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MARGINALIZATION AND CONDITIONING FOR LWF
CHAIN GRAPHS1

BY KAYVAN SADEGHI

University of Cambridge

In this paper, we deal with the problem of marginalization over and con-
ditioning on two disjoint subsets of the node set of chain graphs (CGs) with
the LWF Markov property. For this purpose, we define the class of chain
mixed graphs (CMGs) with three types of edges and, for this class, provide a
separation criterion under which the class of CMGs is stable under marginal-
ization and conditioning and contains the class of LWF CGs as its subclass.
We provide a method for generating such graphs after marginalization and
conditioning for a given CMG or a given LWF CG. We then define and study
the class of anterial graphs, which is also stable under marginalization and
conditioning and contains LWF CGs, but has a simpler structure than CMGs.

1. Introduction. Graphical models use graphs, in which nodes are random
variables and edges indicate some types of conditional dependencies. Mixed
graphs, which are graphs with several types of edges, have started to play an im-
portant role in graphical models as they can deal with more complex independence
structures that arise in different statistical studies.

The first example of mixed graphs in the literature appeared in [11]. This was
a chain graph (CG) with a specific interpretation of conditional independence,
which is now generally known as the Lauritzen–Wermuth–Frydenberg or LWF in-
terpretation. A formal interpretation, that is, a Markov property, was later provided
by [5]. This Markov property, together with other properties such as the factoriza-
tion property was extensively discussed in [9]. By the term LWF CGs, one refers to
the class of CGs with a specific independence structure that comes from the LWF
Markov property.

It has become apparent that CGs with the LWF interpretation of independen-
cies are important tools in capturing conditional independence structure of various
probability distributions. For example, Studený and Bouckaert [24] showed that
for every CG, there exists a strictly positive discrete probability distribution that
embodies exactly the independence statements displayed by the graph, and Peña
[15] proved that almost all the regular Gaussian distributions that factorize with
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respect to a chain graph are faithful to it. This means that a Gaussian distribution
chosen at random to factorize as specified by the LWF CG will have the indepen-
dence structure of the graph and will satisfy no more independence constraints.

However, in the corresponding models to LWF CGs, when some variables are
unobserved—also called latent or hidden—or when some variables are set to spe-
cific values, the implied independence structure, that is, the corresponding inde-
pendence structure after marginalization and conditioning respectively, is not well
understood.

The same problem for the well-known class of directed acyclic graphs (DAGs),
which is a subclass of LWF CGs, has been a subject of study, and several classes
of graphs have been defined in order to capture the marginal and conditional inde-
pendence structure of DAGs. These include MC graphs [8], ancestral graphs [18]
and summary graphs [26]; see also [19]. There is also a literature pertaining to this
problem for other types of graphs; see, for example, the class of marginal AMP
chain graphs in [16] for marginalization in AMP chain graphs [1].

For LWF CGs, as it will be shown in this paper, one can capture the indepen-
dence structure induced by conditioning on some variables by another LWF CG,
but in general cannot capture the independence structure induced by marginaliza-
tion over some variables by a CG. In this sense, CGs are stable under conditioning
but not under marginalization.

Indeed models with latent variables do not necessarily possess the desirable
statistical properties of graphical models without latent variables, such as identifi-
ability, existence of a unique MLE, or being curved exponential families in some
cases such as DAGs; see, for example, [6].

However, a first step in dealing with this problem is, in the case of marginaliza-
tion, to come up with a more complex class of graphs with a certain independence
interpretation that captures the marginal independence structure of CGs; and in
both cases of marginalization and conditioning, to provide methods by which the
graphs that capture the marginal and conditional independence structure are gen-
erated. These are the main objectives of the current paper.

In the causal language (see, e.g., [13]) the resulting classes of graphs give a
simultaneous representation to “direct effects”, “confounding”, and “non-causal
symmetric dependence structures”.

It is important to note that the classes of graphs introduced here only deals
with the conditional independence constraints, and not other constraints such as
so-called Verma constraints [25]. The actual statistical model is much more com-
plicated even when marginalizing DAGs; see, for example, [21].

The introduction of these classes of graphs is also justified in the paper by show-
ing that, for large subclasses of these classes of graphs, there are probability dis-
tributions (in fact both Gaussian and discrete) that are faithful to them. Although
finding the explicit parametrizations for the defined graphs is beyond the scope
of this paper, it also seems possible to extend the existing parametrizations for
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smaller types of graph in the literature to these classes in a fairly natural way. We
will provide a discussion on this in the paper.

The structure of the paper is as follows: in the next section, we define mixed and
chain graphs, and, for these classes of graphs, give graph theoretical definitions
needed in this paper. In Section 3, we provide two equivalent ways for reading off
independencies from a CG based on the LWF Markov property. In Section 4, we
define the class of chain mixed graphs with certain independence interpretation,
and show that they capture the marginal independence structure of LWF CGs and
that they are stable under marginalization, and provide an algorithm for generating
such graphs after marginalization. In Section 5, we show that the class of CMGs is
also stable under conditioning, provide the corresponding algorithm, and combine
marginalization and conditioning for CMGs. As a corollary, we see that LWF CGs
are stable under conditioning. In Section 6, we define the class of anterial graphs
as a subclass of CMGs, which also contains LWF CGs, and show that this class
is stable under marginalization and conditioning. We also provide an algorithm
for marginalization and conditioning for this class. In Section 7, we discuss the
implications of the results for probabilistic independence models that are faithful
to LWF CGs, and possible ways to generalize the parametrizations existing in the
literature for CMGs and anterial graphs. In the Appendix in the supplementary
material [20], we provide proofs of non-trivial lemmas, propositions and theorems
in the paper as well as some more technical and yet less informative lemmas that
are used in the proofs.

2. Definitions for mixed graphs and chain graphs.

2.1. Basic graph theoretical definitions. A graph G is a triple consisting of a
node set or vertex set V , an edge set E, and a relation that with each edge associates
two nodes (not necessarily distinct), called its endpoints. When nodes i and j are
the endpoints of an edge, these are adjacent and we write i ∼ j . We say the edge
is between its two endpoints. We usually refer to a graph as an ordered pair G =
(V ,E). Graphs G1 = (V1,E1) and G2 = (V2,E2) are called equal if (V1,E1) =
(V2,E2). In this case, we write G1 = G2.

