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LOCAL INTRINSIC STATIONARITY AND ITS INFERENCE

BY TAILEN HSING∗, THOMAS BROWN† AND BRIAN THELEN∗

University of Michigan∗ and Exponent†

Dense spatial data are commonplace nowadays, and they provide the im-
petus for addressing nonstationarity in a general way. This paper extends the
notion of intrinsic random function by allowing the stationary component of
the covariance to vary with spatial location. A nonparametric estimation pro-
cedure based on gridded data is introduced for the case where the covariance
function is regularly varying at any location. An asymptotic theory is devel-
oped for the procedure on a fixed domain by letting the grid size tend to zero.

1. Local intrinsic stationarity. The spatial process of interest in this paper is
denoted by Y(t) where t ∈ some � ⊂ Rd for an arbitrary dimension d = 1,2, . . . .

Let

μ(t) = EY(t) and C(t, s) = Cov
(
Y(t), Y (s)

)
.

Common goals of spatial statistics include the inference of μ and C and the pre-
diction of Y(t) based on observations Y(t1), . . . , Y (tn). In doing so, Y is often
assumed to be second-order stationary, namely, μ(t) is constant and C(s, t) is a
function of t − s. However, (global) stationarity is a restrictive assumption which
is sometimes hard to justify. In this paper, we focus on the modeling and infer-
ence of covariance nonstationarity. There has been considerable progress recently
on this topic; see a review in Sampson (2010). Not surprisingly, nonstationary
models are often created with (latent) stationary processes as building blocks. For
completeness, we briefly mention a few such examples here. Higdon, Swall and
Kern (1999), Fuentes (2001) and Fuentes (2002) consider nonstationary processes
that are convolutions of deterministic kernels with stationary processes. Sampson
and Guttorp (1992), Anderes and Stein (2008) and Anderes and Chatterjee (2009)
introduce nonstationarity by composing a stationary process with a spatial defor-
mation transformation. The nonstationary process in Fuglstad et al. (2013) and
Fuglstad et al. (2015) is the solution of an SPDE driven by a Gaussian white noise;

Tribute: Professor Peter Hall had a huge influence on our research. The approach of combin-
ing nonparametric smoothing and spatial statistics in this paper was directly motivated by some of
his results. His body of work that spans almost the entire field of statistics will be a profound and
lasting source of inspiration for statistical research. We will also miss Professor Hall dearly for his
extraordinary leadership and the very personal ways in which he helped so many of us.

Received October 2014; revised September 2015.
MSC2010 subject classifications. 60G12, 62M30, 62G05, 62G20.
Key words and phrases. Intrinsic random functions, nonparametric estimation, nonstationary spa-

tial process.

2058

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1402
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


LOCAL STATIONARITY 2059

a result of Whittle (1954) provides the motivation for that approach. Finally, Kim,
Mallick and Holmes (2005) models nonstationarity by joining stationary processes
defined on sub-regions of �, where the choice of sub-regions as well as the infer-
ence of the process are conducted using a Bayesian approach.

The purpose of this paper is to develop a general framework for nonstationar-
ity when dense, gridded spatial data are available. Data of this type are common
nowadays. Some climate and geospatial data are gridded data on the sphere but
those with high resolution can be reasonably treated as being on the plane over
small regions; see data available at NASA’s Earth Science or the U.S. Geological
Survey websites. Compared with existing approaches, represented by those men-
tioned in the previous paragraph, the approach that we introduce in this paper aims
at directly modeling the covariance locally and does not involve globally defined
latent processes. Our model is very general and is satisfied by many nonstationary
models in the literature. The features of a statistical model, as a rule, are closely
aligned with the proposed inference approach. The inference approach of this pa-
per is nonparametric smoothing. In that regard, the development below bears some
resemblance to Anderes and Stein (2008) and Anderes and Chatterjee (2009).

We start by reviewing a well-known covariance model for spatial processes. For
� = (�1, . . . , �d) ∈ {0,1,2, . . .}d , and h = (h1, . . . , hd) ∈ Rd , let |�| =∑d

j=1 �j and

h� = h
�1
1 · · ·h�d

d . There should be no confusion that | · | will also denote the usual
absolute value as well as the norm for Rd . Write

C(t, s) =
r∑

|�|=0

b�(t)s� +
r∑

|�|=0

b�(s)t� + R(t, s)(1)

for some r , where the b� are arbitrary measurable functions and the summations
are over all � with |�| = 0, . . . , r . A process Y(t) is said to be an intrinsic random
function of order r [Matheron (1964, 1973)], denoted as IRF-r , if

R(s, t) = K(t − s)(2)

for some function K , referred to as generalized covariance. The most familiar in-
trinsic random functions are the IRF-0’s, commonly known as intrinsically station-
ary processes, for which stationarity can be achieved by one-step differencing and
the generalized covariance K is the negative semivariogram. An obvious example
of an intrinsically stationary process is the standard Brownian motion. If Y is an
IRF-r and (λi, ti),1 ≤ i ≤ m, are such that

m∑
i=1

λit�i = 0, |�| = 0, . . . , r,

then
m∑

i=1

m∑
j=1

λiλjC(ti , tj ) =
m∑

i=1

m∑
j=1

λiλjK(ti − tj ).
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Thus, K can assume the role of C in kriging when focusing on predictors of
the form

∑m
i=1 λiY (ti ). For more details on intrinsic random functions and the

corresponding kriging problem, see Cressie (1993), Stein (1999) and Chilès and
Delfiner (2012).

While the notion of intrinsic random function extends stationarity in meaning-
ful ways, it is still quite restrictive in modeling nonstationarity. In this paper, we
relax (2) by allowing K to depend on the location of t, s, as follows:

[R1] As s − t → 0,

R(t, s) = Kt(t − s)
(
1 + O

(|t − s|γ ))(3)

uniformly over s, t ∈ �, with

Kt(u) = �t(u)Rt
(|u|),

where:

(i) γ ∈ (0,∞);
(ii) �t(u) depends on u only through the direction u/|u| and is bounded away

from zero in t and u; for each u, �t(u) is twice-continuously differentiable in t
and the derivatives are uniformly bounded in t and u; to ensure identifiability, set
|�t(u0)| = 1 for some u0;

(iii) for each t, Rt(·) is a nonnegative function which is regularly varying at 0
with index α(t) ∈ (0,∞) and such that, for any c ∈ (0,∞),

sup
a,|t|,|u|∈[0,c]

∣∣∣∣Rt+εu(aε)

Rt(ε)
− aα(t)

∣∣∣∣= O
(
Q(ε)

)
as ε → 0,(4)

where Q only depends on c and Q(ε) → 0; α(t) is twice-continuously differen-
tiable.

We refer to [R1] as local intrinsic stationarity. A large class of models common in
the spatial statistics literature satisfy local intrinsic stationarity. We will consider a
few below. Before getting to examples, however, it might be useful to give some
insight into the regular variation assumption. The simplest example of Rt satisfy-
ing (iii) of [R1] is Rt(x) = xα(t), x > 0, where α is continuously differentiable, in
which case

Rt+εu(aε)

Rt(ε)
− aα(t)

= aα(t+εu)(εα(t+εu)−α(t) − 1
)+ aα(t)(aα(t+εu)−α(t) − 1

)
(5)

= O(ε log ε)

uniformly for bounded a, t,u and, therefore, Q(ε) = ε log ε. More general exam-
ples of Rt can be created by multiplying a slowly varying function to xα(t) [cf.
de Haan and Ferreira (2006)]. One way in which (5) is useful is that if we know
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Rt(ε) and α(t) then Rt+εu(aε) can be approximated by Rt(ε)a
α(t). We will see an

application of this approximation in the inference of Kt in Section 2.2. The regular
variation of Kt is related to the idea of self similarity; for instance, if Y(t) is the
standard Brownian motion on [0,∞), then, with r = 0 in (1), R(t, t + u) = |u|/2,

and Y(ct) d= c1/2Y(t), c > 0.
A well-studied covariance model satisfying [R1] is the one with the expansion

C(t, t + h) = c0 +
k+1∑
s=1

c2s |h|2s + c2ν |h|2ν(1 + O
(|h|2)) as h → 0,(6)

where the c’s are constants and ν ∈ (k, k + 1) for some nonnegative integer k. It
is easy to see that [R1] holds with r = 2�ν	, α(t) ≡ 2ν and γ = 2, where �u	
denotes the smallest integer greater than or equal to u. The isotropic Matérn co-
variance function with smoothness parameter ν satisfies this expansion; see Stein
(1999) and the references therein. In the case of the Matérn, note that the expan-
sion in (6) contains an extra term compared with what is common in the literature.
The purpose of that is to ensure γ = 2. The value of γ plays a role [cf. (12)] in
the asymptotic theory of the inference problem that will be addressed in Section 2.
The term c2ν |h|2ν is referred to as the principal irregular term in Stein (1999) and
it characterizes the degree of smoothness of the sample path of Y . For the Matérn,
if ν is a positive integer then the principal irregular term includes a slowly varying
multiplicative factor, log |h|.

