. For high dimensional data, however,
classical model selection criteria such as the Akaike information criterion or AIC
[1], Bayesian information criterion or BIC [25] and cross validation or generalized
cross validation [8, 27] are known to select too many variables than necessary. See,
for example, [3] and [5].

Various information criteria such as the modified BIC of [28], extended BIC
of [6], corrected risk inflation criterion (CRIC) of [32], generalized information
criterion (GIC) of [18] and the high dimensional BIC (HBIC) of [29] have been
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proposed and proven to be consistent for high dimensional data. Here, the con-
sistency of a model selection criterion means that the probability of the selected
model being equal to the true model converges to 1 (see Section 2 for a rigorous
definition).

However, most of the aforementioned results for selection consistency use the
quadratic loss with the (sub)-Gaussian error distribution, and hence the results are
not applicable to other problems such as quantile regression, robust regression and
generalized linear models. In this vein, Lee, Noh and Park [20] proposed the ex-
tended BIC for quantile regression and proved selection consistency, while Chen
and Chen [7] provided sufficient conditions for the GIC to be consistent for gener-
alized linear models.

In this paper, we propose a unified framework for selection consistency that
can be applied to various regression models including the linear regression with
(sub)-Gaussian errors, generalized linear regression, robust regression and quan-
tile regression. We consider a class of loss functions called quadratically supported
risks (QSR). This class of loss functions includes all those loss functions used in
the aforementioned regression models. We then provide a set of sufficient condi-
tions for a given GIC to be consistent for high dimensional models. Our sufficient
conditions are general enough to cover and extend most the previous results of
selection consistency.

One problem with using the GIC for high dimensional models is computation
since calculating the GIC values for all possible submodels is almost impossi-
ble. In practice, one may find a solution path of a penalized estimator such as the
Lasso (least absolute shrinkage and selection operator) or SCAD estimator, and
apply the GIC for submodels that corresponds to the solution path. This approach
is consistent if the solution path includes the true model and the GIC is consis-
tent. Pathconsistency (i.e., the probability that the solution path includes the true
model converges to 1) for linear models is well known. For instance, Bühlmann
and van de Geer [4] proved that the thresholded Lasso estimator is path-consistent.
Zhang [31] and Kim, Kwon and Choi [18] also showed the pathconsistency of a
nonconvex penalized least square estimator, while Fan and Tang [11] studied the
pathconsistency of a nonconvex penalized maximum likelihood estimator. In this
paper, we prove the pathconsistency of certain thresholded penalized estimators
with loss functions in the class of QSR.

It turns out that the class of consistent GICs is large and finite sample perfor-
mances are quite different. Thus, it is important to choose a GIC that works well
with moderate sample sizes. We propose a data-adaptive model selection proce-
dure which is selection consistent and performs well for finite samples.

The remainder of this paper is organized as follows. In Section 2, we introduce
the GIC and propose the class of QSR. In Section 3, we provide sufficient con-
ditions for a given GIC to be consistent with the class of QSR. In Section 4, by
using the sufficient conditions given in Section 3, we prove that the GIC is consis-
tent for several loss functions including the quadratic loss, logistic loss, Huber loss
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and quantile loss functions. In Section 5, we explain how to use a solution path of
a penalized estimator such as the Lasso and nonconvex penalized estimators for
model selection and offer theoretical justifications. A data-adaptive model selec-
tion procedure is proposed in Section 6. Simulation results are given in Section 7
and concluding remarks follow in Section 8.

2. GICs and QSR. Let L = {(y1,x1), . . . , (yn,xn)} be a given data set of
pairs of response and covariates, where yi ∈ R and xi ∈ Rpn . For a given loss
function l : R × R → [0,∞), we consider estimating the regression coefficient
β by minimizing the risk function Rn(β) = 1

n

∑n
i=1 l(yi,x′

iβ). Let β∗ be the true
regression coefficient vector. Suppose β∗

j �= 0 for j ≤ qn and β∗
j = 0 for j > qn.

In this paper, we are concerned with model selection problems when pn is much
larger than the sample size n. When pn is large, it would not be feasible to search
all possible subsets of {1, . . . , pn}. Instead, we set an upper bound on the number of
covariates in the candidate submodels, say sn, and search the optimal model among
the candidate submodels that have no more than sn covariates. Chen and Chen [6]
and Kim, Kwon and Choi [18] considered a similar model selection procedure. Let
|β|0 = ∑pn

j=1 I (βj �= 0) and Msn = {β ∈ Rpn : |β|0 ≤ sn}.
For a given subset π of {1, . . . , pn}, let

β̂π = argmin
β:βj=0,j∈πc

Rn(β).

A sequence of positive numbers {λn} is called GICλn , if it gives a sequence of
random subsets π̂λn defined as

π̂λn = argmin
π⊂{1,...,pn},|π |≤sn

Rn(β̂π ) + λn|π |,

where |π | is the cardinality of π . When the loss is the quadratic loss, that is,
l(y,x′β) = (y − x′β)2, the AIC corresponds to λn = 2/n; the BIC to λn =
logn/(n); the RIC of Foster and George [12] to λn = logpn/n; and the RIC
of Zhang and Shen [32] to λn = (logpn + log logpn)/n; Shao [26] studied the
asymptotic properties of the GIC focusing on the AIC and BIC.

We say that the GICλn is consistent if

Pr
(
π̂λn = π∗) → 1

as n → ∞, where π∗ = {1, . . . , qn}. Kim et al. [18] provided sufficient conditions
for the consistency of the GIC when the quadratic loss is used. The aim of this
paper is to prove the consistency of the GIC for a wide class of loss functions
including the logistic loss, Huber loss, quantile loss and the quadratic loss func-
tions.

We say that the risk function Rn(β) is quadratically supported if there exist
sequences of pn-dimensional random vectors {an} and {β̃n}, sequences of non-
negative random variables {δn} and {ηn} and a positive real number b such that
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Pr(An) → 1 as n → ∞, where

An =
{
Rn(β) − Rn(β̃n) ≥ a′

n(β − β̃n)

(2.1)

+ b

2
‖β − β̃n‖2 − δn|β|0 for all β ∈ �n

}

and �n = Msn ∩ {β : ‖β − β̃n‖ ≤ ηn}. Here, ‖ · ‖ is the Euclidean norm. We say
that a given loss belongs to the QSR if the corresponding risk is quadratically
supported. In Section 3, we provide sufficient conditions for the consistency of
the GIC when the risk is quadratically supported, while in Section 4, we show
that various loss functions such as the quadratic loss, logistic loss, Huber loss and
quantile loss functions are in the class of the QSR.

Let β̂o = β̂π∗ be the oracle estimator. Suppose β̃n = β̂o, which is a typical
choice in many cases. Condition (2.1) for the QSR essentially means that the risk
function around the oracle estimator behaves like a quadratic function asymptoti-
cally. An interesting result is that a loss function which is linear around β̂o (e.g.,
the quantile loss) can also belong to the QSR.

For a given pn ×pn symmetric matrix A and a given π ⊂ {1, . . . , pn}, let Aπ be
the |π | × |π | sub-matrix of A formed by those rows and columns of A whose in-
dices are in π . Similarly, for a given pn dimensional vector v, let |v|∞ = maxj |vj |
and vπ = (vj , j ∈ π). For a given β , let σ(β) = {j : βj �= 0}.

Let X be the n × pn dimensional matrix whose j th column is Xj = (x1j , . . . ,

xnj )
′ with ‖Xj‖2 = n. We assume that there exist positive constants ρ∗ and ρ∗

such that

ρ∗ ≤ min
π :|π |≤2sn

λmin
{(

X′X/n
)
π

} ≤ max
π :|π |≤2sn

λmax
{(

X′X/n
)
π

} ≤ ρ∗,

where λmin{(X′X/n)π } and λmax{(X′X/n)π } are the smallest and largest eigenval-
ues of (X′X/n)π , respectively. This assumption is called the sparse Riesze con-
dition (SRC), which a standard one for model selection with high dimensional
models (see, e.g., [6] and [18]).

3. Sufficient conditions for the consistency of the GIC. In this section,
we prove that π̂λn is consistent under the following regularity conditions. For
given two sequences {un} and {vn} of positive real numbers, we write un  vn

if un/vn → ∞ as n → ∞. To simplify notation, we assume hereafter that all
the equalities, inequalities and convergences are understood to hold for all suf-
ficiently large n in probability whenever random quantities are involved. For ex-
ample, λn−|an|2∞/2 ≥ λn/2 means that Pr{λn −|an|2∞/2 ≥ λn/2} → 1 as n → ∞.

(C1) σ(β̃n) = {1, . . . , qn}.
(C2) λn  |an|2∞.
(C3) minj∈π∗ |β̃nj |  √

λn.
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(C4) λn  qn max{|an,π∗ |2∞, δn}.
(C5) sn ≥ qn.
(C6) η2

n  λnsn.

The key conditions are (C2) and (C3), which require that |an|∞ is sufficiently
small and minj∈π∗ |β̃nj | is sufficiently large. Most of the conditions for the con-
sistency of the GIC for various loss functions such as in [6, 7, 18, 20] satisfy (C2)
and (C3). The other conditions are easily satisfied, in particular when qn = O(1).

