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OPTIMIZATION VIA LOW-RANK APPROXIMATION FOR
COMMUNITY DETECTION IN NETWORKS

BY CAN M. LE, ELIZAVETA LEVINA1 AND ROMAN VERSHYNIN2

University of Michigan

Community detection is one of the fundamental problems of network
analysis, for which a number of methods have been proposed. Most model-
based or criteria-based methods have to solve an optimization problem over
a discrete set of labels to find communities, which is computationally infea-
sible. Some fast spectral algorithms have been proposed for specific meth-
ods or models, but only on a case-by-case basis. Here, we propose a general
approach for maximizing a function of a network adjacency matrix over dis-
crete labels by projecting the set of labels onto a subspace approximating
the leading eigenvectors of the expected adjacency matrix. This projection
onto a low-dimensional space makes the feasible set of labels much smaller
and the optimization problem much easier. We prove a general result about
this method and show how to apply it to several previously proposed com-
munity detection criteria, establishing its consistency for label estimation in
each case and demonstrating the fundamental connection between spectral
properties of the network and various model-based approaches to commu-
nity detection. Simulations and applications to real-world data are included
to demonstrate our method performs well for multiple problems over a wide
range of parameters.

1. Introduction. Networks are studied in a wide range of fields, including so-
cial psychology, sociology, physics, computer science, probability, and statistics.
One of the fundamental problems in network analysis, and one of the most studied,
is detecting network community structure. Community detection is the problem of
inferring the latent label vector c ∈ {1, . . . ,K}n for the n nodes from the observed
n × n adjacency matrix A, specified by Aij = 1 if there is an edge from i to j , and
Aij = 0 otherwise. While the problem of choosing the number of communities K

is important, in this paper we assume K is given, as does most of the existing liter-
ature. We focus on the undirected network case, where the matrix A is symmetric.
Roughly speaking, the large recent literature on community detection in this sce-
nario has followed one of two tracks: fitting probabilistic models for the adjacency
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matrix A, or optimizing global criteria derived from other considerations over label
assignments c, often via spectral approximations.

One of the simplest and most popular probabilistic models for fitting commu-
nity structure is the stochastic block model (SBM) [17]. Under the SBM, the label
vector c is assumed to be drawn from a multinomial distribution with parameter
π = {π1, . . . , πK}, where 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1. Edges are then formed

independently between every pair of nodes (i, j) with probability Pcicj
, and the

K ×K matrix P = [Pkl] controls the probability of edges within and between com-
munities. Thus, the labels are the only node information affecting edges between
nodes, and all the nodes within the same community are stochastically equivalent
to each other. This rules out the commonly encountered “hub” nodes, which are
nodes of unusually high degrees that are connected to many members of their own
community, or simply to many nodes across the network. To address this limita-
tion, a relaxation that allows for arbitrary expected node degrees within communi-
ties was proposed by [20]: the degree-corrected stochastic block model (DCSBM)
has P(Aij = 1) = θiθjPcicj

, where θi’s are “degree parameters” satisfying some
identifiability constraints. In the “null” case of K = 1, both the block model and the
degree corrected block model correspond to well-studied random graph models,
the Erdős–Rényi graph [10] and the configuration model [8], respectively. Many
other network models have been proposed to capture the community structure, for
example, the latent space model [16] and the latent position cluster model [15].
There has also been work on extensions of the SBM which allow nodes to belong
to more than one community [2, 4, 45]. For a more complete review of network
models, see [13].

Fitting models such as the stochastic block model typically involves maximizing
a likelihood function over all possible label assignments, which is in principle NP-
hard. MCMC-type and variational methods have been proposed, see for example
[26, 36, 42], as well as maximizing profile likelihoods by some type of greedy
label-switching algorithms. The profile likelihood was derived for the SBM by [6]
and for the DCSBM by [20], but the label-switching greedy search algorithms only
scale up to a few thousand nodes. Amini et al. [3] proposed a much faster pseudo-
likelihood algorithm for fitting both these models, which is based on compressing
A into block sums and modeling them as a Poisson mixture. Another fast algorithm
for the block model based on belief propagation has been proposed by [9]. Both
these algorithms rely heavily on the particular form of the SBM likelihood and are
not easily generalizable.