Suppose the covariance function of a stationary process X satisfies the ex-
pansion on the right-hand side of (6), and that F is a one-to-one and 2(k + 1)-
times differentiable function from Rd to Rd . Define Y(t) = X(F(t)) so that
C(t, s) = Cov(X(F (t)),X(F (s))). This is the deformation process considered in
Anderes and Stein (2008) and Anderes and Chatterjee (2009). These two papers
have a strong influence on our work in terms of motivation and the inference ap-
proach. In Section 4.6, we show that [R1] holds with r = �2ν	, α(t) ≡ 2ν, γ = 1
and �t(h) = c2ν |J t

F h/|h||2ν , where J t
F is the Jacobian of F at t. One can easily

construct examples where Kt is anisotropic in this case.
Another example is the multifractional Brownian motion process on Rd , which

is a zero-mean Gaussian process with covariance function

C(t, s) = D
(
H(t) + H(s)

){
tH(t)+H(s) + sH(t)+H(s) − |t − s|H(t)+H(s)},(7)

where H(t) is Hölder continuous with range in (0,1), and

D(x) =
∫
Rd

1 − eiu1

|u|x+d
du, x ∈ (0,1).

See Ayache, Shieh and Xiao (2011) and Herbin (2006) and the references therein.
If H(t) is identically equal to some constant H ∈ (0,1) then the process is the
fractional Brownian motion introduced by Mandelbrot and Van Ness (1968). We
show in Section 4.6 that if H(t) is three-times differentiable, then [R1] holds with
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r = 2, α(t) = 2H(t), γ equal to any constant less than 1, and �t(h) = D(2H(t))
for all h. We can also construct the deformation process Y(t) = X(F(t)) with X a
multifractional Brownian motion, and it satisfies [R1] as well.

The structure of this paper is as follows. In Section 2, we address the inference
of Kt based on differenced gridded data. Since Kt potentially changes with loca-
tion, it makes sense to only use the data close to t when estimating Kt. This is simi-
lar to the kernel estimation approach in Anderes and Stein (2008) and Anderes and
Chatterjee (2009) for the deformation process. However, we adopt the local linear
estimator which has a number of appealing properties. The asymptotic expressions
of the variance and bias of the local linear estimator are derived for the setting
where the grid becomes finer; this approach of study is sometimes referred to as
fixed-domain or infill asymptotics. An interesting observation is that the differ-
enced data are sufficiently de-correlated so that the bias and variance expressions
closely match those found in the classical nonparametric regression function esti-
mation context where there is no dependence between data points. The theoretical
development of the infill asymptotics is formulated in an abstract setting, beyond
local intrinsic stationarity. This will be included in Section 3. All the proofs are
collected in Section 4.

We summarize the main contributions of this paper as follows. First, we in-
troduce the notion of local intrinsic stationarity. The notion is considerably more
general than that of stationarity and is satisfied by many known nonstationary mod-
els. Second, we study the inference of this model by assuming the space-varying
local covariance is regularly varying and that dense data are available on a regular
grid. Third, we develop an asymptotic theory for the local linear estimator of the
local covariance function. Local linear (or polynomial) smoothing is in many situ-
ations the preferred nonparametric smoother but, to the best of our knowledge, has
not been applied extensively in spatial statistics. By comparing with similar results
in classical (nonparametric regression) settings, the rates in our asymptotic theory
can be seen to be close to minimax optimal.

2. Nonparametric estimation. Assume throughout that the spatial process
{Y(t), t ∈ �} satisfies condition [R1]. Assume that � = [0,1]d and we observe
Y(t) for all t belonging to the grid

Gn = {
(i1, i2, . . . , id)/n, with is = (j − 1/2)/n for j = 1, . . . , n

}
.

For convenience, the generic notation ti = (ti1, . . . , tid) will be used to denote
the grid points. Below, we will analyze the asymptotic behavior of our inference
procedure by allowing n to tend to ∞. Asymptotic results in the context of spatial
estimation by letting the grid size to tend to zero in a fixed domain are sometimes
referred to as fixed-domain or infill asymptotics.

An effective approach to decorrelate spatial data is differencing. Recursively
define the differencing operators in the direction h of a function w on � by


hw(t) = w(t) − w(t + h) and 

j
hw(t) = 


j−1
h 
hw(t), j ≥ 2.
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For now, assume that Rt is known. The inference of Rt is important and will be
discussed in Section 2.2. Consider the process Wn(t,h) defined by

Wn(t,h) = {
Rt(1/n)

}−1/2



q
h/nY (t)(8)

for some integer q satisfying

q > max
(
r,

1

2
sup

t
α(t) + d

2

)
.(9)

Note that

Cov
(
Wn(t,h),Wn(s,h)

)= {
Rt(1/n)Rs(1/n)

}−1/2



q
h/n,t


q
h/n,sC(t, s),

where 

q
h/n,t and 


q
h/n,s denote differencing with respect to t and s, respectively.

Thus, the assumption q ≥ r + 1 entails that the covariance of Wn(t,h) does not
depend on the monomials in (1). We will see in (ii) of Theorem 1 that the positive
constant

ψ := 2q − sup
t

α(t),(10)

is a quantity that describes the covariance of Wn(t,h). Note that ψ ∈ (d,∞) by (9).
For the inference problem considered here, we will focus on those h for which

Wn(ti ,h) can be computed from data for all except possibly a negligible portion
of the ti . In view of Gn, this puts some constraint on the choice of h. Our results
can be extended with a more careful analysis for an h for which Wn(ti ,h) can be
defined only for a portion of the data.

Define

g(u, t,h) =
q∑

i=0

q∑
j=0

(−1)i+j

(
q

i

)(
q

j

)
�t
(
u + (i − j)h

)∣∣u + (i − j)h
∣∣α(t)

.

When the mean μ(t) of Y(t) is sufficiently smooth, it can be shown [part (i) of
Theorem 1] that

EW 2
n (t,h) ∼ g(0, t,h).

In that case, it is plausible to estimate g(0, t,h) by averaging W 2
n (ti ,h) for ti in a

small neighborhood of t in some way. While it might not be immediately evident,
estimating g(0, t,h) gives us the means to estimate Kt and its components, as will
be seen in Section 2.2.

The local averaging methodology adopted here for estimating g(0, t,h) is local
linear smoothing [cf. Fan and Gijbels (1996)]. Other kernel smoothing approaches
could also be used, but local linear smoothing, more generally, local polynomial
smoothing, is especially appealing in that the rate for the bias is the same for
interior and boundary points and also the expressions for the variance and bias are
tractable.

Throughout the rest of the paper, assume that k is a kernel function that satisfies
the assumption:
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[K] k is a nonnegative function with support [−1,1]d and has continuous first-
order partial derivatives.

Let β = (β0, β1, . . . , βd). For any t ∈ � and bandwidth b > 0, let

β̂(t,h;n,b) = argminβ

∑
i

k

(
ti − t

b

){
W 2

n (ti ,h) − �(ti − t;β)
}2

,(11)

where the sum is taken on all ti ∈ Gn and

�(t;β) = β0 +
d∑

j=1

βj tj for t = (t1, t2, . . . , td).

Then β̂(t,h;n,b) estimates

β(t,h) :=
(
g(0, t,h),

∂

∂t1
g(0, t,h), . . . ,

∂

∂td
g(0, t,h)

)
.

To obtain the large-sample behavior of β̂(t,h;n,b), it is useful to first understand
the behavior of Cov(Wn(t,h),Wn(s,h)) when t and s are close. In addition to [R1],
which describes the behavior of R(t, s) in (1) when t and s are close, we also need
the following complementary condition that controls the smoothness of R(t, s).

[R2] The directional partial derivative

f (φ,η; t, s,h) := ∂2q

∂φq∂ηq
R(t + φh, s + ηh)

exists for all φ,η, t, s,h such that |(t − s) + (φ − η)h| > 0. Further, there exist
positive constants c1 and c2 such that∣∣f (0,0; t, s,h)

∣∣≤ c1Rt
(|t − s|)|t − s|−2q for all s, t such that |s − t| ∈ (0, c2).

The condition [R2] holds for the two examples, deformation process and multi-
fractional Brownian motion, discussed in Section 1.

Define

μn(t,h) = EWn(t,h), Cn(t, s,h) = Cov
(
Wn(t,h),Wn(s,h)

)
.

Also, let

δn = sup
t

{
Rt(1/n)

}−1/2
n−q, ρn = Q(1/n) + n−γ∧1.(12)

The following result addresses the behavior of the covariance of Wn(u,h) for u in
a small neighborhood of t.