LEMMA 1. When ‖β − β̃n‖ > ηn with |β|0 ≤ sn,

Rn(β) − Rn(β̃n) ≥ b

16
η2

n

on An under the regularity conditions.

PROOF. For a given β ∈ Msn ∩ {β : ‖β − β̃n‖ > ηn}, let βh = β̃n + h(β −
β̃n), and let φ(h) = Rn(βh) − Rn(β̃n). Note that (C4) and (C6) implies ηn 
max{|an|∞√

sn,
√

δnsn}. Hence, when ηn/(2‖β − β̃n‖) ≤ h ≤ ηn/‖β − β̃n‖, we
have

φ(h) ≥ −|an|∞√
sn‖βh − β̃n‖ + b

2
‖βh − β̃n‖2 − δn|βh|0

≥ −|an|∞√
snηn + b

8
η2

n − δnsn

≥ b

16
η2

n.

Since φ is convex, when ‖β − β̃n‖ > ηn, we have

Rn(β) − Rn(β̃n) ≥ Rn(βh) − Rn(β̃n) ≥ b

16
η2

n > 0

for h = ηn/‖β − β̃n‖. �

THEOREM 1. Under the regularity conditions,

Pr
(
π̂λn = π∗) → 1.

PROOF. Let

β̂ = argmin
β∈Msn

Rn(β) + λn|β|0.

When β ∈ Msn ∩ {β : ‖β − β̃n‖ > ηn}, Lemma 1 and condition (C6) imply

Rn(β) + λn|β|0 − Rn(β̃n) − λn|β̃n|0 ≥ b

16
η2

n − λnqn > 0

on An, and hence ‖β̂ − β̃n‖ ≤ ηn on An.
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To complete the proof, we show that

Pr
(
σ(β̂) = π∗) → 1(3.1)

as n → ∞. Let Q(β) = ∑
j wj where

wj = anj (βj − β̃nj ) + b(βj − β̃nj )
2/2 + λn

{
I (βj �= 0) − I (β̃nj �= 0)

} − δn|βj |0.
To prove (3.1), it suffices to show that Q(β) > 0 on An unless σ(β) = π∗. When
βj = 0 and β̃nj = 0, then wj = 0. When βj �= 0 and β̃nj = 0,

wj ≥ −|an|2∞
2b

+ λn − δn ≥ λn/2,

due to (C2) and (C4). When βj = 0 and β̃nj �= 0, then

wj ≥ −|an|∞|β̃nj | + b

2
β̃2

nj − λn ≥ b

2
λn

{
1 − |an|∞√

λn

− λn

β̃2
nj

}
≥ b

4
λn > 0,

due to (C2) and (C3). When βj �= 0 and β̃nj �= 0, then wj > −a2
nj /2b− δn. To sum

up,

Q(β) ≥ ∣∣σ(β) ∩ π∗c
∣∣λn/2 + ∣∣σ(β)c ∩ π∗∣∣bλn

4
− qn

( |an,π∗ |2∞
2b

+ δn

)
.

Since λn  qn max{|an,π∗ |2∞, δn} according to (C4), Q(β) > 0 unless σ(β) = π∗,
which completes the proof. �

4. Examples. In this section, we show that various loss functions belong to
the QSR and the corresponding GICs are consistent. Let ζn = maxij |xij |.

4.1. Smooth losses. Suppose that Rn(β) has the first and second derivatives

denoted by R
(1)
n (β) = ∂Rn(β)/∂β and R

(2)
n (β) = ∂2Rn(β)/∂β∂β ′, respectively. If

we let β̃n = β̂o, Taylor’s expansion yields that

Rn(β) − Rn

(
β̂o) = R(1)′

n

(
β̂o)(β − β̂o) + 1

2

(
β − β̂o)′R(2)

n

(
β†)(

β − β̂o)(4.1)

for some β† = (β
†
1 , . . . , β†

pn
)′ with β

†
j ∈ (min{βj , β̂

o
j },max{βj , β̂

o
j }). Hence, the

loss belongs to the QSR with an = R(1)(β̂o), b = minβ∈�n λmin{R(2)(β†)σ(β)∪π∗}
and δn = 0, provided b > 0.

4.1.1. Linear regression with the quadratic loss. Suppose that the true model
is yi = x′

iβ
∗ + εi , where εi are independent random variables whose common

distribution has a sub-Gaussian tail. That is, there is some ν > 0 such that for
every t ∈ R one has

E
(
etεi

) ≤ eν2t2
/2,
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which implies that there exist positive constants cε and dε such that

Pr

(∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣ > t

)
≤ cε exp

(
− dεt

2∑n
i=1 a2

i

)
(4.2)

for all (a1, . . . , an)
′ ∈ Rn and t > 0. When l(y,x′β) = (y −x′β)2/2, we have β̃n =

β̂o, anj = Xj ′
(Y − Ŷ ), b = ρ∗, δn = 0 and ηn = ∞, where Ŷ = (x′

i β̂
o, . . . ,x′

nβ̂
o)′.

While anj = 0 for j ∈ π∗, for j ∈ π∗c it is proven in the proof of Theorem 2 of
Kim et al. [18] that there exist hnj ∈ Rn such that

anj = h′
njε/n(4.3)

for all j and supj ‖hnj‖2 ≤ n, where ε = (ε1, . . . , εn)
′. Hence, (4.2) implies that

for any κn → ∞
Pr

{
max
j∈π∗c

|anj | >
√

κn logpn/(dεn)
}

≤ ∑
j∈π∗c

Pr
{|anj | >

√
κn logpn/(dεn)

}

≤ cε exp
(−(κn − 1) logpn

) → 0,

and so we have |an|∞ = Op(
√

logpn/n). Therefore, the GICλn with λn 
logpn/n is consistent provided minj∈π∗ |β̂o

j |  √
λn. This result coincides with

that of [18]. For example, when pn = exp(and) for 0 ≤ d < 1, the GIC with
λn = nc−1 for d < c < 1 is consistent provided minj∈π∗ |β∗

j |  n(c−1)/2.

4.1.2. Logistic regression. When y ∈ {0,1}, let l(y,x′β) be the logistic loss
defined as

l
(
y,x′β

) = −yx′β + log
(
1 + exp

(
x′β

))
,

which is the negative log-likelihood of the logistic regression model. Suppose that
the true regression model is

Pr(yi = 1|xi ) = exp(x′
iβ

∗)
1 + exp(x′

iβ
∗)

.(4.4)

Note that R
(2)
n (β) = X′W(β)X/n, where W(β) is the n×n diagonal matrix whose

diagonal elements are p(x′
iβ){1−p(x′

iβ)} with p(a) = exp(a)/(1+exp(a)). Sup-
pose that there exists a constant ρ > 0 such that

min
π :|π |≤2sn

λmin
{
R(2)

n

(
β̂o)

π

}
> ρ(4.5)

for all sufficiently large n. Note that R
(2)
n (β†)−R

(2)
n (β̂o) = X′{W(β†)−W(β̂o)}X.

Taylor’s expansion yields∣∣W(
β†)

ii − W
(
β̂o)

ii

∣∣ ≤ ∣∣x′
i

(
β† − β̂o)∣∣ ≤ ζn

√
2sn

∥∥β† − β̂o
∥∥.(4.6)
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Hence, if ‖β† − β̂o‖ ≤ ρ/(2ρ∗ζn

√
2sn), then λmin{R(2)

n (β†)π } > ρ/2, where
π = σ(β) ∪ π∗. Thus, the risk is quadratically supported with β̃n = β̂o, an =
R

(1)
n (β̂o), b = ρ/2, ηn = ρ/(2ρ∗ζn

√
2sn) and δn = 0.

REMARK 1. A simple sufficient condition for (4.5) is that there exists c > 0
such that supi |x′

i β̂
o| ≤ c because mini W(β̂o)ii > p(c)(1 − p(c)) in such a case.

Another sufficient condition is that there exist c > 0 and ρ > 0 such that

min
π :|π |≤sn

λmin

{(
1

n

∑
i:|x′

i β̂
o|≤c

xix′
i

)
π

}
≥ ρ.

To derive the convergence rate of |an|∞, note that

R(1)
n

(
β̂o)

j − R(1)
n

(
β∗)

j = 1

n

n∑
i=1

xij

{
p

(
x′
i β̂

o) − p
(
x′
iβ

∗)}
.

Let ṗ(a) = dp(a)/da. The mean value theorem implies there exists ci ∈ R such
that

p
(
x′
i β̂

o) − p
(
x′
iβ

∗) = ṗ(ci)x′
i

(
β̂o − β∗)

.

