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OPTIMAL DESIGNS FOR COMPARING CURVES1

BY HOLGER DETTE AND KIRSTEN SCHORNING

Ruhr-Universität Bochum

We consider the optimal design problem for a comparison of two regres-
sion curves, which is used to establish the similarity between the dose re-
sponse relationships of two groups. An optimal pair of designs minimizes the
width of the confidence band for the difference between the two regression
functions. Optimal design theory (equivalence theorems, efficiency bounds)
is developed for this non-standard design problem and for some commonly
used dose response models optimal designs are found explicitly. The results
are illustrated in several examples modeling dose response relationships. It
is demonstrated that the optimal pair of designs for the comparison of the
regression curves is not the pair of the optimal designs for the individual
models. In particular, it is shown that the use of the optimal designs proposed
in this paper instead of commonly used “non-optimal” designs yields a re-
duction of the width of the confidence band by more than 50%.

1. Introduction. An important problem in many scientific research areas is
the comparison of two regression models that describe the relation between a com-
mon response and the same covariates for two groups. Such comparisons are typ-
ically used to establish the non-superiority of one model to the other or to check
whether the difference between two regression models can be neglected. These in-
vestigations have important applications in drug development and several methods
for assessing non-superiority, non-inferiority or equivalence have been proposed
in the recent literature [for a recent reference see, e.g., Gsteiger, Bretz and Liu
(2011)]. For example, if the “equivalence” between two regression models de-
scribing the dose response relationships in the groups individually has been estab-
lished subsequent inference in drug development could be based on the combined
samples. This results in more precise estimates of the relevant parameters, for ex-
ample, the minimum effective dose. Comparison of curves problems have been
investigated in linear and nonlinear models [see Liu et al. (2009), Gsteiger, Bretz
and Liu (2011), Liu, Jamshidian and Zhang (2004)] and also in nonparametric re-
gression models [see, e.g., Hall and Hart (1990) and Dette and Neumeyer (2001)].
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A common approach in all these references is to estimate regression curves in the
different samples and to investigate the maximum or an L2-distance (taken over the
possible range of the covariates) of the difference between these estimates (after
an appropriate standardization by a variance estimate).

This paper is devoted to the construction of efficient designs for the comparison
of two parametric curves. Although the consideration of optimal designs for dose
response models has found considerable interest in the recent literature [see, e.g.,
Dette et al. (2008), Dragalin et al. (2010) and Dette, Bornkamp and Bretz (2013)
for recent references], we are not aware of any work on design of experiments
for the comparison of two parametric regression curves. However, the effective
planning of the experiments in the comparison of curves will yield to a substan-
tially more accurate statistical inference. We demonstrate these advantages in Sec-
tion 5 showing that the width of the (simultaneous) confidence bands proposed by
Gsteiger, Bretz and Liu (2011) for the difference of the curves is about two times
smaller if a design constructed in this paper is used instead of a standard design.

The remaining part of this paper is organized as follows. Some terminology
(for the comparison of two parametric curves) will be introduced in Section 2,
where we also give an introduction to optimal design theory in the present context.
The particular difference to the classical setup is that for the comparison of two
curves two designs have to be chosen simultaneously (each for one group or re-
gression model). A pair of optimal designs minimizes an integral or the maximum
of the variance of the prediction for the difference of the two regression curves
calculated in the common region of interest. Section 3 is devoted to some optimal
design theory and we derive particular equivalence theorems corresponding to the
new optimality criteria and a lower bound for the efficiencies, which can be used
without knowing the optimal designs. It turns out that in general the optimal pair
of designs is not the pair of the optimal designs in the individual models.

In general, the problem of constructing optimal designs is very difficult and
has to be solved numerically in most cases of practical interest. Some analytical
results are given in Section 4 for the commonly used Michaelis–Menten, Emax and
loglinear model. In Section 5, we use the developed theory to investigate specific
optimal design problems for the comparison of nonlinear regression models, which
are frequently used in drug development. In particular, we demonstrate by means
of a simulation study that the derived optimal designs yield substantially narrower
confidence bands. Some further discussion is given in Section 6. In Section 6.1,
we briefly indicate how the results can be generalized if optimization can also
be performed with respect to the allocation of patients to the different groups,
while some robustness issues are discussed in Section 6.2. Finally, all proofs and
technical details are deferred in Section 7.

2. Comparing parametric curves. Consider the regression models

Yijk = mi(tij , ϑi) + εijk; i = 1,2; j = 1, . . . , �i;k = 1, . . . , nij ,(2.1)
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where εijk are independent random variables, such that εijk ∼ N (0, σ 2
i ), i = 1,2.

This means that two groups (i = 1,2) are investigated and in each group observa-
tions are taken at �i different experimental conditions ti1, . . . , ti�i

, which vary in
the design space (e.g., the dose range) X ⊂ R, and nij observations are taken at

each tij (i = 1,2; j = 1, . . . , �i). Let ni = ∑�i

j=1 nij denote the total number of ob-
servations in group i (= 1,2) and n = n1 +n2 the total sample size. Two regression
models m1 and m2 with d1- and d2-dimensional parameters ϑ1 and ϑ2 are used to
describe the dependence between response and predictor in the two groups. For
asymptotic arguments we assume that limni→∞

nij

ni
= ξij ∈ (0,1) and collect this

information in the matrix

ξi =
(

ti1 · · · ti�i

ξi1 · · · ξi�i

)
, i = 1,2.

Following Kiefer (1974), we call ξi an approximate design on the design space X .
This means that the support points tij define the distinct experimental conditions
where observations are to be taken and the weights ξij represent the relative pro-
portion of observations at the corresponding support point tij (in each group). If an
approximate design is given and ni observations can be taken, a rounding proce-
dure is applied to obtain integers nij (i = 1,2, j = 1, . . . , �i) from the not neces-
sarily integer valued quantities ξijni [see Pukelsheim and Rieder (1992)]. We note
that d1 and d2 are determined by the models m1 and m2 under consideration and
that in this section the sample sizes n1 and n2 for the two groups are also fixed. The
optimal allocation of patients to the two different groups (for a fixed total sample
size) will be discussed in Section 6.1.

Assume that observations are taken according to an approximate design and
that an appropriate rounding procedure has been applied. In order to measure the
quality of an experimental design, we use an asymptotic argument and assume that
limni→∞

nij

ni
= ξij ∈ (0,1). Then, under the common assumptions of regularity,

the maximum likelihood estimates, say ϑ̂1, ϑ̂2 in both samples are asymptotically
normally distributed (after appropriate standardization). Moreover, the prediction
for the difference of the experimental condition t satisfies

√
n
(
m1(t, ϑ̂1) − m2(t, ϑ̂2) − (

m1(t, ϑ1) − m2(t, ϑ2)
)) D−→ N

(
0, ϕ(t, ξ1, ξ2)

)
,

where the symbol
D−→ denotes weak convergence, the function ϕ is defined by

ϕ(t, ξ1, ξ2) = σ 2
1

γ1
f T

1 (t)M−1
1 (ξ1, ϑ1)f1(t) + σ 2

2

γ2
f T

2 (t)M−1
2 (ξ2, ϑ2)f2(t),

(2.2)
Mi(ξi, ϑi) =

∫
X

fi(t)f
T
i (t) dξi(t)

is the information matrix of the design ξi in model mi and fi(t) = ∂
∂ϑi

mi(t, ϑi) ∈
R

di is the gradient of mi with respect to the parameter ϑi ∈ R
di (i = 1,2). For these
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calculations, we assume in particular that the limit

γi = lim
n→∞

ni

n
∈ (0,1), i = 1,2

exists and that m1,m2 are continuously differentiable with respect to the parame-
ters ϑ1, ϑ2. Note that under different distributional assumptions on the errors εijk

in model (2.1) similar statements can be derived with different covariance matrices
in the asymptotic distribution.

Therefore, the asymptotic variance of the prediction m1(t, ϑ̂1) − m̂2(t, ϑ̂2) at
an experimental condition t is given by ϕ(t, ξ1, ξ2), where ξ = (ξ1, ξ2) is the pair
of designs under consideration. Gsteiger, Bretz and Liu (2011) used this result to
obtain a simultaneous confidence band for the difference of the two curves. More
precisely, if Z is a range where the two curves should be compared [note that
in contrast to Gsteiger, Bretz and Liu (2011) here the set Z does not necessarily
coincide with the design space X ] the confidence band is defined by

T̂ ≡ sup
t∈Z

|m1(t, ϑ̂1) − m2(t, ϑ̂2) − (m1(t, ϑ1) − m2(t, ϑ2))|
{σ̂ 2

1 /γ1f̂1(t)M
−1
1 (ξ1, ϑ̂1)f̂1(t) + σ̂ 2

2 /γ2f̂2(t)M
−1
2 (ξ2, ϑ̂2)f̂2(t)}1/2

(2.3)
≤ D.

Here, σ̂ 2
1 , σ̂ 2

2 , f̂1, f̂2 denote estimates of the quantities σ 2
1 , σ 2

2 , f1, f2, respectively,
and the constant D is chosen, such that P(T̂ ≤ D) ≈ 1 − α. Note that Gsteiger,
Bretz and Liu (2011) proposed the parametric bootstrap for this purpose. Conse-
quently, a “good” design, more precisely, a pair ξ = (ξ1, ξ2) of two designs on X ,
should make the width of this band as small as possible at each t ∈ Z . This cor-
responds to a simultaneous minimization of the asymptotic variance in (2.2) with
respect to the choice of the designs ξ1 and ξ2. Obviously, this is only possible
in rare circumstances and we propose to minimize a norm of the function ϕ as
a design criterion. For a precise definition of the optimality criterion, we assume
that the set Z contains at least d ≥ max{d1, d2} points, say t1, . . . , td , such that
the vectors f1(t1), . . . , f1(td1) and f2(t1), . . . , f2(td2) are linearly independent in
R

d1 and R
d2 , respectively. It then follows that a pair of designs ξ = (ξ1, ξ2), which

allows to predict the regression function m1 and m2 at all points t1, . . . , td1 and
t1, . . . , td2 , respectively, must have non-singular information matrices M1(ξ1, ϑ1)

and M2(ξ2, ϑ2). Therefore, the optimization will be restricted to the class of all
designs ξ1 and ξ2 with non-singular information matrices throughout this paper.

