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ESTIMATING SPARSE PRECISION MATRIX: OPTIMAL RATES
OF CONVERGENCE AND ADAPTIVE ESTIMATION

BY T. TONY CAll, WEIDONG L1U? AND HARRISON H. ZHOU?
University of Pennsylvania, Shanghai Jiao Tong University and Yale University

Precision matrix is of significant importance in a wide range of appli-
cations in multivariate analysis. This paper considers adaptive minimax esti-
mation of sparse precision matrices in the high dimensional setting. Optimal
rates of convergence are established for a range of matrix norm losses. A fully
data driven estimator based on adaptive constrained £ minimization is pro-
posed and its rate of convergence is obtained over a collection of parameter
spaces. The estimator, called ACLIME, is easy to implement and performs
well numerically.

A major step in establishing the minimax rate of convergence is the deriva-
tion of a rate-sharp lower bound. A “two-directional” lower bound technique
is applied to obtain the minimax lower bound. The upper and lower bounds
together yield the optimal rates of convergence for sparse precision matrix
estimation and show that the ACLIME estimator is adaptively minimax rate
optimal for a collection of parameter spaces and a range of matrix norm losses
simultaneously.

1. Introduction. Precision matrix plays a fundamental role in many high-
dimensional inference problems. For example, knowledge of the precision ma-
trix is crucial for classification and discriminant analyses. Furthermore, precision
matrix is critically useful for a broad range of applications such as portfolio op-
timization, speech recognition and genomics. See, for example, Lauritzen (1996),
Yuan and Lin (2007) and Saon and Chien (2011). Precision matrix is also closely
connected to the graphical models which are a powerful tool to model the rela-
tionships among a large number of random variables in a complex system and are
used in a wide array of scientific applications. It is well known that recovering
the structure of an undirected Gaussian graph is equivalent to the recovery of the
support of the precision matrix. See, for example, Lauritzen (1996), Meinshausen
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and Biihlmann (2006) and Cai, Liu and Luo (2011). Liu, Lafferty and Wasserman
(2009) extended the result to a more general class of distributions called nonpara-
normal distributions.

The problem of estimating a large precision matrix and recovering its sup-
port has drawn considerable recent attention and a number of methods have been
introduced. Meinshausen and Biihlmann (2006) proposed a neighborhood selec-
tion method for recovering the support of a precision matrix. Penalized likelihood
methods have also been introduced for estimating sparse precision matrices. Yuan
and Lin (2007) proposed an £; penalized normal likelihood estimator and stud-
ied its theoretical properties. See also Friedman, Hastie and Tibshirani (2008),
d’ Aspremont, Banerjee and El Ghaoui (2008), Rothman et al. (2008), Lam and
Fan (2009) and Ravikumar et al. (2011). Yuan (2010) applied the Dantzig selector
method to estimate the precision matrix and gave the convergence rates for the
estimator under the matrix £; norm and spectral norm. Cai, Liu and Luo (2011)
introduced an estimator called CLIME using a constrained £; minimization ap-
proach and obtained the rates of convergence for estimating the precision matrix
under the spectral norm and Frobenius norm.

Although many methods have been proposed and various rates of convergence
have been obtained, it is unclear which estimator is optimal for estimating a sparse
precision matrix in terms of convergence rate. This is due to the fact that the min-
imax rates of convergence, which can serve as a fundamental benchmark for the
evaluation of the performance of different procedures, is still unknown. The goals
of the present paper are to establish the optimal minimax rates of convergence for
estimating a sparse precision matrix under a class of matrix norm losses and to
introduce a fully data driven adaptive estimator that is simultaneously rate optimal
over a collection of parameter spaces for each loss in this class.

Let Xy,..., X, be a random sample from a p-variate distribution with a co-
variance matrix ¥ = (0;;)1<;, j<p. The goal is to estimate the inverse of X, the
precision matrix £ = (w;;)1<i, j<p- It is well known that in the high-dimensional
setting structural assumptions are needed in order to consistently estimate the pre-
cision matrix. The class of sparse precision matrices, where most of the entries in
each row/column are zero or negligible, is of particular importance as it is related
to sparse graphs in the Gaussian case. For a matrix A and a number 1 < w < oo,
the matrix £, norm is defined as ||A||,, = supy,|, <i |Ax]y. The sparsity of a preci-
sion matrix can be modeled by the £, balls with 0 < g < 1. More specifically, we
define the parameter space G, (¢, p, My, p) by

p

Q= (wjj)1<i i< :max2|a)--|q <c
J/1=tL)=p : 2] =Cn,p>
(1.1)  Gylen,p, Mn,p) = izl ,

€21 < Mn,p» Amax (£2)/Amin(£2) < M1, 2 >0

where 0 < ¢ < 1, M, , and ¢, are positive and bounded away from 0 and allowed
to grow as n and p grow, M| > 0 is a given constant, Amax (£2) and Ampi, (€2) are the
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largest and smallest eigenvalues of 2, respectively, and ¢inf < p < exp(yn) for
some constants 8 > 1, ¢; > 0 and y > 0. The notation A > 0 means that A is sym-
metric and positive definite. In the special case of ¢ = 0, a matrix in Go(cp, p, My, p)
has at most ¢, , nonzero elements on each row/column.

Our analysis establishes the minimax rates of convergence for estimating the
precision matrices over the parameter space G, (cy, p, My, p) under the matrix £y,
norm losses for 1 < w < co. We shall first introduce a new method using an adap-
tive constrained £ minimization approach for estimating the sparse precision ma-
trices. The estimator, called ACLIME, is fully data-driven and easy to implement.
The properties of the ACLIME are then studied in detail under the matrix £,, norm
losses. In particular, we establish the rates of convergence for the ACLIME esti-
mator which provide upper bounds for the minimax risks.

A major step in establishing the minimax rates of convergence is the derivation
of rate sharp lower bounds. As in the case of estimating sparse covariance matrices,
conventional lower bound techniques, which are designed and well suited for prob-
lems with parameters that are scalar or vector-valued, fail to yield good results for
estimating sparse precision matrices under the spectral norm. In the present paper,
we apply the “two-directional” lower bound technique first developed in Cai and
Zhou (2012) for estimating sparse covariance matrices. This lower bound method
can be viewed as a simultaneous application of Assouad’s lemma along the row
direction and Le Cam’s method along the column direction. The lower bounds
match the rates in the upper bounds for the ACLIME estimator, and thus yield the
minimax rates.

By combining the minimax lower and upper bounds developed in later sections,
the main results on the optimal rates of convergence for estimating a sparse pre-
cision matrix under various norms can be summarized in the following theorem.
We focus here on the exact sparse case of g = 0; the optimal rates for the general
case of 0 < g < 1 are given in the end of Section 4. Here, for two sequences of
positive numbers a, and b,, a, =< b, means that there exist positive constants ¢
and C independent of n such that ¢ < a, /b, <C.

THEOREM 1.1. Let X,-i'Ld'Np(M,E), i=12,....,n,and let 1 < ¢, ) =
o(n'2(log p)~3/?). The minimax risk of estimating the precision matrix Q@ = £~

over the class Go(cn,p, My, p) based on the random sample {X1, ..., X,,} satisfies
N lo
(1.2) inf sup  ENQ— Q% =< M2 el ,—=F
Q g()(k:Mn,p) n

forall 1 <w < oo.

In view of Theorem 1.1, the ACLIME estimator to be introduced in Section 2,
which is fully data driven, attains the optimal rates of convergence simultane-
ously for all k-sparse precision matrices in the parameter spaces Go(k, M, ;) with
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k <« n'/?(log p)~3/? under the matrix £,, norm for all I < w < co. The commonly
used spectral norm coincides with the matrix £ norm. For a symmetric matrix A,
it is known that the spectral norm ||A||2 is equal to the largest magnitude of eigen-
values of A. When w = 1, the matrix £; norm is simply the maximum absolute
column sum of the matrix. As will be seen in Section 4, the adaptivity holds for
the general £, balls G, (cy,p, My, p) with 0 < g < 1. The ACLIME procedure is
thus rate optimally adaptive to both the sparsity patterns and the loss functions.

In addition to its theoretical optimality, the ACLIME estimator is computation-
ally easy to implement for high dimensional data. It can be computed column by
column via linear programming and the algorithm is easily scalable. A simulation
study is carried out to investigate the numerical performance of the ACLIME es-
timator. The results show that the procedure performs favorably in comparison to
CLIME.