Notice that graphs that we use in this paper (and in general in the context
of graphical models) are so-called labeled graphs, that is, every node is consid-
ered a different object. Hence, for example, graph i j k is not equal to
j i k.

Here, we introduce some basic graph theoretical definitions. A loop is an edge
whose endpoints are equal. Multiple edges are edges whose endpoints are the same
as each other. A simple graph has neither loops nor multiple edges. A complete
graph is a simple graph with all pairs of nodes adjacent.

A subgraph of a graph G1 is graph G2 such that V (G2) ⊆ V (G1) and E(G2) ⊆
E(G1) and the assignment of endpoints to edges in G2 is the same as in G1. An
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induced subgraph by a subset A of the node set is a subgraph that contains the
node set A and all edges between two nodes in A.

A walk is a list 〈i0, e1, i1, . . . , en, in〉 of nodes and edges such that for 1 ≤ m ≤ n,
the edge em has endpoints im−1 and im. A path is a walk with no repeated node or
edge. A cycle is a walk with no repeated node or edge except i0 = in. If the graph
is simple then a path or a cycle can be determined uniquely by an ordered sequence
of nodes. Throughout this paper, however, we use node sequences to describe paths
and cycles even in graphs with multiple edges, but we assume that the edges of the
path are all determined. It is usually apparent from the context or the type of the
path which edge belongs to the path in multiple edges. We say a walk or a path is
between the first and the last nodes of the list in G. We call the first and the last
nodes endpoints of the walk or of the path. All other nodes are the inner nodes.

For a walk or path π = 〈i1, . . . , in〉, any subsequence 〈ik, ik+1, . . . , ik+p〉, 1 ≤
k, k + p ≤ n, whose members appear consecutively on π , defines a subwalk or a
subpath of π , respectively.

2.2. Some definitions for mixed graphs. A mixed graph is a graph containing
three types of edges denoted by arrows, arcs (two-headed arrows), and lines (solid
lines). Mixed graphs may have multiple edges of different types but do not have
multiple edges of the same type. We do not distinguish between i j and j i

or i≺ �j and j ≺ �i, but we do distinguish between j �i and i �j . In this
paper, we are only considering mixed graphs that do not contain loops of any type.
These constitute the class of loopless mixed graphs.

For mixed graphs, we say that i is a neighbor of j if these are endpoints of a
line, and i is a parent of j and j is a child of i if there is an arrow from i to j .
We also define that i is a spouse of j if these are endpoints of an arc. We use the
notation ne(j), pa(j), and sp(j) for the set of all neighbors, parents, and spouses
of j , respectively.

In the cases of i �j or i≺ �j , we say that there is an arrowhead pointing to
(at) j .

A walk 〈i = i0, i1, . . . , in = j 〉 is directed from i to j if all ikik+1 edges are
arrows pointing from ik to ik+1. If there is a directed walk from j to i then j is
an ancestor of i and i is a descendant of j . We denote the set of ancestors of i

by an(i). Notice that, unlike some authors, we do not consider i to be in the set of
ancestors or descendants of i. Moreover, a cycle with the above property is called
a directed cycle.

A walk 〈i = i0, i1, . . . , in = j 〉 from i to j is a semi-directed walk if it only
consists of lines and arrows (it may contain only one type of edge), and every
arrow ikik+1 is pointing from ik to ik+1. Thus, a directed walk is a type of semi-
directed walk. We shall say that i is anterior of j if there is a semi-directed walk
from i to j . We use the notation ant(i) for the set of all anteriors of i. Notice again
that, similar to ancestors, we do not consider a node i to be an anterior of itself.
For a set of nodes A, we define ant(A) = ⋃

i∈A ant(i) \ A. Notice also that, since
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ancestral graphs have no arrowheads pointing to lines, our definition of anterior
extends the notion of anterior used in [18] for ancestral graphs. Moreover, a cycle
with the properties of semi-directed walks is called a semi-directed cycle.

A section of a walk in a mixed graph is a maximal subwalk that only consists of
lines. Thus, any walk decomposes uniquely into sections (that are not necessarily
edge-disjoint and may also be single nodes). Similar to nodes, all sections on a
walk between i and j are inner sections except those that contain i or j , which are
endpoint sections. As in any walk, we can also define the endpoints of a section.
A section ρ on a walk π is called a collider section if one of the three following
walks is a subwalk of π : i �ρ≺ j , i≺ �ρ≺ j , and i≺ �ρ≺ �j . All
other sections on π are called non-collider sections. We may speak of collider or
non-collider sections without mentioning the relevant walk when this is apparent
from context.

A trislide on a walk π is a subpath 〈i = i0, i1, . . . , in = j〉, where ii1 and in−1j

are arrows or arcs and the subpath ρ′ = 〈i1, . . . , in−1〉 is a section.
Three types of trislides i � ◦ · · · ◦ ≺ j , i≺ � ◦ · · · ◦

≺ j , and i≺ �◦ · · · ◦ ≺ �j are collider trislides and all other types
of trislides are non-collider on any walk of which the trislide is defined.

A tripath is a trislide where the subpath ρ′ is a single node. Note that [19] used
the term V-configuration for such a path. ([7] and most texts let a V-configuration
be a tripath with non-adjacent endpoints.) Tripaths and their inner nodes can be
defined to be colliders or non-colliders as trislides and their inner sections.

Two walks π1 and π2 (including trislides, tripaths or edges) between i and j

are called endpoint-identical if there is an arrowhead pointing to the endpoint
section containing i on π1 if and only if there is an arrowhead pointing to the
endpoint section containing i on π2; and similarly for j . For example, the paths
i �j , i k �l≺ �j and i �k≺ �l j are all endpoint-identical as
they have an arrowhead pointing to the section containing j but no arrowhead
pointing to the section containing i on the paths, but they are not endpoint-identical
to i k≺ �j .

2.3. Chain graphs. Chain graphs (CGs) consist of lines and arrows and do
not contain any semi-directed cycles with at least one arrow.

It is implied from the definition that CGs are characterized by having a node set
that can be partitioned into disjoint subsets forming so-called chain components.
These are connected subgraphs consisting only of undirected edges and are ob-
tained by removing all arrows in the graph. All edges between nodes in the same
chain component are lines, and all edges between different chain components are
arrows. In addition, the chain components can be ordered in such a way that all
arrows point from a chain with a higher number to one with a lower number.