A worst case criterion is to minimize

μ∞(ξ) = μ∞(ξ1, ξ2) = sup
t∈Z

{
ϕ(t, ξ1, ξ2)

}
(2.4)

with respect to ξ = (ξ1, ξ2) over a region of interest Z . Alternatively, one could
use an Lp-norm

μp(ξ) = μp(ξ1, ξ2) =
(∫

Z
ϕp(t, ξ1, ξ2) dλ(t)

)1/p

(2.5)
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of the function ϕ defined in (2.2) with respect to a given measure λ on the region
Z (p ∈ [1,∞)), where the measure λ has at least d ≥ max{d1, d2} support points,
say t1, . . . , td , such that the vectors f1(t1), . . . , f1(td1) and f2(t2), . . . , f2(td2) are
linearly independent in R

d1 and R
d2 , respectively.

DEFINITION 2.1. For p ∈ [1,∞], γ1, γ2 fixed, a pair of designs ξ�,p =
(ξ

�,p
1 , ξ

�,p
2 ) is called locally μp-optimal design (for the comparison of the curves

m1 and m2) if it minimizes the function μp(ξ1, ξ2) over the space of all approx-
imate pairs of designs (ξ1, ξ2) on X × X with non-singular information matrices
M1(ξ1, ϑ1), M2(ξ2, ϑ2).

REMARK 2.2. 1. The space Z does not necessarily coincide with the design
space X . The special case Z ∩X =∅ corresponds to the problem of extrapolation
and will be discussed in more detail in Section 4.

2. If one requires ξ1 = ξ2 (e.g., by logistic reasons) and Z =X the criterion μ∞
is given by

max
t∈X

{
σ 2

1

γ1
f T

1 (t)M−1
1 (ξ,ϑ1)f1(t) + σ 2

2

γ2
f T

2 (t)M−1
2 (ξ,ϑ2)f2(t)

}
.

It then follows from Theorem 1 in Läuter (1974) that this criterion is equivalent
to the weighted D-optimality criterion (detM1(ξ,ϑ1))

ω1(detM2(ξ,ϑ2))
ω2 , where

the weights are given by ω1 = σ 2
1

γ1
and ω2 = σ 2

2
γ2

. Criteria of this type have been
studied intensively in the literature [see Lau and Studden (1985), Dette (1990),
Zen and Tsai (2004) among others]. Similarly, the criterion μ1 corresponds to a
weighted sum of I -optimality criteria in the case X =Z .

3. It follows from Minkowski’s inequality that in general the pair of the optimal
designs for the individual models mi (i = 1,2), is not necessarily μp-optimal in
terms of Definition 2.1.

In some applications, it might not be possible to conduct the experiments for
both groups simultaneously. This situation arises, for example, in the analysis of
clinical trials where data from different sources is available and one trial has al-
ready been conducted, while the other is planned in order to compare the corre-
sponding two response curves. In this case, only one design (for one group), say
ξ1, can be chosen, while the other is fixed, say η. The corresponding criteria are
defined as

νp(ξ1) = μp(ξ1, η), p ∈ [1,∞],(2.6)

and νp is minimized in the class of all designs on the design space X with non-
singular information matrix M1(ξ1, ϑ1). The corresponding design minimizing νp

is called νp-optimal throughout this paper.
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3. Optimal design theory. A main tool of optimal design theory are equiva-
lence theorems which, on the one hand, provide a characterization of the optimal
design and, on the other hand, are the basis of many procedures for their numerical
construction [see, e.g., Dette, Pepelyshev and Zhigljavsky (2008) or Yu (2010),
Yang, Biedermann and Tang (2013)]. Moreover, they are frequently used to re-
duce the infinite dimensional optimization problems arising in optimal design the-
ory to finite dimensional ones by deriving upper bounds on the number of support
points of the optimal design. As the criteria under consideration are convex, we
can derive corresponding characterizations for the μp-criteria. The following two
results give the equivalence theorems in the cases p ∈ [1,∞) (Theorem 3.1) and
p = ∞ (Theorem 3.2). These statements are used in Section 5 to check optimality
of numerically determined designs. Moreover, Theorem 3.2 is used in an efficient
algorithm for the determination of μ∞-optimal designs in Section 5. Proofs can
be found in Section 7. Throughout this paper, supp(ξ) denotes the support of the
design ξ on X .

THEOREM 3.1. Let p ∈ [1,∞). The design ξ�,p = (ξ
�,p
1 , ξ

�,p
2 ) is μp-optimal

if and only if the inequality∫
Z

ϕ
(
t, ξ

�,p
1 , ξ

�,p
2

)p−1
(

γ1

σ 2
1

ϕ2
1
(
t1, t, ξ

�,p
1

) + γ2

σ 2
2

ϕ2
2
(
t2, t, ξ

�,p
2

))
dλ(t)

(3.1)
− μp

p

(
ξ

�,p
1 , ξ

�,p
2

) ≤ 0

holds for all t1, t2 ∈ X , where

ϕi

(
d, t, ξ

�,p
i

) = σ 2
i

γi

f T
i (d)M−1

i

(
ξ

�,p
i , ϑi

)
fi(t), i = 1,2(3.2)

and the function ϕ(t, ξ
�,p
1 , ξ

�,p
2 ) is defined in (2.2). Moreover, equality is achieved

in (3.1) for any (t1, t2) ∈ supp(ξ
�,p
1 ) × supp(ξ

�,p
2 ).

THEOREM 3.2. The design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 ) is μ∞-optimal if and only if

there exists a measure �� on the set of the extremal points

Z
(
ξ�,∞) =

{
t0 ∈Z : ϕ(

t0, ξ
�,∞
1 , ξ

�,∞
2

) = sup
t∈Z

ϕ
(
t, ξ

�,∞
1 , ξ

�,∞
2

)}
(3.3)

of the function ϕ(t, ξ
�,∞
1 , ξ

�,∞
2 ), such that the inequality∫

Z(ξ�,∞)

(
γ1

σ 2
1

ϕ2
1
(
t1, t, ξ

�,∞
1

) + γ2

σ 2
2

ϕ2
2
(
t2, t, ξ

�,∞
2

))
d��(t) − μ∞

(
ξ�,∞) ≤ 0(3.4)

holds for all t1, t2 ∈ X , where the functions ϕ1 and ϕ2 are defined in (3.2). More-
over, equality is achieved in (3.4) for any (t1, t2) ∈ supp(ξ

�,∞
1 ) × supp(ξ

�,∞
2 ).
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Theorems 3.1 and 3.2 can be used to check the optimality of a given design.
However, in general the explicit calculation of locally μp-optimal designs is very
difficult. In order to investigate the quality of a (non-optimal) design ξ = (ξ1, ξ2)

for the purpose of comparing curves, we consider its μp-efficiency which is de-
fined by

effp(ξ) = μp(ξ�,p)

μp(ξ)
∈ [0,1].(3.5)

The following theorem provides a lower bound for the efficiency of a design
ξ = (ξ1, ξ2) in terms of the functions appearing in the equivalence Theorems 3.1
and 3.2. It is remarkable that this bound does not require knowledge of the optimal
design.

THEOREM 3.3. Let ξ = (ξ1, ξ2) be a pair of designs with non-singular infor-
mation matrices M1(ξ1, ϑ1), M2(ξ2, ϑ2).

(a) If p ∈ [1,∞), then

effp(ξ)

(3.6)

≥ μ
p
p(ξ)

maxt1,t2∈X
∫
Z ϕ(t, ξ1, ξ2)p−1(

γ1

σ 2
1
ϕ2

1(t, t1, ξ1) + γ2

σ 2
2
ϕ2

2(t, t2, ξ2)) dλ(t)
.

(b) If p = ∞, then

eff∞(ξ)

(3.7)

≥ μ∞(ξ)

min�∈�(Z(ξ)) maxt1,t2∈X
∫
Z(ξ)

γ1

σ 2
1
ϕ2

1(t1, t, ξ1) + γ2

σ 2
2
ϕ2

2(t2, t, ξ2) d�(t)
,

where �(Z(ξ)) is the set of all measures on Z(ξ) defined in (3.3).

Roughly speaking, the lower bound for the efficiency is the ratio of the two
terms in the equivalence Theorem 3.1 (in the case p < ∞) and Theorem 3.2 (in
the case p = ∞). Consequently, for an optimal design the bound is 1 and for a
nearly optimal design the bound is close to 1.

Now, we consider the case where one design η is already fixed and the criterion
can only be optimized by the other design. The proofs of the following two results
are omitted since they are similar to the proofs of Theorems 3.1 and 3.2.

THEOREM 3.4. Let p ∈ [1,∞). The design ξ
�,p
1 is νp-optimal if and only if

the inequality∫
Z

ϕp−1(
t, ξ

�,p
1 , η

)( γ1

σ 2
1

ϕ2
1
(
t1, t, ξ

�,p
1

) + ϕ2(t, t, η)

)
dλ(t) − νp

p

(
ξ

�,p
1

) ≤ 0(3.8)
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holds for all t1 ∈ X , where ϕi and ϕ are defined in (3.2) and (2.2), respectively.
Moreover, equality is achieved in (3.8) for any t1 ∈ supp(ξ

�,p
1 ).

THEOREM 3.5. The design ξ
�,∞
1 is ν∞-optimal if and only if there exists a

measure �� on the set of the extremal points

Z
(
ξ

�,∞
1

) =
{
t0 ∈ Z : ϕ(

t0, ξ
�,∞
1 , η

) = sup
t∈Z

ϕ
(
t, ξ

�,∞
1 , η

)}

of the function ϕ(t, ξ
�,∞
1 , η), such that the inequality∫

Z(ξ
�,∞
1 )

γ1

σ 2
1

ϕ2
1
(
t1, t, ξ

�,∞
1

)
d��(t) −

∫
Z(ξ

�,∞
1 )

ϕ1
(
t, t, ξ

�,∞
1

)
d��(t) ≤ 0(3.9)

holds for all t1 ∈ X , where the functions ϕ1 is defined in (3.2). Moreover, equality
is achieved in (3.9) for any t1 ∈ supp(ξ

�,∞
1 ).