Since |ṗ(ci)| ≤ 1, we have∣∣R(1)
n

(
β̂o)

j − R(1)
n

(
β∗)

j

∣∣
(4.7)

≤
√(

β̂o − β∗)′(X′X/n
)(

β̂o − β∗) ≤ √
ρ∗∥∥β̂o − β∗∥∥,

where the first inequality is due to the Cauchy–Schwarz inequality. Moreover, we
have

E
{
R(1)

n

(
β∗)

j

} = 1

n

n∑
i=1

E
[
xij

{
yi − p

(
x′
iβ

∗)}] = 0

and

E
{
R(1)

n

(
β∗)2

j

} = 1

n

n∑
i=1

E
[
x2
ij

{
yi − p

(
x′
iβ

∗)}2] ≤ 1,

and hence Theorem 2 in the Appendix implies

max
j

∣∣R(1)
n

(
β∗)

j

∣∣ = O(
√

logpn/n),(4.8)

provided ζ 2
n logpn/n → 0. Combining (4.7) and (4.8), we have

max
j∈π∗

∣∣R(1)
n

(
β̂o)

j

∣∣ = Op

(√
max{logpn/n, qn/n}),
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provided ‖β̂o − β∗‖ = Op(
√

qn/n) (see, e.g., [10]). Therefore, the GICλn is con-
sistent if

λn  max{logpn/n, qn/n},(4.9)

provided ζ 2
n s2

nλn → 0 and minj∈π∗ |β∗
j |  √

λn. To sum up, we have proven the
following theorem.

THEOREM 2. Suppose that the true conditional distribution of yi given xi is
(4.4) and (4.5) holds. Then the GICλn with λn  max{logpn/n, qn/n} is consis-
tent for the logistic loss provided that ‖β̂o − β∗‖ = Op(

√
qn/n), ζ 2

n s2
nλn → 0 and

minj∈π∗ |β̂o
j |  λn.

REMARK 2. For the consistency of GIC, ζn should be sufficiently small that
ζ 2
n s2

nλn → 0. For example, when pn > n and xi are independent realizations of a
Gaussian random vector with bounded variances, we have ζn = Op(

√
logpn), and

hence the GIC λn = αn logpn/n with αn = √
n/(sn logpn) is consistent provided

(sn logpn)
2/n → 0 and logpn ≥ qn because ζ 2

n s2
nλn → 0.

REMARK 3. The condition ζ 2
n s2

nλn → 0 is required for the logistic loss but not
for the quadratic loss. This difference comes partly from the fact that the Hessian
matrix of the logistic loss depends on β .

Suppose ζn = O(1). Then the GICλn is consistent provided λn  max{logpn,

qn}/n, s2
n logpn/n → 0 and minj∈π∗ |β∗

j |  √
λn. For example, the GICλn with

λn = nb−1 for 0 < b < 1 is consistent when pn = exp(and) and sn = nc for some
positive constants a, c and d with max{d, c} < b < 1 and d + 2c < 1 provided
minj∈π∗ |β∗

j |  n(d−1)/2. This result extends the result of in [7] which requires
d + c < 1/3.

4.2. Huber loss. The Huber loss, which is a robust version of the quadratic
loss, is defined as

ld(y, z) =
{

1
2(y − z)2, for |y − z| < d,

d
(|y − z| − d/2

)
, for |y − z| ≥ d

for some d > 0, where z = x′β . Suppose that the true model is

yi = x′
iβ

∗ + εi,(4.10)

where εi are independent random variables whose distributions are symmetric at 0.
Let l

(1)
d (y, z) = ∂

∂z
ld(y, z). Since ld(y, z) is convex,

ld(y, z) ≥ ld(y, ẑ) + l
(1)
d (y, ẑ)(z − ẑ),(4.11)
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where ẑ = x′β̂o. Moreover, if |y − z| < d and |y − ẑ| < d ,

ld(y, z) = ld(y, ẑ) + l
(1)
d (y, ẑ)(z − ẑ) + 1

2(z − ẑ)2.(4.12)

Let Jβ = {i : |x′
i (β −β∗)+εi | < d, |x′

i (β̂
o −β∗)+εi | < d}. Then (4.11) and (4.12)

imply

1

n

n∑
i=1

ld
(
yi,x′

iβ
)

≥ 1

n

n∑
i=1

ld
(
yi,x′

i β̂
o) + 1

n

n∑
i=1

l
(1)
d

(
yi,x′

i β̂
o)x′

i

(
β − β̂o)(4.13)

+ 1

2n

∑
i∈Jβ

(
β − β̂o)′xix′

i

(
β − β̂o).

Assume that ‖β̂o − β∗‖ = Op(
√

qn/n) (see, e.g., [22]) and ζ 2
n s2

n/n → 0. Since
|x′

i (β − β∗)| ≤ ζn

√
2sn‖β − β∗‖ for β ∈ Msn , we have supi |x′

i (β̂
o − β∗)| → 0.

Similarly, we can show supi |x′
i (eβ − β∗)| ≤ d/2 if ‖β − β̂o‖ < d/(4ζn

√
2sn).

Since (β − β̂o)′xix′
i (β − β̂o) ≥ 0 for all i, the inequality

1

2n

∑
i∈Jβ

(
β − β̂o)′xix′

i

(
β − β̂o)

≥ (
β − β̂o)′{ 1

2n

n∑
i=1

xix′
iI

(|εi | ≤ d/2
)}(

β − β̂o)

holds when β ∈ Msn with ‖β− β̂o‖ < d/(4ζn

√
2sn). Let A = 1

n

∑n
i=1 xix′

iI (|εi | <
d/2). When ζ 2

n logpn/n → 0, the Bernstein inequality implies

sup
jk

∣∣∣∣∣1

n

n∑
i=1

xij xik

{
I
(|εi | < d/2

) − P
(|εi | < d/2

)}∣∣∣∣∣ = Op(ζn

√
logpn/n),

which in turn implies that the smallest eigenvalue of Aπ is no less than Pr(|ε1| >

d/2)ρ∗ − Op(ζnsn
√

logpn/n) for all π ⊂ {1, . . . , pn} with |π | ≤ 2sn. Hence,
when ζ 2

n s2
n logpn/n → 0, there exists ρ > 0 such that

(
β − β̂o)′{1

n

n∑
i=1

xij xikI
(|εi | < d/2

)}(
β − β̂o) ≥ ρ

∥∥β − β̂o
∥∥2

.

Therefore, the risk is quadratically supported with β̃n = β̂o, an = ∑n
i=1 l

(1)
d (yi,

x′
i β̂

o)x′
i/n, δn = 0, ηn = d/(4ζn

√
2sn) and b = ρ provided that ζ 2

n s2
n logpn/

n → 0.



QUADRATICALLY SUPPORTED RISKS 2477

To derive the convergence rate of |an|∞, note that |l(1)
d (y, ẑ) − l

(1)
d (y, z∗)| ≤

|ẑ − z∗|, and hence we have∣∣∣∣∣1

n

n∑
i=1

(
l
(1)
d

(
yi,x′

i β̂
o) − l

(1)
d

(
yi,x′

iβ
∗))

xij

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣x′
i

(
β̂o − β∗)

xij

∣∣(4.14)

≤ √
ρ∗∥∥β̂o − β∗∥∥ = Op(

√
qn/n)

similarly to (4.7). In turn, since the distributions of εi are symmetric at 0,
E(l

(1)
d (yi,x′

iβ
∗)) = 0. In addition,

∑n
i=1 x2

ij = n and l
(1)
d (yi,x′

iβ
∗) are bounded

and thus Proposition 2 in the Appendix implies that

max
j∈π∗

∣∣∣∣∣
n∑

i=1

l
(1)
d

(
yi,x′

iβ
∗)

xij

/
n

∣∣∣∣∣ = Op(
√

logpn/n),(4.15)

provided ζ 2
n logpn/n → 0. Hence, the GICλn is consistent if λn  max{logpn,

qn}/n provided ζ 2
n s2

nλn → 0 and minj∈π∗ |β̂o|  √
λn. These conditions are the

same as those for the logistic regression. We have proven the following theorem.

THEOREM 3. Suppose that the true conditional distribution of yi given xi

is (4.10), where εi are independent random variables whose distributions are sym-
metric at 0. Then the GICλn with λn  max{logpn, qn}/n is consistent for the
Huber loss provided ‖β̂o − β∗‖ = Op(

√
qn/n), ζ 2

n s2
nλn → 0 and minj |β̂o|  λn.

4.3. Quantile regression. Quantile loss is given as l(y,x′β) = ρτ (y − x′β),
where ρτ (u) = u(2τ −2I (u < 0)). The quantile loss is popularly used for quantile
regression (see, e.g., [30] and references therein).

Suppose that the true model is yi = x′
iβ

∗ + εi , where εi are independent ran-
dom variables with Pr(εi ≤ 0) = τ . Under this model, x′

iβ
∗ is the conditional τ th

quantile of yi given xi . Let Fi and fi be the distribution and density function of εi ,
respectively. We assume that there exist constants α1 > 0 and α2 > 0 such that

0 < α1 < inf
i

inf|u|≤α2
fi(u).