Our work on optimal estimation of precision matrix given in the present paper is
closely connected to a growing literature on estimation of large covariance matri-
ces. Many regularization methods have been proposed and studied. For example,
Bickel and Levina (2008a, 2008b) proposed banding and thresholding estimators
for estimating bandable and sparse covariance matrices, respectively, and obtained
rate of convergence for the two estimators. See also El Karoui (2008) and Lam
and Fan (2009). Cai, Zhang and Zhou (2010) established the optimal rates of con-
vergence for estimating bandable covariance matrices. Cai and Yuan (2012) intro-
duced an adaptive block thresholding estimator which is simultaneously rate opti-
mal over large collections of bandable covariance matrices. Cai and Zhou (2012)
obtained the minimax rate of convergence for estimating sparse covariance matri-
ces under a range of losses including the spectral norm loss. In particular, a new
general lower bound technique was developed. Cai and Liu (2011) introduced an
adaptive thresholding procedure for estimating sparse covariance matrices that au-
tomatically adjusts to the variability of individual entries.

The rest of the paper is organized as follows. The ACLIME estimator is intro-
duced in detail in Section 2 and its theoretical properties are studied in Section 3.
In particular, a minimax upper bound for estimating sparse precision matrices is
obtained. Section 4 establishes a minimax lower bound which matches the mini-
max upper bound derived in Section 2 in terms of the convergence rate. The upper
and lower bounds together yield the optimal minimax rate of convergence. A simu-
lation study is carried out in Section 5 to compare the performance of the ACLIME
with that of the CLIME estimator. Section 6 gives the optimal rate of convergence
for estimating sparse precision matrices under the Frobenius norm and discusses
connections and differences of our work with other related problems. The proofs
are given in Section 7.

2. Methodology. In this section, we introduce an adaptive constrained £
minimization procedure, called ACLIME, for estimating a precision matrix €2. The
properties of the estimator are then studied in Section 3 under the matrix £,, norm
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losses for 1 < w < oo and a minimax upper bound is established. The upper bound
together with the lower bound given in Section 4 will show that the ACLIME esti-
mator is adaptively rate optimal.

We begin with basic notation and definitions. For a vector a = (ay, ...,a p)T €

R?, define |al; = Y-F_; la;] and |alr = \/30_, a?. For a matrix A = (a;j) €
RP*4_ we define the elementwise £,, norm by |A|,, = (i laij™) 1/w The Frobe-
nius norm of A is the elementwise £, norm. / denotes a p x p identity matrix. For
any two index sets 7 and 7’ and matrix A, we use A7y to denote the |T| x |T’|
matrix with rows and columns of A indexed by T and T’, respectively.

For an i.i.d. random sample {X1, ..., X,} of p-variate observations drawn from
a population X, let the sample mean X = % Y %—1 Xk and the sample covariance
matrix

1 _ _
2.1 = (0012 j<p = — X - X)X - X7,
=1

which is an unbiased estimate of the covariance matrix ¥ = (0;;) 1<, j<p-

It is well known that in the high dimensional setting, the inverse of the sam-
ple covariance matrix either does not exist or is not a good estimator of 2. As
mentioned in the Introduction, a number of methods for estimating €2 have been
introduced in the literature. In particular, Cai, Liu and Luo (2011) proposed an
estimator called CLIME by solving the following optimization problem:

(2.2) min|Q|; subjectto: |TFR — I|x < T4, QeRP*P,

where 1, = CM,, ,+/log p/n for some constant C. The convex program (2.2) can
be further decomposed into p vector-minimization problems. Let ¢; be a standard
unit vector in R” with 1 in the ith coordinate and 0 in all other coordinates. For
1 <i < p, let @; be the solution of the following convex optimization problem:

2.3) min|w|; subjectto |X,w — e€ilco < Tn,

where w is a vector in R”. The final CLIME estimator of €2 is obtained by putting
the columns @; together and applying an additional symmetrization step. This es-
timator is easy to implement and possesses a number of desirable properties as
shown in Cai, Liu and Luo (2011).

The CLIME estimator has, however, two drawbacks. One is that the estimator
is not rate optimal, as will be shown later. Another drawback is that the procedure
is not adaptive in the sense that the tuning parameter 7,, is not fully specified and
needs to be chosen through an empirical method such as cross-validation.

To overcome these drawbacks of CLIME, we now introduce an adaptive con-
strained £;-minimization for inverse matrix estimation (ACLIME). The estimator
is fully data-driven and adaptive to the variability of individual entries. A key tech-
nical result which provides the motivation for the new procedure is the following
fact.
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LEMMA 2.1, Let X1,.... Xy " Ny(u, ) with log p = O(n'/3). Set §* =
(s;"j)lgi,jfp = X*Q — I,xp, where ¥* is the sample covariance matrix defined
in (2.1). Then

Var(si*j) = [n:i(l + 0iiwii), forz: = J:,
nooiiwjj, fori#
and for all § > 2,

PlI(E"2 ~ fpp), | =8 L8P v < < p]

2.4) ,
>1— 0((logp)_l/2p_‘s /4+1)'

REMARK 2.1. The condition log p = O(n'/3) in Lemma 2.1 can be relaxed
to log p = o(n). Under the condition log p = o(n) Theorem 1 in Chapter VIII of
Petrov (1975) implies that equation (2.4) still holds by replacing the probability
bound 1 — O((log p)~1/2p=8*/4+1) with 1 — O((log p)~1/2p=8*/4+1+o(1)) We
then need the constant § > 2 so that (log p)~1/2p=8*/4+1+o(h) — 5(1).

A major step in the construction of the adaptive data-driven procedure is to make
the constraint in (2.2) and (2.3) adaptive to the variability of individual entries
based on Lemma 2.1, instead of using a single upper bound A, for all the entries.
In order to apply Lemma 2.1, we need to estimate the diagonal elements of X
and @, 0;; and w;;, i, j =1,..., p. Note that 0;; can be easily estimated by the
sample variances o/;, but w;; are harder to estimate. Hereafter, (A);; denotes the
(i, j)th entry of the matrix A, (a); denotes the jth element of the vector a. Denote
bj=(bij,....bp).

The ACLIME procedure has two steps: The first step is to estimate w;; and the
second step is to apply a modified version of the CLIME procedure to take into

account of the variability of individual entries.
Step 1: Estimating Wjj. Note that Ojiwjj = (0ii \/ojj)a)jj and (oy; \/O'jj)a)jj >

. . . . ojjwjjlogp
1, which implies [Oiiwjj = (oji V O’jj)a)jj, that is, 2\/% < 2(oj; V
0jj)Wjj\/ 10%. From equation (2.4), we consider

log p .
2.5) |(2*s2—1pxp)l.j|gz(oﬁv(;j,-)wj,-,/%, 1<ij<p.

Let Q := ((f)l.lj) = (c?).ll, e, c?),lp) be a solution to the following optimization prob-
lem:

26) o= a}fgerlralin{lbj |1:15bj = ejloo < Mn(oj} v 0j) x bjj. bj; > 0},
J
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where bj = (b1},.... b)), 1<j<p, S =S*+n""1,.,and

1
.7 doy = 8| 8P
n

Here, § is a constant which can be taken as 2. The estimator fll yields estimates of
the conditional variance w;;, 1 < j < p. More specifically, we define the estimates

ofa)jj by
N n logp n
wjj_wjjl{aj‘js llogp}—i_‘, p 1{0;‘j> llogp}'

Step 2: Adaptive estimation. Given the estimates @, the final estimator Q of

€ is constructed as follows. First, we obtain ' =: (cbl.lj) by solving p optimization
problems: for 1 < j <p

@8) ol =argmin{lbl (86— e))] < n o 1 < < ).

where A, is given in (2.7). We then obtain the estimator Q by symmetrizing ',

Q= (@)
2.9) |

where ®;j = ®j; =5)}jl{]d)ij\ < \d)},]} —I—d)}ilﬂd)}j’ > ]d)}ll]}

We shall call the estimator 2 adaptive CLIME, or ACLIME. The estimator
adapts to the variability of individual entries by using an entry-dependent threshold
for each individual w;;. Note that the optimization problem (2.6) is convex and
can be cast as a linear program. The constant § in (2.7) can be taken as 2 and
the resulting estimator will be shown to be adaptively minimax rate optimal for

estimating sparse precision matrices.

REMARK 2.2. Note that § = 2 used in the constraint sets is tight, it can not be
further reduced in general. If one chooses the constant § < 2, then with probability
tending to 1, the true precision matrix will no longer belong to the feasible sets. To
see this, consider ¥ = Q = I, ,, for simplicity. It follows from Liu, Lin and Shao
(2008) and Cai and Jiang (2011) that

n ~
max |oj;| — 2
log p 1<i<j<p

in probability. Thus, P(|f§§2 — Ipxploo > An) — 1, which means that if § < 2,
the true 2 lies outside of the feasible set with high probability and solving the
corresponding minimization problem cannot lead to a good estimator of 2.
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REMARK 2.3. The CLIME estimator uses a universal tuning parameter A, =
CM,, »+/log p/n which does not take into account the variations in the variances
o;; and the conditional variances wj;. It will be shown that the convergence rate
of CLIME obtained by Cai, Liu and Luo (2011) is not optimal. The quantity M, ,
is the upper bound of the matrix £; norm which is unknown in practice. The cross
validation method can be used to choose the tuning parameter in CLIME. However,
the estimator obtained through CV can be variable and its theoretical properties are
unclear. In contrast, the ACLIME procedure proposed in the present paper does
not depend on any unknown parameters and it will be shown that the estimator is
minimax rate optimal.