THEOREM 1. Assume that the conditions [R1] and [R2] hold and that q sat-
isfies (9). Then we have:
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(i) For any fixed h and u,

Cn(t, t + u/n,h) − g(u, t,h) = O(ρn)

uniformly over t ∈ �.
(ii) For any fixed h, there exist positive constants c3 and c4 such that∣∣Cn(t, t + u/n,h)

∣∣≤ c4|u|−ψ

for large n, all t ∈ � and all u satisfying 2q|h| < |u| < c3n, where ψ is as defined
in (10).

The rest of the paper will focus on the asymptotic properties of β̂(t,h;n,b) and
related estimators. For clarity, we collect here all the assumptions that we need for
that purpose, including those we have already stated. First, assume that Y(t) is a
Gaussian process satisfying [R1] and [R2] where the differencing order q satis-
fies (9). Further, assume that the mean function of Y(t) is q-times continuously
differentiable so that

μn(t,h) = O(δn)

with δn defined in (12). Finally, assume that the smoothing parameter b = bn sat-
isfies b → 0 and nb → ∞.

2.1. Asymptotic theory. Let β̂0(t,h;n,b) denote the first element of β̂(t,h;n,

b). As was explained, β̂0(t,h;n,b) is an estimate of g(0, t,h). The asymptotic
properties of β̂0(t,h;n,b) under the assumptions stated above are derived in The-
orems 2 through 5 in Section 3, where Theorem 2 considers the bias, Theorems 3
and 4 deal with moments and asymptotic distribution, respectively, and Theorem 5
proves a uniform rate of convergence in the almost sure sense. A brief summary
plus some discussions of the results are given here.

(a) In estimating g(0, t,h) the bias of β̂0(t,h;n,b) is O(b2 + ρn ∨ δ2
n) (Theo-

rem 2) and the variance is O((nb)−d) (Theorem 3). Thus, β̂(t,h;n,b) is a consis-
tent estimator of g(0, t,h) for our choice of b. Both rates are uniform for all t ∈ �,
including the boundary points.

(b) If

ρn ∨ δ2
n = O

(
b2),

then the bias is O(b2) and a specific expression of the dominant term of the bias
can be given in terms of the second-order derivatives of g(0, t,h) in t and the
moments of the kernel k (Theorem 2). If, additionally, b = O(n−d/(d+4)), then
(nb)d/2{β̂0(t,h;n,b) − g(0, t,h)} is asymptotically normal (Theorem 4). These
results show that the optimal estimation rate is (nd)−2/(d+4), which is obtained
by choosing the bandwidth b ∼ cn−d/(d+4) for some constant c. Interestingly,



2066 T. HSING, T. BROWN AND B. THELEN

N−2/(d+4) is the minimax optimal rate in estimating a twice continuously differ-
entiable function in a classical nonparametric regression setting where the sample
contains N independent data points [cf. Stone (1982)]. It seems remarkable that
the same rate holds in our setting where the spatial data in a fixed bounded re-
gion are highly dependent but the differencing produces the necessary level of
de-correlation for the results. In this regard, similar observations were made in
Kent and Wood (1997) and Chan and Wood (2000) for the stationary case.

(c) If the kernel k is of product form [K′], defined in Section 3, then for some
C < ∞

sup
t∈�

∣∣β̂0(t,h;n,b) − g(0, t,h)
∣∣

(13)
≤ C(nb)−d/2(logn)max

{
1, (nb)d/2(logn)−1(b2 + ρn ∨ δ2

n

)}
eventually with probability one. If γ > 2d/(d + 4), then the optimal bandwidth
is b ∼ cn−d/(d+4)(logn)2/(4+d) and the optimal global rate that can be derived
from (13) becomes (nd/ log2 n)−2/(4+d). This is slightly worse than the optimal
global rate, (N/ logN)−2/(4+d), in classical nonparametric estimation [cf. Stone
(1982)] with sample size N .

2.2. Inference of Kt. So far we have assumed that Rt is known in defining
β̂0(t,h;n,b). This is typically not the case in practice. In fact, the inference of Kt
is the most important goal in the inference of local intrinsic stationarity; the pa-
rameter α(t) is a quantity of interest that describes the smoothness of the surface
of Y at location t while �t describes the anisotropy of the local intrinsic station-
arity. This subsection discusses the estimation of α(t),�t and Rt. Assume that
g(0, t,h) �= 0, which is guaranteed by α(t) not equal to an even integer.

First, one might wonder why consistent estimation of α(t) and �t can be
achieved at all. To provide some intuition, let us consider a stationary Gaussian
process X with mean zero and satisfying

Var
(

hX(t)

)= �(h)|h|α,

where � and α does not dependent on t. Then

log
(

hX(t)

)2 = log�(h) + α log |h| + logχ2,

where χ2 is distributed as χ2 with one degree of freedom. Thus, α and �(h) are
the slope and intercept of a linear model. Together with the fact that increments
are weakly dependent, one can be assured that α and �(h) can be consistently
estimated by ordinary least squares [cf. Davies and Hall (1999)]. Although local
intrinsic stationarity is considerably more general than stationarity, with modifica-
tion the intuition above still applies in a local sense. We stress, however, that our
estimation approach is not directly linked to this intuition.
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Next, we proceed to show that the basic asymptotic theory described in Sec-
tion 2.1 leads to a host of conclusions. To address the inference of Kt, we begin
with an idea in Chan and Wood (2000). Define

ξ(t,h;n,b) = Rt(1/n)β̂0(t,h;n,b).

Note that, by (8) and (16), ξ(t,h;n,b) depends only on data and not on any un-
known parameters. Let

α̂(t,h;n,b) = log ξ(t,h;n,b) − log ξ(t,h;2n,b)

log 2
.

Write

α̂(t,h;n,b) − α(t) = A1 + A2,

where

A1 = logRt(1/n) − logRt(1/(2n))

log 2
− α(t)

and

A2 = log(1 + β̂0(t,h;n,bn)−g(0,t,h)
g(0,t,h)

) − log(1 + β̂0(t,h;2n,b2n)−g(0,t,h)
g(0,t,h)

)

log 2
.

By (4) A1 = O(Q(n−1)), and by the asymptotic theory for β̂0(t,h;n,b) we deduce

A2 = O
(
β̂0(t,h;n,bn) − g(0, t,h) + β̂0(t,h;2n,b2n) − g(0, t,h)

)
.

Thus,

α̂(t,h;n,b) − α(t) = Op

(
εn(h)

)
,(14)

where εn(h) := E1/2{β̂0(t,h;n,bn) − g(0, t,h)}2.
Suppose that �t(h0) = 1; the sign of �t is determined by α(t). Then

ξ(t,h;n,b)

ξ(t,h0;n,b)
= β̂0(t,h;n,b)

β̂0(t,h0;n,b)
= �t(h)

(|h|/|h0|)α(t) + Op

(
εn(h) ∨ εn(h0)

)
.

It follows that

ξ(t,h;n,b)|h0|α̂(t,h;n,b)

ξ(t,h0;n,b)|h|α̂(t,h;n,b)
= �t(h) + Op

(
εn(h) ∨ εn(h0)

)
.

Next, for any fixed u �= 0, define

K̂t(u/n) = ξ(t,h;n,b)|u|α̂(t,h;n,b)∑q
i=0

∑q
j=0(−1)i+j

(q
i

)(q
j

)|(i − j)h|α̂(t,h;n,b)
.

It follows from (14) and the asymptotic theory for β̂0(t,h;n,b) that

K̂t(u/n) = �t(h)Rt(1/n)|u|α(t)(1 + Op

(
εn(h)

))
.(15)
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By (4),

Kt(u/n) = �t(u)Rt
(|u|/n

)
= �t(u)Rt(1/n)|u|α(t)(1 + O

(
Q
(
n−1))).

Thus,

K̂t(u/n)

Kt(u/n)
= 1 + O

(
Q
(
n−1))+ Op

(
εn(h)

)
.

Similarly, by (3) and (4),

R(t, t + u/n) = �t(u)Rt(1/n)|u|α(t)(1 + O
(
Q
(
n−1))+ O

(
n−γ ))

and, therefore,

K̂t(u/n)

R(t, t + u/n)
= 1 + O

(
Q
(
n−1))+ O

(
n−γ )+ Op

(
εn(h)

)
.

3. A general limit theorem. We present in this section the technical results
that lead to the asymptotic properties of β̂(t,h;n,b) for a fixed h. For convenience,
we will suppress h in the quantities Wn(t,h),μn(t,h),Cn(t, s,h), g(u, t,h) and
β̂(t,h;n,b) and refer to them as Wn(t),μn(t),Cn(t, s), g(u, t) and β̂(t;n,b), re-
spectively. Then the following conditions [W1]–[W5] summarize what we know
about Wn(t) from Theorem 1 and the assumptions stated just before Section 2.1:

[W1] Wn(t) is a Gaussian process on � = [0,1]d and is observed for all t ∈ Gn.
[W2] The mean function μn(t) satisfies μn(t) = O(δn) uniformly in t for a

constant δn.
[W3] There exists a function g(u, t) such that limn→∞ Cn(t, t+u/n) = g(u, t).