The SBM likelihood is just one example of a function that can be optimized
over all possible node labels in order to perform community detection. Many other
functions have been proposed for this purpose, often not tied to a generative net-
work model. One of the best known such functions is modularity [33, 34]. The
key idea of modularity is to compare the observed network to a null model that
has no community structure. To define this, let e be an n-dimensional label vector,
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nk(e) = ∑n
i=1 I {ei = k} the number of nodes in community k,

Okl(e) =
n∑

i,j=1

Aij I {ei = k, ej = l}(1.1)

the number of edges between communities k and l, k �= l and Ok = ∑K
l=1 Okl the

sum of node degrees in community k. Let di = ∑n
j=1 Aij be the degree of node i,

and m = ∑n
i=1 di be (twice) the total number of edges in the graph. The Newman–

Girvan modularity is derived by comparing the observed number of edges within
communities to the number that would be expected under the Chung–Lu model [8]
for the entire graph, and can be written in the form

QNG(e) = 1

2m

∑
k

(
Okk − O2

k

m

)
.(1.2)

The quantities Okl and Ok turn out to be the key component of many commu-
nity detection criteria. The profile likelihoods of the SBM and DCSBM discussed
above can be expressed as

QBM(e) =
K∑

k,l=1

Okl log
Okl

nknl

,(1.3)

QDC(e) =
K∑

k,l=1

Okl log
Okl

OkOl

.(1.4)

Another example is the extraction criterion [46] to extract one community at a
time, allowing for arbitrary structure in the remainder of the network. The main
idea is to recognize that some nodes may not belong to any community, and the
strength of a community should depend on ties between its members and ties to the
outside world, but not on ties between nonmembers. This criterion is therefore not
symmetric with respect to communities, unlike the criteria previously discussed,
and has the form (using slightly different notation due to lack of symmetry),

QEX(V ) = |V |∣∣V c
∣∣(O(V )

|V |2 − B(V )

|V ||V c|
)
,(1.5)

where V is the set of nodes in the community to be extracted, V c is the complement
of V , O(V ) = ∑

i,j∈V Aij , B(V ) = ∑
i∈V,j∈V c Aij . The only known method for

optimizing this criterion is through greedy label switching, such as the tabu search
algorithm [12].

For all these methods, finding the exact solution requires optimizing a function
of the adjacency matrix A over all Kn possible label vectors, which is an infeasi-
ble optimization problem. In another line of work, spectral decompositions have
been used in various ways to obtain approximate solutions that are much faster
to compute. One such algorithm is spectral clustering (see, e.g., [35]), a generic
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clustering method which became popular for community detection. In this con-
text, the method has been analyzed by [7, 23, 39, 40], among others, while [18]
proposed a spectral method specifically for the DCSBM. In spectral clustering,
typically one first computes the normalized Laplacian matrix L = D−1/2AD−1/2,
where D is a diagonal matrix with diagonal entries being node degrees di , though
other normalizations and no normalization at all are also possible (see [41] for
an analysis of why normalization is beneficial). Then the K eigenvectors of the
Laplacian corresponding to the first K largest eigenvalues are computed, and their
rows clustered using K-means into K clusters corresponding to different labels. It
has been shown that spectral clustering performs better with further regularization,
namely if a small constant is added either to D [7, 38] or to A [3, 19, 21].