3. Properties of ACLIME and minimax upper bounds. We now study the
properties of the ACLIME estimator Q proposed in Section 2. We shall begin with
the Gaussian case where X ~ N (i, X). Extensions to non-Gaussian distributions
will be discussed later. The following result shows that the ACLIME estimator
adaptively attains the convergence rate of

B log p\(1—9)/2
o ()

n

over the class of sparse precision matrices G, (cy, p, My, ) defined in (1.1) under
the matrix ¢,, norm losses for all 1 < w < oco. The lower bound given in Section 4
shows that this rate is indeed optimal and thus ACLIME adapts to both sparsity
patterns and this class of loss functions.

THEOREM 3.1. Suppose we observe a random sample X1, ..., X, Hid. Np(u,
¥). Let Q@ = S~ be the precision matrix. Let § > 2,1log p = O(n'/3) and

(3.1 Cn,p = 0(n1/2—9/2/(10g p)3/2—q/2).

Then for some constant C > 0

9 log p\(I=9/2
1, P10 -8tz ebites (SE) )
Qegq(Cu,p,Mn’p) <|| ||w - n,p Cn,p n

_ _ 82
>1— 0((log p)~ /2 p=%7/4+1)

forall 1 <w < oo.

For g = 0, a sufficient condition for estimating €2 consistently under the spectral

norm is
n . n
M, pen,p @zo(l), ie., M, pchp=o0 log p .

This implies that the total number of nonzero elements on each column needs
be « 4/n in order for the precision matrix to be estimated consistently over
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log p
n

Go(cn,p» My, p). In Theorem 4.1 we show that the upper bound M, ,c, ,
is indeed rate optimal over Go(cp, p, My, p).

REMARK 3.1. Following Remark 2.1, the condition log p = O (n'/3) in The-
orem 3.1 can be relaxed to log p = o(n). In Theorem 3.1, the constant § then needs
to be strictly larger than 2, and the probability bound 1 — O ((log p)~'/? p_(;z/ 4ty
is replaced by 1 — O((log p)~1/2p=8*/4+1+0()) By 4 similar argument, in the
following Theorems 3.2 and 3.3, we need only to assume log p = o(n).

We now consider the rate of convergence under the expectation. For technical
reasons, we require the constant § > 3 in this case.

THEOREM 3.2. Suppose we observe a random sample X1, ..., X, L Ny (e,
Y). Let @ = X! be the precision matrix. Let log p = o(n) and 8 > 3. Suppose
that p > n13/@=8) ang

cn,p =o0((n/log p)lﬂ*q/z).

The ACLIME estimator satisfies, forall 1 <w <ocoand0<qg <1,
log p ) I=q

sup  EIQ - Q) <CM; e ( .

n,p
gq (Cn,pyMn,p)

for some constant C > Q.

Theorem 3.2 can be extended to non-Gaussian distributions.Let Z = (Z1,
Zy,...,Z,) be a p-variate random variable with mean u and covariance ma-
trix ¥ = (0jj)1<i,j<p. Let & = (wjj)1<i,j<p be the precision matrix. Define
Yi =(Zi — wi)/oy*, 1 <i < pand (Wi,...,W,) :=Q(Z — ). Assume that
there exist some positive constants n and M such that for all 1 <i < p,

(3.2) Eexp(nY?) <M,  Eexp(nW}/w;i) <M.

Then we have the following result.

THEOREM 3.3. Suppose we observe an i.i.d. sample X1, ..., X, with the pre-
cision matrix Q2 satisfying condition (3.2). Let log p = o(n) and p > n? for some
y > 0. Suppose that

Cn,p = 0(("/10g p)l/Z—q/Z)‘

Then there is a & depending only on 1, M and y such that the ACLIME estimator
Q satisfies, forall 1 <w <ocoand0<qg < 1,
log p ) 1=4

sup  EIQ-Q|? < CM,%;,chz ( p

n,p
gq(cn,thn,p)

for some constant C > 0.
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REMARK 3.2. Under condition (3.2), it can be shown that an analogous result
to Lemma 2.1 in Section 2 holds with some é§ depending only on 1 and M. Thus, it
can be proved that, under condition (3.2), Theorem 3.3 holds. The proof is similar
to that of Theorem 3.2. A practical way to choose § is using cross validation.

REMARK 3.3. Theorems 3.1, 3.2 and 3.3 follow mainly from the convergence
rate under the element-wise £, norm and the inequality | M|, < ||M||; for any
symmetric matrix M from Lemma 7.2. The convergence rate under element-wise
norm plays an important role in graphical model selection and in establishing the
convergence rate under other matrix norms, such as the Frobenius norm || - || .
Indeed, from the proof, Theorems 3.1, 3.2 and 3.3 hold under the matrix £; norm.

More specifically, under the conditions of Theorems 3.2 and 3.3 we have

~ lo
sup  EIQ-Q2 <cM2, ip,

gq(cn,van,p)

n

. 1 I=q
sup  EIQ-Qlf <CcM; e (ﬂ) ,

n,p
gq (Cn.p,Mn,p)

| N lo l—-q/2
sup —EI— Q|3 < CM,%;,‘ICH,,,( gp) .
gq(cn,psMnA,p) p n

REMARK 3.4. The results in this section can be easily extended to the weak
£, ball with 0 < g < 1 to model the sparsity of the precision matrix 2. A weak £,
ball of radius ¢ in R? is defined as follows:

By(c) ={€ eRP: |&[%, <ck™' forallk=1,..., p},

where |£](1) > [€|@) = -+ = |€](p). Let

cQ = (wij)lfi,jfp ONSNS Bq(cn,p)» }
1201 < My, ps Amax () /2omin () < M1, 2 =0
Theorems 3.1, 3.2 and 3.3 hold with the parameter space G (cy, p, My, ) replaced

by G;“](cn,p, M, ;) by a slight extension of Lemma 7.1 for the £, ball to for the
weak £, ball similar to equation (51) in Cai and Zhou (2012).

(3.3) g;(cn,pa Mn,p) =

4. Minimax lower bounds. Theorem 3.2 shows that the ACLIME estimator
adaptively attains the rate of convergence

lo 1=q
@.1) M2 p(%>
under the squared matrix £,, norm loss for 1 < w < oo over the collection of the
parameter spaces G, (cn,p, My, p). In this section, we shall show that the rate of
convergence given in (4.1) cannot be improved by any other estimator and thus
is indeed optimal among all estimators by establishing minimax lower bounds for
estimating sparse precision matrices under the squared matrix £,, norm.
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-
THEOREM 4.1. Let Xy,..., anfv Np(u, X) with p > clnﬁ for some con-
stants B > 1 and c1 > 0. Assume that

1 q/2
42 Mg p< °¢p ) < ¢pp = oM ,n0=9/2(10g p) =0~
2\ ,

for some constant ¢ > 0. The minimax risk for estimating the precision matrix Q =
>~ over the parameter space Gy (cy, p, My, p) under the condition (4.2) satisfies

logp)l_q

inf sup  E|Q-Q} =CM; M (
’ n

n,p
Q gq (CnA,van,p)

for some constant C > 0 and for all 1 < w < o0.

The proof of Theorem 4.1 is involved. We shall discuss the key technical tools
and outline the important steps in the proof of Theorem 4.1 in this section. The
detailed proof is given in Section 7.

4.1. A general technical tool. We use a lower bound technique introduced
in Cai and Zhou (2012), which is particularly well suited for treating “two-
directional” problems such as matrix estimation. The technique can be viewed
as a generalization of both Le Cam’s method and Assouad’s lemma, two classical
lower bound arguments. Let X be an observation from a distribution Py where
6 belongs to a parameter set ® which has a special tensor structure. For a given
positive integer r and a finite set B C R”? /{014 ,}, let ' ={0,1}" and A C B".
Define

4.3) ®=T®A={(y.A):yelandeA}.

In comparison, the standard lower bound arguments work with either I" or A alone.
For example, Assouad’s lemma considers only the parameter set I' and Le Cam’s
method typically applies to a parameter set like A with » = 1. Cai and Zhou (2012)
gives a lower bound for the maximum risk over the parameter set ® to the problem
of estimating a functional (@), belonging to a metric space with metric d.

We need to introduce a few notation before formally stating the lower bound.
For two distributions P and Q with densities p and ¢ with respect to any common
dominating measure p, the total variation affinity is given by [P A Q| = [p A
g dp. For a parameter y = (yy, ..., ¥r) € I where y; € {0, 1}, define

(4.4) H(y,vy') =) lvi— vl
i=1

be the Hamming distance on {0, 1}".
Let Dy = Card(A). For a given a € {0, 1} and 1 <i <r, we define the mixture
distribution P, ; by

- 1
(4-5) IEDa,i = m

> {Po 1 yi(6) =a}.