4. Some analytical results—extrapolation. In this section, we present some
analytical results which illustrate the difficulties in determining designs for the
comparison of curves explicitly. These results can also be used to check the ac-
curacy and speed of convergence of the developed algorithms (as the solutions
are known). To be precise, we consider the criterion μ∞ and the case where the
design space X and the space Z do not intersect, which corresponds to the prob-
lem of comparing two curves for extrapolation. In general, extrapolation is not
an easy task and has to be addressed very carefully, because it is not clear if the
postulated relation between response and predictor holds also in regions, where
no data is available. However, in dose response studies (such as phase II clinical
trials or studies in toxicology) experimenters usually have information about the
functional form describing this relation. Often models appear as solutions of dif-
ferential equations which are used to describe chemical reactions. In such cases
extrapolation is well justified. Moreover, in toxicology there are many cases where
it is in fact necessary to do a reasonable extrapolation, because patients cannot be
treated with too high doses.

We are particularly interested in the difference between curves modeled by the
Michaelis–Menten, Emax and loglinear model. It turns out that the results for these
models can be easily obtained from a general result for weighted polynomial re-
gression models, which is of own interest and will be considered first. For this
purpose, assume that the design space X and the range Z are intervals, that is,
X = [LX ,UX ], Z = [LZ ,UZ ] and that both regression models m1 and m2 are
given by functions of the type

mi(t) = ωi(t)

pi∑
j=0

ϑij t
j , i = 1,2,(4.1)

where ω1,ω2 are known positive weight functions on X ∪Z . The models m1,m2
are called weighted polynomial regression models and in the case of one model
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several design problems have been discussed in the literature, mainly for the D-
and E-optimality criterion [see, e.g., Dette (1993), Heiligers (1994), Antille, Dette
and Weinberg (2003), Chang (2005a, 2005b) or Dette and Trampisch (2010)].
It is easy to show that the systems {ωi(t)t

j |j = 0, . . . , pi} are Chebyshev sys-
tems on the convex hull of X ∪ Z , say conv(X ∪ Z), which means that for any
choice ϑi0, . . . , ϑipi

the equation ωi(t)
∑pi

j=0 ϑij t
j = 0 has at most pi solutions in

conv(X ∪Z) [see Karlin and Studden (1966)]. It then follows from this reference
that there exist unique polynomials vi(t) = ωi(t)

∑pi

j=0 aij t
j , i = 1,2 satisfying

the properties:

1. For all t ∈ X the inequality |vi(t)| ≤ 1 holds.
2. There exist pi +1 points LX ≤ ti0 < ti1 < · · · < tipi

≤ UX such that vi(tij ) =
(−1)j for j = 0, . . . , pi .

The points ti0, . . . , tipi
are called Chebyshev points while vi is called Chebyshev or

equi-oscillating polynomial. The following results give an explicit solution of the
μ∞-optimal design problem if the functions m1 and m2 are weighted polynomials.

THEOREM 4.1. Consider the weighted polynomials (4.1) with differentiable,
positive weight functions ω1,ω2 such that for ωi(t) �= c ∈ R {1,ωi(t),ωi(t)t, . . . ,

ωi(t)t
2pi−1} and {1,ωi(t),ωi(t)t, . . . ,ωi(t)t

2pi } are Chebshev systems (i = 1,2).
Assume that X ∩Z = [LX ,UX ] ∩ [LZ ,UZ ] = ∅.

1. If UX < LZ and ω1,ω2 are strictly increasing on Z , the support points of
the μ∞-optimal design ξ�,∞ = (ξ

�,∞
1 , ξ

�,∞
2 ) are given by the extremal points of

the Chebyshev polynomial v1(t) for ξ
�,∞
1 and v2(t) for ξ

�,∞
2 with corresponding

weights

ξij = |Lij (UZ)|∑pi

k=0 |Lik(UZ)| , j = 0, . . . , pi, i = 1,2.(4.2)

Here, Lij (t) = ωi(t)
∑pi

j=0 �ij t
j is the j th Lagrange interpolation polynomial with

knots ti0, . . . , tipi
, i = 1,2 defined by the properties Lij (tik) = δjk , j, k = 1, . . . , pi

(and δjk denotes the Kronecker symbol).
2. If LX > UZ and ω1,ω2 are strictly decreasing on Z , the support points of

the μ∞-optimal design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 ) are given by the extremal points of

the Chebyshev polynomial v1(t) for ξ
�,∞
1 and v2(t) for ξ

�,∞
2 with corresponding

weights

ξij = |Lij (LZ)|∑pi

k=0 |Lik(LZ)| , j = 0, . . . , pi, i = 1,2.

REMARK 4.2. It is worthwhile to mention that for general p �= ∞ the μp-
optimal designs have to be found numerically if the degree of the polynomials
is larger than 2. The situation is similar as in the problem of calculating optimal
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designs with respect to Kiefer’s �p-criteria for (unweighted) polynomial regres-
sion models. Only in the cases p = 0 and p = ∞ corresponding to the D- and
E-criterion explicit results are available [see Pukelsheim (2006)]. The μp-optimal
design problems are even harder and only the μ∞-optimal designs can be found
explicitly for weighted polynomial regression models.

EXAMPLE 4.3. If both regression models m1 and m2 are given by polynomi-
als of degree p1 and p2, we have ω1 ≡ ω2 ≡ 1 and the μ∞-optimal design can be
described even more explicitly. For the sake of brevity, we only consider the case
UX < LZ . According to Theorem 4.1 ξ

�,∞
1 and ξ

�,∞
2 are supported at the extremal

points of the polynomials v1(t) and v2(t). If ω1 ≡ ω2 ≡ 1, these are given by the
Chebyshev polynomials of the first kind on the interval [LX ,UX ], that is,

v1(t) = Tp1

(
2t − (UX + LX )

UX − LX

)
and v2(t) = Tp2

(
2t − (UX + LX )

UX − LX

)
,

where Tp(x) = cos(p arccosx), x ∈ [−1,1]. Consequently, the component ξ
�,∞
i

of the optimal design is supported at the pi + 1 Chebyshev points

tij = (1 − cos(j/piπ))UX + (1 + cos(j/piπ))LX
2

, j = 0, . . . , pi

with corresponding weights

ξij = |Lij (UZ)|∑pi

k=0 |Lik(UZ)| , j = 0, . . . , pi,(4.3)

where

Lij (t) =
pi∏

k=0,k �=j

t − tik

tij − tik

is the Lagrange interpolation polynomial at the knots ti0, . . . , tipi
.

While Theorem 4.1 and Example 4.3 are of own interest, they turn out to be
particularly useful to find μ∞-optimal designs for some commonly used dose re-
sponse models. To be precise we consider the Michaelis–Menten model

m(t,ϑ) = ϑ1t

ϑ2 + t
(4.4)

the loglinear model with fixed parameter ϑ3

m(t,ϑ) = ϑ1 + ϑ2 log(t + ϑ3)(4.5)

and the Emax model

m(t,ϑ) = ϑ1 + ϑ2t

ϑ3 + t
.(4.6)

The following result specifies the μ∞-optimal designs for the comparison of
curves if X ∩Z = ∅ and m1 and m2 are given by any of these models.
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COROLLARY 4.4. Assume that the regression models m1 and m2 are given by
one of the models (4.4)–(4.6), LX ≥ 0 and UX < LZ . The μ∞-optimal design is
given by ξ�,∞ = (ξ

�,∞
1 , ξ

�,∞
2 ), where ξ

�,∞
i is given by

ξ
�,∞
MM =

⎛
⎜⎜⎜⎝

ϑ2UX (
√

2 − 1)

(2 − √
2)UX + ϑ2

ϑ2(UZ − UX )

UXUZ(3
√

2 − 4) + ϑ2(
√

2UZ − (4 − 2
√

2)UX )

UX
(
√

2 − 1)[(2 − √
2)UXUZ + ϑ2(UZ − (

√
2 − 1)UX )]

UXUZ(3
√

2 − 4) + ϑ2[
√

2UZ − (4 − 2
√

2)UX ]

⎞
⎟⎠ ,

if mi is the Michaelis–Menten model and ϑ2UX (
√

2−1)

(2−√
2)UX+ϑ2

≥ LX > 0, by

ξ
�,∞
LogLin =

⎛
⎝ LX

log(UZ + ϑ3) − log(UX + ϑ3)

2 log(UZ + ϑ3) − (log(LX + ϑ3) + log(UX + ϑ3))

UX
log(UZ + ϑ3) − log(LX + ϑ3)

2 log(UZ + ϑ3) − (log(LX + ϑ3) + log(UX + ϑ3))

⎞
⎠ ,

if mi is the loglinear model and by

ξ
�,∞
Emax =

⎛
⎜⎜⎝

LX
2UXLX + (UX + LX )ϑ3

2ϑ3 + UX + LX
(g(UZ ,UX ) + g(UZ ,LX ))g(UZ ,UX )

L

4g(UZ ,UX )g(UZ ,LX )

L

UX
(g(UZ ,UX ) + g(UZ ,LX ))g(UZ ,LX )

L

⎞
⎠

if mi is the Emax model. Here, the function g is defined by g(a, b) = a
a+ϑ3

− b
b+ϑ3

and L is a normalizing constant, that is, L = g2(UZ ,UX ) + 6g(UZ ,UX )g(UZ ,

LX ) + g2(UZ ,LX ).