The convergence is uniform for all t, t+u/n ∈ � with |u| ≤ τ for any given τ > 0.
[W4] Define g(t) = g(0, t) with g(u, t) in [W3]. g(t) is twice continuously

differentiable and there exists a constant ρn that tends to zero and such that
Cn(t, t) = g(t) + O(ρn) uniformly in t.

[W5] There exist a constant ψ ∈ (d,∞) and positive constants ε, τ and cψ such
that |Cn(t, t+u/n)| ≤ cψ |u|−ψ for all n and t, t+u/n ∈ � such that τ ≤ |u| ≤ εn.

We will develop our asymptotic theory by focusing directly on [W1]–[W5]. This
dis-association with the inference of local intrinsic stationarity potentially widens
the scope of our results. From now on, β̂(t;n,b) denotes the local linear estimator
defined in (11) but with the abstract process Wn(t) replacing Wn(t,h); accordingly,
let β̂0(t;n,b) be the first element of β̂(t;n,b). Then β̂(t;n,b) estimates

β(t) :=
(
g(t),

∂

∂t1
g(t),

∂

∂t1
g(t), . . . ,

∂

∂t1
g(t)

)
,

and can be written as

β̂(t;n,b) = (
X′KX

)−1
X′KW 2,(16)
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where X is a matrix with rows (1, ti1 − t1, ti2 − t2, . . . , tid − td), K is a diagonal
matrix with entries k( ti−t

b
), and W 2 is a column vector with entries W 2

n (ti ).

To address the bias β̂(t;n,b), we first introduce some notation. Let j1, . . . , j�

be distinct integers in {1, . . . , d} and m1, . . . ,m� be positive integers. Define

S
m1···m�

j1···j�
= S

m1···m�

j1···j�
(t, b) =∑

i

k

(
ti − t

b

)
(tij1 − tj1)

m1 · · · (tijk
− tj�

)m�,

(17)
κ

m1···m�

j1···j�
= κ

m1···m�

j1···j�
(t, b) =

∫
[−t/b,(1−t)/b]

k(z)zm1
j1

· · · zm�

j�
dz,

where [− t
b
, 1−t

b
] :=∏d

j=1[− tj
b
,

1−tj
b

]. Note that κ
m1···m�

j1···j�
depends on t, b only if t

is a “boundary point” in the sense that min1≤j≤d tj ≤ b or max1≤j≤d tj ≥ 1 − b.
For nonboundary points, we simply have

κ
m1···m�

j1···j�
=
∫

k(z)zm1
j1

· · · zm�

j�
dz.

Also, write

S = S(t, b) =∑
i

k

(
ti − t

b

)
,

(18)
κ = κ(t, b) =

∫
[−t/b,(1−t)/b]

k(z) dz.

Define

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ κ1
1 κ1

2 · · · κ1
d

κ1
1 κ2

1 κ11
12 · · · κ11

1d

κ1
2 κ11

12 κ2
2 · · · κ11

2d

...
...

...
. . .

...

κ1
d κ11

1d κ11
2d · · · κ2

d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Ni,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ11
ij

κ111
ij1

κ111
ij2

...

κ111
ijd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

THEOREM 2. Assume that the assumptions [W1]–[W4] hold for t ∈ �, and n

and b satisfy b → 0 and nb → ∞. Then

Eβ̂(t;n,b) = β(t) + diag(b2, b, . . . , b)

2
K−1

d∑
j,k=1

∂2

∂tj ∂tk
g(t)Nj,k

(19)
+ {

o(1) + b−2O
(
ρn ∨ δ2

n

)}(
b2, b, . . . , b

)′
,

and, in particular,

Eβ̂0(t;n,b) = g(t) + b2

2

[
K−1]

1·
d∑

j,k=1

∂2

∂tj ∂tk
g(t)Nj,k + o

(
b2)+ O

(
ρn ∨ δ2

n

)
,
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where [K−1]1· denotes the first row of K−1. These results hold uniformly for t ∈ �

in the sense that the constants in the big-o and little-o terms do not depend on t.

Next, we consider the variance of β̂0(t;n,b). Let

β̃(t;n,b) = (
X′KX

)−1
X′KW̃ 2,

where W̃ 2 is a vector with entries W̃ 2
n (ti ) := (Wn(ti ) − μn(ti ))2. Define

k̄(z) = k(z)

(
K−1

1,1 +
d∑

j=1

K−1
1,1+j zj

)
,

A(t, b) = 2
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑
j∈Zd

g2(t, j).

Note that, by Fatou’s lemma and [W5],∑
j∈Zd

g2(t, j) ≤ lim inf
n→∞

∑
j∈Zd

C2
n(t, t + j/n) ≤ C

∞∑
j=1

jd−1−2ψ < ∞(20)

for some finite constant C.
Recall the definition of the “double factorial”:

j !! =
{

j (j − 2) · · ·3 · 1, for odd positive integer j ,

j (j − 2) · · ·4 · 2, for even positive integer j .

The following theorem establishes the behavior of the central moments of
β̃0(t;n,b).

THEOREM 3. Assume that assumptions [W1]–[W5] hold and that nb → ∞.
Then for x = 1,2, . . . and all t ∈ �,

lim
n→∞(nb)xd/2E

{
β̃0(t;n,b) −Eβ̃0(t;n,b)

A(t, b)1/2

}x

=
{0, for x odd,

(x − 1)!!, for x even.
(21)

As one can expect, the proof of Theorem 3 involves computing complicated
products of squared Gaussian random variables. This is done with Isserlis’ theo-
rem, or sometimes Wick’s theorem or Gaussian product moment theorem.

Note that the right-hand side of (21) contains the xth moments of the standard
normal distribution. Since the normal distribution is characterized by all its mo-
ments, standard weak convergence arguments entail that, for any t ∈ �,

Zn(t;n,b) := β̃0(t;n,b) −Eβ̃0(t;n,b)√
Var(β̃0(t;n,b))

d−→ N(0,1) as n → ∞(22)

under the conclusion of Theorem 3. This together with the bias calculations in
Theorem 2 lead to the asymptotic distribution of β̂0(t;n,b).
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THEOREM 4. Assume [W1]–[W5] hold for t ∈ �, and that n and b satisfy
b → 0 and nb → ∞. Then we have

(nb)d/2A−1/2(t, b)
{
β̂0(t;n,b) −Eβ̂0(t;n,b)

} d−→ N(0,1) as n → ∞,(23)

and, moreover,

β̂0(t;n,b) − g(t)
(24)

= b2

2

[
K−1]

1·
d∑

i,j=1

∂

∂ti

∂

∂tj
g(t)Ni,j + A1/2(t, b)

(nb)d/2 Zn(t;n,b) + R(t;n,b),

where

R(t;n,b) = o
(
b2)+ O

(
ρn ∨ δ2

n

)+ op

(
(nb)−d/2).

So far we have considered the asymptotic behavior of β̂0(t;n,b) for a single t.
Next, we consider the global asymptotic behavior of β̂0(t;n,b). Toward that end,
we add a mild assumption that the kernel k has a “product form”:

[K′] k(t) = ∏d
j=1 ki(ti) where for each i, ki is supported on [−1,1] with

ki(−1) = 0 and ki is continuously differentiable.

Let

Vn,b = max
{
1, (nb)d/2(logn)−1(b2 + ρn ∨ δ2

n

)}
.

THEOREM 5. Assume [W1]–[W5] and [K′] hold and that n and b satisfy n →
∞ and nb → ∞. Then for some C < ∞,

sup
t∈�

∣∣β̂0(t;n,b) − g(t)
∣∣≤ C(nb)−d/2(logn)Vn,b

eventually with probability 1.

4. Proofs.

4.1. Proof of Theorem 1. Since 

q
h/n annihilates polynomials up to degree

m − 1, we have

Cn(t, t + u/n,h)

= {
Rt
(
n−1)Rt+u/n

(
n−1)}−1/2

×
q∑

i=0

q∑
j=0

(−1)i+j

(
q

i

)(
q

j

)
R(t + jh/n, t + u/n + ih/n).
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By [R1], {
Rt
(
n−1)Rt+u/n

(
n−1)}−1/2

R(t + jh/n, t + u/n + ih/n)

= {
Rt
(
n−1)Rt+u/n

(
n−1)}−1/2

�t+jh/n

(
u + (i − j)h

)
×Rt+jh/n

(∣∣u + (i − j)h
∣∣/n

)(
1 + o

(
n−γ ))

= �t
(
u + (i − j)h

)∣∣u + (i − j)h
∣∣α(t)

(1 + ρn).

This proves (i).
For (ii), we follow the proof of the lemma of Anderes and Chatterjee (2009).