0
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So I@a, i is the mixture distribution over all Py with y;(0) fixed to be a while all
other components of 6 vary over all possible values. In our construction of the pa-
rameter set for establishing the minimax lower bound, r is the number of possibly
nonzero rows in the upper triangle of the covariance matrix and A is the set of
matrices with r rows to determine the upper triangle matrix.

LEMMA 4.1. For any estimator T of ¥ (0) based on an observation from the
experiment {Pg, 0 € ®}, and any s > 0

(4.6) max 2'Egd" (7. /(0)) = a5 min |[Bo; AP,
<I<r

where I@’a, i is defined in equation (4.5) and o is given by

B . d*(y(0), (")
o= min .
{0,0N:H(y©®),y@N=1} H(y(@®),y ("))

(4.7)

We introduce some new notation to study the affinity ||]1_3’0,,- A }I_”l,i | in equa-
tion (4.6). Denote the projection of 6 € ® to I by y(0) = (¥i(0))1<i<r and to A
by A(0) = (A;(0))1<i<r. More generally we define y4(0) = (y;(6));ca for a subset
AC{l,2,...,r}, aprojection of 6 to a subset of I'. A particularly useful example
of set A is

{=iy={l,....i—-1i+1,....r}

for which y_;(0) = (y1(0), ..., vi—1(0), ¥i+1(0), ¥+ (0)). Aa(0) and A_;(0) are
defined similarly. We denote the set {A4(0) : 6 € ®} by A4. For a € {0, 1},
be{0,1Y " andce A_; CB" 7!, let

Dp;ab,e) = Card{y eA:yi(@)=a,y_i@)=band A_;(0) = C}

and define

4.8) Paibo = Y Po:vi(0) =a,y-i() =band h_;(6) = c}.

Dn;b.e) 5

In other words, I@(a,i’ b,c) 1s the mixture distribution over all Py with A; (@) varying
over all possible values while all other components of € remain fixed.

The following lemma gives a lower bound for the affinity in equation (4.6). See
Section 2 of Cai and Zhou (2012) for more details.

LEMMA 4.2. Let H_”a,,' and ]I_J’(a,i?b,c) be defined in equations (4.5) and (4.8),
respectively, then

IPo; APyl > Average|Po.iy ;5 A Peiy i)
V—ish—i

’

where the average over y—_; and ,_; is induced by the uniform distribution over ©.
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4.2. Lower bound for estimating sparse precision matrix. We now apply the
lower bound technique developed in Section 4.1 to establish rate sharp results un-

der the matrix £,, norm. Let X, ..., X, i Np(u, Q_l) with p > cinP for some
B > 1 and c¢; > 0, where Q € G,(cy,p, My, p). The proof of Theorem 4.1 con-
tains four major steps. We first reduce the minimax lower bound under the general
matrix £,, norm, 1 < w < oo, to under the spectral norm. In the second step, we
construct in detail a subset F, of the parameter space G, (cu,p, My, p) such that
the difficulty of estimation over JF, is essentially the same as that of estimation
over G, (cu, p, My, p), the third step is the application of Lemma 4.1 to the carefully
constructed parameter set, and finally in the fourth step we calculate the factors
« defined in (4.7) and the total variation affinity between two multivariate normal
mixtures. We outline the main ideas of the proof here and leave detailed proof of
some technical results to Section 7.

PROOF OF THEOREM 4.1. We shall divide the proof into four major steps.

Step 1: Reducing the general problem to the lower bound under the spectral
norm. The following lemma implies that the minimax lower bound under the spec-
tral norm yields a lower bound under the general matrix £,, norm up to a constant
factor 4.

i.i.d. —
LEMMA 4.3. Let Xq,..., Xn”~ N(u, 2 1), and F be any parameter space

of precision matrices. The minimax risk for estimating the precision matrix Q over
F satisfies

~ 1 ~
(4.9) infsupE[|Q2 — QII7, > < infsup E||Q — Q13
& F 406 F
forall 1 <w < oo.

Step 2: Constructing the parameter set. Let r = [p/2] and let B be the collec-
tion of all vectors (b;)1<j<p suchthat b; =0for1 < j<p-—randb;=0o0rl
for p —r +1 < j < p under the constraint ||b||g = k (to be defined later). For each
b e B and each 1 <m <r, define a p x p matrix A, (b) by making the mth row
of A, (b) equal to b and the rest of the entries 0. It is clear that Card(B) = (;). Set
I' = {0, 1}". Note that each component b; of A = (b1, ..., b;) € A can be uniquely
associated with a p x p matrix A;(b;). A is the set of all matrices A with the ev-
ery column sum less than or equal to 2k. Define ® ="' ® A and let ¢, , € R
be fixed. (The exact value of &, , will be chosen later.) For each 6 = (y,A) € ®
withy = (y1,...,¥) and A = (by, ..., b.), we associate 6 with a precision matrix
Q(0) by

Q)= o |:Ip +én,p Z Vm)\m(bm):|.

2 m=1
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Finally, we define a collection . of precision matrices as

Fo= {9(9) 1Q0) = Mg”’ [Ip +énp Y ym/\m(bm)}, 0=(r,n) € ®}-

m=1

We now specify the values of ¢, , and k. Set

1 g g _ |
4.10)  epp=v ogp forsomeO<u<min{<£> ’3—}
’ n 2 88

and
4.11) k= [2_lcn,p(Mn,p5n,p)_q—| -1,

which is at least 1 from equation (4.10). Now we show F, is a subset of the pa-
rameter space G, (cn, p, My, p). From the definition of k in (4.11) note that

_ _ M, 4
@12 max Y o1t <227 00 p Mo pn )0 (F500) =
T#ES

From equation (4.2), we have ¢, , = o(M,! ,n1=9/2(log p)=G~9/2) which im-
plies

(4.13) 2ken,p < cnpen M, % =0(1/log p),
then
M, ,
(4.14) ml_axZ |wij| < 5 (1 + 2ken, p) < My, .
j

Since [|Afl2 < ||A|l1, we have

,
En,p Z VimAm (bm)

m=1

=
2

< 2ken,p =o0(1),

,
En,p Z VinAm (bm)
m=1

1

which implies that every €2(6) is diagonally dominant and positive definite, and

M., M, ,
(4.15)  Amax(£2) < 2’ (1 +2ken,p) and  Amin(€2) > 2’ (1 —2ken, p)

which immediately implies

Amax (£2)
<
)\min(Q)

Equations (4.12), (4.14), (4.15) and (4.16) all together imply Fs C G, (cn, p, My, p).

(4.16)

1.
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Step 3: Applying the general lower bound argument. Let Xi,..., X, s
N, (0, (€2 ©))~!) with 6 € © and denote the joint distribution by Py. Applying

Lemmas 4.1 and 4.2 to the parameter space ®, we have

. 20 16 2
1r}frepea(§2 Eg|2—20)|;

@.17) ) ) )
>a- 7 -min Average [[Po,i.y_;.5»_) APy nll,
Loyl
where
QB) — QO3
4.18) o 1€2(0) GOl

min
10,00:H(y0),y@)N=1} H(y(0),y(©)
and Po,i and I@Li are defined as in (4.5).

Step 4: Bounding the per comparison loss « defined in (4.18) and the affinity
min; Average,, ;. 1P0,i,y_;,2 ) AP,i,yi2_pll in(4.17). This is done separately
in the next two lemmas which are proved in detailed in Section 7.

LEMMA 4.4. The per comparison loss o defined in (4.18) satisfies
2
> (Mn,pkgn,p) .
= 7417

LEMMA 4.5. Let Xy, .... X, " N0, (Q(0))") with 0 € © and denote the

Jjoint distribution by Py. For a € {O 1} and 1 <i <r, define P(a,,,b,c) as in (4.8).
Then there exists a constant ¢; > 0 such that

min Average [P,y 1) AP1,i,y2_pll = c1.
1 . .
V—ish—i

Finally, the minimax lower bound for estimating a sparse precision matrix over
the collection G, (cy, p, My, ) is obtained by putting together (4.17) and Lemmas
4.4 and 4.5,

inf  sup  E|Q—QO)|;
9] gq(ﬁn ps My, p)

n,pkgn,p)2 p

> max FE Q-Q@ —_— .
omax a O3 = e T
I—¢q
1 _ lo
6_(M" pkenp)? _CzMr%ypzqcrzl,P<%) ’

for some constant ¢co > 0. [
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Putting together the minimax upper and lower bounds in Theorems 3.2 and 4.1
as well as Remark 3.4 yields the optimal rates of convergence for estimating 2
over the collection of the ¢, balls G, (cy,p, My, ) defined in (1.1) as well as the
collection of the weak ¢, balls g; (¢n,p, My, p) defined in (3.3).

j.i.d.
THEOREM 4.2. Suppose we observe a random sample X; K~ Npy(u, ), i =
1,2,...,n. Let Q = 7! be the precision matrix. Assume that log p = O(n'/3)
and

1 q/2
(419) CM:le( ng) SC”,P:O(M,(fpn(]_Q)/z(logp)_G_q)/z)
) n s

for some constant ¢ > 0. Then

logp)l_q

(4.20) inf sup E[|Q2 — Q13 < M, ¢y (
Q Qeg ’ n

n,p

forall 1 <w < oo, where G =G, (cy,p, My, p) or g;‘(cn,p, My ).