5. Numerical results. In most cases of practical interest, the μp-optimal de-
signs have to be found numerically. In the case p < ∞, the optimality criteria are
in fact differentiable. In this case—as the criteria under consideration are convex—
several procedures from convex optimization theory can be used for this purpose,
which have been adapted to the specific optimization problems (such as no upper
bound on the dimension) occurring in the determination of optimal experimen-
tal designs [see Dette, Pepelyshev and Zhigljavsky (2008), Yang (2010) or Yang,
Biedermann and Tang (2013)]. In particular, the optimality of the numerically con-
structed designs can be easily checked using the equivalence Theorem 3.1. For this
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reason, we concentrate on the case p = ∞ which is also probably of most prac-
tical interest, because it directly refers to the maximum width of the confidence
band. The μ∞-optimality criterion is not necessarily differentiable. As a conse-
quence there appears the unknown measure �� in Theorem 3.2, which has also to
be calculated in order to check the μ∞-optimality of a given design (or to obtain
a tight lower bound for its efficiency by an application of Theorem 3.3). Former
algorithms for minimax optimal design problems are based on analogues of The-
orem 3.2 such that the measure �� has to be calculated simultaneously with the
optimal design [see, e.g., Wong and Cook (1993)]. We now derive an alternative
procedure using the Particle Swarm Optimization (PSO), which calculates the μ∞-
optimal design and the corresponding measure �� consecutively. For this purpose,
recall the definition of ϕ̃i in (3.2), and consider an arbitrary design ξ = (ξ1, ξ2)

and an arbitrary measure � defined on the set of the extremal points Z(ξ), then the
following inequality holds:

max
t1,t2∈X

∫
Z(ξ)

(
γ1

σ 2
1

ϕ2
1(t1, t, ξ1) + γ2

σ 2
2

ϕ2
2(t2, t, ξ2)

)
d�(t)

≥
∫
X

∫
Z(ξ)

γ1

σ 2
1

ϕ2
1(t1, t, ξ1) d�(t) dξ1(t1)

+
∫
X

∫
Z(ξ)

γ2

σ 2
2

ϕ2
2(t2, t, ξ2) d�(t) dξ2(t2)

=
∫
Z(ξ)

ϕ(t, ξ1, ξ2) d�(t) = μ∞(ξ).

On the other hand, it follows from the equivalence Theorem 3.2 that the oppo-
site inequality also holds for the μ∞-optimal design ξ�,∞ = (ξ

�,∞
1 , ξ

�,∞
2 ) and the

corresponding measure �� on Z(ξ�,∞) [see inequality (3.4)]. Consequently, the
measure �� is the measure on Z(ξ�,∞) which minimizes the function

N∞
(
�, ξ�,∞) = max

t1,t2∈X

∫
Z(ξ�,∞)

(
γ1

σ 2
1

ϕ2
1
(
t1, t, ξ

�,∞
1

) + γ2

σ 2
2

ϕ2
2
(
t2, t, ξ

�,∞
2

))
d�(t)

= max
t1∈X

σ 2
1

γ1
f T

1 (t1)M
−1
1

(
ξ

�,∞
1

)
M1(�)M−1

1

(
ξ

�,∞
1

)
f1(t1)(5.1)

+ max
t2∈X

σ 2
2

γ2
f T

2 (t2)M
−1
2

(
ξ

�,∞
2

)
M2(�)M−1

2

(
ξ

�,∞
2

)
f2(t2).

The μ∞-optimal design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 ) and the corresponding measure ��

for the equivalence theorems are now calculated numerically in four consecutive
steps using Particle Swarm Optimization (PSO) [see, e.g., Clerc (2006)]:

1. We calculate the μ∞-optimal design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 ) using PSO.

2. We calculate numerically the set of extremal points Z(ξ�,∞) = {z1, . . . , zk}
of the function ϕ(t, ξ

�,∞
1 , ξ

�,∞
2 ).
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3. We calculate numerically the measure �� on Z(ξ�,∞) = {z1, . . . , zk} which
minimizes the function N∞(�, ξ�,∞) defined in (5.1) using PSO.

4. We check the optimality of the design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 ) calculated in

step 1 by an application of Theorem 3.2 using the measure �� from step 3.

In its original form, the PSO is a meta-heuristic algorithm whose convergence can-
not be proved. However, there exist several modifications of the method, such that
convergence can established mathematically [see, e.g., van den Bergh and Engel-
brecht (2010) or Bonyadi and Michalewicz (2014) among others]. In our imple-
mentation, we did not use any modification of this type, but we added step 4 in
the procedure to check the derived designs for optimality by an application of the
equivalence Theorem 3.2. Due to the convexity of the corresponding optimization
problems, this procedure is very reliable and the PSO algorithm with 400 particles
and 250 iterations was able to find the μ∞-optimal design with the required accu-
racy in all considered examples. This usually requires about 8 minutes cpu time on
a standard PC.

In the following discussion, we consider the exponential, loglinear and Emax
model with their corresponding parameter specifications depicted in Table 1. These
models have been proposed by Bretz, Pinheiro and Branson (2005) as a selection of
commonly used models to represent dose response relationships on the dose range
[0,1]. These authors also proposed a design which allocates 20% of the patients to
the dose levels 0,0.05,0.2,0.6 and 1, and which will be called standard design in
the following discussion. We consider μ∞-optimal designs for the three combina-
tions of these models, where the design space and the region of interest are given
by X = Z = [0,1]. The variances σ 2

1 and σ 2
2 are equal and given by σ 2 = 1.4782

as proposed in Bretz, Pinheiro and Branson (2005) and we assume γ1 = γ2 = 0.5.
The resulting μ∞-optimal designs are displayed in Table 2. In the diagonal blocks,
we have two identical designs reflecting the fact that in this case m1 = m2. These
designs are actually the D-optimal designs for the corresponding common model,
which follows by a straightforward application of the famous equivalence theorem
for D- and G-optimal designs [see Kiefer and Wolfowitz (1960)].

In the other cases, the optimal designs are obtained from Table 2 as follows. For
example, the μ∞-optimal design for the combination of the Emax (m1) and the ex-

TABLE 1
Commonly used dose response models with their parameter

specifications [from Bretz, Pinheiro and Branson (2005)]

Model m(t,ϑ) Parameters

Emax ϑ1 + ϑ2t
t+ϑ3

(0.2,0.7,0.2)

Exponential ϑ1 + ϑ2 exp(t/ϑ3) (0.183,0.017,0.28)

Loglinear ϑ1 + ϑ2 log(t + ϑ3) (0.74,0.33,0.2)
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TABLE 2
μ∞-optimal designs for different model combinations. Upper rows: support points. Lower rows:

weights given in percent (%)

m1/m2 Emax Loglinear Exponential

Emax 0.00 0.14 1.00 0.00 0.22 1.00 0.00 0.74 1.00
33.3̄ 33.3̄ 33.3̄ 34.0 32.5 33.5 40.3 27.4 32.3

0.00 0.14 1.00 0.00 0.15 1.00 0.00 0.15 1.00
33.3̄ 33.3̄ 33.3̄ 33.4 32.7 33.9 32.0 28.2 39.8

Loglinear 0.00 0.23 1.00 0.00 0.74 1.00
33.3̄ 33.3̄ 33.3̄ 39.2 26.8 34.0

0.00 0.23 1.00 0.00 0.24 1.00
33.3̄ 33.3̄ 33.3̄ 33.5 27.8 38.7

Exponential 0.00 0.75 1.00
33.3̄ 33.3̄ 33.3̄

0.00 0.75 1.00
33.3̄ 33.3̄ 33.3̄

ponential model (m2) can be obtained from the right upper block. The first compo-
nent is the design for the exponential model, which allocates 40.3%,27.4%,32.3%
of the patients to the dose levels 0.00,0.74,1.00. The second component is the de-
sign for the Emax model which allocates 32.0%,28.2%, 39.8% of the patients to
the dose levels 0.00,0.15,1.00.

In Figure 1, we demonstrate the application of the equivalence Theorem 3.2
for the combinations Emax and exponential model and exponential and loglinear
model.

FIG. 1. Illustration of Theorem 3.2. The figures show the function on the left-hand side of inequal-
ity (3.4). Left figure: The combination of exponential and Emax model. Right figure: The combination
of the loglinear and the exponential model.
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FIG. 2. Confidence bands obtained from the μ∞-optimal design (solid lines) and a standard design
(dashed lines). The dotted line shows the true difference of the curves. Left figure: The combination
of exponential and Emax model. Right figure: The combination of the loglinear and the exponential
model.

The advantages of the new designs are illustrated in Figure 2, where we present
the improvement of the confidence bands proposed by Gsteiger, Bretz and Liu
(2011) for the difference between the two regression functions if the μ∞-optimal
design is used instead of a pair of the standard designs. The sample sizes in both
groups are n1 = 100 and n2 = 100, respectively. The presented confidence bands
are the averages of uniform confidence bands calculated by 100 simulation runs.
We observe that inference on the basis of an μ∞-optimal design yields a substan-
tial reduction in the (maximal) width of the confidence band.

It was also pointed out by a referee that it might be of interest to investigate
the sensitivity of this improvement with respect to misspecification of the param-
eters in the locally μ∞-optimality criterion. Exemplarily, we consider the locally
μ∞-optimal design for the combination for the Emax and the exponential model.
The μ∞-optimal design has been constructed for the parameter constellation given
in Table 1, whereas the actual “true” parameters for the Emax and exponen-
tial model are given by ϑEmax = (0.1,0.35,0.1)T and ϑexp = (0.1,0.05,0.167)T

(scenario A) and by ϑEmax = (0.4,0.7,0.4)T and ϑexp = (0.4,0.2,0.66)T (sce-
nario B), respectively. In Figure 3, we compare the resulting confidence bands ob-

FIG. 3. Confidence bands obtained from the standard design (dashed lines) and the μ∞-optimal
design for the Emax and the exponential model under misspecification of the model parameters
(solid lines). The optimal designs have been calculated for the parameters given in Table 1, where
the actual “true” parameters are given by ϑEmax = (0.1,0.35,0.1)T and ϑexp = (0.1,0.05,0.167)T

(left panel) and by ϑEmax = (0.4,0.7,0.4)T and ϑexp = (0.4,0.2,0.66)T (right panel).
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tained from the μ∞-optimal design (with misspecified parameters) with those ob-
tained from the standard design. We observe that—despite the misspecification of
the parameters—the μ∞-optimal design yields substantially narrower confidence
bands in both scenarios. Further investigations, which are not reported for the sake
of brevity, showed a similar picture and we conclude that the μ∞-optimal design
is robust against (moderate) misspecification of the parameters. The construction
of robust designs with respect to extreme misspecification of the parameters will
be discussed in Section 6.2.

Besides the comparison of the different confidence bands produced by the μ∞-
optimal design and the standard design proposed in Bretz, Pinheiro and Branson
(2005), we can also compare different designs using the efficiency defined by (3.5).
For example, the efficiencies of the μ∞-optimal design for the combination for
the Emax and the exponential model with misspecified parameters are given by
79.93% (for scenario A) and by 80.09% (for scenario B), while the standard design
has efficiencies 27.31% and 63.32% in these cases.