For example, in Figure 1(a) the graph is a chain graph with chain components
τ1 = {l, j, k}, τ2 = {h,q}, and τ3 = {p}, but in Figure 1(b) the graph is not a chain
graph because of the existence of the 〈h, k, q〉 semi-directed cycle. If one replaces
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FIG. 1. (a) A CG. (b) A mixed graph that is not a CG.

every chain component with a single node, one obtains a directed acyclic graph
(DAG), a graph consisting exclusively of arrows and without any directed cycles.

Notice that generally CGs are defined to contain arrows and one symmetric type
of edge in their chain components (namely lines or arcs). In this sense, the type of
CG with which we deal in this paper is a line CG.

3. LWF Markov property for CGs. An independence model J over a set V

is a set of triples 〈X,Y |Z〉 (called independence statements), where X, Y , and Z

are disjoint subsets of V and Z can be empty, and 〈∅, Y |Z〉 and 〈X,∅ |Z〉 are al-
ways included in J . The independence statement 〈X,Y |Z〉 is interpreted as “X is
independent of Y given Z”. Notice that independence models contain probabilis-
tic independence models as a special case. For further discussion on independence
models, see [23].

A graph G also induces an independence model J (G). One way is by using
a separation criterion, which determines whether for three disjoint subsets A, B ,
and C of the node set of G, 〈A,B |C〉 ∈ J (G). Such a criterion verifies whether
A is separated from B by C in the sense that there are no walks or paths of specific
types between A and B given C in the graph. Such a separation is denoted by
A⊥B |C. It is clear that J (G) satisfies the global Markov property, which states
that if A⊥B |C in G then 〈A,B |C〉 ∈ J .

For CGs, at least four different separation criteria, that is, four different types
of global Markov property have been discussed in the literature. Drton [3] has
classified them as (1) the LWF or block concentration Markov property, (2) the
AMP or concentration regression Markov property, as defined and studied by [1],
(3) a Markov property that is dual to the AMP Markov property and (4) the mul-
tivariate regression Markov property, as introduced by [2] and studied extensively
recently; for example, see [12, 27].

In this paper, we are interested in the LWF Markov property, and we introduce
two equivalent separation criteria for this in this section. Henceforth, for the sake
of brevity, by CGs we refer to CGs with the LWF Markov property.

The moralization criterion for CGs was defined in [5] and is a generalization of
the moralization criterion for DAGs defined in [10]; see also [9]. The moral graph
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of a chain graph G, denoted by (G)m is a graph that consists only of lines and that
is generated from G as follows: for every edge ij in G there is a line ij in (G)m.
In addition, if nodes i and j are parents of the same chain component in G then
there is the line ij in (G)m.

Now let Gant(A∪B∪C) be the induced subgraph of G generated by ant(A ∪ B ∪
C). The moralization criterion states that for A, B and C, three disjoint subsets of
the node set of G, if there are no paths between A and B in (Gant(A∪B∪C))

m whose
inner nodes are outside C then A⊥ morB |C.

An equivalent criterion, called the c-separation criterion for CGs was defined
in [24]. Here, we present a simpler version of that criterion, presented in [22], with
a different notation and wording:

A walk π in a CG is a c-connecting walk given C if every collider section of π

has a node in C and all non-collider sections are outside C. A section on π is open
if either: it is a collider section and one of its nodes is in C; or it is a non-collider
section and all its nodes are outside C. Otherwise, it is blocked. We say that A and
B are c-separated given C if there are no c-connecting walks between A and B

given C, and we use the notation A⊥ cB |C.
Notice that, as mentioned in [24], there is potentially an infinite number of walks

and, therefore, this might not be an appropriate criterion for testing independen-
cies. Although, in this paper, we only use this criterion in order to prove our theo-
retical results regarding marginalization and conditioning, and an infinite number
of walks is not an issue for this purpose, in [22], it was shown that this criterion
can also be implemented with an algorithm.

For example, in the graph of Figure 2(a), the independence statement j ⊥h | l
does not hold. This can be seen by looking at the moral graph (Gant({j,h,l}))m =
(G{j,h,k,q,l,r})m in Figure 2(b), and observing that the inner nodes of the path
〈j, k, q,h〉 are outside the conditioning set. The same conclusion can be made
by looking at the walk 〈j, k, l, r, q, h〉, where the non-collider sections k and q are
outside the conditioning set, but the inner node l of the collider section 〈l, r〉 is in
the conditioning set.

The equivalence of the moralization criterion and the original c-separation cri-
terion was proven in Consequence 4.1 in [24]. The equivalence with the mentioned
simplified criterion was proven in [22]. We use the notation Jc(G) for the inde-
pendence model induced from G by the above criteria.

FIG. 2. (a) A chain graph G. (b) The moral graph (Gant({j,h,l}))m.
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We first prove the following lemma, which provides an equivalent type of walk
to c-connecting walks.

LEMMA 1. There is a c-connecting walk between i and j given C if and only
if there is a walk between i and j whose sections are all paths, and on which
nodes of every collider section are in C ∪ ant(C), and non-collider sections are
outside C. In addition, these walks can be chosen to be endpoint-identical.

Notice that by the same method as the proof of this lemma, one can always
assume that a section on a walk is a path. This is our assumption throughout the
paper unless otherwise stated.

4. Stability of CGs under marginalization and conditioning. For a subset
C of V , the independence model after conditioning on C, denoted by α(J ;∅,C),
is

α(J ;∅,C) = {〈A,B |D〉 : 〈A,B |D ∪ C〉 ∈ J and (A ∪ B ∪ D) ∩ C =∅

}
.

One can observe that α(J ;∅,C) is an independence model over V \ C.
We now present the definition of stability under conditioning [19]: Consider a

family of graphs T . If, for every graph G = (V ,E) ∈ T and every disjoint subsets
C of V , there is a graph H ∈ T such that J (H) = α(J (G);∅,C) then T is stable
under conditioning. Notice that the node set of H is V \ C.

We will see as a corollary of the results and algorithms in the next section that
CGs are stable under conditioning.

Similar to the conditioning case, for a subset M of V , the independence model
after marginalization over M , denoted by α(J ;M,∅), is defined by

α(J ;M,∅) = {〈A,B |D〉 ∈ J : (A ∪ B ∪ D) ∩ M = ∅

}
.