For technical reasons, we assume that qn = O(1) and ζn = O(1) for the quantile
loss in the remainder of this paper unless otherwise stated. The following proposi-
tion, the proof of which is in the Appendix, proves that the risk corresponding to
the quantile loss is quadratically supported.
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PROPOSITION 1. Under the regularity conditions, the risk function corre-
sponding to the quantile loss is quadratically supported with β̃n = β∗,

anj = −
n∑

i=1

xij

(
2τ − 2I (εi < 0)

)
,

b = 4α1ρ∗
provided

√
snηn ≤ α2/ζn, ηn/(δns

1/2
n ) � pn and

nδ2
n

η2
n

 sn logpn.(4.16)

Let δn = 1/
√

n and ηn = n−1/4. Note that |an|∞ = Op(
√

logpn/n) and
|an,π∗ |∞ = Op(

√
logqn/n) according to Hoeffding’s inequality. Hence, the reg-

ularity conditions as well as (4.16) are satisfied with λn  logpn/n provided
sn � √

n,pn  n1/4, sn logpn � n1/2 and minj∈π∗ |β∗
j |  √

λn, and thus the cor-
responding GIC is consistent. We summarize the results in the following theorem.

THEOREM 4. Suppose that yi = x′
iβ

∗ + εi , where εi are independent ran-
dom variables with Pr(εi ≤ 0) = τ . Assume that qn = O(1) and ζn = O(1).
Then the GICλn with λn  logpn/n is consistent for the quantile loss provided
sn � √

n,pn  n1/4, sn logpn � n1/2 and minj∈π∗ |β∗
j |  √

λn.

Theorem 4 implies that the GICλn is consistent when pn = exp(and) and sn =
nc for some positive constants a, c and d with d +c < 1/2. This extends the results
of [20] which only considered polynomially increasing pn.

4.4. Linear regression with AR(1) errors. Suppose that the true model is
yi = x′

iβ
∗ +εi . We assume that εi are an AR(1) process defined as εi = θεi−1 +νi ,

where θ ∈ [0,1) and νi are independent random variables whose common distri-
bution has a sub-Gaussian tail. In this section, we investigate how the dependency
in errors affects the variable selection. For technical simplicity, we let qn = O(1).

By replacing β̂o in (4.1) by β∗, it can be shown that the quadratic loss belongs to
the QSR with β̃n = β∗, an = −X′ε/n, b = ρ∗, ηn = ∞ and δn = 0, where hnj are
defined in (4.3). Note that anj = −∑n

i=1 ωijνi/n, where ωij = ∑n
k=i hnjkθ

k−i . Let
γnj = ∑n

i=1 ω2
ij /n and let γ ∗

n = maxj γnj . Then (4.2) implies that for any κn → ∞
Pr

{
max

j
|anj | >

√
κnγ ∗

n logpn/(dεn)
}

≤ ∑
j

Pr
{|anj | >

√
κnγ ∗

n logpn/(dεn)
}

≤ cε exp
(−(κn − 1) logpn

) → 0,
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which leads |an|∞ = Op(
√

γ ∗
n logpn/n). Hence, the GICλn with λn  γ ∗

n ×
logpn/n is consistent provided minj∈π∗ |β∗

j |  √
λn.

For γ ∗
n , we have

γnj ≤ ζ 2
n

∑n
i=1(

∑n
k=i θ

k−i)2

n
↑ ζ 2

n

(1 − θ)2 ,

as n → ∞, and hence γ ∗
n ≤ ζ 2

n /(1 − θ)2 for all sufficiently large n. Note that the
upper bound of γ ∗

n increases as θ → 1, which implies that we need the larger value
of minj∈π∗ |β∗

j | for the consistency of the GIC when the correlation between errors
becomes larger.

5. Pathconsistency with QSR. When pn is large, the cardinality of Msn is
so large that all possible search over Msn is almost impossible. A practical so-
lution is to construct a sequence of submodels Mξ indexed by ξ ∈ (0,∞), and
choose the optimal ξ̂ by minimizing Rn(β̂Mξ )+λn|β̂Mξ |0 with respect to ξ , where
λn is a consistent GIC. We state that {Mξ, ξ ∈ (0,∞)} is path-consistent if there
exists ξ∗ such that Mξ∗ = π∗. Note that whenever Mξ is path-consistent, M

ξ̂
= π∗

asymptotically.
When the quadratic loss is used, the solution path of the Lasso estimator can be

used to construct Mξ . Let β̂(ξ)lasso be the Lasso estimator with the tuning param-
eter ξ . That is,

β̂(ξ)lasso = argmin
β

Rn(β) + ξ |β|1,

where |β|1 = ∑p
j=1 |βj |. Let M lasso

ξ = {j : |β̂(ξ)lasso
j | ≥ τ } for some τ > 0.

Then, under the regularity conditions, M lasso
ξ is path-consistent when τ =

O(
√

qn logpn/n) and minj∈π∗ |β∗
j |  √

qn logpn/n (see, e.g., Chapter 7 of [4]).
A similar result with nonconvex penalties was obtained by [18]. In this section, we
develop similar procedures for the class of QSR, which produce path-consistent
submodels {Mξ, ξ ∈ (0,∞)}.

5.1. Pathconsistency with Lasso estimators. Let β̂(ξ) be the minimizer of
Rn(β) + ξ |β|1 on Msn . We show that there exists a positive constant c such that
Mξ = {j : |β̂(ξ)j | > c

√
qnξ} is path-consistent with the QSR when we replace the

regularity conditions (C3) and (C4) with

(C3′) minj∈π∗ |β̃nj |  √
qnλn.

(C4′) λn  snδn/qn.

REMARK 4. Condition (C3′) requires a larger minj∈π∗ |β̃nj | than (C3), which
is a disadvantage that derives from using the Lasso penalty instead of the l0 penalty.
Condition (C4′) is weaker than (C4) when sn < q2

n .
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THEOREM 5. Suppose that there exists a sequence of positive numbers {λn}
satisfying the regularity conditions with (C3) and (C4) being replaced by (C3′)
and (C4′). Then there exists c > 0 such that Mξ is path-consistent.

PROOF. We show that M√
λn

= π∗ with probability tending to 1. Let ξn =√
λn and let βn = β̂(ξn). Moreover, let

Q(β) = Rn(β) − Rn(β̃n) + ξn|β|1 − ξn|β̃n|1.
We first show that ‖βn − β̃n‖ ≤ ηn. Suppose ‖β − β̃n‖ > ηn with |β|0 ≤ sn.

Since |β − β̃n|1 ≤ √
sn‖β − β̃n‖ and ξn|β|1 − ξn|β̃n|1 ≥ −ξn|β − β̃n|1, we have

Q(β) ≥ −(|an|∞ + ξn

)√
sn‖β − β̃n‖ + b

2
‖β − β̃n‖2 − δnsn,

which is positive eventually according to condition (C6). Since Q(β) is convex,
‖βn − β̃n‖ ≤ ηn.

Let

wj = anj (βnj − β̃nj ) + b

2
(βnj − β̃nj )

2 + ξn|βnj | − ξn|β̃nj |.

Note that Q(βn) ≥ ∑pn

j=1 wj − δnsn.

For j ∈ π∗, since |βnj | − |β̃nj | ≥ −|βnj − β̃nj |, we have

wj ≥ −(|an,π∗ |∞ + ξn

)|βnj − β̃nj | + b

2
(βnj − β̃nj )

2.(5.1)

Hence,

∑
j∈π∗

wj ≥ −(|an,π∗ |∞ + ξn

)√
qn‖βn,π∗ − β̃n,π∗‖ + b

2
‖βn,π∗ − β̃n,π∗‖2

(5.2)

≥ −qn(|an,π∗ |∞ + ξn)
2

2b
≥ −2qnξ

2
n/b

since ξn  |an,π∗ |∞ by (C2).
For j ∈ π∗c, note that

wj ≥ (
ξn − |an|∞)|βnj | + b

2
β2

nj .

Since ξn  |an|∞, we have minj∈π∗c wj ≥ 0 for all sufficiently large n. Let c1 be
a positive constant that satisfies bc2

1/2 − 2/b − 1 > 0. If |βnj | > c1
√

qnξn for j ∈
π∗c, wj > bc2

1qnξ
2
n/2 for sufficiently large n. Note that condition (C4′) and (5.2)

imply ∑
j∈π∗

wj − snδn ≥ −2qnξ
2
n/b − qnξ

2
n .
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Hence, if there exists j ∈ π∗c such that |βnj | > c1
√

qnξn, then Q(βn) ≥ qnξ
2
n (bc2

1/

2 − 2/b − 1) > 0, which is impossible. Therefore, we conclude that

max
j∈π∗c

|βnj | ≤ c1
√

qnξn.(5.3)

On the other hand, since minj∈π∗c wj ≥ 0, we have

Q(βn) ≥ ∑
j∈π∗

wj − snδn.

Choose c2 > 0 such that c2
2b/2 − 2c2 − 2/b − 1 > 0. Suppose that there exists

j ∈ π∗ such that |βnj − β̃nj | > c2
√

qnξn. Then (5.1) and (C4) imply

wj ≥ −2ξnc2
√

qn + b

2
c2

2qnξ
2
n ,

and thus

Q(βn) ≥ ∑
l∈π∗−{j}

wl − 2ξnc2
√

qn + b

2
c2

2qnξ
2
n − snδn.