A more detailed comparison of the designs for different models (with correctly
specified parameters) is given in Table 3, where we also investigate the problem
of model misspecification. If the model is correctly specified, we observe a sub-
stantial loss of efficiency if the standard design is used instead of a μ∞-optimal
design. In row 2–4 of Table 3, we show the corresponding efficiencies of the μ∞-
optimal design, if these designs are used for the comparison of different curves.
For example, the μ∞-optimal design for two Emax models has μ∞-efficiencies
2.21%, 93.81% and 2.24%, if it is used for the comparison of the loglinear and
exponential, the loglinear and Emax and the exponential and Emax model, respec-
tively. The results indicate that the optimal designs are sensitive with respect to
misspecification of the parametric form of the regression functions, and that they
do not necessarily improve the standard design in such cases. In the last row of
Table 3, we display the efficiencies of a robust design which will be constructed
by the methodology developed in Section 6.2. We observe an improvement of the
standard design in all considered scenarios.

TABLE 3
The μ∞-efficiencies (in %) of the standard design, of the pairs of D-optimal designs (displayed in

the diagonal blocks of Table 2) and of the robust optimal design (cf. Section 6.2)

Model 1 /Model 2 loglin/exp loglin/Emax exp/Emax

Standard design 58.85 72.83 59.00
D-optimal designs for Emax 2.21 93.81 2.24
D-optimal designs for loglinear 7.31 92.44 7.40
D-optimal designs for exponential 15.08 3.72 4.29
Robust optimal design 67.30 89.65 69.57
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6. Further discussion.

6.1. Optimal allocation to the two groups. So far we have assumed that the
sample sizes n1 and n2 in the two groups are fixed and cannot be chosen by the
experimenter. In this section, we will briefly indicate some results, if optimization
can also be performed with respect to the relative proportions γ1 = n1/(n1 + n2)

and γ2 = n2/(n1 + n2) for the two groups. Following the approximate design ap-
proach, we define γ as a probability measure with masses γ1 and γ2 at the points 0
and 1, respectively, and a μ∞-optimal design as a triple ξ�,∞ = (ξ

�,∞
1 , ξ

�,∞
2 , γ �),

which minimizes the functional

μ∞(ξ1, ξ2, γ ) = sup
t∈Z

ϕ(t, ξ1, ξ2, γ ),

where

ϕ(t, ξ1, ξ2, γ ) = σ 2
1

γ1
f T

1 (t)M−1
1 (ξ1, ϑ1)f1(t) + σ 2

1

γ2
f T

2 (t)M−1
2 (ξ2, ϑ2)f2(t).

Similar arguments as given in the proof of Theorem 3.1 give a characterization of
the optimal designs. The details are omitted for the sake of brevity.

THEOREM 6.1. A design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 , γ �) is μ∞-optimal if and only

if there exists a measure �� on the set

Z
(
ξ

�,∞
1 , ξ

�,∞
2 , γ �) = {

t ∈ Z : μ∞
(
ξ

�,∞
1 , ξ

�,∞
2 , γ �) = ϕ

(
t, ξ

�,∞
1 , ξ

�,∞
2 , γ �)}

such that the inequality∫
Z(ξ

�,∞
1 ,ξ

�,∞
2 ,γ �)

I {ω = 0}
σ 2

1

ϕ2
1
(
t, t1, ξ

�,∞
1

) + I {ω = 1}
σ 2

2

ϕ2
2
(
t, t2, ξ

�,∞
2

)
d��(t)

(6.1)
− μ∞

(
ξ

�,∞
1 , ξ

�,∞
2 , γ �) ≤ 0

is satisfied for all t1, t2 ∈ X and ω ∈ {0,1}, where ϕi is defined in (3.2) with
γi = γ �

i . Moreover, equality is achieved in (3.4) for any (t1, t2,ω) ∈ supp(ξ
�,∞
1 ) ×

supp(ξ
�,∞
2 ) × {0,1}.

EXAMPLE 6.2. The μ∞-optimal design (ξ
�,∞
1 , ξ

�,∞
2 , γ �) can be determined

numerically in a similar way as described in Section 5, and we briefly illustrate
some results for the comparison of the Emax model with the exponential model,
where the parameters are given in Table 1. The variances are σ 2

1 = 1.4782 in the
first group and σ 2

2 = 5 · 1.4782 in the second group and the optimal designs (calcu-
lated by the PSO) are presented in Table 4. Note that the optimal design allocates
only 30.2% of the observations to the first group. A comparison of the optimal
designs from Table 4 with the corresponding optimal designs from Table 2 (calcu-
lated under the assumptions σ 2

1 = σ 2
2 and γ1 = γ2 = 0.5) shows that the support

points are very similar, but there appear differences in the weights.
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TABLE 4
The μ∞-optimal design (ξ

�,∞
1 , ξ

�,∞
2 , γ �) for the comparison of

the Emax and the exponential model, where optimization is also
performed with respect to the relative sample sizes γ = (γ1, γ2)

for the two groups. The weights are given in %

γ ∗ ξ
�,∞
1 ξ

�,∞
2

(30.2,69.8) 0.00 0.15 1.00 0.00 0.75 1.00
32.4 24.9 42.7 36.9 30.4 32.7

6.2. Robustness. For the sake of transparency, the discussion presented so far
considers locally optimal designs [see Chernoff (1953)] for “known” models in the
two samples. Besides the specification of the models, these designs require a-priori
information about the corresponding parameters. In several situations, preliminary
knowledge regarding the model and/or unknown parameters is available. A typical
example are phase II clinical dose finding trials, where some useful knowledge
regarding model and corresponding parameters is already available from phase I
[see Dette et al. (2008)]. Moreover, these designs can be applied as benchmarks for
commonly used designs, and locally optimal designs serve as basis for constructing
optimal designs with respect to more sophisticated optimality criteria, which are
efficient and robust against model assumptions [see Läuter (1974), Dette (1990,
1997), Chaloner and Verdinelli (1995) among others].

In this section, we briefly indicate how the methodology introduced in the pre-
vious sections can be further developed to address uncertainty with respect to
the model assumptions. For the sake of brevity, we restrict ourselves to the μ∞-
criterion and note that similar results as presented in this section can be obtained
for the criterion (2.5). In order to reflect the dependence of the criterion (2.4) on
the regression functions m1,m2, the parameters ϑ1, ϑ2 and the variances σ 2

1 , σ 2
2 in

our notation we will use the notation μ1,2∞ (ξ1, ξ2, ϑ1, ϑ2, σ
2
1 , σ 2

2 ) for the criterion
introduced in equation (2.4). Similarly, we denote the efficiency introduced in (3.5)
by

eff1,2∞
(
ξ,ϑ1, ϑ2, σ

2
1 , σ 2

2
) =

μ1,2∞ (ξ
1,2,�

ϑ1,ϑ2,σ
2
1 ,σ 2

2
, ϑ1, ϑ2, σ

2
1 , σ 2

2 )

μ
1,2∞ (ξ,ϑ1, ϑ2, σ

2
1 , σ 2

2 )
,(6.2)

where ξ
1,2,�

ϑ1,ϑ2,σ
2
1 ,σ 2

2
is the locally μ∞-optimal design minimizing the functional

μ1,2∞ (·, ϑ1, ϑ2, σ
2
1 , σ 2

2 ) (for fixed models m1,m2, fixed parameters ϑ1, ϑ2 and fixed
variances σ 2

1 , σ 2
2 ). We assume that p models, say m1, . . . ,mp , are available to

describe the relation between predictor and response in both groups. We address
uncertainty with respect to the parameters in model mk by a prior distribution, say
πk , for the corresponding parameter ϑk ∈ �k ⊂ R

dk and with respect to the vari-
ance σ 2

i by a prior distribution on R
+, say τi (i = 1,2). A design is called robust
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optimal design for the comparison of the two curves if it maximizes the functional

�(ξ) =
p∑

k,l=1

αk,l

∫
R+

∫
R+

∫
�k

∫
�l

effk,l∞
(
ξ,ϑk,ϑl, σ

2
1 , σ 2

2
)

(6.3)
× πk(dϑk)πl(dϑl)τ1

(
dσ 2

1
)
τ2

(
dσ 2

2
)
,

where the quantities αk,l denote nonnegative weights reflecting the experimenters
belief about the pair (mk,ml) for group 1 and 2 with

∑p
k,l=1 αk,l = 1 (here and

throughout this section we assume the existence of all integrals). Exemplarily, we
mention a generalization of Theorem 3.2. The proof is omitted for the sake of
brevity.

THEOREM 6.3. The design ξ� = (ξ�
1 , ξ�

2 ) is robust optimal for the comparison
of the two curves if and only if for all k, l = 1, . . . , p, for all ϑk ∈ supp(πk), ϑl ∈
supp(πl) and for all σ 2

i ∈ supp(τi) (i = 1,2) there exist measures �
�,k,l

ϑk,ϑl,σ
2
1 ,σ 2

2
on

the sets of the extremal points

Zk,l

ϑk,ϑl,σ
2
1 ,σ 2

2

(
ξ�) =

{
t0 ∈ Z

∣∣∣σ 2
1

γ1
f T

k (t0, ϑk)M
−1
k

(
ξ�

1 , ϑk

)
fk(t0, ϑk)

+ σ 2
2

γ2
f T

l (t0, ϑl)M
−1
l

(
ξ�

2 , ϑl

)
fl(t0, ϑl)

= μk,l∞
(
ξ�

1 , ξ�
2 , ϑk,ϑl, σ

2
1 , σ 2

2
)}

,

such that the inequality∫
R>0

∫
R>0

p∑
k,l=1

αk,l

∫
�k

∫
�l

{
effk,l∞ (ξ�,ϑk,ϑl, σ

2
1 , σ 2

2 )

μ
k,l∞ (ξ�,ϑk,ϑl, σ

2
1 , σ 2

2 )
Lk,l(ζ1, ζ2, ξ

�, �
�,k,l

ϑk,ϑl,σ
2
1 ,σ 2

2

)

− effk,l∞
(
ξ�,ϑk,ϑl, σ

2
1 , σ 2

2
)}

πk(dϑk)πl(dϑl)τ1
(
dσ 2

1
)
τ2

(
dσ 2

2
) ≤ 0

with Lk,l := Lk,l(ζ1, ζ2, ξ
�, �

�,k,l

ϑk,ϑl,σ
2
1 ,σ 2

2
) defined by

Lk,l =
(

σ 2
1

γ1
tr

(
Mk

(
�

�,k,l

ϑk,ϑl,σ
2
1 ,σ 2

2
, ϑk

)
M−1

k

(
ξ�

1 , ϑk

)
Mk(ζ1, ϑk)M

−1
k

(
ξ�

1 , ϑk

))

+ σ 2
2

γ2
tr

(
Ml

(
�

�,k,l

ϑk,ϑl,σ
2
1 ,σ 2

2
, ϑl

)
M−1

l

(
ξ�

2 , ϑl

)
Ml(ζ2, ϑl)M

−1
l

(
ξ�

2 , ϑl

)))

holds for all approximate pairs of designs ζ = (ζ1, ζ2) on X ×X .