First, observe that we can write


h/n,1
h/n,2C(t, s) =
∫ 1/n

0

∫ 1/n

0

∂2

∂φ∂η
R(t + φh, s + ηh) dη dφ,

where 
h,1,
h,2 are difference operator with respect to t, s, respectively. Gener-
alizing this,



q
h/n,1


q
h/n,2C(t, s)

=
∫ 1/n

0
· · ·

∫ 1/n

0

∂2q

∂φ1 · · · ∂φq∂η1 · · · ∂ηq

R

(
t +

q∑
i=1

φih, s +
q∑

i=1

ηih

)
dφ dη(25)

=
∫ 1/n

0
· · ·

∫ 1/n

0
f (φ1 + · · · + φq, η1 + · · · + ηq) dφ dη,

where f (φ,η) := f (φ,η; t, s,h) = f (0,0; t + φh, s + ηh,h), as defined in [R2].
For t = s + u/n, with u = n(t − s) satisfying q|h|+ 1 < |u| < c2n− q|h|, we have

1

n
<

|u| − q|h|
n

≤ ∣∣t′ − s′∣∣< |u| + q|h|
n

< c2,

where t′ = t +∑q
i=1 φih, s′ = s +∑q

i=1 ηih. Thus, [R2] implies that∣∣f (φ1 + · · · + φq, η1 + · · · + ηq)
∣∣≤ c1Rt′

(∣∣t′ − s′∣∣)∣∣t′ − s′∣∣−2q
.(26)

Now, [R1] implies that{
Rt
(
n−1)Rt+u/n

(
n−1)}−1/2Rt′

(∣∣t′ − s′∣∣)∣∣t′ − s′∣∣−2q

(27)

∼ n2q

∣∣∣∣∣u + n

q∑
i=1

(φi − ηi)h

∣∣∣∣∣
α(t)−2q

.

Combining (25)–(27), for 2q|h| < |u| < c3n,∣∣Cn(t, t + u/n,h)
∣∣

= {
Rt
(
n−1)Rt+u/n

(
n−1)}−1/2



q
h/n,1


q
h/n,2C(t, t + u/n)

≤ c5
(|u| − q|h|)−ψ

for some finite c5. Thus, (ii) follows by adjusting the constant c5.
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4.2. Proof of Theorem 2.

LEMMA 1. For any nonnegative integers m1, . . . ,md ,∣∣∣∣∣n−db−d−∑d
�=1 m�

∑
i

k

(
ti − t

b

) d∏
�=1

t
m�

i� −
∫
[−t/b,(1−t)/b]

k(z)
d∏

�=1

z
m�

� dz

∣∣∣∣∣
≤ cn−1b−1,

for some finite constant c, uniformly for t ∈ �.

PROOF. Let Ci denote the d-dimensional cube with area n−d centered at ti
and f (z) = k(z)

∏d
�=1 z

m�

� . Changing variables with z = (s − t)/b,

b−d
∑
i

∫
Ci

f

(
s − t

b

)
ds = b−d

∫
[0,1]d

f

(
s − t

b

)
ds =

∫
[−t/b,(1−t)/b]

f (z) dz.

Thus, ∣∣∣∣∣n−db−d−∑d
�=1 m�

∑
i

k

(
ti − t

b

) d∏
�=1

t
m�

i� −
∫
[−t/b,(1−t)/b]

f (z) dz

∣∣∣∣∣
= b−d

∣∣∣∣n−d
∑
i

f

(
ti − t

b

)
−∑

i

∫
Si

f

(
s − t

b

)
ds
∣∣∣∣.

By the mean value theorem,∣∣∣∣f( ti − t
b

)
− f

(
s − t

b

)∣∣∣∣= ∣∣∣∣(s − ti
b

)′
(∇f )

(
z − t

b

)∣∣∣∣
for some z between s and ti , where ∇f is the gradient of f . For s ∈ Ci , | s−ti

b
| ≤

n−1b−1, and hence

b−d

∣∣∣∣n−d
∑
i

f

(
ti − t

b

)
−∑

i

∫
Si

f

(
s − t

b

)
ds
∣∣∣∣≤ n−1b−1‖∇f ‖∞,

where ‖∇f ‖∞ = maxz∈[−1,1]d |(∇f )(z)|. �

PROOF OF THEOREM 2. By Taylor’s theorem and the assumptions [W1]–
[W4],

E
{
W 2

n (ti )
}= Cn(ti , ti) + μ2(ti )

= g(t) + (ti − t)′∇g(t) + 1
2(ti − t)′Hg(t)(ti − t)(28)

+ o
(|ti − t|2)+ O

(
ρn ∧ δ2

n

)
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uniformly for t ∈ [0,1]d , where Hg is the Hessian of g. Define

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

S

S1
1

S1
2
...

S1
d

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Mi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1
i

S11
i1

S11
i2
...

S11
id

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ni,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11
ij

S111
ij1

S111
ij2

...

S111
ijd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ni,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ11
ij

κ111
ij1

κ111
ij2

...

κ111
ijd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we use the notation defined in (17) and (18). It then follows from (28) that

X′KE
(
W 2)

(29)

= g(t)M0 +
d∑

i=1

∂

∂ti
g(t)Mi + 1

2

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t)Ni,j + R,

where

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i

k

(
ti − t

b

){
o
(|ti − t|2)+ O

(
ρn ∧ δ2

n

)}
∑
i

k

(
ti − t

b

)
ti1
{
o
(|ti − t|2)+ O

(
ρn ∧ δ2

n

)}
...∑

i

k

(
ti − t

b

)
tid
{
o
(|ti − t|2)+ O

(
ρn ∧ δ2

n

)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(30)

Note that M�, 0 ≤ � ≤ d , are the columns of X′KX. Thus, (X′KX)−1X′KX =
Id+1 and we have (

X′KX
)−1

M� = e�+1, 0 ≤ � ≤ d,(31)

where ej is a column vector with a 1 in the j th row and zeros elsewhere. Combin-
ing (29) and (31),

(
X′KX

)−1
(
g(t)M0 +

d∑
i=1

∂

∂ti
g(t)Mi

)
= β(t).(32)

By Lemma 1, if we let D = diag(1, b, . . . , b),(
X′KX

)−1 = [
ndbdD

(
K + O

(
n−1b−1))D]−1

(33)
= n−db−dD−1(K−1 + O

(
n−1b−1))D−1.
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Also, by Lemma 1,
d∑

i,j=1

∂

∂ti

∂

∂tj
g(t)Ni,j

(34)

= ndbd+2D

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t)Ni,j + (nb)−1O

⎛⎜⎜⎜⎜⎝
ndbd+2

ndbd+3

...

ndbd+3

⎞⎟⎟⎟⎟⎠ .

Combining (33) and (34),(
X′KX

)−1
d∑

i,j=1

∂

∂ti

∂

∂tj
g(t)Ni,j

(35)

= b2D−1K−1
d∑

i,j=1

∂

∂ti

∂

∂tj
g(t)Ni,j + O

(
n−1b

)
D−11.

By (33) and (30),

(
X′KX

)−1
R =

⎛⎜⎜⎜⎜⎜⎝
o
(
b2)+ O

(
ρn ∧ δ2

n

)
o(b) + b−1O

(
ρn ∧ δ2

n

)
...

o(b) + b−1O
(
ρn ∧ δ2

n

)

⎞⎟⎟⎟⎟⎟⎠ .(36)

Thus, we obtain (19) by combining (32), (35) and (36), where the remainder term
in (35) can be absorbed by other terms using the assumptions on b and n. �

4.3. Proof of Theorem 3. We first discuss a result, known as Isserlis’ theorem
or Wick’s theorem, that can be applied to compute higher-order moments of the
multivariate normal distribution in terms of its covariance matrix.

THEOREM 6. Suppose m,n are nonnegative integers and at least one is
nonzero, and X1,X2, . . . ,Xm,Xm+1, . . . ,Xm+n are jointly Gaussian with mean
0. Then for n odd, we have

E

(
m∏

i=1

(
X2

i −E
(
X2

i

)) · n∏
j=1

Xm+j

)
= 0

and for n even,

E

(
m∏

i=1

(
X2

i −E
(
X2

i

)) · n∏
j=1

Xm+j

)

= ∑
(i1,i2),...,(i2m−1,i2m),(i2m+1,i2m+2),...,(i2m+n−1,i2m+n)

E(Xi1Xi2) · · ·

×E(Xi2m+n−1Xi2m+n
),
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where the sum is over all unique pairwise samplings from {1,1,2,2, . . . ,m −
1,m − 1,m,m,m + 1,m + 2, . . . ,m + n} such that no pairing has identical el-
ements. In particular,

E

(
m∏

i=1

(
X2

i −E
(
X2

i

)))= ∑
(i1,i2),...,(i2m−1,i2m)

E(Xi1Xi2) · · ·E(Xi2m−1Xi2m
),

where the sum is over all unique pairwise samplings from {1,1,2,2, . . . ,m −
1,m − 1,m,m} such that no pairing has identical elements.