One can observe that α(J ;M,∅) is an independence model over V \ M .
The definition of stability under marginalization is defined similarly to the con-

ditioning case: for a family of graphs T , if, for every graph G = (V ,E) ∈ T
and every disjoint subsets C of V , there is a graph H ∈ T such that J (H) =
α(J (G);M,∅) then T is stable under marginalization. We see again that the node
set of H is N = V \ M .

CGs are not closed under marginalization. For example, it can be shown that G

in Figure 3 is a CG (in fact a DAG) whose induced marginal independence model
cannot be represented by a CG. We leave the details as an exercise to the reader.

FIG. 3. A chain graph G, by which it can be shown that the class of CGs is not stable under
marginalization. ( � �� ∈ M .)
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FIG. 4. (a) A CMG. (b) A mixed graph that is not a CMG.

Hence, we define a class of graphs that is stable under marginalization and con-
tains CGs: the class of chain mixed graphs (CMGs) is the class of mixed graphs
without semi-directed cycles with at least an arrow. Notice that we allow CMGs
to have multiple edges consisting of arcs and arrows and arcs and lines. This is a
generalization of chain graphs since if a CMG does not contain arcs then it is a
chain graph.

For example, in Figure 4(a) the graph is a CMG, but in Figure 4(b) the graph is
not a CMG because of the existence of the 〈h,p, q〉 semi-directed cycle.

We provide a c-separation criterion for CMGs, and using this, show that CMGs
are closed under marginalization. For this purpose, we provide in this section an
algorithm that, from a CMG (or a chain graph) G and after marginalization over
M , generates a CMG with the corresponding independence model after marginal-
ization over M .

We define a c-separation criterion for CMGs with exactly the same wordings as
that of CGs: a walk π in a CG is a c-connecting walk given C if every collider
section of π has a node in C and all non-collider sections are outside C. We say
that A and B are c-separated given C if there are no c-connecting walks between
A and B given C, and we use the notation A⊥ cB |C.

However, notice that this is in fact a generalization of the c-separation criterion
for CGs since, for CMGs, bidirected edges on π may make a section collider.

We now provide an algorithm that, from a chain mixed graph G and after
marginalization over M , generates a CMG with the corresponding independence
model after marginalization over M . Notice that this algorithm may indeed be ap-
plied to a CG.

ALGORITHM 1 [αCMG(G;M,∅): Generating a CMG from a chain mixed graph
G after marginalization over M].

Start from G.

1. Generate an ij edge as in Table 1, steps 8 and 9, between i and j on a
collider trislide with an endpoint j and an endpoint in M if the edge of the same
type does not already exist.
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TABLE 1
Types of edge induced by tripaths with inner node m ∈ M

and trislides with endpoint m ∈ M

1 i≺ m≺ j generates i≺ j

2 i≺ m j generates i≺ j

3 i≺ �m j generates i≺ �j

4 i≺ m �j generates i≺ �j

5 i≺ m≺ �j generates i≺ �j

6 i m≺ j generates i≺ j

7 i m j generates i j

8 m �i · · · ◦ ≺ j generates i≺ j

9 m �i · · · ◦ ≺ �j generates i≺ �j

2. Generate an appropriate edge as in Table 1, steps 1 to 7, between the end-
points of every tripath with inner node in M if the edge of the same type does not
already exist. Apply this step until no other edge can be generated.

3. Remove all nodes in M .

Notice that, here and elsewhere, by removing nodes we mean also removing
all the adjacent edges to those nodes. Notice also that all the cases generate an
endpoint-identical edge to the tripath or the trislide. In addition, in cases 8 and 9,
the node m is separate from the inner nodes of the concerned trislide since other-
wise there will be a semi-directed cycle in the graph.

This algorithm is a generalization of the marginalization part of the summary-
graph-generating algorithm [19]. The first seven cases are exactly the same as the
corresponding cases in the summary-graph-generating algorithm, whereas cases 8
and 9 do not appear in the summary-graph-generating algorithm since in summary
graphs there are no arrowheads pointing to lines. The other reason is that here
we deal with connecting walks instead of paths, and the subwalk 〈i,m, i〉 may
be present in a connecting walk. In general, here in this algorithm, and in later
algorithms in this paper, the sections are treated in the same way as the nodes are
treated in the algorithms that generate summary graphs, acyclic directed mixed
graphs (ADMGs) [17], or ancestral graphs. It is also worth noticing that all these
algorithms are indeed generalizations of the ordinary latent projection operation;
see [13].

Figure 5 illustrates how to apply Algorithm 1 step by step to a CG.
We consider Algorithm 1 a function denoted by αCMG. Notice that for ev-

ery chain mixed graph G, it holds that αCMG(G;∅,∅) = G. We first show that
αCMG(G;M,∅) is a CMG.

PROPOSITION 1. Graphs generated by Algorithm 1 are CMGs.
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FIG. 5. (a) A chain graph G, � �� ∈ M . (b) The graph after applying step 1 of Algorithm 1 (case 8
of Table 1). (c) The graph after applying step 2 of Algorithm 1 (case 4 of Table 1). (d) The generated
CMG after applying step 3.

We first provide lemmas that express the global behavior of step 2 of Algo-
rithm 1 as well as a generalization and an implication of step 1 (in the Appendix
in [20]).

LEMMA 2. Let G be a CMG. There exists an edge between i and j in
αCMG(G;M,∅) if and only if there exists an endpoint-identical walk between i

and j in the graph generated after applying step 1 of Algorithm 1 to G whose
inner sections are all non-collider and whose inner nodes are all in M .

The following theorem shows that αCMG(·; ·,∅) is well-defined in the sense
that, instead of directly generating a CMG, we can split the nodes that we marginal-
ize over into two parts, first generate the CMG related to the first part, then from
the generated CMG, generate the desired CMG related to the second part.

THEOREM 1. For a chain mixed graph G and disjoint subsets M and M1 of
its node set,

αCMG
(
αCMG(G;M,∅);M1,∅

) = αCMG(G;M ∪ M1,∅).

Some CMGs may not be generated after marginalization for CGs. In the follow-
ing proposition, we provide the exact set of graphs to which CMGs are mapped
after marginalization. Denote by CG the set of all CGs and by CMG the set of all
CMGs.