The contribution of our paper is a new general method of optimizing a general
function f (A, e) (satisfying some conditions) over labels e. We start by project-
ing the entire feasible set of labels onto a low-dimensional subspace spanned by
vectors approximating the leading eigenvectors of EA. Projecting the feasible set
of labels onto a low-dimensional space reduces the number of possible solutions
(extreme points) from exponential to polynomial, and in particular from O(2n)

to O(n) for the case of two communities, thus making the optimization problem
much easier. This approach is distinct from spectral clustering since one can spec-
ify any objective function f to be optimized (as long as it satisfies some fairly
general conditions), and thus applicable to a wide range of network problems. It is
also distinct from initializing a search for the maximum of a general function with
the spectral clustering solution, since even with a good initialization the feasible
space is still extremely large and it is not clear how to update labels effectively.

We show how our method can be applied to maximize the likelihoods of the
stochastic block model and its degree-corrected version, Newman–Girvan mod-
ularity and community extraction, which all solve different network problems.
While spectral approximations to some specific criteria that can otherwise be only
maximized by a search over labels have been obtained on a case-by-case basis [32,
34, 39], ours is, to the best of our knowledge, the first general method that would
apply to any function of the adjacency matrix. In this paper, we mainly focus on
the case of two communities (K = 2). For methods that are run recursively, such
as modularity and community extraction, this is not a restriction. For the stochastic
block model, the case K = 2 is of special interest and has received a lot of atten-
tion in the probability literature (see [30] for recent advances). An extension to the
general case of K > 2 is briefly discussed in Section 2.3.

The rest of the paper is organized as follows. In Section 2, we set up notation and
describe our general approach to solving a class of optimization problems over la-
bel assignments via projection onto a low-dimensional subspace. In Section 3, we
show how the general method can be applied to several community detection cri-
teria. Section 4 compares numerical performance of different methods. The proofs
are given in the Appendix.
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2. A general method for optimization via low-rank approximation. To
start with, consider the problem of detection K = 2 communities. Many commu-
nity detection methods rely on maximizing an objective function f (A, e) ≡ fA(e)

over the set of node labels e, which can take values in, say, {−1,1}. Since A can be
thought of as a noisy realization of E[A], the “ideal” solution corresponds to max-
imizing fE[A](e) instead of maximizing fA(e). For a natural class of functions f

described below, fE[A](e) is essentially a function over the set of projections of la-
bels e onto the subspace spanned by eigenvectors of E[A] and possibly some other
constant vectors. In many cases E[A] is a low-rank matrix, which makes fE[A](e)
a function of only a few variables. It is then much easier to investigate the behavior
of fE[A](e), which typically achieves its maximum on the set of extreme points of
the convex hull generated by the projection of the label set e. Further, most of the
2n possible label assignments e become interior points after the projection, and in
fact the number of extreme points is at most polynomial in n (see Remark 2.2 be-
low); in particular, when projecting onto a two-dimensional subspace, the number
of extreme points is of order O(n). Therefore, we can find the maximum simply
by performing an exhaustive search over the labels corresponding to the extreme
points. Section 3.5 provides an alternative method to the exhaustive search, which
is faster but approximate.

In reality, we do not know E[A], so we need to approximate its columns space
using the data A instead. Let UA be an m × n matrix computed from A such that
the row space of UA approximates the column space of E[A] (the choice of m × n

rather than n × m is for notational convenience that will become apparent below).
Existing work on spectral clustering gives us multiple option for how to compute
this matrix, for example, using the eigenvectors of A itself, of its Laplacian, or of
their various regularizations; see Section 2.1 for further discussion of this issue.
The algorithm works as follows:

1. Compute the approximation UA from A.
2. Find the labels e associated with the extreme points of the projection

UA[−1,1]n.
3. Find the maximum of fA(e) by performing an exhaustive search over the set

of labels found in step 2.

Note that the first step of replacing eigenvectors of E[A] with certain vectors com-
puted from A is very similar to spectral clustering. Like in spectral clustering, the
output of the algorithm does not change if we replace UA with UAR for any or-
thogonal matrix R. However, this is where the similarity ends, because instead
of following the dimension reduction by an ad-hoc clustering algorithm like K-
means, we maximize the original objective function. The problem is made feasible
by reducing the set of labels over which to maximize, to a particular subset found
by taking into account the specific behavior of fE[A](e) and fA(e).