PROOF. The proof is by induction on m. For m = 0 and arbitrary n, the result
is known as Isserlis’ or Wick’s theorem [cf. Isserlis (1918)]. Suppose the formulas
hold for 0,1,2, . . . ,m and arbitrary n. Then

E

(
m+1∏
i=1

(
X2

i −E
(
X2

i

)) · n∏
j=1

Xm+1+j

)

= E

(
m∏

i=1

(
X2

i −E
(
X2

i

)) · X2
m+1

n∏
j=1

Xm+1+j

)

−E
(
X2

m+1
) ·E( m∏

i=1

(
X2

i −E
(
X2

i

)) · n∏
j=1

Xm+1+j

)
and by the induction hypothesis, the above is 0 if n is odd and is equal to the
desired expression if n is even. �

PROOF OF THEOREM 3. By (33), for any v ∈ Rnd
, we can write[(

X′KX
)−1

X′Kv
]
1

= (nb)−d
∑
i

k

(
ti − t

b

){
K−1

1,1 +
d∑

j=1

K−1
1,j+1

(
tij − tj

b

)
+ O

(
(nb)−1)}vi

=: (nb)−d
∑
i

k̆

(
ti − t

b

)
vi.

Note that k̆ is uniformly bounded. Let

W̃n(t) = Wn(t) − μn(t),

and W̃ 2 denote the vector with elements W̃n(ti )2 and let β̃(t) be defined with
Wn(ti ) replaced by W̃n(ti ). Then we can write

β̃0(t) −Eβ̃0(t)

= [(
X′KX

)−1
X′K

(
W̃ 2 −EW̃ 2)]

1(37)

= (nb)−d
∑
i

k̆

(
ti − t

b

){
W̃ 2

n (ti) −EW̃ 2
n (ti )

}
.
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In this result, t is an arbitrary point in �. However, in the proof below we will
focus on the case where t is a grid point in Gn. If t is a nongrid point, then we can
work with the closest grid point and the bias can be absorbed by the rest of the
terms.

First, we will show that (21) holds for x = 2. Applying Theorem 6,

E
{
β̃0(t) −E

(
β̃0(t)

)}2 = 2(nb)−d
∑
i,j

k̆

(
ti − t

b

)
k̆

(
tj − t

b

)
C2

n(ti , tj ).(38)

Relabel the points ti as t + i/n with i in some subset of Zd . For a fixed positive m,
write

(nb)−d
∑
i,j

k̆

(
i

nb

)
k̆

(
j

nb

)
C2

n(t + i/n, t + j/n)

−
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑
j∈Zd

g2(t, j)

= εn,m,1 + εn,m,2 + εn,m,3 + εn,m,4 + εn,m,5,

where

εn,m,1 = (nb)−d

(∑
i,j

−∑
i

∑
j:|j−i|≤m

)
k̆

(
i

nb

)
k̆

(
j

nb

)
C2

n(t + i/n, t + j/n),

εn,m,2 = (nb)−d

(∑
i

∑
|j|≤m

k̆

(
i

nb

)
k̆

(
i + j
nb

)
C2

n

(
t + i/n, t + (i + j)/n

)

−∑
i

k̆2
(

i
nb

) ∑
|j|≤m

C2
n

(
t + i/n, t + (i + j)/n

))
,

εn,m,3 = (nb)−d
∑

i

k̆2
(

i
nb

) ∑
|j|≤m

C2
n

(
t + i/n, t + (i + j)/n

)
−
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑

|j|≤m

C2
n

(
t + i/n, t + (i + j)/n

)
,

εn,m,4 =
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑

|j|≤m

C2
n

(
t + i/n, t + (i + j)/n

)
−
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑

|j|≤m

g(t, j)2,

εn,m,5 =
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑

|j|≤m

g2(t, j) −
∫
[−t/b,(1−t)/b]

k̄2(z) dz
∑
j∈Zd

g2(t, j).
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We need to show that, for i = 1,2, . . . ,5,

lim
m→∞ lim sup

n→∞
εn,m,i = 0.(39)

First,

εn,m,1 = (nb)−d
∑

i

∑
|j|>m

k̆

(
i

nb

)
k̆

(
i + j
nb

)
C2

n

(
t + i/n, t + (i + j)/n

)
.

Take m > τ . By [W5],

sup
n

sup
j:|j|>m

C2
n(t + i/n, t + (i + j)/n)

|j|−2ψ
≤ c2

ψ.(40)

Thus,

εn,m,1 ≤ c2
ψ(nb)−d

∑
i

k̆

(
i

nb

) ∑
|j|>m

k̆

(
i + j
nb

)
|j|−2ψ.

We conclude that (39) holds for i = 1 using the facts that k̆ is bounded and sup-
ported on [−1,1]d , and

∑
|j|>m |j|−2ψ = O(md−1−2ψ) → 0 as m → ∞.

Next, since Cn(s, t), k and k′ are bounded,

|εn,m,2|
≤ (nb)−d

∑
i

∑
|j|≤m

k̆

(
i

nb

)∣∣∣∣k̆( i + j
nb

)
− k̆

(
i

nb

)∣∣∣∣C2
n

(
t + i/n, t + (i + j)/n

)
= O

(
(nb)−1),

which shows (39) for i = 2.
By Riemann approximation and the fact that k̆ and k̄ differ by O((nb)−1) uni-

formly, we conclude that (39) holds for i = 3. Finally, that (39) holds for i = 4
and 5 follow from [W3] and (20), respectively. Thus, the proof of (21) for x = 2 is
accomplished.

To show (21) for a general x > 2, let δij = k̆( ti−t
b

)1/2k̆(
tj−t

b
)1/2Cn(ti , tj ). By

Theorem 6, we can write

(nb)xd/2E
{
β̃0(t;n,b) −E

(
β̃0(t;n,b)

)}x
(41)

= (nb)−xd/2
∑

i1,...,ix

∑
Sx

δs1s2δs3s4 · · · δs2x−1s2x
,

where Sx is the set of all possible ways to make x pairs, {(s1, s2), . . . , (s2x−1, s2x)},
with sj chosen from Ix = {i1, i1, i2, i2, . . . , ix, ix} without replacement and mem-
bers within each pair must different.

To explain the ideas of the general proof, we first consider the cases x = 3 and 4.
For x = 3, for any given indices i1, i2, i3, the number of all possible pairings in
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Sx is 8, and each pairing can be expressed as {(j1, j2), (j2, j3), (j3, j1)}, where
(j1, j2, j3) is a permutation of (i1, i2, i3). Thus,∣∣∣∣ ∑

i1,i2,i3

∑
Sx

δs1s2δs3s4δs5s6

∣∣∣∣
= 8

∣∣∣∣ ∑
i1,i2,i3

δi1i2δi1i3δi2i3

∣∣∣∣
(42)

≤ 8
∑
i1,i2

|δi1i2 |
1

2

(∑
i3

δ2
i1i3

+∑
i3

δ2
i2i3

)
≤ 8c6c7(nb)d,

where c6 and c7 are finite bounds for
∑

i2
|δi1i2 | and

∑
i2

δ2
i1i2

, respectively, which
are guaranteed finite by [W5].

For x = 4, Sx contains only two possible configurations:{
(j1, j2), (j2, j3), (j3, j4), (j4, j1)

}
or

{
(j1, j2), (j2, j1), (j3, j4), (j4, j3)

}
,

where (j1, j2, j3, j4) is a permutation of (i1, i2, i3, i4). Separating the two cases,∑
i1,...,i4

∑
Sx

δs1s2δs3s4 · · · δs7s8

(43)
= 6

∑
i1,...,i4

δi1i2δi2i3δi3i4δi4i1 + 12
∑
i1,i2

δ2
i1i2

∑
i3,i4

δ2
i3i4

.

Similar to (42) the first term on the right is bounded by

6
∑

i1,i2,i3

|δi1i2δi2i3 |
1

2

(∑
i4

δ2
i3i4

+∑
i4

δ2
i4i1

)
≤ 6c2

6c7(nb)d .(44)

The second term on the right-hand side of (43) is 3A2(t, b)+O(n−1b−1) by proof
for the case x = 2 above.