PROPOSITION 2. Define H to be the subset of CMG with the following prop-
erties:
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1. There is no collider trislide of form k≺ �i · · · j ≺ l unless
there is an arrow from l to i;

2. there is no collider trislide of form k≺ �i · · · j ≺ �l unless
there are kj , il and ij arcs.

Then αCMG(·; ·,∅) maps CG and a subset of the node set of its member surjectively
onto H.

Here, we prove the main result of this section:

THEOREM 2. For a chain mixed graph G and disjoint subsets A, B , M and
C1 of its node set,

〈A,B |C1〉 ∈ Jc

(
αCMG(G;M,∅)

) ⇐⇒ 〈A,B |C1〉 ∈ Jc(G).

We, therefore, have the following immediate corollary.

COROLLARY 1. The class of chain mixed graphs, CMG, with c-separation
criterion is stable under marginalization.

5. Stability of CMGs under marginalization and conditioning.

5.1. Stability of CMGs under conditioning. In the previous section, we
showed that the class of CMGs is stable under marginalization. In this section,
we first show that the class of CMGs is also stable under conditioning, and pro-
vide an algorithm for conditioning for CMGs:

ALGORITHM 2 [αCMG(G;∅,C): Generating a CMG from a chain mixed graph
G after conditioning on C].

Start from G.

1. Find all nodes in C ∪ ant(C) and call this set S.
2. For collider trislides illustrated in Table 2, steps 4 and 5, with an endpoint

i and one endpoint in S, generate an ij edge following the table if the edge does
not already exist.

3. For collider trislides (including tripaths) illustrated in Table 2, steps 1–
3, with at least one inner node in S, generate an edge following the table if the
edge does not already exist. Apply this step repeatedly until no other edge can be
generated, but do not use generated lines (to generate new sections).

4. Remove the arrowheads of all arrows and arcs pointing to members of S

(i.e., turn such arrows into lines and such arcs into arrows).
5. Remove all nodes in C.
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TABLE 2
Types of edges induced by trislides with an inner node or

endpoint s ∈ S = C ∪ ant(C)

1 i �s · · · s≺ j generates i j

2 i≺ �s · · · s≺ j generates i≺ j

3 i≺ �s · · · s≺ �j generates i≺ �j

4 s≺ �i · · · ◦ ≺ j generates i≺ j

5 s≺ �i · · · ◦ ≺ �j generates i≺ �j

Notice that if a node of a section is in S then all the inner nodes are in S, thus, we
may speak of a section being in S. Notice also that all the steps of the algorithm
generate endpoint-identical edges to the concerned trislides. In addition, we can
assume that the endpoints of trislides are disjoint from the inner nodes, since (1) j

as an endpoint of an arrow cannot be also an inner node because the graph does
not contain semi-directed cycles; and (2) cases 2 and 3 with i an inner node are
equivalent to cases 4 and 5, respectively, and cases 4 and 5 with s an inner node
are equivalent to cases 2 and 3, respectively.

Similar to Algorithm 1, this algorithm is a generalization of the condition-
ing part of the summary-graph-generating algorithm [19]. The first three cases
are the same when one considers sections here to be the nodes in the summary-
graph-generating algorithm. Cases 4 and 5 do not appear in the summary-graph-
generating algorithm for the same reasons explained before.

Figure 6 illustrates how to apply Algorithm 2 step by step to a CMG. First, let
us provide a global interpretation of step 3 of Algorithm 2.

LEMMA 3. Let G be a CMG. There exists an edge between i and j in the
graph generated after step 3 of Algorithm 2 if and only if there exists an endpoint-
identical walk to the edge between i and j in the generated graph after step 2
whose inner sections are all collider and in C ∪ ant(C), and whose endpoint sec-
tions contain a single node (i or j ).

We provide two lemmas that explain why the set S can be fixed in the begin-
ning of the algorithm, and why there is no need to apply step 4 of Algorithm 2
repeatedly.

LEMMA 4. Let G be a CMG. If there is an arrow from j to i or a line be-
tween j and i generated by steps 3 or 4 of Algorithm 2 then j ∈ S = C ∪ ant(C).
In addition, generated lines by Algorithm 2 do not lie on any collider section in
αCMG(G;∅,C).

LEMMA 5. Let G be a CMG. A node i is in ant(C) in G if and only if it is in
ant(C) in the graph generated after every step of Algorithm 2 before step 5.
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FIG. 6. (a) A chain mixed graph G, �◦ ∈ C. (b) The graph after applying step 1 of Algorithm 2,�◦ ∈ S = C ∪ ant(C). (c) The generated graph after applying step 2 (step 5 of Table 2). (d) The
generated graph after applying step 3 (steps 2 and 3 of Table 2). (e) The generated graph after
applying step 4. (f) The generated CMG from G.

We now follow the same procedure as in the previous section.

PROPOSITION 3. Graphs generated by Algorithm 2 are CMGs.

Here, we provide the global interpretation of Algorithm 2.

LEMMA 6. Let G be a CMG. There exists an edge between i and j in
αCMG(G;∅,C) if and only if there exists a walk between i and j in G whose
inner sections are all collider and in S = C ∪ ant(C), and whose endpoint sections
contain a single node (i or j ) except when there is an arrowhead at the section
containing i (or j ), and i (or j ) is a spouse of a member of S. In addition, the
walk and the edge are endpoint-identical except when there is an arrowhead at the
endpoint section containing i (or j ), and i ∈ ant(C) [or j ∈ ant(C)] in G.

THEOREM 3. For a chain mixed graph G and disjoint subsets C and C1 of its
node set,

αCMG
(
αCMG(G;∅,C);∅,C1

) = αCMG(G;∅,C ∪ C1).
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THEOREM 4. For a chain mixed graph G and disjoint subsets A, B , C and
C1 of its node set,

〈A,B |C1〉 ∈ Jc

(
αCMG(G;∅,C)

) ⇐⇒ 〈A,B |C ∪ C1〉 ∈ Jc(G).

COROLLARY 2. The class of chain mixed graphs, CMG, with c-separation
criterion is stable under conditioning.

Applying Algorithm 2 to a CG, step 2 becomes inapplicable, and step 3 spe-
cializes to generating a line between the endpoints of collider trislides with at least
one inner node in S if the line does not already exist. Denote this specialization by
αCG(G,∅,C). We first have the following.