5. Numerical results. In this section, we consider the numerical performance
of ACLIME. In particular, we shall compare the performance of ACLIME with
that of CLIME. The following three graphical models are considered. Let D =
diag(Uy, ..., Up), where U;, 1 <i < p, are i.i.d. uniform random variables on the
interval (1,5). Let T =Q~! = DI/ZQI_IDUZ. The matrix D makes the diagonal
entries in X and €2 different.

e Band graph. Let Ql = (a),-j), where Wi = 1, Wi i+l = Wi+l = 0.6, Wi i42 =
W42, = 0.3, wij = 0 for |i — j| > 3.

e AR(1) model. Let Qi = (w;;), where w;; = (0.6)1/ 7.

o Erdds—Rényi random graph. Let Q; = (w;;), where w;j = u;j * §;;, 8;; is the
Bernoulli random variable with success probability 0.05 and u;; is uniform ran-
dom variable with distribution U (0.4, 0.8). We let Q1 = Qo + (| min(Ayin)| +
0.05)1),. Itis easy to check that the matrix €21 is symmetric and positive definite.

We generate n = 200 random training samples from N, (0, ) distribution for
p =50, 100, 200, 300, 400. For ACLIME, we set 6 = 2 in Step 1 and choose § in
Step 2 by a cross validation method. To this end, we generate an additional 200
testing samples. The tuning parameter in CLIME is selected by cross validation.
Note that ACLIME chooses different tuning parameters for different columns and
CLIME chooses a universal tuning parameter. The log-likehood loss

L(31, Q) =log(det(R)) — (21, Q),

where 3 is the sample covariance matrix of the testing samples, is used in the
cross validation method. For § in (2.7), we let § =4§; = j/50, 1 < j < 100. For
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each 6, ACLIME §2(8 j) is obtained and the tuning parameter § in (2.7) is selected
by minimizing the following log-likehood loss:

§=7j/50 where j = argmin L(31, Q(8)).
1<j<100
The tuning parameter A, in CLIME is also selected by cross validation. The de-
tailed steps can be found in Cai, Liu and Luo (2011).

The empirical errors of ACLIME and CLIME estimators under various set-
tings are summarized in Table 1 below. Three losses under the spectral norm,
matrix £; norm and Frobenius norm are given to compare the performance be-
tween ACLIME and CLIME. As can be seen from Table 1, ACLIME, which is
tuning-free, outperforms CLIME in most of the cases for each of the three graphs.

6. Discussions. We established in this paper the optimal rates of convergence
and introduced an adaptive method for estimating sparse precision matrices under
the matrix £,, norm losses for 1 < w < oco. The minimax rate of convergence under
the Frobenius norm loss can also be easily established. As seen in the proof of
Theorems 3.1 and 3.2, with probability tending to one,

R 1
6.1) Q2 — Qoo < CMy |22
n

for some constant C > 0. From equation (6.1) one can immediately obtain the
following risk upper bound under the Frobenius norm, which can be shown to be
rate optimal using a similar proof to that of Theorem 4.1.

THEOREM 6.1. Suppose we observe a random sample X; Hd- Np(u,X),i=
1,2,...,n. Let Q = X1 be the precision matrix. Under the assumption (4.19), the
minimax risk of estimating the precision matrix Q over the class Gy (cn,p, My, p)
defined in (1.1) satisfies

logp)l_‘f/2

inf El Q— Q% =< M1
1m sup p” “FA n,p Cn,p "

fZ gq (Cil,])sMVLp)

As shown in Theorem 4.2, the optimal rate of convergence for estimating sparse
precision matrices under the squared £,, norm loss is M,i_pzqc%’ p(k’%)l_‘f It is
interesting to compare this with the minimax rate of convergence for estimating
sparse covariance matrices under the same loss which is c%’ p(lo%)l_q [cf. Theo-
rem 1 in Cai and Zhou (2012)]. These two convergence rates are similar, but have
an important distinction. The difficulty of estimating a sparse covariance matrix
does not depend on the £ norm bound M, ,, while the difficulty of estimating a
sparse precision matrix does.



TABLE 1
Comparisons of ACLIME and CLIME for the three graphical models under three matrix norm losses. Inside the parentheses are the standard deviations
of the empirical errors over 100 replications

ACLIME CLIME

p 50 100 200 300 400 50 100 200 300 400

Spectral norm
Band  0.30(0.01) 0.45(0.01) 0.65(0.01) 0.85(0.01) 0.91(0.01) 0.32(0.01) 0.50(0.01) 0.72(0.01) 1.06(0.01)  1.08 (0.01)
AR(1) 0.75(0.01) 1.04(0.01) 1.25(0.01) 1.35(0.01) 1.37(0.01) 0.73 (0.01) 1.05(0.01) 1.30(0.01) 1.41 (0.01) 1.51 (0.01)
E-R 0.65(0.03) 0.95(0.02) 2.62(0.02) 4.28(0.02) 5.69(0.02) 0.72(0.03) 1.21(0.04) 2.28(0.02) 3.99(0.03) 6.00(0.01)

Matrix £1 norm
Band  0.62(0.02) 0.79(0.01) 0.94(0.01) 1.14 (0.01) 1.21 (0.01) 0.65(0.02) 0.86(0.02) 0.99 (0.01) 1.35(0.01) 1.37 (0.01)
AR(1) 1.19(0.02) 1.62(0.02) 1.93(0.01) 1.99 (0.01)  2.04(0.01) 1.17(0.01) 1.59(0.01) 1.89(0.01) 2.03(0.01) 2.16(0.01)
E-R 1.47 (0.08) 2.15(0.06) 5.47(0.05) 10.58(0.09) 11.38(0.16) 1.53(0.06) 2.34(0.06) 5.20(0.04) 9.85(0.10) 11.77 (0.03)

Frobenius norm
Band  0.80(0.01) 1.61(0.02) 3.11(0.02) 5.10 (0.03) 6.28 (0.01) 0.83(0.01) 1.73(0.02) 3.29(0.03) 5.90 (0.01) 6.93 (0.01)
AR(1) 1.47(0.02) 2.73(0.01) 4.72(0.01) 6.23 (0.01) 7.44 (0.01) 1.47(0.02) 2.82(0.02) 4.97(0.01) 6.64 (0.01) 8.30 (0.01)
E-R 1.53(0.05) 3.15(0.03) 9.89(0.07) 18.53(0.12) 26.10(0.26) 1.62(0.04) 3.61(0.05) 8.86(0.04) 17.14(0.11) 27.67(0.02)

Ly

NOHZ H HANV AI'TM TvO L'L
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As mentioned in the Introduction, an important related problem to the esti-
mation of precision matrix is the recovery of a Gaussian graph which is equiv-
alent to the estimation of the support of 2. Let G = (V, E) be an undirected
graph representing the conditional independence relations between the compo-
nents of a random vector X. The vertex set V contains the components of X,
V=X ={Vy,...,V,}. The edge set E consists of ordered pairs (i, j), indicat-
ing conditional dependence between the components V; and V;. An edge between
Vi and V; is in the set E, that is, (i, j) € E, if and only w;; = 0. The adaptive
CLIME estimator, with an additional thresholding step, can recover the support
of Q. Define the estimator of the support of 2 by

SUPP(Q) = {(i, j) : |&ij] = ©ij},

where the choice of 7;; depends on the bound |&;; — w;;|. Equation (6.1) implies
that the right threshold levels are t;; = CM,, ,+/log p/n. If the magnitudes of the

nonzero entries exceed 2C M, ,+/log p/n, then SUPP(Q2) recovers the support of
Q2 exactly. In the context of covariance matrix estimation, Cai and Liu (2011) intro-
duced an adaptive entry-dependent thresholding procedure to recover the support
of X. That method is based on the sharp bound

max  |6;j — aij| <2y/6;;1log p/n,

I<i<j<p

where é,-j is an estimator of Var((X; — u;)(X; — w;)). Itis natural to ask whether
one can use data and entry-dependent threshold levels z;; to recover the support
of Q. It is clearly that the optimal choice of 7;; depends on the sharp bounds for
|&; ; — w; ;| which are much more difficult to establish than in the covariance matrix
case.