Similarly to (5.2), we can show
∑

l∈π∗−{j} wl ≥ −2qnξ
2
n/b. Hence, (C4′) implies

Q(βn) ≥ qnξ
2
n

(
c2

2b/2 − 2/b − 2c2 − 1
)
> 0,

which is impossible, and thus we conclude that

max
j∈π∗ |βnj − β̃nj | ≤ c2

√
qnξn.

Since |β̃nj |  √
qnξn by (C3′), we have

min
j∈π∗ |βnj |  √

qnξn.(5.4)

By combining (5.3) and (5.4), we conclude that {j : |βnj | > max{c1, c2}√qnξn} =
π∗ with probability tending to 1. �

The regularity condition (C3′) is suboptimal since it requires larger
minj∈π∗ |β̃nj | than the one in condition (C3), in particular when qn diverges. This
is a disadvantage of using the Lasso estimator for model selection. In the next
subsection, we show that this disadvantage disappears when we use a nonconvex
penalty.

5.2. Pathconsistency for nonconvex penalties. Let β̂(ξ) be the minimizer of

Rn(β) +
pn∑

j=1

Jξ

(|βj |)
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over Msn , where Jξ is a nonconvex penalty such that (1) J ′
ξ is nonnegative,

nonincreasing and continuous on (0,∞) and (2) there exists a > 1 such that
limt→0+ J ′

ξ (t) = ξ, J ′
ξ (t) ≥ ξ − t/a for t ∈ (0, aξ), and J ′

ξ (t) = 0 for t ≥ aξ . Here,
J ′

ξ (t) = dJξ (t)/dt . This class of nonconvex penalties includes the SCAD penalty
[9] and MCP [31].

Let Mξ = {j : |β̂(ξ)j | > τn}, where τn = √
qn|a∗

n,π |∞/b + √
2δnsn/b. The next

theorem proves that Mξ is path-consistent.

THEOREM 6. Let ξn = √
λn. Under the regularity conditions with (C5) being

replaced by

λn  max
{
qn|an,π∗ |∞, snδn

}
,(5.5)

Pr(Mξn = π∗) → 1 as n → ∞.

PROOF. Let βn = β̂(ξn) and

Q(β) = Rn(β) +
pn∑

j=1

Jξn

(|βj |) − Rn(β̃n) −
pn∑

j=1

Jξn

(|β̃nj |).
First, we show that ‖βn − β̃n‖ ≤ ηn. Since |β̃nj |  ξn for j ∈ π∗, we have
Jξn(|β̃nj |) ≤ aξ2

n . Hence, when ‖β − β̃n‖ > ηn with |β|0 ≤ sn, Lemma 1 implies

Q(β) ≥ Rn(β) − Rn(β̃n) − qnaξn ≥ b

16
η2

n − qnaξ2
n > 0

eventually according to condition (C6), which implies ‖βn − β̃n‖ ≤ ηn.
Let π1 = {j : βnj �= 0, β̃nj = 0}, π2 = {j : |βnj | > aξn, β̃nj �= 0} and π3 = {j :

|βnj | ≤ aξn, β̃nj �= 0}. Then

Rn(βn) +
pn∑

j=1

Jξn

(|βnj |) − Rn(β̃n) −
pn∑

j=1

Jξn

(|β̃nj |)

≥ ∑
j∈π1

wj + ∑
j∈π2

wj + ∑
j∈π3

wj − δnsn,

where

wj = anj (βnj − β̃nj ) + b

2
(βnj − β̃nj )

2 + Jξn

(|βnj |) − Jξn

(|β̃nj |).
For j ∈ π1, we can choose 0 < c < a such that Jξn(|βnj |) ≥ ξn|βnj |/2 for

|βnj | ≤ cξn. Then Jξn(|βnj |) ≥ min{cξ2
n/2, ξn|βnj |/2}, and hence

wj ≥ min
{
−|an|2∞

2b
+ cξ2

n/2,
(
ξn/2 − |an|∞)|βnj | + b

2
β2

nj

}
> 0

eventually since ξn  |an|∞.
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For j ∈ π2, Jξn(|βnj |) = Jξn(|β̃nj |). Since
∑

j∈π2
|βnj − β̃nj | ≤ √

qn‖βn,π2 −
β̃n,π2‖, we have

∑
j∈π2

wj ≥ −|an,π∗ |∞√
qn‖βn,π2 − β̃n,π2‖ + b

2
‖βn,π2 − β̃n,π2‖2

(5.6)

≥ −|an,π∗ |2∞qn

2b
.

For j ∈ π3, note that Jξn(|βnj |) − Jξn(|β̃nj |) ≥ −ξn|βnj − β̃nj |, and hence

wj ≥ −(|an,π∗ |∞ + ξn

)|βnj − β̃nj | + b

2
(βnj − β̃nj )

2.

Therefore, if |βnj − β̃nj |  ξn, wj > |an,π∗ |2∞qn/(2b) + δnsn according to condi-
tion (C4′), and hence Q(βn) > 0 which is impossible. However, |βnj − β̃nj |  ξn

for all j ∈ π3 since |β̃nj |  ξn and |βnj | ≤ aξn. Therefore, π3 = ∅ and Q(βn) ≥
−|an,π∗ |2∞qn/(2b).

To complete the proof, it suffices to show that |βnj | ≤ τn for all j ∈ π1. Let c be a
positive constant such that Jξn(|βnj |) ≥ ξn|βnj |/2 for all |βnj | ≤ cξn. If |βnj | > cξn,
we have wj ≥ −|an|2∞/(2b)+cξ2

n , and hence Q(βn) > 0, which is a contradiction.
So |βnj | ≤ cξn, in which case wj ≥ ξn|βnj |/2 + bβ2

nj /2 since ξn  |an|∞. Hence,

if |βnj | > τn, it can be shown that wj > |an,π∗ |2∞q/(2b) + δnsn and so Q(β) > 0
which is a contradiction. Thus, |βnj | ≤ τn for all j ∈ π1, and the proof is complete.

�

REMARK 5. Condition (5.5) is the same as (C4) for the quadratic, logistic and
Huber losses since δn = 0. For the quantile loss, (5.5) holds when logpn  sn and
λn  logpn/n as well as (C4) holds. In particular, when sn = O(1), (5.5) and (C4)
are equivalent.

REMARK 6. Note that τn = 0 for the quadratic, logistic and Huber losses.
Theorem 6 implies that the non-covex penalized least square estimator is path-
consistent provided minj∈π∗ |β̂o

j |  √
logpn/n and the error distribution has a

sub-Gaussian tail. This result concurs with those of [31] and [17]. Similarly, The-
orem 6 shows that the nonconvex penalized estimator for the logistic or Huber
loss is path-consistent if minj∈π∗ |β̂o

j |  max{√logpn/n,
√

qn/n}, provided that

‖β̂o − β∗‖ = Op(
√

qn/n) and ζ 2
n s2

n logpn/n → 0.

6. Adaptive model selection with Huber loss. Any GIC with λn = αn ×
logpn/n is consistent as long as αn → 0 and λn → 0, when qn = O(1) and
minj∈π∗ |β̂o

j | > c for some c > 0. That is, the class of consistent GIC is large and it
is important to choose a GIC that performs well with finite samples. In this section,
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we propose a data-adaptive selection of λn with the Huber loss. As a by-product,
we give a guidance of choosing d data-adaptively. Even if we consider the Huber
loss only, the proposed procedure in this section can be extended for other convex
losses without much modification.

We assume the following conditions:

(A1) ζ 2
n s2

n logpn/n → 0,
(A2) ‖β̂o − β∗‖ = Op(

√
qn/n),

(A3) logpn  qn and logpn → ∞,
(A4) εi have the common distribution F that is symmetric and continuous,
(A5) for a given class G ⊂ Msn and d > 0, there exists ρG,d > 0 such that

minπ :π∈G bn(π,π∗, d) > ρG,d , where

bn(π1, π2, d) = λmin

{(
1

n

∑
i∈J (π1,π2,d)

xix′
i

)
π1∪π2

}

with J (π1, π2, d) = {i : |yi − x′
i β̂π1 | ≤ d, |yi − x′

i β̂π2 | ≤ d}.
Conditions (A1) and (A2) are assumed in Theorem 3. Conditions (A3) and (A4)

are for notational and technical simplicity. Condition (A5) is a data-adaptive
version of the SRC for the Huber loss. When G = Msn and d = ∞, we have
ρG,d ≥ ρ∗. The following theorem provides theoretical bases for the proposed
adaptive model selection procedure.

THEOREM 7. For a given class G of submodels and d > 0, suppose that there
exists δ0 > 0 such that

min
j∈π∗ |β̂o

j | > 1

ρG,d

√(
2σ 2

d + δ0
) logpn

n
,(6.1)

where ρG,d is the constant defined in (A5) and

σ 2
d = E

{
ε2
i I

(|εi | ≤ d
)} + d2 Pr

(|εi | > d
)
.