PROPOSITION 4. Algorithm 2 generates CGs from CGs.

Denote now by CG the set of all CGs. We also provide the following trivial
statement.

PROPOSITION 5. The map αCG(·;∅, ·) from CG and a subset of the node set
of its members to CG is surjective.

PROOF. The result follows from the fact that αCMG(G;∅,∅) = G. �

We, therefore, have the following immediate corollary.

COROLLARY 3. The class of chain graphs, CG, with the LWF Markov prop-
erty is stable under conditioning.

5.2. Simultaneous marginalization and conditioning for CMGs. Corollaries 4
and 2 imply that CMG with c-separation criterion is stable under marginalization
and conditioning, which formally holds when there is a graph H ∈ CMG such that
Jc(H) = α(Jc(G);M,C), where

α(J ;M,C) = {〈A,B |D〉 : 〈A,B |D∪C〉 ∈ J and (A∪B ∪D)∩ (M ∪C) =∅

}
.

We now deal with the case where there are both marginalization and condition-
ing subsets in a CMG. We first define maximality in order to simplify the results.
A graph is maximal if to every non-adjacent pairs of nodes, there is an indepen-
dence statement associated in J (G). CMGs are not maximal since, for example,
the class of ancestral graphs [18] is a subclass of CMGs, and there exist non-
maximal ancestral graphs; see also Figure 7, for an example of a CMG that is not
ancestral and that induces no independence statement of form j ⊥ cl |C for any
choice of C. There is a method to generate, from a non-maximal CMG, a maximal
CMG that induces the same independence model, which is beyond the scope of
this manuscript. However, here we provide a sufficient condition for non-maximal
graphs as a lemma, which will be used in our proofs.
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FIG. 7. A non-maximal AnG.

LEMMA 7. If there is a collider trislide between i and j in G such that there
is an arrow from an inner node of the trislide to j (or i) and i � j then G is not
maximal.

We also provide the following lemma, which deals with the global behavior
of the simultaneous marginalization and conditioning as described later in this
section.

LEMMA 8. There is an edge between i and j in αCMG(αCMG(G;∅,C);
M,∅) if and only if there is a walk between i and j in G on which (i) all nodes
on collider sections are in C ∪ ant(C); (ii) on non-collider sections, (a) all nodes
are in M , or (b) one endpoint is in M and also either a child of a node in M or a
spouse of a node in C ∪ant(C), and the other endpoint has an arrowhead at it from
the adjacent node on the walk. In addition, the walk and the edge are endpoint-
identical except when there is an arrowhead at the endpoint section containing i

(or j ), and i ∈ ant(C) [or j ∈ ant(C)] in G.

We now have the following important result, which illustrates that, for maximal
graphs, in order to both marginalize and condition, it does not matter whether we
marginalize first by using Algorithm 1 and then condition by using Algorithm 2 or
vice versa.

PROPOSITION 6. For a chain mixed graph G and two disjoint subsets M and
C of its node set, it holds that

αCMG
(
αCMG(G;M,∅);∅,C

) = αCMG
(
αCMG(G;∅,C);M,∅

)

if αCMG(αCMG(G;M,∅);∅,C) is maximal.

It is also clear from the proof that if we drop the maximality assumption then
the two concerned graphs in the proposition induce the same independence mod-
els. In addition, we show that the corresponding algorithm (Algorithm 1 followed
by Algorithm 2 or vice versa) is well-defined for maximal graphs. We denote the
corresponding function by αCMG(G;M,C). In general, one can first apply Algo-
rithm 2 followed by Algorithm 1, in which case we showed in the proof that an
edge is present between the endpoints of the walk described in Lemma 7.
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THEOREM 5. For a chain mixed graph G and disjoint subsets M , M1, C and
C1 of its node set,

αCMG
(
αCMG(G;M,C);M1,C1

) = αCMG(G;M ∪ M1,C ∪ C1)

if the two graphs are maximal.

PROOF. The result follows from the definition and Proposition 6, Theorem 3
and Theorem 1. �

In Proposition 2, we showed that all CGs after marginalization are mapped
onto H, which is a subclass of CMGs. Here, we show that CGs after marginal-
ization and conditioning are also mapped onto H.

PROPOSITION 7. The map αCMG maps CG and two subsets of the node set of
its members surjectively onto H.

We are now ready to provide the main result, which illustrates that by applying
Algorithm 1 followed by Algorithm 2 (or vice versa), we obtain the marginal and
conditional independence model for a CMG (or a CG) after marginalization and
conditioning.

THEOREM 6. For a chain mixed graph G and disjoint subsets A, B , M , C

and C1 of its node set,

〈A,B |C1〉 ∈ Jc

(
αCMG(G;M,C)

) ⇐⇒ 〈A,B |C ∪ C1〉 ∈ Jc(G).

PROOF. By definition and Proposition 6, Theorem 4 and Theorem 2, it is im-
plied that

〈A,B |C1〉 ∈ Jc

(
αCMG(G;M,C)

) = Jc

(
αCMG

(
αCMG(G;M,∅);∅,C

))

⇐⇒ 〈A,B |C ∪ C1〉 ∈ Jc

(
αCMG(G;M,∅)

)

⇐⇒ 〈A,B |C ∪ C1〉 ∈ Jc(G). �

6. Anterial graphs. The definition of CMGs can be considered a generaliza-
tion of the definition of summary graphs (SGs) by [26]: CMGs collapse to SGs
when there are no arrowheads pointing to lines. CMGs are also analogous to SGs
in the sense that they capture the marginal and conditional models for CGs, and
SGs capture the marginal and conditional models for DAGs; and CMGs exclude
graphs with semi-directed cycles while SGs exclude graphs with directed cycles.

The class of ancestral graphs, defined by [18], captures the same independence
models as those of SGs, but has a simpler structure than SGs. In this section, we
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FIG. 8. (a) An AnG. (b) A CMG that is not an AnG.

define the class of anterial graphs (AnGs), which can be thought of as a general-
ization of and analogous to ancestral graphs with the same relationship to CMGs
as that of ancestral graphs to SGs.