Now consider any general x ≥ 3. Since each index ij appears exactly twice,
each pairing {(s1, s2), (s3, s4), . . . , (s2x−1, s2x)} can be partitioned into a collection
of subsets, “chains” of the form {(j1, j2), (j2, j3), . . . , (j�, j1)}. For convenience,
we say the chain {(j1, j2), (j2, j3), . . . , (j�, j1)} has length � ≥ 2. Then, similar to
(42) and (44),∣∣∣∣ ∑

j1,...,j�

δj1j2 · · · δj�j1

∣∣∣∣
≤ ∑

j1,...,j�−1

|δj1j2 · · · δj�−2j�−1 |
1

2

(∑
j�

δ2
j�−1j�

+∑
j�

δ2
j�j1

)
(45) ≤ c�−2

6 c7(nb)d

≤ c�
8(nb)d,

where c8 = max(1, c6, c7).
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For a given pairing {(s1, s2), (s3, s4), . . . , (s2x−1, s2x)}, suppose the partition
comprises of m chains with lengths �1, �2, . . . , �m, where �1 + · · · + �m = x. Then
from (45), ∣∣∣∣ ∑

i1,...,ix

δs1s2δs3s4 · · · δs2x−1s2x

∣∣∣∣≤ cx
8(nb)md

and we have

(nb)−xd/2
∣∣∣∣ ∑
i1,...,ix

δs1s2δs3s4 · · · δs2x−1s2x

∣∣∣∣≤ cx
8(nb)−(x−2m)d/2.(46)

If x > 2m, then this expression tends to 0. If x is even and m = x/2, then this
partition will contain x/2 chains of length 2 and, therefore,

(nb)−xd/2
∑

i1,...,ix

δs1s2δs3s4 · · · δs2x−1s2x

= (nb)−xd/2
(∑

i1,i2

δ2
s1s2

)x/2

= 2−x/2(A(t)
)x/2 + o(1).

Since the number of ways to obtain x/2 chains of length two from Ix is (2(x −
1)) · (2(x − 3)) · · ·2 = (x − 1)!!2x/2,

(nb)−xd/2
∑

i1,...,ix

δs1s2δs3s4 · · · δs2x−1s2x
= (x − 1)!!(A(t)

)x/2 + o(1).

If x is odd, then m cannot be equal to x/2 and, therefore,

(nb)−xd/2
∑

i1,...,ik

∑
Sx

δs1s2δs3s4 · · · δs2x−1s2x
→ 0.

�

4.4. Proof of Theorem 4. Since

W 2
n (t) −EW 2

n (t) = {
W̃ 2(t) −EW̃ 2(t)

}+ 2μn(t)
(
Wn(t) − μn(t)

)
,

by (37) we have

β̂0(t) −Eβ̂0(t) = {
β̃0(t) −Eβ̃0(t)

}+ Un(t),

where

Un(t) = 2(nb)−d
∑
i

k̆

(
ti − t

b

)
μn(ti)

{
Wn(ti ) − μn(ti )

}
.(47)
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Clearly, Un(t) has normal distribution with mean zero and variance

4(nb)−2d
∑
i

∑
j

k̆

(
ti − t

b

)
k̆

(
tj − t

b

)
μn(ti )μn(tj )Cn(ti , tj )

= O
(
(nb)−dδ2

n

)
,

and so

Un(t) = Op

(
(nb)−d/2δn

)
.(48)

Thus, (nb)d/2Un(t) = op(1) and (22) implies (23). To obtain (24), write

β̂0(t) − g(t)

= {
Eβ̂0(t) − g(t)

}+ {
β̂0(t) −Eβ̂0(t)

}
= {

Eβ̂0(t) − g(t)
}+ {

β̃0(t) −Eβ̃0(t)
}+ Un(t)(49)

= {
Eβ̂0(t) − g(t)

}+ A1/2(t, b)

(nb)d/2 Zn(t) + Un(t)

+
(

A1/2(t, b)

(nb)d/2 −
√

Var
(
β̃0(t)

))
Zn.

The rates of Eβ̂0(t) − g(t) and Un(t) are provided by Theorem 2 and (48), respec-
tively. By (21) with x = 2,

A1/2(t, b)

(nb)d/2 −
√

Var
(
β̃0(t)

)= (nb)−d/2(A1/2(t, b) −
√

(nb)d Var
(
β̃0(t)

))
= o

(
(nb)−d/2),

which completes the proof.

4.5. Proof of Theorem 5. For u = (u1, . . . , ud),v = (v1, . . . , vd) ∈ Rd and x ∈
R, u ≤ v means uj ≤ vj for all j and u ≤ x means uj ≤ x for all j . Also, for u ≤ v
let R(u,v) = {w : u ≤ w ≤ v}.

The following result is a byproduct of the proof of Theorem 3.

LEMMA 2. Assume that [W1]–[W5] hold. Then for sufficiently large n, there
is a constant c9 > 0 such that

(nb)−dx/2
∣∣∣∣E{ ∑

ti∈R(u,v)

(
W̃ 2

n (ti ) −EW̃ 2
n (ti )

)}x ∣∣∣∣≤ (2x − 1)!!cx
9,

uniformly for all x ≥ 2 and u,v ∈ [0,1]2 with |ui − vi | < 2b for i ≤ d .
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PROOF. As in the proof of Theorem 3, write

E

{ ∑
ti∈R(u,v)

(
W̃ 2

n (ti ) −EW̃ 2
n (ti)

)}x

= ∑
ti1 ,...,tix ∈R(u,v)

∑
S

δs1s2δs3s4 · · · δs2x−1s2x
,

where S is the set of all possible ways to make x pairs, {(s1, s2), . . . , (s2x−1, s2x)},
with sj chosen from Ix = {i1, i1, i2, i2, . . . , ix, ix} without replacement and each
pair must be of different indices. By (46),

(nb)−xd/2
∣∣∣∣ ∑
ti1 ,...,tix ∈R(u,v)

δs1s2δs3s4 · · · δs2x−1s2x

∣∣∣∣≤ cx
8(nb)−(x−2m)d/2,(50)

where m is the number of chains in s1, . . . , s2x . If x is even, the right-hand side
is maximized if m = x/2. Taking into account that the number of pairings in S is
bounded above by (2x − 1)!!, we have for x even,

(nb)−xd/2E

{ ∑
ti∈R(u,v)

(
W̃ 2

n (ti ) −EW̃ 2
n (ti )

)}x

≤ cx
8(2x − 1)!!.(51)

For x odd, by the Cauchy–Schwarz inequality,∣∣∣∣E{ ∑
ti∈R(u,v)

(
W̃ 2

n (ti) −EW̃ 2
n (ti )

)}x ∣∣∣∣
≤ E1/2

{ ∑
ti∈R(u,v)

(
W̃ 2

n (ti ) −EW̃ 2
n (ti)

)}x−1

×E1/2
{ ∑

ti∈R(u,v)

(
W̃ 2

n (ti ) −EW̃ 2
n (ti)

)}x+1

,

and we apply (51) to obtain

(nb)−xd/2
∣∣∣∣E{ ∑

ti∈R(u,v)

(
W̃ 2

n (ti ) −EW̃ 2
n (ti)

)}x ∣∣∣∣≤ cx
8

√
2x + 1(2x − 1)!!.

Since
√

2x + 1 ≤ 2x , the theorem holds if we set c9 = 2c8. �

LEMMA 3. Assume that [K′] and [W1]–[W5] hold. Also assume that n and b

satisfy b → 0, nb → ∞. Then for some C < ∞,

sup
t∈�

∣∣∣∣ 1

(nb)d

∑
i

k

(
ti − t

b

)(
W̃ 2

n (ti ) −EW̃ 2
n (ti )

)∣∣∣∣≤ C(nb)−d/2 logn(52)

and

sup
t∈�

∣∣∣∣ 1

(nb)d

∑
i

k

(
ti − t

b

)
W̃n(ti )

∣∣∣∣≤ C(nb)−d/2 logn(53)

eventually with probability 1 as n → ∞.
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PROOF. We first consider (52). Let β̌0(t) = 1
ndbd

∑
i k( ti−t

b
)W̃ 2

n (ti ). By (K′),∫ 1
−1 |k′

i (t)|dt < ∞ for i = 1,2, . . . , d and so ki has bounded variation. Then we can
write ki = ki,1 − ki,2 where ki,1 and ki,2 are monotone increasing with ki,1(−b) =
ki,2(−b) = 0. Define

β̌0j(t) = 1

ndbd

∑
i

d∏
�=1

k�,j�
(ti� − t�)W̃

2
n (ti ),

where j = (j1, . . . , jd) with j� ∈ {1,2}, � = 1, . . . , d . Since β0j(t) is a finite linear
combination of β̌0j(t), we can just focus on the latter.

Let 1(·) denote the indicator function, and write

β̌0j(t) = 1

ndbd

∑
i

1(−b ≤ ti − t ≤ b)

d∏
�=1

∫ ti�−t�

−b
dk�,j�

(v�)W̃
2
n (ti )

= 1

ndbd

∫
[−b,b]d

∑
i

W̃ 2
n (ti )1(v ≤ ti − t ≤ b)dk1,j1(v1) · · ·dkd,jd

(vd)

= 1

ndbd

∫
[−b,b]d

∑
i

W̃ 2
n (ti )1(t + v ≤ ti ≤ t + b)dk1,j1(v1) · · ·dkd,jd

(vd).

Now let

Gn(u,v) = 1

ndbd

∑
i

W̃ 2
n (ti )1(u ≤ ti ≤ v) and G(u,v) = EGn(u,v).