Efficient robust designs can be calculated by a generalization of the algorithm
developed in Section 5 and we illustrate the application of the algorithm in the
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examples considered in Section 5. As indicated in this section, the μ∞-optimal
designs are robust with respect to moderate misspecification of the model parame-
ters (see the discussion at the end of Section 5); however, they are less robust with
respect to misspecification of the parametric regression models (see Table 3). For
this reason, we use one-point priors πk , πl , τ1, τ2, in equation (6.3) (supported
at the parameters specified in Table 1 for the three models). For the weights αk,l

in (6.3) we choose α1,1 = α2,2 = α3,3 = 1/3 and αk,l = 0, for k �= l. This means
that we construct a robust design for the comparison of two Emax, two exponential
and two log-linear models.

The robust optimal design is given by ξrobust = (ξ1,robust, ξ2,robust), where
ξ1,robust has masses 30.27%, 30.72%, 19.56%, 19.44% at the points 0.00, 0.17,
0.77, 1.00 and ξ2,robust has masses 29.96%, 30.18%, 19.38%, 20.48% at the points
0.00, 0.17, 0.76 1.00. Its efficiencies are given in the last row of Table 3. We ob-
serve a substantial improvement of the standard design. It might also be of interest
to compare the two designs for equal models for the two groups. The efficiencies of
the standard design are 67.98%, 42.87% and 74.29% for the Emax/Emax, exp/exp
and loglin/loglin case, respectively, while the corresponding efficiencies of the ro-
bust optimal design are 90.40%, 59.96% and 90.79%. In all scenarios, the robust
optimal design provides a substantial improvement of the standard design.

7. Proofs. Let � denote the space of all approximate designs on X and define
for ξ1, ξ2 ∈ �

M(ξ1, ξ2, ϑ1, ϑ2) =

⎛
⎜⎜⎝

γ1

σ 2
1

M1(ξ1, ϑ1) 0d1×d2

0d2×d1

γ2

σ 2
2

M2(ξ2, ϑ2)

⎞
⎟⎟⎠(7.1)

as the block diagonal matrix with information matrices γ1

σ 2
1
M1(ξ1, ϑ1) and

γ2

σ 2
2
M2(ξ2, ϑ2) in the diagonal. The set

M(2) = {
M(ξ1, ξ2, ϑ1, ϑ2) : ξ1, ξ2 ∈ �

}
is obviously a convex subset of the set NND(d1 + d2) of all nonnegative definite
(d1 + d2) × (d1 + d2) matrices. Moreover, if δt denotes the Dirac measure at the
point t ∈ X it is easy to see that M(2) is the convex hull of the set

D(2) = {
M(δt1, δt2, ϑ1, ϑ2) : t1, t2 ∈ X

}
,

and that for any p ∈ [1,∞] the function μp(ξ) = μp((ξ1, ξ2)) defined in (2.5)
and (2.4) is convex on the set � × �.

PROOF OF THEOREM 3.1. Note that the function ϕ in (2.2) can be written
as ϕ(t, ξ1, ξ2) = f T (t)M−1(ξ1, ξ2, ϑ1, ϑ2)f (t), where f T (t) = (f T

1 (t), f T
2 (t))

and M(ξ1, ξ2) ∈ M(2) is defined in (7.1). Similarly, we introduce the notation



COMPARING CURVES 1123

�(M, t) = f T (t)M−1f (t) for a matrix M ∈ M(2) and we rewrite the function
μp(ξ1, ξ2) as

μ̃p(M) =
(∫

Z

(
�(M, t)

)p
dλ(t)

)1/p

=
(∫

Z

(
f T (t)M−1f (t)

)p
dλ(t)

)1/p

.(7.2)

Because of the convexity of μp the design ξ�,p = (ξ
�,p
1 , ξ

�,p
2 ) is μp-optimal if

and only if the derivative of μ̃p(M) evaluated in M0 = M(ξ
�,p
1 , ξ

�,p
2 , ϑ1, ϑ2) is

nonnegative for all directions E0 = E − M0, where E ∈ M(2), that is, ∂μ̃p(M0,

E0) ≥ 0. Since M(2) = conv(D(2)), it is sufficient to verify this inequality for all
E ∈D(2).

Assuming that integration and differentiation are interchangeable, it follows by
standard calculations that the derivative at M0 = M(ξ1, ξ2, ϑ1, ϑ2) in direction
E0 = M(δt1δt2, ϑ1, ϑ2) − M0 is given by

∂μ̃p(M0,E0) = μp(ξ1, ξ2)

[
1 − μp(ξ1, ξ2)

−p
∫
Z

β(t, t1, t2) dλ(t)

]
,(7.3)

where the function β is given by

β(t, t1, t2) = ϕ(t, ξ1, ξ2)
p−1

(
γ1

σ 2
1

(
ϕ1(t, t1, ξ1)

)2 + γ2

σ 2
2

(
ϕ2(t, t2, ξ2)

)2
)
.(7.4)

Consequently, the design ξ�,p = (ξ
�,p
1 , ξ

�,p
2 ) is μp-optimal if and only if the in-

equality ∫
Z

β(t, t1, t2) dλ(t) − (
μp

(
ξ

�,p
1 , ξ

�,p
2

))p ≤ 0(7.5)

is satisfied for all t1, t2 ∈ X , which proves the first part of the assertion.
It remains to prove that equality holds for any point (t1, t2) ∈ supp(ξ

�,p
1 ) ×

supp(ξ
�,p
2 ). For this purpose, we assume the opposite, that is, there exists a point

(t1, t2) ∈ supp(ξ
�,p
1 ) × supp(ξ

�,p
2 ), such that there is strict inequality in (7.5). This

gives ∫
X

∫
X

∫
Z

β(t, t1, t2) dλ(t) dξ
�,p
1 (t1) dξ

�,p
2 (t2) <

(
μp

(
ξ

�,p
1 , ξ

�,p
2

))p
.

On the other hand, we have∫
X

∫
X

∫
Z

β(t, t1, t2) dλ(t) dξ
�,p
1 (t1) dξ

�,p
2 (t2)

=
∫
Z

ϕ
(
t, ξ

�,p
1 , ξ

�,p
2

)p
dλ(t) = (

μp

(
ξ

�,p
1 , ξ

�,p
2

))p
.

This contradiction shows that equality in (7.5) must hold whenever (t1, t2) ∈
supp(ξ

�,p
1 ) × supp(ξ

�,p
2 ). �
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PROOF OF THEOREM 3.2. By the discussion at the beginning of the proof
of Theorem 3.1 the minimization of the function μ∞(ξ1, ξ2) is equivalent to the
minimization of

μ̃∞(M) = sup
t∈Z

�(M, t) = sup
t∈Z

f T (t)M−1f (t)(7.6)

for M ∈ M(2). From Theorem 3.5 in Pshenichnyi (1971), the subgradient of
μ̃∞(M) evaluated at a matrix M0 in direction E is given by

Dμ̃∞(M0,E) =
{∫

Z(M0)
∂�(M0,E, t) d�(t) : � measure on Z(M0)

}
,

where the set Z(M0) is defined by Z(M0) = {t ∈ Z : μ̃∞(M0) = �(M0, t)},
and the derivative of �(M0, t) in direction E is given by ∂�(M0,E, t) =
−f T (t)M−1

0 EM−1
0 f (t). Applying the results from page 59 in Pshenichnyi

(1971), it therefore follows that the design ξ�,∞ = (ξ
�,∞
1 , ξ

�,∞
2 ) is μ∞-optimal

if and only if there exists a measure �� on Z(M(ξ
�,∞
1 , ξ

�,∞
2 , ϑ1, ϑ2)) such that the

inequality∫
Z(M0)

∂�(M0,E0, t) d��(t)

=
∫
Z(M0)

∂�(M0,E, t) d��(t) +
∫
Z(M0)

f T (t)M−1
0 f (t) d��(t) ≥ 0

holds for all E0 = E − M0, E ∈ M(2). Since M(2) = conv(D(2)) it is sufficient
to consider the directions E0 = E − M0, where E ∈ D(2). Thus, this inequality is
fulfilled if and only if there exists a measure �� on Z(M0) = Z(ξ�,∞) = Z�, such
that the inequality∫

Z�
f T (t)M−1(

ξ
�,∞
1 , ξ

�,∞
2 , ϑ1, ϑ2

)
M(δt1, δt2, ϑ1, ϑ2)

× M−1(
ξ

�,∞
1 , ξ

�,∞
2 , ϑ1, ϑ2

)
f (t) d��(t)(7.7)

≤
∫
Z�

f T (t)M−1(
ξ

�,∞
1 , ξ

�,∞
2 , ϑ1, ϑ2

)
f (t) d��(t) = μ∞

(
ξ

�,∞
1 , ξ

�,∞
2

)
is satisfied for all M(δt1, δt2, ϑ1, ϑ2) ∈ D(2). Observing the definition of ϕi

in (3.2), the left-hand part of (7.7) can be rewritten as
∫
Z(ξ�,∞)

γ1

σ 2
1
ϕ2

1(t1, t, ξ
�,∞
1 ) +

γ2

σ 2
2
ϕ2

2(t2, t, ξ
�,∞
2 ) d��(t), and inequality (7.7) reduces to (3.4). The remaining state-

ment regarding the equality at the support points follows by the same arguments
as in the proof of Theorem 3.1 and the details are omitted for the sake of brevity.