An anterial graph is a mixed graph that contains neither semi-directed cycles
that contain at least an arrow; nor does it contain arcs with one endpoint that is an
anterior of the other endpoint. This implies that, unlike CMGs, AnGs are simple
graphs. For example, in Figure 8(a) the graph is an AnG, but in Figure 8(b) the
graph is not an AnG because of the existence of the arc kq , where k ∈ ant(q) via
the semi-directed path 〈k, j, l, h, q〉 as well as the arc qp, where q ∈ ant(p).

Here, we show that, from an anterial graph and after marginalization and con-
ditioning, how to generate an anterial graph with the corresponding marginal and
conditional independence model.

ALGORITHM 3 [αAnG(G;M,C): Generating an AnG from an anterial graph G].

Start from G.

1. Apply Algorithm 2.
2. Apply Algorithm 1.
3. Generate respectively arrows from j to i or arcs between i and j for

trislides j � ◦ · · · i≺ �k or j ≺ � ◦ · · · i≺ �k when k ∈
ant(i) if the arrow or the arc does not already exist.

4. Generate respectively an arrow from j to i or an arc between i and j for
trislides j �k1 · · · km≺ �i or j ≺ �k1 · · · km≺ �i when
there is an 1 ≤ r ≤ m such that kr ∈ ant(i) if the arrow or the arc does not already
exist. Continually apply this step until it is not possible to apply it further.

5. Remove the arc between j and i in the case that j ∈ ant(i), and replace it
with an arrow from j to i if the arrow does not already exist; and remove the arc
between j and i in the case that j ∈ ant(i) and i ∈ ant(j), and replace it with a line
between i and j if the line does not already exist.

Notice that, as we will see, steps 3, 4 and 5 of Algorithm 3 generate, from the
generated CMG after step 2, an AnG that captures the same independence model
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FIG. 9. (a) A chain mixed graph G. (b) The graph after applying step 3 of Algorithm 3. (c) The
graph after applying step 4. (d) The generated AnG after applying step 5.

as that of the CMG. In addition, in step 4, one kr being in ant(i) implies that all kr ,
1 ≤ r ≤ m, are in ant(i), and in this sense we can say that a section is in ant(i).

This algorithm is a generalization of the related algorithm for ancestral graphs
[18, 19]. Again, one can see that sections here are treated in the same way as nodes
in the ancestral-graph-generating algorithms. The idea here is that step 4 generates
a direct dependency between j and i (in fact the dependency already exists) before
step 5 makes the graph anterial.

Figure 9 illustrates how to apply these steps to a CMG. We consider Algorithm 3
a function denoted by αAnG. Notice that for every anterial graph G, it holds that
αAnG(G;∅,∅) = G. We again follow a parallel theory as that in the previous
sections.

PROPOSITION 8. Graphs generated by Algorithm 3 are AnGs.

We first provide two lemmas that deal with the global behavior of the algorithm.

LEMMA 9. Let H be a chain mixed graph. It holds that i ∈ ant(j) in H if and
only if i ∈ ant(j) in the anterial graph generated after applying steps 3, 4 and 5 of
Algorithm 3 to H .

Denote by a walk between i and j on which all sections are collider and every
inner section is in ant(i) a subprimitive inducing walk from j to i. This is a special
case of a generalization of primitive inducing paths, defined in [18], where all
nodes are anteriors of one of the endpoints, not either of the endpoints. We also
denote the function corresponding to steps 3, 4 and 5 of Algorithm 3 by αCMG.AnG.
Notice that αAnG(G;M,C) = αCMG.AnG(αCMG(G;M,C)).

LEMMA 10. Let H be a chain mixed graph. There is an edge between i and
j in αCMG.AnG(H) if and only if there is a sub-primitive inducing walk from j to i
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in H (which might also contain i as an inner node) with single-element endpoint
sections. In addition, the edge and the walk are endpoint-identical except when
i ∈ ant(j) or j ∈ ant(i) in H , in which case there is no arrowhead at i or at j ,
respectively, on the ij edge in αCMG.AnG(H).

We now prove that Algorithm 3 does not need to be applied to an anterial graph,
but it can be applied to a chain mixed graph.

LEMMA 11. Let H be a chain mixed graph and M and C be two subsets of
its node set. It holds that αAnG(αCMG.AnG(H);M,C) = αAnG(H ;M,C).

THEOREM 7. For an anterial graph G and disjoint subsets M , M1, C and C1
of its node set,

αAnG
(
αAnG(G;M,C);M1,C1

) = αAnG(G;M ∪ M1,C ∪ C1),

if the two graphs are maximal.

PROOF. Using Theorem 5 and Lemma 11, we have the following:

αAnG
(
αAnG(G;M,C);M1,C1

) = αAnG
(
αCMG.AnG

(
αCMG(G;M,C)

);M1,C1
)

= αAnG
(
αCMG(G;M,C);M1,C1

)

= αCMG.AnG
(
αCMG

(
αCMG(G;M,C);M1,C1

))

= αCMG.AnG
(
αCMG(G;M ∪ M1,C ∪ C1)

)

= αAnG(G;M ∪ M1,C ∪ C1). �

Denote the set of all AnGs by ANG.

PROPOSITION 9. Let K be the subset of ANG with the following properties:

1. There is no collider trislide of form k≺ �i · · · j ≺ l unless
there is an arrow from l to i.

2. There is no collider trislide of form k≺ �i · · · j ≺ �l unless
there are jk and il arcs and an ij line.

Then αAnG maps CG and two subsets of the node set of its members surjectively
onto K.

THEOREM 8. For an anterial graph G and disjoint subsets A, B , M , C and
C1 of its node set,

〈A,B |C1〉 ∈ Jc

(
αAnG(G;M,C)

) ⇐⇒ 〈A,B |C ∪ C1〉 ∈ Jc(G).

COROLLARY 4. The class of anterial graphs, ANG, with c-separation crite-
rion is stable under marginalization and conditioning.
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7. Probabilistic independence models for CMGs and AnGs and compar-
ison to other types of graphs. The most interesting independence models are
induced by probability distributions. Consider a set V and a collection of random
variables (Xα)α∈V with joint density fV . By letting XA = (Xv)v∈A for each subset
A of V , we then use the short notation A ⊥⊥ B |C for XA ⊥⊥ XB |XC and disjoint
subsets A, B and C of V .

For a given independence model J , a probability distribution P is called faith-
ful with respect to J if, for random vectors XA, XB and XC with probability
distribution P ,

A ⊥⊥ B |C if and only if 〈A,B |C〉 ∈ J .