While our goal in the context of community detection is to compare fA(e) to
fE[A](e), the results and the algorithm in this section apply in a general setting
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where A may be any deterministic symmetric matrix. To emphasize this generality,
we write all the results in this section for a generic matrix A and a generic low-
rank matrix B , even though we will later apply them to the adjacency matrix A

and B = E[A].
Let A and B be n × n symmetric matrices with entries bounded by an absolute

constant, and assume B has rank m � n. Assume that fA(e) has the general form

fA(e) =
κ∑

j=1

gj

(
hA,j (e)

)
,(2.1)

where gj are scalar functions on R and hA,j (e) are quadratic forms of A and e,
namely

hA,j (e) = (e + sj1)
T A(e + sj2).(2.2)

Here, κ is a fixed number, sj1 and sj2 are constant vectors in {−1,1}n. Note that by
(3.1), the number of edges between communities has the form (2.2), and by (3.2),
the log-likelihood of the degree-corrected block model QDC is a special case of
(2.1) with gj (x) = ±x logx, x > 0. We similarly define fB and hB,j , by replacing
A with B in (2.1) and (2.2). By allowing e to take values on the cube [−1,1]n, we
can treat h and f as functions over [−1,1]n.

Let UB be the m × n matrix whose rows are the m leading eigenvectors of B .
For any e ∈ [−1,1]n, UAe and UBe are the coordinates of the projections of e onto
the row spaces of UA and UB , respectively. Since hB,j are quadratic forms of B

and e and B is of rank m, hB,j ’s depend on e through UBe only and, therefore,
fB also depends on e only through UBe. In a slight abuse of notation, we also use
hB,j and fB to denote the corresponding induced functions on UB[−1,1]n.

Let EA and EB denote the subsets of labels e ∈ {−1,1}n corresponding to the
sets of extreme points of UA[−1,1]n and UB[−1,1]n, respectively. The output of
our algorithm is

e∗ = argmax
{
fA(e), e ∈ EA

}
.(2.3)

Our goal is to get a bound on the difference between the maxima of fA and
fB that can be expressed through some measure of difference between A and B

themselves. In order to do this, we make the following assumptions:

(1) Functions gj are continuously differentiable and there exists M1 > 0 such
that |g′

j (t)| ≤ M1 log(t + 2) for t ≥ 0.
(2) Function fB is convex on UB[−1,1]n.

Assumption (1) essentially means that Lipschitz constants of gj do not grow faster
than log(t + 2). The convexity of fB in assumption (2) ensures that fB achieves
its maximum on UBEB . In some cases (see Section 3), the convexity of fB can be
replaced with a weaker condition, namely the convexity along a certain direction.
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Let c ∈ {−1,1}n be the maximizer of fB over the set of label vectors {−1,1}n.
As a function on UB[−1,1]n, fB achieves its maximum at UB(c), which is an
extreme point of UB[−1,1]n by assumption (2). Lemma 1 provides a upper bound
for fA(c) − fA(e∗).

Throughout the paper, we write ‖ · ‖ for the l2 norm (i.e., Euclidean norm on
vectors and the spectral norm on matrices), and ‖ · ‖F for the Frobenius norm on
matrices. Note that for label vectors e, c ∈ {−1,1}n, ‖e − c‖2 is four times the
number of nodes on which e and c differ.

LEMMA 1. If assumptions (1) and (2) hold, then there exists a constant M2 >

0 such that

fT (c) − fT

(
e∗) ≤ M2n log(n)

(∥∥B‖ · ‖UA − UB

∥∥ + ‖A − B‖)
,(2.4)

where T is either A or B .

The proof of Lemma 1 is given in Appendix A. To get a bound on ‖c − e∗‖, we
need further assumptions on B and fB .