�

PROOF OF THEOREM 3.3. For both cases, consider the function (μ̃p(M))−1

where μ̃p has been defined in (7.2) and (7.6). Note that for each t ∈ Z the func-
tion M → (f (t)T M−1f (t))−1 is concave [see Pukelsheim (2006), page 77], and
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consequently the function

(
μ̃∞(M)

)−1 = 1

maxt∈Z f (t)T M−1f (t)
= min

t∈Z
(
f (t)T M−1f (t)

)−1

is also concave. The concavity of (μ̃p(M))−1 in the case 1 ≤ p < ∞ follows by
similar arguments. For p ∈ [1,∞], the directional derivative of (μ̃p(M))−1 at the
point M0 in direction E0 = M − M0 is given by

∂
(
μ̃p(M0,E0)

)−1 = −(
μ̃p(M0)

)−2
∂μ̃p(M0,E0).

We now consider the case p ∈ [1,∞), the remaining case p = ∞ is briefly indi-
cated at the end of this proof. Observing (7.3) a lower bound of the directional
derivative of μ̃p at M0 = M(ξ1, ξ2, ϑ1, ϑ2) in direction E0 = M(δt1δt2, ϑ1, ϑ2) −
M0 is given by

∂μ̃p(M0,E0) ≥ μ̃p(M0)

[
1 − maxt1,t2

∫
Z β(t, t1, t2) dλ(t)

μ̃
p
p(M0)

]
,

where β(t, t1, t2) is defined in (7.4). Consequently, we have

∂
(
μ̃p(M0,E0)

)−1 ≤ 1

μ̃p(M0)

[
maxt1,t2

∫
Z β(t, t1, t2) dλ(t)

μ̃
p
p(M0)

− 1
]
.(7.8)

Now, we consider the matrices M = M(ξ
�,p
1 , ξ

�,p
2 , ϑ1, ϑ2) of the μp-optimal de-

sign and M0 = M(ξ1, ξ2, ϑ1, ϑ2) of any fixed design ξ = (ξ1, ξ2) with nonsin-
gular information matrices M1(ξ1, ϑ1) and M2(ξ2, ϑ2) and define the function
gp(α) = μ̃p((1 − α)M0 + αM)−1, which is concave because of the concavity of
(μ̃p(M))−1. This yields

1

μ̃p(M)
− 1

μ̃p(M0)
= gp(1) − gp(0) ≤ ∂gp(α)

∂α

∣∣∣
α=0

= ∂
(
μ̃p(M0,E0)

)−1
.

Consequently, we obtain from (7.8) the inequality

effp(ξ) = μ̃p(M)

μ̃p(M0)
≥ μ̃

p
p(M0)

maxt1,t2

∫
Z β(t, t1, t2) dλ(t)

,

which proves the assertion of Theorem 3.3 in the case 1 ≤ p < ∞. In the case
p = ∞, we use similar arguments which provides the upper bound

∂
(
μ̃∞(M0,E0)

)−1

(7.9)
≤ 1

μ̃∞(M0)

{min�∈�(Z0 maxt1,t2∈X
∫
Z0

(f T (t)M−1
0 f (t1, t2))

2 d�(t)

μ̃∞(M0)
− 1

}
,

where f (t1, t2) is defined by f T (t1, t2) = (f T
1 (t1), f

T
2 (t2))

T Z0 = Z(M0) and
�(Z0) is set of all measures � supported on Z0. The details are omitted for the
sake of brevity. �
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PROOF OF THEOREM 4.1. For the sake of brevity, we now restrict ourselves
to the proof of the first part of Theorem 4.1. The second part can be proved anal-
ogously. Let UX < LZ and recall the definition of the function ϕ(t, ξ1, ξ2) de-
fined in (2.2). The function ϕ(t, ξ1, ξ2) is obviously increasing on Z , if the func-
tions

ϕi(t, t, ξi) = σ 2
i

γi

f T
i (t)M−1

i (ξi)fi(t)

= σ 2
i

γi

ω2
i (t)

(
1, t, . . . , tpi

)
M−1

i (ξi)
(
1, t, . . . , tpi

)T
are increasing on Z for i = 1,2. In this case, we have

max
t∈Z ϕ(t, ξ1, ξ2) = ϕ(UZ , ξ1, ξ2) = ϕ1(UZ , ξ1) + ϕ2(UZ , ξ2).(7.10)

Because of this structure the components of the optimal design can be cal-
culated separately for ϕ1 and ϕ2. Since both {ω1(t),ω1(t)t, . . . ,ω1(t)t

p1} and
{ω2(t),ω2(t)t, . . . ,ω2(t)t

p2} are Chebyshev systems on X ∪ Z, it follows from
Theorem X.7.7 in Karlin and Studden (1966) that the support points of the de-
sign ξi minimizing ϕi(UZ , ξi) are given by the extremal points of the equi-
oscillating polynomials vi(t), while the corresponding weights are given by
(4.2).

In order to prove the monotonicity of ϕi , (i = 1,2), let ξi denote a design with
ki support points ti0, . . . , tiki−1 ∈X and corresponding weights ξi0, . . . , ξiki−1.

Since {1,ωi(t),ωi(t)t, . . . ,ωi(t)t
2pi−1} and {1,ωi(t),ωi(t)t, . . . ,ωi(t)t

2pi }
are Chebshev systems for ωi(t) �= c ∈ R, the complete class theorem of Dette
and Melas (2011) can be applied and it is sufficient to consider minimal supported
designs ξi . Consequently, we set ki = pi + 1.

Define Xi = (ωi(tik)t
l
ik)k,l=0,...,pi

, then it is easy to see that the j th Lan-
grange interpolation polynomial is given by Lij (t) = eT

j X−1
i (ωi(t),ωi(t)t, . . . ,

ωi(t)t
pi )T , where ej denotes the j th unit vector [just check the defining condition

Lij (ti�) = δj�]. With this notation, the function ϕi(t, ξi) can be rewritten as

ϕi(t, t, ξi) = σ 2
i

γi

ω2
i (t)

(
1, t, . . . , tpi

)
X−T

i W−1
i X−1

i

(
1, t, . . . , tpi

)T
(7.11)

:= σ 2
i

γi

pi∑
j=0

1

ξij

(
Lij (t)

)2
,

where Wi = diag(ξi0, . . . , ξipi
). Now Cramer’s rule and a straightforward calcu-

lation yields the following representation for the Lagrange interpolation polyno-
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mial:

Lij (t) = (−1)pi−jωi(t)

∏pi

k=0,k �=j ωi(tik)∏pi

k=0 ωi(tik)

×

det

⎛
⎜⎜⎜⎜⎝

1 . . . 1 1 . . . 1 1

ti0 . . . tij−1 tij+1 . . . tipi
t

... . . .
...

... . . .
...

...

t
pi

i0 . . . t
pi

ij−1 t
pi

ij+1 . . . t
pi

ipi
tpi

⎞
⎟⎟⎟⎟⎠

det

⎛
⎜⎜⎜⎜⎝

1 . . . 1

ti0 . . . tipi

... . . .
...

t
pi

i0 . . . t
pi

ipi

⎞
⎟⎟⎟⎟⎠

= ωi(t)

ωi(tj )

pi∏
k=0,k �=j

t − tik

tij − tik
.

Therefore, the partial derivative of ϕi(t, ξi) with respect to t is given by

∂

∂t
ϕi(t, t, ξi) = σ 2

i

γi

pi∑
j=0

2

ξij

(
Lij (t)

)2
(

ω′
i (t)

ωi(t)
+

pi∑
l=0

1

t − til

)
.

Note that til < t for all til ∈ X and t ∈ Z and that both ωi(t) and ω′
i (t) are pos-

itive. Consequently, the partial derivative is positive and the function ϕi(t, ξi) is
increasing in t ∈ Z . Thus, the maximum value of ϕi(t, ξi) is attained in UZ ∈ Z
and (7.10) follows. �

PROOF OF COROLLARY 4.4. For the sake of brevity, we only prove the result
for the Emax model (4.6), where it essentially follows by an application of The-
orem 4.1 with ω(t) ≡ 1. The proofs for the Michaelis–Menten model and for the
loglinear model are similar. In the Emax model, the gradient is given by f (t,ϑ) =
(1, t

t+ϑ3
, −ϑ2t

(t+ϑ3)
2 ). Using the strictly increasing transformation z = v(t) = t

ϑ3+t
,

the function f can be rewritten by

f (t,ϑ) =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 −ϑ2

ϑ3

ϑ2

ϑ3

⎞
⎟⎟⎠

⎛
⎝ 1

z

z2

⎞
⎠ := Pϑ

⎛
⎝ 1

z

z2

⎞
⎠ .

Thus, for an arbitrary design ξ the function f T (t)M−1(ξ)f (t) reduces to

ϕ(t, ξ) = f T (t)M−1(ξ)f (t) = (
1, z, z2)

P T
ϑ

(
PϑM̃(ξ̃ )P T

ϑ

)−1
Pϑ

(
1, z, z2)T

= (
1, z, z2)

M̃−1(ξ̃ )
(
1, z, z2)T = ϕ̃(z, ξ̃ ),



1128 H. DETTE AND K. SCHORNING

where M̃(ξ̃ ) = (
∫
X zi+j dξ̃ (z))i,j=0,1,2 and ξ̃ is the design on the design space

X̃ = [ LX
ϑ3+LX

,
UX

ϑ3+UX
] induced from the actual design ξ by the transformation

z = t
ϑ3+t

. The function ϕ̃(z, ξ̃ ) coincides with the variance function of a polyno-
mial regression model with degree 2 and constant weight function ω(t) ≡ 1. The
corresponding design and extrapolation space are given by X̃ = [ LX

ϑ3+LX
,

UX
ϑ3+UX

]
and Z̃ = [ LZ

ϑ3+LZ
,

UZ
ϑ3+UZ

], respectively. According to Example 4.3 (p1 = 2), the

component ξ̃i of the μ∞-optimal design is supported at the extremal points of the
Chebyshev polynomial of the first kind on the interval X , which are given by

LX
ϑ3 + LX

,
1

2

(
LX

ϑ3 + LX
+ UX

ϑ3 + UX

)
,

UX
ϑ3 + UX

.