We say that J is probabilistic if there is a distribution P that is faithful to J .
From a given collection of random variables (Xα)α∈V with a probability distri-

bution P , one can induce an independence model J (P ) by demanding

if A ⊥⊥ B |C then 〈A,B |C〉 ∈ J (P ).

Notice that J (P ) is obviously probabilistic.
For a chain graph G, we say that a probability distribution with density f fac-

torizes with respect to G if

f (x) = ∏

τ∈T
f (xτ |xpa(τ )),

where T is the set of chain components of G; and

f (xτ |xpa(τ )) = ∏

a

φa(x),

where a varies over all subsets of τ ∪ pa(τ ) that are complete in the moral graph
of the subgraph of G induced by τ ∪ pa(τ ), and φa(x) is a function that depends
on x through xa only; see [9] for more discussion.

Now let α(P ;M,C) be the probability distribution obtained by usual proba-
bilistic marginalization and conditioning for the probability distribution P . It is
easy to show that if P is faithful to J then α(P ;M,C) is faithful to the marginal
and conditional independence model α(J ;M,C); see Theorem 7.1 and Corol-
lary 7.3 of [18].

It is also known that if G is a CG then there is a regular Gaussian distribution
that is faithful to it. In fact, almost all the regular Gaussian distributions that factor-
ize with respect to a CG are faithful to it; see [15]. In other words, the independence
mode Jc(G) is probabilistic.

By Propositions 2, 7 and 9, a considerably large subclass of CMGs or AnGs
are obtained by chain graphs after marginalization and conditioning. Hence, it is
implied by the discussion above that for a graph H in these subclasses, Jc(H) is
probabilistic; that is, there is a distribution (in fact at least a Gaussian distribution)
that is faithful to it.
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One can obtain the same result for the strictly positive discrete probability dis-
tributions since there is such a distribution that is faithful to a given CG [24]. These
results motivate the use of CMGs and AnGs.

The next, and probably more important, question in order to justify the use
of these classes is whether it is possible to find a parametrization, for example,
Gaussian or discrete, of these graphs.

In the Gaussian case, there exists a known parametrization for the regular Gaus-
sian distributions that factorize with respect to a CG; see [28] and [15] for two
slightly different but equivalent parametrizations. For maximal ancestral graphs
(MAGs), there is a known Gaussian parametrization [18]. We believe that it is pos-
sible to extend this parametrization to the class of maximal AnGs. Here is some
possible actions in order to generalize this parametrization.

Notice first that the classes of CMGs and AnGs are not maximal, as explained
in Section 5.2. However, as mentioned before, there is a method to generate, from
non-maximal CMGs and AnGs, maximal CMGs and AnGs that induce the same
independence models. Hence, one can then focus on the class of maximal AnGs.

Considering the Gaussian parametrization for MAGs, one then needs to define,
instead of one matrix for the undirected part of the MAG, one symmetric matrix
for every chain component of the maximal AnG (as it is done in the Gaussian
parametrization for CGs). It is also needed to generalize the ordering associated
to MAGs, for example, by defining an ordering for chain components contain-
ing lines instead of an ordering for the nodes. One may then follow the method
described in Section 8 of the mentioned paper.

Since both parametrizations for CGs and MAGs are curved exponential fami-
lies, and consequently the models associated with them are identifiable, the gener-
alization for AnGs seems to preserve this desirable property.

Introducing a discrete parametrization for CMGs or AnGs seems much trickier.
Similar to the Gaussian case, the goal should be to find a combination of discrete
parametrizations for CGs (see, e.g., [14]) and summary graphs (or alternatively
ADMGs—see [4]). For CMGs, a parametrization may be derived from the original
CG with the use of structural equation models with latent variables. This can be
considered a generalization of the method utilized in summary graph models.

Nonetheless, we again stress the importance of introducing different smooth
parametrizations for CMGs and AnGs in a future work as well as studying addi-
tional non-independence constraints that arise in such models.

Besides the relevant parametrizations, it is clear that CMGs act similarly to
summary graphs in the problem of marginalization and conditioning for DAGs,
and AnGs act similarly to ancestral graphs. To give a more detailed comparison
between CMGs (and AnGs) and summary graphs (and ancestral graphs), we first
note that the lines in all these graphs have the same meaning. As mentioned before,
there are no arrowheads at lines in the latter types, and one can think of sections
with arrowheads pointing to them in the former types in the same manner as the
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nodes in the latter types. Indeed summary graphs and ancestral graphs are sub-
classes of CMGs and AnGs, respectively, thus every summary or ancestral graph
model is a CMG or AnG model.

In addition, in CMGs, for a collider trislide of from i �j l≺ k, it holds
that i �⊥ cl, i �⊥ cl | j , but i ⊥ cl | {j, k}. However, there is no summary graph that
can capture the same independencies and dependencies. Hence, for any induced
path with 4 nodes (and, of course, for longer paths), one can provide a CMG that
is associated to a different model than summary graph models. By this, it is clear
that the class of CMG models is rich in the sense that when the number of nodes
grows, the number of distinct CMG models grows faster than the number of dis-
tinct summary graph models.

The class of marginal AMP chain graphs (MAMP CGs) deals with a similar
problem of marginalization for AMP chain graphs. The lines in these graphs have a
different meaning in independence interpretation (they are related to lines in AMP
CGs), and naturally the class of models they represent is quite different. However,
both classes of models contain the class of regression graph models [27], which
itself contains the classes of undirected (concentration) graph models and the class
of multivariate regression chain graph models as a subclass. In fact, if in a CMG,
there is a section with non-adjacent endpoints that is larger than a single node then
it can be seen that no MAMP CG can induce the same independence statements.
This implies that, in the intersection of CMG and MAMP CG models, there is
no arrowhead pointing to lines (in CMG sense). Therefore, this intersection is the
same as the intersection of maximal ancestral graph and MAMP CG models (since
MAMP CGs are maximal, and maximal summary and ancestral graphs induce the
same independence model).
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SUPPLEMENTARY MATERIAL

Proofs (DOI: 10.1214/16-AOS1451SUPP; .pdf). We provide proofs of non-
trivial lemmas, propositions and theorems in the paper as well as some more tech-
nical and yet less informative lemmas that are used in the proofs.
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