(3) There exists M3 > 0 such that for any e ∈ {−1,1}n,

‖c − e‖2 ≤ M3
√

n
∥∥UB(c) − UB(e)

∥∥.
(4) There exists M4 > 0 such that for any x ∈ UB[−1,1]n

fB(UB(c)) − fB(x)

‖UB(c) − x‖ ≥ maxfB − minfB

M4
√

n
.

Assumption (3) rules out the existence of multiple label vectors with the same
projection UB(c). Assumption (4) implies that the slope of the line connecting two
points on the graph of fB at UB(c) and at any x ∈ UB[−1,1]n is bounded from
below. Thus, if fB(x) is close to fB(UB(c)) then x is also close to UB(c). These
assumptions are satisfied for all functions considered in Section 3.

THEOREM 1. If assumptions (1)–(4) hold, then there exists a constant M5
such that

1

n

∥∥e∗ − c
∥∥2 ≤ M5n logn(‖B‖ · ‖UA − UB‖ + ‖A − B‖)

maxfB − minfB

.

Theorem 1 follows directly from Lemma 1 and assumptions (3) and (4). When
A is a random matrix, B = E[A], and UA contains the leading eigenvectors of A,
a standard bound on ‖A − B‖ can be applied (see Lemma 4), which in turn yields
a bound on ‖UA − UB‖ by the Davis–Kahan theorem. Under certain conditions,
the upper bound in Theorem 1 is of order o(n) (see Section 3), which shows con-
sistency of e∗ as an estimator of c (i.e., the fraction of mislabeled nodes goes to 0
as n → ∞).
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2.1. The choice of low rank approximation. An important step of our method
is replacing the “population” space UB with the “data” approximation UA. As a
motivating example, consider the case of the SBM, with A the network adjacency
matrix and B = E[A]. When the network is relatively dense, eigenvectors of A are
good estimates of the eigenvectors of B = E[A] (see [23, 37] for recent improved
error bounds). Thus, UA can just be taken to be the leading eigenvectors of A.
However, when the network is sparse, this is not necessarily the best choice, since
the leading eigenvectors of A tend to localize around high degree nodes, while
leading eigenvectors of the Laplacian of A tend to localize around small connected
components [7, 21, 28, 38]. This can be avoided by regularizing the Laplacian
in some form; we follow the algorithm of [3]; see also [19, 21] for theoretical
analysis. This works for both dense and sparse networks.

The regularization works as follows. We first add a small constant τ to each
entry of A, and then approximate UB through the Laplacian of A + τ11T as fol-
lows. Let Dτ be the diagonal matrix whose diagonal entries are sums of entries of
columns of A+ τ11T , Lτ = D

−1/2
τ (A+ τ11T )D

−1/2
τ , and ui be leading eigenvec-

tors of Lτ , 1 ≤ i ≤ K . Since A + τ11T = D
1/2
τ LτD

1/2
τ , we set the appoximation

UA the be the basis of the span of {D1/2ui : 1 ≤ i ≤ K}. Following [3], we set
τ = ε(λn/n), where λn is the node expected degree of the network and ε ∈ (0,1)

is a constant which has little impact on the performance [3].

2.2. Computational complexity. Since we propose an exhaustive search over
the projected set of extreme points, the computational feasibility of this is a con-
cern. A projection of the unit cube UA[−1,1]n is the Minkowski sum of n seg-
ments in R