Under the conditions (A1) to (A5), for any 0 < δ < δ0, we have

Rn(β̂π ) + λ̂n

(
π,π∗, d, δ

)|π | ≥ Rn

(
β̂o) + λ̂n

(
π,π∗, d, δ

)∣∣π∗∣∣(6.2)

for all π ∈ G with probability converging to 1, where

λ̂n(π1, π2, d, δ) = (2σ̂ 2
d,π1∪π2

+ δ)

2bn(π1, π2, d)

logpn

n
,

and

σ̂ 2
d,π = 1

n

n∑
i=1

{(
yi − x′

i β̂π,i

)2
I
(∣∣yi − x′

i β̂π,i

∣∣ ≤ d
) + d2I

(∣∣yi − x′
i β̂π,i

∣∣ > d
)}

.

Also, (6.2) holds when d = ∞ (i.e., quadratic loss) and the error distribution is
Gaussian.



QUADRATICALLY SUPPORTED RISKS 2485

For given d,G and δ > 0, we propose a model selection procedure so called the
adaptive information criterion with d (AdICd ) which selects π ∈ G satisfying

Rn(β̂ν) + λ̂n(ν,π, d, δ)|ν| ≥ Rn(β̂π ) + λ̂n(ν,π, d, δ)|π |(6.3)

for all ν ∈ G. If there is no such π in G, we conclude that π∗ /∈ G. Theorem 7
implies that under the conditions (A1) to (A5) the AdICd is consistent as long as
G contains π∗ and (6.1) holds with probability tending to 1.

A naive choice of G is Msn . This choice, however, does not work well since
bn(π,π∗, d) can be very small and so is ρG,d when |π | and d are small. Thus,
it is difficult to satisfy condition (6.1). We propose to construct G by deleting π

from Msn when |J (π, d)| is small, where J (π, d) = {i : |yi − x′
i β̂π | < d}. Let β̃

be an initial estimator, and for given α ∈ (0,1) let cα = |{i : |yi − x′
i β̃| ≤ αd}|. We

delete π from Msn when |J (π, d)| ≤ cα . We denote G̃d the class of submodels
obtained by this way. In Proposition 3 in the Appendix, we show that π∗ ∈ G̃d

with probability tending to 1 when σ(β̃) ≤ csn for some c > 0 and ‖β̃ − β∗‖ =
Op(

√
sn logpn/n). The Lasso estimator with the absolute loss can be used for the

initial estimator [2].
For given d > 0, let Md be the class of submodels obtained by the solution

path of the path-consistent penalized estimator given in either Section 5.1 or Sec-
tion 5.2. To reduce the computational burden, we propose to use the AdICd with
G = Gd , where Gd =Md ∩ G̃d . Since (6.1) is implied by (C3), it is easy to see that
this AdICd is consistent under the same conditions assumed in either Theorem 5
or Theorem 6 along with the conditions (A1) to (A5).

Condition (6.1) suggests a way of choosing d data-adaptively. Note that the
lower bound of minj∈π∗ |β̂o

j | in (6.1) is roughly proportional to σd/ρG,d . We pro-
pose to choose d which minimizes σ̂d,π̂d

/ρ̂G,d , where ρ̂G,d = minπ∈G bn(π, π̂d, d)

and π̂d is the model selected by the AdICd with G. Here, we let G = ⋃
d Gd . We

write AdIC for the AdICd with the data-adaptively selected d .

REMARK 7. The ρG,d is decreasing as sn is increasing. Since the lower bound
of minj∈π∗ |β̂o

j | is reciprocally proportional to ρG,d , it would be desirable to set
sn as small as possible. In practice, we apply the proposed data-adaptive model
selection procedure for all integers of sn less than smax to get the sequence of
models π̂s, s = 1, . . . , smax, where π̂s is the selected model with sn = s. Then we
choose π̂ŝ , where ŝ = min{s : φ(π̂s) = argmaxrφ(π̂r )} and φ(πs) = |{r : π̂r =
π̂s}|. This method works well unless smax is too large.

7. Numerical studies. In this section, we investigate the finite sample prop-
erties of the GIC and AdIC for various loss functions by simulation as well as real
data analysis. First, we compare the path consistency of the SCAD solution path
for the Huber loss with various values of d . For computation, we use the com-
bination of the CCCP algorithm of [16] and the solution path algorithm of [23].
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Second, we examine the performance of the data-adaptively selected d in the AdIC
by simulation. Finally, we compare the AdIC with other selection consistent GICs
such as the CRIC of [32] and the HIBC of [29] by simulation as well as real data
analysis.

7.1. Simulation. For the simulation model, we set pn = 500 and qn = 5.
We generate xi independently from the multivariate normal distribution with
mean 0 and variance 1 and covariance corr(xij , xik) = 0.3−|j−k| and normal-
ize them to have ‖Xj‖2 = n. We consider the four models for εi : (1) N(0,4),
(2) 0.9N(0,3/5) + 0.1N(0.25), (3) t-distribution with 3 degrees of freedom mul-
tiplied by

√
3/4 and (4) the t-distribution with 1 degree of freedom (i.e., Cauchy

distribution). Note that variances of the first three distributions are 4. For β∗, we
let β∗

j = τjβ∗ for some τ > 0, where

β∗ = 1

b∗

√
8 logpn

n
.

Here, b∗ = minπ :|π |≤2qn λmin(�π), where � is the pn × pn matrix whose (j, k)

element is the correlation of Xj and Xk . When εi ∼ N(0,4), (4.2) implies

Pr
{∣∣a∗

n

∣∣∞ >

√
(8 + δ) logpn

n

}
→ 0

for any δ > 0, where a∗
n = ∑n

i=1 εixi/n. That is β∗ can be considered as a surro-
gated quantity of the lower bound of minj∈π∗ |β̂o

j | in (6.1). Thus, τ measures how
much the minj∈π∗ |β∗

j | is larger than the lower bound. Note that the larger the τ is
the easier the model selection is.

7.1.1. Pathconsistency. Table 1 shows the frequencies of pathconsistency of
among 100 simulated data sets for various values of d when n ∈ {100,400} and
τ ∈ {1,1.2,1.5,2}. In the table, dα,α > 0 are constants satisfying Pr(|y − x′β∗| <
dα) = α/100, and d0 represents the absolute loss. For the first three error distri-
butions that have finite variances, the results are similar regardless of the choice
of d . In contrast, the results with d80 and d100 are worse than the others for the
Cauchy distribution, which indicates that the choice of d is important when the
error distribution is heavy tailed.

7.1.2. Performance of d̂ . Table 2 presents the percentages for the AdICd with
various values of d as well as AdIC to select the true model among the path-
consistent cases. We let sn = 10, δ = 0, α = 1/2 and G = ⋃

α=10,20,...,100 Gdα . For
most cases, the AdIC yields the best performance of selecting the true model.
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TABLE 1
Frequencies of pathconsistency

n = 100 n = 400

ε τ d0 d20 d50 d80 d100 d0 d20 d50 d80 d100

Normal 1.0 89 87 87 92 95 97 97 97 99 99
1.2 95 94 94 97 97 100 100 100 100 100
1.5 97 97 97 97 97 100 100 100 100 100
2.0 97 97 97 97 97 100 100 100 100 100

Mixture 1.0 97 97 97 97 91 100 100 100 100 99
1.2 97 97 97 97 97 100 100 100 100 100
1.5 97 97 97 97 97 100 100 100 100 100
2.0 97 97 97 97 97 100 100 100 100 100

t (3) 1.0 95 97 97 97 94 100 100 100 100 97
1.2 97 97 97 97 95 100 100 100 100 100
1.5 97 97 97 97 97 100 100 100 100 100
2.0 97 97 97 97 97 100 100 100 100 100

t (1) 1.0 81 83 86 82 5 99 99 99 93 1
1.2 86 88 89 88 10 99 99 99 96 4
1.5 94 94 94 91 23 100 100 100 100 17
2.0 98 98 98 97 42 100 100 100 100 37

TABLE 2
Percentages of selecting the true model among the path-consistent cases for the AdICd s as well as

AdIC (the columns of d̂)

n = 100 n = 400

ε τ d20 d50 d80 d100 d̂ d20 d50 d80 d100 d̂

Normal 1.0 2.3 8.0 42.4 83.2 83.2 18.6 39.2 75.8 89.9 86.9
1.2 8.5 11.7 73.2 95.9 95.9 35.0 70.0 95.0 98.0 95.0
1.5 12.4 19.6 89.7 100.0 100.0 50.0 97.0 100.0 99.0 98.0
2.0 9.3 34.0 96.9 100.0 100.0 48.0 100.0 100.0 99.0 99.0