Several recent papers considered the estimation of nonparanormal graphical
models where the population distribution is non-Gaussian; see Xue and Zou (2012)
and Liu et al. (2012). The nonparanormal model assumes that the variables fol-
low a joint normal distribution after a set of unknown marginal monotone trans-
formations. Xue and Zou (2012) estimated the nonparanormal model by apply-
ing CLIME (and graphical lasso, neighborhood Dantzig selector) to the adjusted
Spearman’s rank correlations. ACLIME can also be used in such a setting. It would
be interesting to investigate the properties of the resulting estimator under the non-
paranormal model. Detailed analysis is involved and we leave this as future work.

7. Proofs. In this section, we prove the main results, Theorems 3.1 and 3.2,
and the key technical results, Lemmas 4.3, 4.4 and 4.5, used in the proof of The-
orem 4.1. The proof of Lemma 4.5 is involved. We begin by proving Lemma 2.1
stated in Section 2 and collecting a few additional technical lemmas that will be
used in the proofs of the main results.
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7.1. Proof of Lemma 2.1 and additional technical lemmas.

PROOF OF LEMMA 2.1. Let ¥ = (5;;) =n~! Y/_1 X;X}. Note that =* has
the same distribution as that of ¥ with X ~ N(0, ). So we can replace ¥*
in Section 2 by ¥, = X + n_llpxp and assume X; ~ N(0,X). Let A, =1 —

0((logp)_1/2p_52/4+1) and set A, = 8+/Iog p/n + O((nlog p)~1/?). It suffices
to prove that with probability greater than A,

n—1
Z Xk,-X,'(a).j
k=1

Sn)»n,/o‘iia)jj fori;éj,

(7.1)
§n)»n‘/ajja)jj—l fOI‘i:j.

Note that Cov(X; Q) = Q, Var(X;w.;) = w;; and Cov(Xy; X;w.;) = Z,le Oik X
wij =0 fori # j. So Xj; and X, w.; are independent. Hence, E(Xk,-cha).j)3 =0.
By Theorem 5.23 and (5.77) in Petrov (1995), we have

n—1
P( Z inX;calj

k=1
We next prove the second inequality in (7.1). We have E(ijX,/ca)A j) =1 and
Var(Xy; Xj0.j) = 0jjo;; + 1. Since 1 = E(Xy;j Xj.;) < EV2(X3jXj0.;)? <
;/260}]/2’ we have 0j;w;; > 1. Note that Eexp(to(ijX,/(w.j)z/(l +ojjwjj) <co
for some absolute constants 79 and cg. By Theorem 5.23 in Petrov (1995),

P( > (84 O((og p)™"))\/ojjwj) 10gp>

n—1

’
Z ijXka).j —n
k=1

> n)»n«/aiia)jj)
(7.2) ,
= (1+0(1)P(IN (0, 1)| = 8,/log p) < C(log p)~"/>p~*"/2.

n—1
Z ijX;cw-j —n+1
k=1

n—1 -1
3+ O((lo
(7.3) gp(ZXk,X,;w.j—nH z( (og p) ))\/(a,jw,j+1)1ogp>
= V2
_ _s2
<C(logp)~'?p~> /%,

This, together with (7.2), yields (7.1). U
LEMMA 7.1. Let Q be any estimator of Q and set t, = IQ — Qloo. Then on
the event
{lo.jli <lw.jl, for1 <j < p},
we have
(7.4) 12— Q1 < 12¢,, 1179,
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PROOF. Define
hj =(2).J' —w.j, h} = (CT)Z'J'I{|C?),'J'| > 2tn}; 1<i< p)T —wj, ]’l? =hj —h}.
Then
j.j10 = [hj]y + 1G]y < | + Rl + (B3] = 1dj11 < o1,

which implies that |h§ l| < |h}. |1. This follows that |/ |; < 2|h} 1. So we only need
to upper bound |4 } [{. We have

p p
51y < 1@ — wij {101 = 2t} + )l 1 1{1dij] < 2t}
i=1 i=1
P
tol {lwij| = ta} + D lwij| I {|wij] <3ta} <4dcq pty 4.
i=1

e

Il
—_

=<
So (7.4) holds. O

The following lemma is a classical result. It implies that, if we only consider
estimators of symmetric matrices, an upper bound under the matrix £; norm is an
upper bound for the general matrix £,, norm for all 1 < w < oo, and a lower bound
under the matrix £> norm is also a lower bound for the general matrix £,, norm.
We give a proof to this lemma to be self-contained.

LEMMA 7.2. Let A be a symmetric matrix, then

[All2 < [[Allw < [IAlly

forall 1 <w < oo.

PROOF. The Riesz-Thorin interpolation theorem [see, e.g., Thorin (1948)]
implies

(7.5)  NAllw < max{||Allu,. [Allu,}  forall 1 <w; <w <ws <oco.

Set w; = 1 and wy = oo, then equation (7.5) yields ||A|ly < max{||A|1, ||Allco}
for all 1 < w < co. When A is symmetric, we know ||A||; = ||Allco, then imme-
diately we have ||A|l, < ||All1. Since 2 is sandwiched between w and %, and
lAllw = | Allw/w—1 by duality, from equation (7.5) we have [|A|> < [|All,, for all
1 <w < oo when A symmetric. [J
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7.2. Proof of Theorems 3.1 and 3.2. We first prove Theorem 3.1. From
Lemma 7.2, it is enough to consider the w = 1 case. Because Amax (€2)/Amin (2) <
M, we have max; o; max;w;j; < M. By Lemma 2.1, we have with probability
greater than A,

|SA21 - Q|<>o = |(Qi - pxp)le + S-Z(Ipxp - iélﬂoo

/1 log p log p
<C||§21||1 " +2||Q||1maxo*umjaxw” -
lo
<CIQ 1/ gp—|—2||Q||1maxa”maxa)”max 08P
n J J j wj n
Ji

lo
<C||szl||1,/ gp+2M1||Q||1max  [logp
Jowjjy o n

We first assume that max; w;; > 0.5./log p/n. Then we have max; ® -q <

2(n/log p)?/%. Note that [|Q]l; < [Qll1 < cngmax;w ,.‘l.“f and max; w;;/
min; @;; < Amax(2)/Amin(2) < M. By the above inequality,

~1

;. _q [logp log p
L 1‘ < Ccn’pmaxa)iiq -1 +3Mcy, pmaxa) qmax J -1
Wi i n J wjj n

with probability greater than A,,. Thus, by the conditions in Theorems 3.2 and 3.1,
we have

(7.6)

max
l

max|—-
i |wijj

c?)l.li 1‘ o(1), under conditions of Theorem 3.2,
B O(1/(log p)), under conditions of Theorem 3.1,
with probability greater than A,. By (7.1), we can see that, under conditions of

Theorem 3.1, 2 belongs to the feasible set in (2.8) with probability greater than
A, . Under conditions of Theorem 3.2, €2 belongs to the feasible set in (2.8) with

probability greater than 1 — O ((log p)~ I/ 2
ment as in (7.6), we can get |Ql — Qoo < CMn,p\/ lofp and

2/4+1+o(1))_ So by a similar argu-

log p

€2~ Qoo < CM,1,

By Lemma 7.1, we see that
19— QI < CM ey p(log p/n) 1 =9/,

We consider the case max; w;; < 0.54/logp/n. Under this setting, we have
min|<;<;o/; > «/n/logp with probability greater than A,. Hence, w; =
Jlog p/n z w;; and € belongs to the feasible set in (2.8) with probability greater
than A,,. So ||Q||1 <[IL]1 < Ccy,p(og p/n)1~9/2_ This proves Theorem 3.1.
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To prove Theorem 3.2, note that ||2)|; < Q"1 < 1=~ I1 < np'/2. We have

10gp>1‘q

n

E|$— Q|2 < CM,%;}%,%J,(

_ _52 _
n C(nzp n Mr%,pzqcz,p)p 82/4+1+0(1) (o5 p)~1/2

10gp>1_q

<CM; M, (
’ n

n,p

This proves Theorem 3.2.

7.3. Proof of Lemma4.3. We first show that the minimax lower bound over all
possible estimators is at the same order of the minimax lower over only estimators
of symmetric matrices under each matrix £,, norm. For each estimator <2, we define
a projection of < to the parameter space F,

Qoroiect = arg min Q-Q ,
])I‘()_]eCt Qc || || w
which is symmetric, then

A A A A 2
sup Bl Qproject — 2112, < SUp E[[1€2 — Lprojectllw + 182 — Q1]
F F
A A 2
(7.7) fngEmQ—9m+w9—mm]
=4supE[Q - Q3.
]_‘

where the first inequality follows from the triangle inequality and the second one
follows from the definition of Qproject. Since equation (7.7) holds for every €2, we
have

inf  supE[|Q — Q|2 <4infsupE[|Q — Q||
& F

Q,symmetric F

From Lemma 7.2, we have

_inf  swpE|Q-Q[}, > inf supE|Q— Q|5 > infsupE[Q— Q3
2,symmetric F Q,symmetric F Q F

which, together with equation (7.7), establishes Lemma 4.3.