Then

β̂0j(t) −Eβ̂0j(t)

=
∫
[−b,b]d

(
Gn(t + v, t + b) − G(t + v, t + b)

)
dk1,j1(v1) · · ·dkd,jd

(vd),

and we have

sup
t∈�

∣∣β̌0j(t) −Eβ̌0j(t)
∣∣

≤ sup
t∈�

sup
0≤u≤2b

∣∣Gn(t, t + u) − G(t, t + u)
∣∣ d∏
�=1

∫ b

−b
dk�,j�

,

where
∏d

�=1
∫ b
−b dk�,j�

= ∏d
�=1{k�,j�

(b) − k�,j�
(−b)} < ∞. Thus, it is suffi-

cient to focus on the rate of supt∈� sup0≤u≤2b |Gn(t, t + u) − G(t, t + u)|.
Now define the cubes

∏d
j=1[sj , sj + [(2b)−1]−1] where sj ∈ {�[(2b)−1]−1, � =

0,1, . . . , [(2b)−1] − 1}. For convenience, denote the cubes as Cq . Divide Gn into
subgrids Gn,q where Gn,q contains all the points in Gn ∩ Cq . The number of points
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in each Gn,q is asymptotically (2nb)d . Denote the grid point in Gn,q that is closest
to 0 by sq . It is easy to see that

sup
t∈�

sup
0≤u≤2b

∣∣Gn(t, t + u) − G(t, t + u)
∣∣

(54)
≤ 22d max

q
max

ti∈Gn,q

∣∣Gn(sq, ti) − G(sq, ti)
∣∣.

By Lemma 2 and the Markov inequality, for ti ∈ Gn,q ,

P

(
22d(nb)d/2

logn

∣∣Gn(sq, ti) − G(sq, ti)
∣∣> (d + 2)c10

)

= P

(
exp

{
22d(nb)d/2

c10

∣∣Gn(sq, ti) − G(sq, ti)
∣∣}> e(d+2) logn

)

≤ e−(d+2) logn
∞∑

x=0

1

x!E
(

22d(nb)d/2

c10

∣∣Gn(sq, ti) − G(sq, ti)
∣∣)x

≤ e−(d+2) logn
∞∑

x=0

1

x!
(

22d

c10

)x

(2x − 1)!!cx
9

≤ (
1 − 22d+1c9/c10

)−1
n−(d+2)

so long as c10 > 22d+1c9. Consequently,

∞∑
n=1

P

(
(nb)d/2

logn
sup
t∈�

sup
0≤u≤2b

∣∣Gn(t, t + u) − G(t, t + u)
∣∣> (d + 2)c10

)

≤ (
1 − 22d+1c9/c10

)−1
∞∑

n=1

∑
q

∑
ti∈Gn,q

n−(d+2)

= (
1 − 22d+1c9/c10

)−1
∞∑

n=1

n−2 < ∞.

Applying the Borel–Cantelli lemma, we conclude that for some C ∈ (0,∞),

(nb)d/2

logn
sup
t∈�

sup
u≤2b,u>0

∣∣Gn(t, t + u) − G(t, t + u)
∣∣≤ C

eventually w.p.1. This completes the proof of (52).
The proof of (53) is similar but easier. Since W̃n(t) is a Gaussian process with

mean zero and covariance Cn, for x even we have

E

{∑
i

k

(
ti − t

b

)
W̃n(ti )

}x

= x!!
{∑

i,j

k

(
ti − t

b

)(
ti − t

b

)
Cn(ti , tj )

}x/2

.
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Since ∑
i,j

k

(
ti − t

b

)(
ti − t

b

)
Cn(ti , tj ) = O

(
(nb)d

)
,

there exists some C < ∞ such that

E

{
1

(nb)d/2

∑
i

k

(
ti − t

b

)
W̃n(ti )

}x

≤ x!!Cx.

The rest of the proof follows in the same way as in (52). �

PROOF OF THEOREM 5. As in (49), write

β̂0(t) − g(t) = {
Eβ̂0(t) − g(t)

}+ {
β̃0(t) −Eβ̃0(t)

}+ Un(t).

The first term on the right is the bias, which is handled by Theorem 2. Replacing
k with k̆ in (52) of Lemma 3, we conclude that there exists C < ∞ such that

sup
t∈�

∣∣β̃0(t) −Eβ̃0(t)
∣∣≤ C(nb)−d/2 logn

eventually with probability 1 as n → ∞. Similarly, replacing k((ti − t)/b) with
k((ti − t)/b)μn(ti) in (53), we conclude that there exists C < ∞ such that

sup
t∈�

∣∣Un(t)
∣∣≤ Cδn(nb)−d/2 logn

eventually with probability 1 as n → ∞. �

4.6. Deformation process and multifractional Brownian motion. This subsec-
tion is devoted to the proofs of the conditions [R1] and [R2] for the deformation
process and multi-fractional Brownian introduced in Section 1.

Deformation process. We first consider the deformation process Y(t) =
X(F(t)) where X is stationary and whose covariance of X satisfies the right-hand
side of (6) and F is a one-to-one and 2(k + 1)-times differentiable function from
Rd to Rd . Recall that we let k < ν < k + 1 for some nonnegative integer k so that
�ν	 = k + 1.

Write F(t) = (F1(t), . . . ,Fd(t)), and define F
(�)
j (t) = ∂�d

∂t
�d
d

· · · ∂�1

∂t
�1
1

Fj (t) where

∂0

∂t0
j

is interpreted as 1. Also, for h = (h1, . . . , hd) ∈ Rd and � = (�1, . . . , �d) ∈
{0,1,2, . . .}d , let |�| =∑

j �j and h� = h
�1
1 · · ·h�d

d . It follows from Taylor’s theo-
rem that

7Fj (t + h) − Fj (t) =
2k+2∑
|�|=1

1

|�|!F
(�)
j (t)h� + o

(|h|2k+2).
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Thus,

∣∣F(t + h) − F(t)
∣∣2 =

d∑
j=1

(2k+2∑
|�|=1

1

|�|!F
(�)
j (t)h�

)2

+ o
(|h|2k+3),

and for s = 1, . . . , k + 1,∣∣F(t + h) − F(t)
∣∣2s

=
2k+2∑

|�1|+···+|�2s |=2s

h�1+···+�2s

|�1|! · · · |�2s |!
s∏

r=1

d∑
j=1

F
(�2r−1)

j (t)F (�2r )
j (t) + O

(|h|2k+3).
On the other hand, with J t

F denoting the Jacobian of F at t,

F(t + h) − F(t) = J t
F h + O

(|h|2),
and hence ∣∣F(t + h) − F(t)

∣∣2ν = ∣∣J t
F h
∣∣2ν + O

(|h|2ν+1),
where |J t

F h|2 =∑d
j=1(

∑
|�|=1 F

(�)
j (t)h�)2. Since 2ν + 1 ≤ �2ν + 1	 = �2ν	 + 1,

we can write

C(t, t + h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0 + c2ν

∣∣J t
F h
∣∣2ν + O

(|h|2ν+1), ν ≤ 1/2,

c0 +
�2ν	∑
|�|=2

b�(t)h� + c2ν

∣∣J t
F h
∣∣2ν + O

(|h|2ν+1) ν > 1/2,
(55)

as h → 0 for some functions b�. Using the fact that the covariance function is
symmetric, it is straightforward to verify that [R1] holds with r = �2ν	, α(t) ≡
2ν, γ (t) ≡ 1 and �t(h) = c2ν |J t

F h|.
Multifractional Brownian motion. Assume that H(t) is three times differen-

tiable and |t| bounded away from 0. It is easy to verify that

D(k)(x) =
∫
Rd

(1 − eiu1)(− log |u|)k
|u|x+d

du,

which is well defined for x ∈ (0,1). Holding t fixed, it follows that

|t|H(s)+H(t) = |t|2H(t)e{H(s)−H(t)} log |t|

= |t|2H(t)

(
1 +

2∑
|�|=1

f (�)(t)(s − t)�

|�|! + O
(|s − t|3))

and

D
(
H(s) + H(t)

)=
(
D
(
2H(t)

)+ 2∑
|�|=1

g(�)(t)(s − t)�

|�|! + O
(|s − t|3)),
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where f (s) = e{H(s)−H(t)} log |t| and g(s) = D(H(s) + H(t)). Thus,

D
(
H(s) + H(t)

)|t|H(s)+H(t) =
2∑

|�|=0

b�(t)s� + (|t|2H(t) + D
(
2H(t)

))
O
(|s − t|3),

and, by symmetry, we also have

D
(
H(s) + H(t)

)|s|H(s)+H(t) =
2∑

|�|=0

b�(s)t� + (|s|2H(s) + D
(
2H(s)

))
O
(|s − t|3).

Similarly,

D
(
H(s) + H(t)

)|s − t|H(s)+H(t)

= |s − t|2H(t)D
(
2H(t)

)+ O
(|s − t|2H(t)+1 log

(|s − t|)).
It is straightforward to check that r = 2,�t(h) = D(2H(t)) for all h, α(t) = 2H(t)
and γ is any constant less than 1.
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