Mixture 1.0 9.3 24.7 78.4 78.0 87.6 48.0 89.0 99.0 90.9 93.0
1.2 10.3 23.7 93.8 88.7 99.0 47.0 98.0 100.0 99.0 98.0
1.5 9.3 27.8 94.8 97.9 100.0 41.0 100.0 100.0 100.0 100.0
2.0 4.1 26.8 90.7 99.0 100.0 27.0 100.0 100.0 100.0 100.0

t (3) 1.0 8.2 28.9 83.5 87.2 89.7 55.0 95.0 100.0 92.8 97.0
1.2 7.2 37.1 92.8 94.7 96.9 47.0 99.0 100.0 93.0 100.0
1.5 5.2 28.9 93.8 96.9 99.0 37.0 100.0 100.0 98.0 100.0
2.0 6.2 22.7 92.8 100.0 100.0 21.0 100.0 100.0 100.0 100.0

t (1) 1.0 7.2 14.0 24.4 0.0 31.7 52.5 76.8 50.5 0.0 81.8
1.2 9.1 28.1 50.0 0.0 62.9 50.5 91.9 77.1 0.0 93.9
1.5 7.4 41.5 82.4 0.0 90.2 35.0 100.0 99.0 0.0 100.0
2.0 11.2 29.6 93.8 14.3 94.9 24.0 100.0 100.0 0.0 100.0
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TABLE 3
Percentages of selecting the true model among the path-consistent cases for the AdIC when sn is

selected data-adaptively with smax = 30. The numbers in the parentheses are the mean and
standard error of the selected sn

n τ Normal Mixture t (3) t (1)

100 1.0 84.9 87.6 88.6 30.1
(4.99, 0.054) (5.11, 0.091) (5.20, 0.118) (5.04, 0.207)

1.2 95.8 99.0 96.9 58.4
(4.99, 0.033) (5.08, 0.036) (5.04, 0.031) (5.02, 0.127)

1.5 100 100 98.9 87.9
(5.04, 0.031) (5.13, 0.044) (5.13, 0.078) (5.20, 0.134)

2.0 100 100 100 93.8
(5.02, 0.028) (5.17, 0.051) (5.15, 0.034) (5.06, 0.121)

400 1.0 90.8 93.0 97.0 81.8
(5.71, 0.165) (5.01, 0.026) (5.04, 0.019) (5.03, 0.055)

1.2 98.0 98.0 100 94.9
(5.38, 0.016) (5.00, 0.014) (5.00, 0.000) (5.04, 0.031)

1.5 99.0 100 100 100
(5.15, 0.102) (5.00, 0.000) (5.00, 0.000) (5.00, 0.000)

2.0 99.0 100 100 100
(5.02, 0.014) (5.00, 0.000) (5.00, 0.000) (5.0, 0.000)

7.1.3. Selection of sn. We investigate the selection method of sn proposed in
the remark of Section 6. Table 3 presents the percentages for the AdIC to select the
true model among the path-consistent cases when sn is selected by the proposed
method in Section 6 with smax = 30. The results are similar to the corresponding
results in Table 2 (i.e., the columns of d̂) where sn is fixed at 10, which suggest
that the performance of AdIC is not sensitive to the choice of sn.

7.1.4. Comparison of the AdIC with other competitors. We compare the AdIC
with the CRIC of [32] and the HBIC of [29] that select the model which minimizes
log(Rn(β̂π ))+λn|π |, where λn = 2(logpn + log logpn)/n for the CRIC and λn =
log logn logpn/n for the HBIC, and present the results in Table 4. The Huber loss
with the data-adaptively selected d is used for Rn. The performance of the AdIC
is similar or slightly better compared to the CRIC and HBIC for the first three
error distributions while the AdIC dominates the other competitors for the Cauchy
distribution.

REMARK 8. The CRIC and HBIC are developed for the quadratic loss. We
investigated the performance of the CRIC and HBIC with the quadratic loss, and
we found that the performances for model selection are similar or worse compared
to those with the Huber loss.
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TABLE 4
Comparison of the AdIC with the CRIC and HBIC—the proportions of selecting the true model

among 100 simulations

n = 100 n = 400

ε τ CRIC HBIC AdIC CRIC HBIC AdIC

Normal 1.0 0.88 0.80 0.79 0.93 0.88 0.86
1.2 0.96 0.81 0.93 0.99 0.92 0.95
1.5 0.97 0.79 0.97 1.00 0.93 0.98
2.0 0.97 0.80 0.97 1.00 0.90 0.99

Mixture 1.0 0.93 0.94 0.85 0.99 0.98 0.93
1.2 0.97 0.92 0.96 1.00 0.98 0.98
1.5 0.97 0.89 0.97 1.00 0.98 1.00
2.0 0.97 0.92 0.97 1.00 1.00 1.00

t (3) 1.0 0.95 0.91 0.87 1.00 1.00 0.97
1.2 0.97 0.91 0.94 1.00 1.00 1.00
1.5 0.97 0.91 0.96 1.00 1.00 1.00
2.0 0.97 0.90 0.97 1.00 1.00 1.00

t (1) 1.0 0.06 0.20 0.26 0.02 0.11 0.81
1.2 0.10 0.26 0.56 0.06 0.25 0.93
1.5 0.22 0.53 0.83 0.27 0.58 1.00
2.0 0.51 0.74 0.93 0.65 0.83 1.00

7.2. Real data analysis. We analyze the data set used in [24], which consists
of the gene expression levels of 18,975 genes obtained from 120 rats. The main
objective of the analysis is to find genes that are correlated with gene TRIM32,
which is known to cause Bardet–Biedl syndromes. As carried out by [15], we
select the 3000 genes that have the largest absolute correlation with gene TRIM32,
and then apply the GIC to select the signal genes among the selected 3000 genes.

To compare variable selectivity, we first divide the data set randomly into train-
ing set with 90 observations and test set with 30 observations. Then we select genes
using the AdIC as well as the CRIC and HIBC. Then we calculate the Kendall’s τ ’s
and mean absolute deviation (MAD) between the predicted and observed response
variables on the test set. We repeat this experiment 100 times and summarize the
averages of the numbers of selected genes, the Kendall’s τ ’s and MAD for each
selection method in Table 5. While the predictive performance of the AdIC and
HBIC are similar, the AdIC selects a fewer genes. The CRIC is worst in prediction
even though it uses the fewest genes. The results amply show that the AdIC is a
useful tool to select covariates without hampering prediction accuracy.

8. Concluding remarks. When using the GIC, we may use different loss
functions for estimation and selection. For example, let β̂π,de be the Huber esti-
mator with d = de. Then we select π ∈ Msn by minimizing Rn(β̂π,de ) + λn|π |,
where Rn is obtained with the Huber loss with d = ds . Theorem 3 and Theorem 7
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TABLE 5
Results of data analysis (TRIM-32). The numbers in the

parentheses are the standard errors

Method Number of genes Kendall’s τ MAD

AdIC 1.93 (0.263) 0.428 (0.031) 0.522 (0.020)
HBIC 2.27 (0.228) 0.432 (0.033) 0.523 (0.021)
CRIC 1.53 (0.187) 0.418 (0.032) 0.526(0.021)

are still valid as long as ‖β̂π∗,de − β∗‖ = Op(
√

qn/n). However, the choice of de

is not obvious and we leave this problem as a future work.
We have seen that the results about the class of QSR give a way of choosing a

loss function data-adaptively among the class of Huber losses for linear regression
models. A similar problem is to choose a loss function for the classification. Ex-
amples of the loss function for classification are the exponential loss for boosting
and the hinge loss for the support vector machine. Note that the key quantity of
the selection consistency of the GIC is the upper bound of |an|∞: the smaller the
|an|∞ is, the easier the GIC becomes selection consistent. Since the gradient of
the exponential loss is unbounded, we can conjecture that the exponential loss is
worse in variable selection than the logistic loss whose gradient is bounded.

The results in this paper can be extended to more complicated models such as
correlated errors and link misspecification in generalized linear models. For the
quadratic loss with the AR(1) errors, we have illustrated how the correlations in
errors affect the conditions for the consistency of the GIC. Similar results could be
derived for other losses and other error distributions as long as the convergence rate
of |an|∞ is available. For link misspecification in generalized linear models, β̂o

may be asymptotically biased, but as long as σ(β̂o) is equal to the set of true signal
covariates, the GIC can be consistent (see, e.g., [21] for link misspecification).

APPENDIX

A.1. Proof of Proposition 1.

LEMMA 2. Let

V (β) = Rn(β) − Rn(β̃n) +
n∑

i=1

x′
i (β − β̃n)

(
2τ − 2I (εi < 0)

)
/n

− E
{
Rn(β) − Rn(β̃n)

}
.

Then

Pr
{

sup
β∈�n

|V (β)|
|β|0 > δn

}
(A.1)

≤ 2 exp
{
−c1

nδ2
n

ζnη2
n

+ sn logpn + sn log
(
1 + c2ζnηn/

(
δns

1/2
n

))}

for some positive constants c1 and c2.
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PROOF. The proof can be carried out similar to Lemma 3.2 of He and Shi
[14]. From the choice of ρτ (u), it suffices to prove Lemma 2 with τ = 1/2. Let
zi = ηnxi and θ = η−1

n (β − β̃n). Let �n,π = �n ∩ {β : σ(β) = π}. Note that

sup
β∈�n

|V (β)|
|β|0 ≤ sup

π :π⊂{1,...,pn},|π |≤sn

1

|π | sup
β∈�n,π

∣∣V (β)
∣∣.

In turn,

sup
β∈�n,π

∣∣V (β)
∣∣ ≤ sup

θ :σ(θ)⊂π∪π∗,‖θ‖≤1

∣∣W(θ)
∣∣,

where W(θ) = ∑n
i=1 Wi(θ)/n and

Wi(θ) = ∣∣εi − z′
iθ

∣∣ − |εi | + z′
iθ

(
2τ − 2I (εi < 0)

) − E
{∣∣εi − z′

iθ
∣∣ − |εi |}.