7.4. Proof of Lemma 4.4. Let v = (v;) be a column vector with length p, and
v‘_{l, p—Ip/21+1=i=p,
T 0, otherwise
thatis,v=(1{p — [p/21+1=<i < p})px1. Set
w=(w;) =[QO) — Q26O)]v.
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Note that for each i, if |y;(0) — y;(0")| = 1, we have |w;| = @keml,. Then there

are at least H(y(0), y(9’)) number of elements w; with |w;| = @ksn,p, which
implies

’ / Mﬂ 2
I26) — 201013 = Hr©). 1) - (“52kens )
Since ||v||? = [p/2] < p, the equation above yields
2 IS200) — QO3 . H ), y(01) - (Myy,p/Dken, p)*
- o]l - p ’

[26) - @)

that is,

120) = QEN? _ (Mapken.p)®
H(y(©0).y©)) ~ 4p
when H (y (0). y(6") = 1.

7.5. Proof of Lemma 4.5. Without loss of generality, we assume that M, ,
is a constant, since the total variance affinity is scale invariant. The proof of the
bound for the affinity given in Lemma 4.5 is involved. We break the proof into a
few major technical lemmas Without loss of generality, we consider only the case
i = 1 and prove that there exists a constant ¢; > 0 such that ||]1_”1,0 A 1@1,1 | = cs.
The following lemma turns the problem of bounding the total variation affinity into
a chi-square distance calculation on Gaussian mixtures. Define

O_1 ={(b, c) : there exists a & € O such that y_(0) =b and A_;(9) = c},

which is the set of all values of the upper triangular matrix €2(6) could possibly
take, with the first row leaving out.

LEMMA 7.3. Ifthere is a constant ¢y < 1 such that
dP 2
(7.8) Average {/(M) AP0,y iy — 1} <3,
(Y-1,A-1)€O_4 dP(l,O,Vfl,)xfl)
then |P1o AP 1] >1—cy>0.

From the definition of I_P)(l,o,y,l, »_,) in equation (4.8) and € in equation (4.3),

y1 = 0 implies I@’(l,o,%l, a_;) 1s a single multivariate normal distribution with a
precision matrix,

1 01y
(7.9) QO:( = )
0p-1x1 Sep—1x(p-1)
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where S(,_1)x(p—1) = (8ij)2<i,j<p 1S uniquely determined by (y_1,A_1) =
(2, .- V), (A2, ..., &) with

1, i =],
Sij =\ €n,p» vi=ri(j) =1,
0, otherwise.

Let
A1(c) = {a : there exists a § € © such that 41(0) =a and A_1(0) = c},

which gives the set of all possible values of the first row with rest of rows given,
that is, A_1(0) = c, and define p, , = Card(A(A_1)), the cardinality of all pos-
sible A1 such that (A1, A_1) € A for the given A_;. Then from definitions in equa-
tions (4.8) and (4.3) P(l,l,y,l,k,l) is an average of (m—l) multivariate normal dis-

k
tributions with precision matrices of the following form:

1 o
(7.10) < Fixp=1) )

Y(p-x1 Sp—Dx(p-1)

where |r|lo = k with nonzero elements of r equal ¢, , and the submatrix
S(p—1)x(p—1) is the same as the one for ¥( given in (7.9). It is helpful to ob-
serve that p, _, > p/4. Let n;_, be the number of columns of A_; with column
sum equal to 2k for which the first row has no choice but to take value O in
this column. Then we have p; |, = [p/2] —n;_,. Since n;_, -2k < [p/2] - k,
the total number of 1’s in the upper triangular matrix by the construction of
the parameter set, we thus have n; , < [p/21/2, which immediately implies
piy =1[p/21—m_, = [p/21/2= p/4.

With Lemma 7.3 in place, it remains to establish equation (7.8) in order to prove
Lemma 4.5. The following lemma is useful for calculating the cross product terms
in the chi-square distance between Gaussian mixtures. The proof of the lemma is
straightforward and is thus omitted.

LEMMA 7.4. Let g; be the density function of N (0, Q;l) fori=0,1 and 2.
Then

8182 det(])
g0 [det(I — Q7' (2 — Q)25 (21 — Q)12

Let ©Q;,i =1 or 2, be two precision matrices of the form (7.10). Note that €2;,
i =0,1 or 2, differs from each other only in the first row/column. Then 2; —
Qp, i =1 or 2, has a very simple structure. The nonzero elements only appear
in the first row/column, and in total there are 2k nonzero elements. This property
immediately implies the following lemma which makes the problem of studying
the determinant in Lemma 7.4 relatively easy.
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LEMMA 7.5. Let Q2;,i =1 and 2, be the precision matrices of the form (7.10).
Define J to be the number of overlapping &, ,’s between Q1 and Q2 on the first
row, and

0 é(%‘j)lgi,jfp = (R2 — Q0) (21 — Qo).

There are index subsets I and 1. in {2, ..., p} with Card(l,) = Card(l;) = k and
Card(I, N 1.) = J such that

2 P— 7 —
an’p, i=j=1,
aij = &5 iel and j€l,,

0, otherwise

and the matrix (3 — Q0) (21 — Qo) has rank 2 with two identical nonzero eigen-
values Je,%’p.

Let

(7.11) RV

rn = —logdet(I - Q7192 — Q009 (1 — Q)),

where €2¢ is defined in (7.9) and determined by (y—1, A—1), and Q1 and 2, have
the first row A; and A} respectively. We drop the indices A1, A} and (y_1, A1)
from €2; to simplify the notation. Define
O_1(ar,az)
={0,1Y'® {c € A_; :there exist §; € ©,i =1 and 2,
such that A1 (6;) = a;, A_1(6;) = C}.
It is a subset of ®_; in which the element can pick both a; and a, as the first row

to form parameters in ®. From Lemma 7.4 the left-hand side of equation (7.8) can
be written as

n
Average { Average [exp(i . Rill_,l):’?q) _ 1“
(r—1,2-D€O0_1 Lr M eAi (M)

= Average Average ex n. RY-1A-1)
N / g g , p 2 )‘lv)‘/l .
oA eB Uy, a2)e®_1(A1,0)

The following result shows that Ri/l_ INA ~! is approximately — logdet(I — (2, —
A

Q0) (21 — Qp)) which is equal to —2log(1 — J&? p) from Lemma 7.5. Define

n,

A1y = {()»1,)»'1) EA®A:

the number of overlapping &, ,’s between A; and A} is J}.
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LEMMA 7.6. For Ry defined in equation (7.11), we have

(7.12) RAV;'A’,]L' = —2log(1 — Je; )+ Rﬁ;x,

Y-1,A-1 .
where Rl,kl,kﬁ satisfies

(7.13) Average |: Average exp(%Ri”;ﬁ,lﬂ =140(1),
O ADEA] L (y-1,4-1)€O_1(11,1) :

where J is defined in Lemma 7.5.
7.5.1. Proof of equation (7.8). We are now ready to establish equation (7.8)

which is the key step in proving Lemma 4.5. It follows from equation (7.12) in
Lemma 7.6 that

n
Average{ Average [exp(—RKl'A’,k 1) - 1“
aajeB Ly i e 1 0n.4) 2 A

= Average{exp[—n log(1 — ng,p)]
7

n
X Avszrage [ Average / exp(5 Ri”—kll:kk?)} — 1}.
AL ADEALJ H(Y-1,A-1)€O_1 (A1,A))

Recall that J is the number of overlapping &, ,’s between X1 and X on the first
row. It can be shown that J has the hypergeometric distribution with

P(number of overlapping &, ,’s = j)

(00 ==

Equation (7.14) and Lemma 7.6, together with equation (4.10), imply

dPu1y 00\ 3
Average {f(——> dP1,0,y_y,3_1) — 1}
(—1,A-1)€O_; dP1,0,y_1.1_1)

(7.14)

k? J s
< Jg%)(ip/él — k) {exp[-nlog(l — jeZ ,)]- (1+o(D) — 1}
(7.15) -

< (140(1) Y- (p#~""7) ™ exp[2(v*log p)] + o(1)
Jj=1

<C Z(p(ﬁ—l)/lg—sz)—j + 0(1) < C%,
Jj=1
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where the last step follows from v? < ﬁg—;l, and k% < [c,w,(M,,ngn,p)_‘?]2 =

O( 10; p) = 0(1’(’) Ig/f?) from equations (4.11) and (4.2) and the condition p > cinf

for some > 1, and c; is a positive constant.