For the weights, we obtain by the same result ξ0 = |L0|
L

, ξ1 = |L1|
L

, ξ2 = |L2|
L

where

|L0| =
(

2
UZ

UZ + ϑ3
−

(
UX

UX + ϑ3
+ LX

LX + ϑ3

))(
UZ

UZ + ϑ3
− UX

UX + ϑ3

)
,

|L1| = 4
(

UZ
UZ + ϑ3

− LX
LX + ϑ3

)(
UZ

UZ + ϑ3
− UX

UX + ϑ3

)
,

|L2| =
(

UZ
UZ + ϑ3

− LX
LX + ϑ3

)(
2

UZ
UZ + ϑ3

−
(

UX
UX + ϑ3

+ LX
LX + ϑ3

))
,

L = |L0| + |L1| + |L2|.
The support points of the μ∞-optimal design ξ are now obtained by the inverse of
the transformation and the assertion for the Emax model follows from the defini-
tion of the function g and a straightforward calculation. �

Acknowledgements. The authors would like to thank Martina Stein, who
typed parts of this manuscript with considerable technical expertise. We are also
grateful to Kathrin Möllenhoff for interesting discussions on the subject of com-
paring curves and for computational assistance. The content is solely the respon-
sibility of the authors and does not necessarily represent the official views of the
National Institutes of Health. The authors would like to thank three referees and
the Associate Editor for their constructive comments on an earlier version of this
paper.

REFERENCES

ANTILLE, G., DETTE, H. and WEINBERG, A. (2003). A note on optimal designs in weighted poly-
nomial regression for the classical efficiency functions. J. Statist. Plann. Inference 113 285–292.
MR1963047

BONYADI, M. R. and MICHALEWICZ, Z. (2014). A locally convergent rotationally invariant particle
swarm optimization algorithm. Swarm Intell. 8 159–198.

BRETZ, F., PINHEIRO, J. C. and BRANSON, M. (2005). Combining multiple comparisons and mod-
eling techniques in dose-response studies. Biometrics 61 738–748. MR2196162

http://www.ams.org/mathscinet-getitem?mr=1963047
http://www.ams.org/mathscinet-getitem?mr=2196162


COMPARING CURVES 1129

CHALONER, K. and VERDINELLI, I. (1995). Bayesian experimental design: A review. Statist. Sci.
10 273–304. MR1390519

CHANG, F.-C. (2005a). D-optimal designs for weighted polynomial regression—a functional-
algebraic approach. Statist. Sinica 15 153–163. MR2125725

CHANG, F.-C. (2005b). D-optimal designs for weighted polynomial regression—a functional ap-
proach. Ann. Inst. Statist. Math. 57 833–844. MR2233552

CHERNOFF, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Stat. 24 586–
602. MR0058932

CLERC, M. (2006). Particle Swarm Optimization. ISTE, London. MR2269598
DETTE, H. (1990). A generalization of D- and D1-optimal designs in polynomial regression. Ann.

Statist. 18 1784–1804. MR1074435
DETTE, H. (1993). A note on E-optimal designs for weighted polynomial regression. Ann. Statist.

21 767–771. MR1232518
DETTE, H. (1997). Designing experiments with respect to “standardized” optimality criteria. J. Roy.

Statist. Soc. Ser. B 59 97–110. MR1436556
DETTE, H., BORNKAMP, B. and BRETZ, F. (2013). On the efficiency of two-stage response-adaptive

designs. Stat. Med. 32 1646–1660. MR3060632
DETTE, H. and MELAS, V. B. (2011). A note on the de la Garza phenomenon for locally optimal

designs. Ann. Statist. 39 1266–1281. MR2816354
DETTE, H. and NEUMEYER, N. (2001). Nonparametric analysis of covariance. Ann. Statist. 29

1361–1400. MR1873335
DETTE, H., PEPELYSHEV, A. and ZHIGLJAVSKY, A. (2008). Improving updating rules in multi-

plicative algorithms for computing D-optimal designs. Comput. Statist. Data Anal. 53 312–320.
MR2649087

DETTE, H. and TRAMPISCH, M. (2010). A general approach to D-optimal designs for weighted
univariate polynomial regression models. J. Korean Statist. Soc. 39 1–26. MR2655806

DETTE, H., BRETZ, F., PEPELYSHEV, A. and PINHEIRO, J. (2008). Optimal designs for dose-
finding studies. J. Amer. Statist. Assoc. 103 1225–1237. MR2462895

DRAGALIN, V., BORNKAMP, B., BRETZ, F., MILLER, F., PADMANABHAN, S. K., PATEL, N.,
PEREVOZSKAYA, I., PINHEIRO, J. and SMITH, J. R. (2010). A simulation study to compare new
adaptive dose-ranging designs. Stat. Biopharm. Res. 2 487–512.

GSTEIGER, S., BRETZ, F. and LIU, W. (2011). Simultaneous confidence bands for nonlinear re-
gression models with application to population pharmacokinetic analyses. J. Biopharm. Statist.
21 708–725. MR2800311

HALL, P. and HART, J. D. (1990). Bootstrap test for difference between means in nonparametric
regression. J. Amer. Statist. Assoc. 85 1039–1049. MR1134500

HEILIGERS, B. (1994). E-optimal designs in weighted polynomial regression. Ann. Statist. 22 917–
929. MR1292548

KARLIN, S. and STUDDEN, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and
Statistics. Wiley, New York. MR0204922

KIEFER, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann.
Statist. 2 849–879. MR0356386

KIEFER, J. and WOLFOWITZ, J. (1960). The equivalence of two extremum problems. Canad. J.
Math. 12 363–366. MR0117842

LAU, T.-S. and STUDDEN, W. J. (1985). Optimal designs for trigonometric and polynomial regres-
sion using canonical moments. Ann. Statist. 13 383–394. MR0773174

LÄUTER, E. (1974). Experimental design in a class of models. Math. Operationsforsch. Statist. 5
379–398. MR0440812

LIU, W., JAMSHIDIAN, M. and ZHANG, Y. (2004). Multiple comparison of several linear regression
models. J. Amer. Statist. Assoc. 99 395–403. MR2062825

http://www.ams.org/mathscinet-getitem?mr=1390519
http://www.ams.org/mathscinet-getitem?mr=2125725
http://www.ams.org/mathscinet-getitem?mr=2233552
http://www.ams.org/mathscinet-getitem?mr=0058932
http://www.ams.org/mathscinet-getitem?mr=2269598
http://www.ams.org/mathscinet-getitem?mr=1074435
http://www.ams.org/mathscinet-getitem?mr=1232518
http://www.ams.org/mathscinet-getitem?mr=1436556
http://www.ams.org/mathscinet-getitem?mr=3060632
http://www.ams.org/mathscinet-getitem?mr=2816354
http://www.ams.org/mathscinet-getitem?mr=1873335
http://www.ams.org/mathscinet-getitem?mr=2649087
http://www.ams.org/mathscinet-getitem?mr=2655806
http://www.ams.org/mathscinet-getitem?mr=2462895
http://www.ams.org/mathscinet-getitem?mr=2800311
http://www.ams.org/mathscinet-getitem?mr=1134500
http://www.ams.org/mathscinet-getitem?mr=1292548
http://www.ams.org/mathscinet-getitem?mr=0204922
http://www.ams.org/mathscinet-getitem?mr=0356386
http://www.ams.org/mathscinet-getitem?mr=0117842
http://www.ams.org/mathscinet-getitem?mr=0773174
http://www.ams.org/mathscinet-getitem?mr=0440812
http://www.ams.org/mathscinet-getitem?mr=2062825


1130 H. DETTE AND K. SCHORNING

LIU, W., BRETZ, F., HAYTER, A. J. and WYNN, H. P. (2009). Assessing nonsuperiority, noninfe-
riority, or equivalence when comparing two regression models over a restricted covariate region.
Biometrics 65 1279–1287. MR2756516

PSHENICHNYI, B. N. (1971). Necessary Conditions for an Extremum. Dekker, New York.
MR0276845

PUKELSHEIM, F. (2006). Optimal Design of Experiments. Classics in Applied Mathematics 50.
SIAM, Philadelphia, PA. MR2224698

PUKELSHEIM, F. and RIEDER, S. (1992). Efficient rounding of approximate designs. Biometrika 79
763–770. MR1209476

VAN DEN BERGH, F. and ENGELBRECHT, A. P. (2010). A convergence proof for the particle swarm
optimiser. Fund. Inform. 105 341–374. MR2799460

WONG, W. K. and COOK, R. D. (1993). Heteroscedastic G-optimal designs. J. Roy. Statist. Soc.
Ser. B 55 871–880. MR1229885

YANG, M. (2010). On the de la Garza phenomenon. Ann. Statist. 38 2499–2524. MR2676896
YANG, M., BIEDERMANN, S. and TANG, E. (2013). On optimal designs for nonlinear models:

A general and efficient algorithm. J. Amer. Statist. Assoc. 108 1411–1420. MR3174717
YU, Y. (2010). Monotonic convergence of a general algorithm for computing optimal designs. Ann.

Statist. 38 1593–1606. MR2662353
ZEN, M.-M. and TSAI, M.-H. (2004). Criterion-robust optimal designs for model discrimination

and parameter estimation in Fourier regression models. J. Statist. Plann. Inference 124 475–487.
MR2081498

RUHR-UNIVERSITÄT BOCHUM

FAKULTÄT FÜR MATHEMATIK

44780 BOCHUM

GERMANY

E-MAIL: holger.dette@rub.de
kirsten.schorning@rub.de

http://www.ams.org/mathscinet-getitem?mr=2756516
http://www.ams.org/mathscinet-getitem?mr=0276845
http://www.ams.org/mathscinet-getitem?mr=2224698
http://www.ams.org/mathscinet-getitem?mr=1209476
http://www.ams.org/mathscinet-getitem?mr=2799460
http://www.ams.org/mathscinet-getitem?mr=1229885
http://www.ams.org/mathscinet-getitem?mr=2676896
http://www.ams.org/mathscinet-getitem?mr=3174717
http://www.ams.org/mathscinet-getitem?mr=2662353
http://www.ams.org/mathscinet-getitem?mr=2081498
mailto:holger.dette@rub.de
mailto:kirsten.schorning@rub.de

	Introduction
	Comparing parametric curves
	Optimal design theory
	Some analytical results-extrapolation
	Numerical results
	Further discussion
	Optimal allocation to the two groups
	Robustness

	Proofs
	Acknowledgements
	References
	Author's Addresses