For given π , let π+ = π ∪ π∗. We can cover {v ∈ R|π+| : ‖v‖ ≤ 1} with the
Kπ,n many balls �1, . . . ,�Kπ,n of radius rn = δn|π+|/(12ζnηn

√|π+|) with centers

τ1, . . . , τKπ,n . According to Lemma 2.5 of van de Geer [13], Kπ,n ≤ (1+4/rn)
|π+|.

For θ with σ(θ) ⊂ π+, we define θπ
j , j = 1, . . . ,Kπ,n as θπ

j,π+ = τj and θπ
j,π+c =

0. Then we have

min
j=1,...,Kπ,n

∣∣W(θ) − W
(
θπ
j

)∣∣ ≤ 3 max
i

‖zi,π+‖min
j

‖θ − θj‖

≤ 3
√∣∣π+∣∣ηnζnrn ≤ δn

4
|π |.

Hence, for the given π ,

Pr
{

sup
θ :σ(θ)⊂π∪π∗,‖θ‖≤1

∣∣W(θ)
∣∣ ≥ δn|π |

}

≤ Pr
{

max
j=1,...,Kπ,n

∣∣W (
θπ
j

)∣∣ ≥ δn|π |
2

}

≤
Kπ,n∑
j=1

Pr
{∣∣W (

θπ
j

)∣∣ ≥ δn|π |
2

}
,

which implies

Pr
{

sup
β∈�n

|V (β)|
|β|0 > δn

}
≤ ∑

π :π⊂{1,...,pn},|π |≤sn

Kπ,n∑
j=1

Pr
{∣∣W (

θπ
j

)∣∣ ≥ δn|π |
2

}
.(A.2)

Since |εi − z′
iθ | − |εi | ≤ |z′

iθ |, we have

∣∣Wi

(
θπ
j

)∣∣ ≤ 3
∣∣z′

iθ
π
j

∣∣ ≤ 3ζn

√∣∣π+∣∣ηn.
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Hoeffding’s inequality implies that

Pr
{∣∣W (

θπ
j

)∣∣ ≥ δn|π |
2

}
≤ 2 exp

(
− 2

36

nδ2
n|π |2

ζnη2
n|π+|

)
≤ 2 exp

(
−c1

nδ2
n

ζnη2
n

)
(A.3)

for some c1 > 0 since |π+| ≤ |π | + qn and qn = O(1). From (A.2) and (A.3), we
have

Pr
{

sup
β∈�n

|V (β)|
|β|0 > δn

}
≤ 2 exp

(
−c1

nδ2
n

ζnη2
n

+ sn logpn + 2sn log(1 + 4/rn)

)
.

Since rn ≤ δn
√

sn/(12ζnηn), the proof is complete. �

LEMMA 3. If
√

snηn ≤ α2/ζn,

E
{
Rn(β) − Rn(β̃n)

} ≥ b‖β − β̃n‖2

for all β ∈ �n.

PROOF. Knight’s identity [19] implies

ρτ (u − v) − ρτ (v) = −v
(
2τ − 2I (u < 0)

) +
∫ v

0
2
(
I (u ≤ s) − I (u ≤ 0)

)
ds.

Hence, for β ∈ �n,

E
{
Rn(β) − Rn(β̃n)

} = 1

n

n∑
i=1

Eεi

{∫ x′
i (β−β̃n)

0
2
(
I (εi ≤ s) − I (εi ≤ 0)

)
ds

}

= 1

n

n∑
i=1

∫ x′
i (β−β̃n)

0
2
(
Fi(s) − Fi(0)

)
ds

≥
(

inf|u|≤α2
fi(u)

)2

n

n∑
i=1

(β − β̃n)
′xix′

i (β − β̃n) ≥ b

2
‖β − β̃n‖2,

where the last inequality is because of the mean value theorem and
supβ∈�n

maxi |xi (β − β̃n)| ≤ ζn
√

snηn. �

PROOF OF PROPOSITION 1. Lemma 2 implies that the probability of

Rn(β) − Rn(β̃n)

≥
n∑

i=1

x′
i (β − β̃n)

(
2τ − 2I (εi < 0)

)
/n + E

{
Rn(β) − Rn(β̃n)

} − δn|β|0

converges to 1 when nδ2
n/η

2
n  sn logpn provided ηn/(δns

1/2
n ) � pn, and hence

the proof is complete by Lemma 3. �
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A.2. Maximum inequality.

PROPOSITION 2.

Pr

{
max

j

∣∣∣∣∣1

n

n∑
i=1

l(1)(yi,x′
iβ

∗)
xij

∣∣∣∣∣ >

√
α logpn

n

}

≤ 2 exp
{
− logpn

2

(
α

σ 2
d + (d/3)ζn

√
α logpn/n

− 2
)}

.

PROOF. This is a direct consequence of the Bernstein inequality. �

A.3. Proof of Theorem 7.

LEMMA 4.

sup
π :|π |≤sn,π⊃π∗

∥∥β̂π − β̂o
∥∥ = Op(

√
sn logpn/n).

PROOF. Since for π ⊃ π∗, Rn(β̂π ) − Rn(β̂
o) < 0, and so Lemma 1 implies

‖β̂π − β̂o‖ ≤ ηn. Thus, the QSR representation in Section 4.2 gives

0 ≥ Rn(β̂π ) − Rn

(
β̂o) ≥ −|an|∞√

sn
∥∥β̂π − β̂o

∥∥ + ρ

2

∥∥β̂π − β̂o
∥∥2

.

Hence, ‖β̂π − β̂o‖ ≤ 2
√

sn|an|∞/ρ = OP (
√

sn logpn/n) since |an|∞ =
Op(

√
logpn/n) by (4.14) and (4.15). �

LEMMA 5.

sup
π :|π |≤sn,π⊃π∗

∣∣σ̂ 2
d,π − σ 2

d

∣∣ = op(1).

PROOF. Lemma 4 implies

sup
i

∣∣x′
i

(
β̂π − β̂o)∣∣ ≤ ζn

√
sn

∥∥β̂π − β̂o
∥∥ = Op(ζnsn

√
logpn/n) = op(1).(A.4)

Since ‖β̂o − β∗‖ = Op(
√

qn/n), we have

sup
π :|π |≤sn,π⊃π∗

sup
i

∣∣x′
i

(
β̂π − β∗)∣∣ = op(1),

which completes the proof since F is continuous. �

LEMMA 6. Let ao
n = ∑n

i=1 l(yi,x′
iβ

∗)xi/n. Then for any δ > 0,

Pr
{∣∣ao

n

∣∣∞ <

√(
2σ 2

d + δ
) logpn

n

}
→ 1

as n → ∞, provided logpn → ∞.
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PROOF. This is a direct consequence of Proposition 2. �

PROOF OF THEOREM 7. Since anj = 0 for j ∈ π∗, (4.13) implies

Rn(β̂π ) − Rn

(
β̂o)

≥ − ∑
j∈π−π∗

{
|an|∞|β̂π,j | − bn(π,π∗, d)

2
β̂2

π,j

}
+ bn(π,π∗, d)

2

∑
j∈π∗−π

β̂o2
j(A.5)

≥ −∣∣π − π∗∣∣ |an|2∞
2bn(π,π∗, d)

+ bn(π,π∗, d)

2

∑
j∈π∗−π

β̂o2
j .

Note that Lemmas 5 and 6 with (4.14) in Section 4.2 and conditions (A2) and (A3)
imply that for any δ > 0

Pr
{
|an|∞ <

√(
2σ̂ 2

d,π + δ
) logpn

n
for all π ⊃ π∗ with |π | ≤ sn

}
→ 1(A.6)

as n → ∞. Finally, (A.6) with (6.1) implies that for 0 < δ < δ0, (A.5) is greater
than or equal to

−∣∣π − π∗∣∣λ̂(
π,π∗, d, δ

) + ∣∣π∗ − π
∣∣λ̂(

π,π∗, d, δ
)

with probability converging to 1, which completes the proof. �

A.4. Proposition.

PROPOSITION 3. Let β̃ be an estimator such that |σ(β̃)| ≤ csn for some
c > 0 and ‖β̃ − β∗‖ = Op(

√
sn logpn/n). Under the conditions (A1) to (A5),

|J (π∗, d)| > cα for any α ∈ (0,1) with probability converging to 1.

PROOF. (A2) implies ‖β̃ − β̂o‖ = Op(
√

sn logpn/n), and hence∣∣yi − x′
i β̂

o
∣∣ ≤ ∣∣yi − x′

i β̃
∣∣ + sup

i

∣∣x′
i

(
β̂o − β̃

)∣∣
≤ ∣∣yi − x′

i β̃
∣∣ + ζn

√
(c + 1)sn

∥∥β̂o − β̃
∥∥

= ∣∣yi − x′
i β̃

∣∣ + op(1).

Hence, |yi −x′
i β̃| ≤ αd for any α ∈ (0,1) implies |yi −x′

i β̂
o| ≤ d , and so the proof

is complete. �
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