7.6. Proof of Lemma 7.6. Let

A=1—[1-97" (20— Q)92 (Q1 —Q0)]
(7.16) 1
x [1 = (€22 — Qo) (21 — Q)] -

Since [|€2; — Qoll < [1€2; — Qoll1 < 2key,, = o(1/log p) from equation (4.13), it is
easy to see that

(7.17) 1Al = O(ken,p) = o(1).
Define
A
RIS = —logdet(] — A).
Then we can rewrite RL_ l)f ~! as follows:
|
A _ B
R]K/LINI ' = —logdet(I — 7'(2 — 20095 (21 — Q)

018 = —logdet([7 — A]- [I — (2 — Q0)(R1 — Q)])
' = —logdet[] — (22 — Q0)(221 — 20)] — logdet(I — A)

= —2log(1 - Je ) + R,

where the last equation follows from Lemma 7.5. To establish Lemma 7.6, it is
enough to establish equation (7.13).
Define

Ay = (ay,ij)
=1 —[I—(Q1 — R+ D2 —Q20)(Q -2+ 1) Q2 — Q)]
x [I = (22 — Q0)(21 — Q)]

Similar to equation (7.17), we have ||A1|| = o(1), and write

Rﬁl;xl = —logdet(I — A) — logdet[(] — A~ - A)].

To establish equation (7.13), it is enough to show that

(7.19) exp[—%logdet([ — Al)] =1+o0(1),
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and that

(7.20) Average exp(—E logdet[(l — Al)_1 I - A)]) =1+o0(1).
(V-1 A-DEO_1 (11, A)) 2

The proof for equation (7.19) is as follows. Write

0 v _
91—902( T bx(p=1) ) and
VMix(p=1)" Op—1)x(p—1)

0 Vix(p-1) )

et = ( 1 T o

Vixp-n) O0p-1x(p-1)
where Vi (p—1) = (vj)2<j<p satisfies v; =0for2<j<p-—randv;=0or1
forp—r+1<j < pwith |v|o=k, and VTx(p—l) = (v}’f)zggp satisfies a similar
property. Without loss of generality, we consider only a special case with

{1, p—r+l1=<j<p-r+k,
vj = and

0, otherwise

[

" {1, p—r4+k—J<j<p—-r+4+2k—J,
J

0, otherwise.

Note that we may write A as
Ay = BBy,

where B can be written as a polynomial of 1 — ¢ and €2, — g, and B> can
be written as a polynomial of (€25 — €20)(2; — 2¢) by Taylor expansion. By a
straightforward calculation, it can be shown that

O(&n,p). i=landp—r+1<j<p—-r+2k—1J,
orj=landp—r+1<i<p-—r+2k—1J,

ori=j=1,

b1iil=
|b1,ijl 0(831,p)’ p—r+1<i<p-—r+2k—Jand
p—r+1<j<p—r+2k—1J,
0, otherwise,
and
0(]85717), l:J = 1,
0<byj= Tn,p> p-r+l=i=p-r+tkand

p—r+k—J=<j—-1<p—r+2k—1J,

0, otherwise,
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where 7, ), = 0(85’ p), which implies

O(ke; ), i=landp—r+k—J<j—1<p—r+2k—1J,
ori=j=1,
j=landp—r+1<i<p—-r+2k—-J,
p—r+1<i<p-—r+2k—Jand
p—r+k—J<j—-1<p—r+2k—1J,

0, otherwise.

Note that rank(A1) < 2 due to the simple structure of (25 — 0)(21 — ©9). Let

Ay = (az,i]’) with

O(ke; ), i=1landj=1,

O(key ,+Jkel ),  p—r+1<i<p—r+2k—Jand
p—r+k—J=<j-l<p—-r+2k—J,

0, otherwise,

layijl = ’

o(Je). »)
O(keﬁ,p)

laz,ij| =

and rank(A3) < 4 by eliminating the nonzero off-diagonal elements of the first row
and column of A1, and

exp[—g logdet(/ — Al):| = exp[—% logdet(! — Az)].
We can show that all eigenvalues of A, are O(J kzsg’ » T kzsﬁ’ » T ksﬁ’ p»)- Since
ken,p =o(1/log p), then

k(log p)!/2
3 _ .3 _
np =V log p = o(1)

nke
which implies
n(Jk%ed , + ke , +ke, ) =o(1).

Thus,
exp[—%logdet(l - Al)] =14o0(1).

Now we establish equation (7.20), which, together with equation (7.19), yields
equation (7.13) and thus Lemma 7.6 is established. Write
I—AD'a—-A)—1
= —A)7'[T—A)— U - A)]
= —A)""(A1—A)
Q1=+ D - Q) —Q+DH71Q - Qo)}
—Q7 (@2 — Q025 (@1 — Qo)
x [1 = (22— Q0)(21 — Q0)]

= -an!|
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where
Q1 —-Q+D" (- Q—Q+D""
x (1 — Qo) — Q7 (22 — Q)2 (21 — Qo)

=[(Q1 — Qo+ D7 = Q"2 — Q0)(Q2 — Qo+ D7 (R — Q)
+ Q7 (2 - Q[ -+ D7 — Q5@ — Qo)

= Q7 (Q0 — D(Q1 — Q0+ D7 (2 — Q20)(Q — Qo+ D7 (R — Q)
+ Q71 (2 - Q025 (Q0 — D(Q2 — Qo+ D)7 (@1 — Qo)

= Q71 (Q0 — D(Q1 — Q0+ D7 (22— Q0)(Q — Qo+ D7 Q) — Q)
+ Q71 (2 - Q025 (Q — D[(Q2 — Qo+ D7 = I](Q1 — Qo)
+ Q7 (22 — Q)25 ' (Q — D(Q1 — Qo).

It is important to observe that rank((/ — AN YT -A)-D<2 again due to the
simple structure of (2, — 2¢) and (21 — ©p), then — logdet[( — A~ NI = A)]
is determined by at most two nonzero eigenvalues, which can be shown to be
bounded by

|1 — AN~ —A) 1|
— (11 o() (0(1/71) + || - 92)1(92 — Qo) (2 — Qo)||) '
+ [ (22 — Q0)2; " (R0 — D (21 — Q0)|
Note that ||(I — A))~'(I — A) — I|| = o(1), and
llog(1 —x)| <2|x|  for |x| < 1/3,

(7.21)

which implies

|—logdet[(] — AN~ — A)]|<2|d—A)'T-A) -1

k)

that is,
exp(% - —logdet[( — A~ (I — A)]) <exp(n|(I — AD~IT — A) —1|).
Define
Ay = —Q0)(22 — Q20)(21 — ) and
B = (2 — Q0)Q; " (0 — D(Q1 — Q).
then
exp(g - —logdet[(I — A~ - A)])

< (I+o()exp[(1 +o(D)n(llAxll + I Bsl)]
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from equations (7.21). By the Cauchy—Schwarz inequality, it is then sufficient to
show

Average exp(4n||A«ll)=1+o0(1) and
(y=1,A-1)€O_1 (A1,1})

Average exp(4n||Bsll) = 14 o(1),
(Y—1,A-1)€O_1(A1,1))

where || A, || and || B|| depends on the values of A1, A and (y_1, A_1). We dropped
the indices A1, )‘/1 and (y_1,A_1) from A, and B, to simplify the notation. Due
space limit, we only show that

Average exp(4n||A.ll) =1+ o(1),
(Y—1,2-1)€O_1(A1,1])

while the bound for || B,|| can be shown similarly by reducing it to study |[(£22 —
Qo) — Q)19 — Qp)| for integers [ > 1. Let E,, = {1,2,...,r}/{1,m}. Let
Ny, be the number of columns of Ag, with column sum at least 2k — 2 for
which two rows cannot freely take value O or 1 in this column. Then we have
Pig, = [P/2] —ny,, . Without loss of generality, we assume that k > 3. Since
Ny,  (2k —2) < [p/2] - k, the total number of 1’s in the upper triangular matrix
by the construction of the parameter set, we thus have n; e, < P/27- %, which

immediately implies p;, = [p/2] —n,; >[p /2]% > p/8. Thus, we have

P(|Asll = 21 - . - ke2 ) < P(1Aullt = 2t - &5 - ke, )

D) 2y
< Average — < p< )
N A AV =

from equation (7.14), which immediately implies

Average exp(4n||Axll)
(Y=1,A-1)€O_1 (A1,A])

< exp(4n -2 % “En,p ~k8,21’p>
0 ) k2 t
+ /(2(;3—1))/,6 exp(4n -2t - &, p 'kgn’p)p<p/8 — k) dt
= exp(%nkeilJ

00 3 k2
+ / exp [logp + t(Snks — log )} dt
28-1)/8 e p/8—k

=1+o0(l),
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where the last step is an immediate consequence of the following two equations:
3
nke, ,=o(l)

and

p/8—1—k

_28-1D)
k? -

(1+o(1))2log p <tlog for ¢

which follow from k%2 = O (n) = O( pl/ Y from equation (4.11) and the condition
p > cinP for some B > 1.
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