m, which, by [14], implies that it has O(nm−1) vertices of UA[−1,1]n
and they can be found in O(nm) arithmetic operations. When m = 2, which is
the primary focus of our paper, there exists an algorithm that can find the vertices
of UA[−1,1]n in O(n logn) arithmetic operations [14]. Informally, the algorithm
first sorts the angles between the x-axis and column vectors of UA and −UA. It
then starts at a vertex of UA[−1,1]n with the smallest y-coordinate, and based
on the order of the angles, finds neighbor vertices of UA[−1,1]n in a counter-
clockwise order. If the angles are distinct (which occurs with high probability),
moving from one vertex to the next causes exactly one entry of the corresponding
label vector to change the sign, and therefore the values of hA,j (e) in (2.2) can be
updated efficiently. In particular, if A is the adjacency matrix of a network with av-
erage degree λn, then on average, each update takes O(λn) arithmetic operations,
and given UA, it only takes O(nλn logn) arithmetic operations to find e∗ in (2.3).
Thus the computational complexity of this search for two communities is not at all
prohibitive—compare to the computational complexity of finding UA itself, which
is at least O(nλn logn) for m = 2.
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2.3. Extension to more than two communities. Let K be the number of com-
munities and S be an n × K label matrix: for 1 ≤ i ≤ n, if node i belongs to
community k then Sik = 1 and Sil = 0 for all l �= k. The numbers of edges be-
tween communities defined by (1.1) are entries of ST AS. Let B = ∑K

i=1 ρiūi ū
T
i

define the eigen-decomposition of B . The population version of ST AS is

ST BS = ST

(
K∑

j=1

ρj ūj ū
T
j

)
S =

K∑
j=1

ρj

(
ST ūj

)(
ST ūj

)T
.

Let UB be the K × n matrix whose rows are ūT
j . Then ST BS is a function of

UBS. We approximate UB by UA described in Section 2.1. Let S̃ be the first K −1
columns of S. Note that the rows of S sum to one, therefore, UAS can be recovered
from UAS̃. Now relax the entries of S̃ to take values in [0,1], with the row sums
of at most one. For 1 ≤ i ≤ n and 1 ≤ j ≤ K − 1, denote by Vij the K × (K − 1)

matrix such that the j th column of Vij is the ith column of UA and all other
columns are zero. Then

UAS̃ =
n∑

i=1

K−1∑
j=1

S̃ijVij .

Since
∑K−1

j=1 S̃ij ≤ 1,
∑K−1

j=1 S̃ijVij is a convex set in R
K×(K−1), isomorphic to a

K − 1 simplex. Thus, UAS̃ is a Minkowski sum of n convex sets in R
K×(K−1).

Similar to the case K = 2, we can first find the set of label matrices S̃ correspond-
ing to the extreme points of UAS̃ and then perform the exhaustive search over that
set.

A bound on the number of vertices of UAS̃ and a polynomial algorithm to find
them are derived by [14]. If d = K(K − 1), then the number of vertices of UAS̃

is at most O(n(d−1)K2(d−1)), and they can be found in O(ndK(2d−1)) arithmetic
operations. An implementation of the reverse-search algorithm of [11] for com-
puting the Minkowski sum of polytopes was presented in [43], who showed that
the algorithm can be parallelized efficiently. We do not pursue these improvements
here, since our main focus in this paper is the case K = 2.

3. Applications to community detection. Here, we apply the general results
from Section 2 to a network adjacency matrix A, B = E[A], and functions cor-
responding to several popular community detection criteria. Our goal is to show
that our maximization method gets an estimate close to the true label vector c,
which is the maximizer of the corresponding function with B = E[A] plugged in
for A. We focus on the case of two communities and use m = 2 for the low rank
approximation.

Recall the quantities O11, O22 and O12 defined in (1.1), which are used by all
the criteria we consider. They are quadratic forms of A and e and can be written as

O11(e) = 1
4(1 + e)T A(1 + e), O22(e) = 1

4(1 − e)T A(1 − e),
(3.1)

O12(e) = 1
4(1 + e)T A(1 − e),
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where 1 is the all-ones vector.

3.1. Maximizing the likelihood of the degree-corrected stochastic block model.
When a network has two communities, (1.4) takes the form

QDC(e) = O11 logO11 + O22 logO22 + 2O12 logO12
(3.2)

− 2O1 logO1 − 2O2 logO2.

Thus, QDC has the form defined by (2.1).
For simplicity, instead of drawing c from a multinomial distribution with pa-

rameter π = (π1, π2), we fix the true label vector by assigning the first n̄1 = nπ1

nodes to community 1 and the remaining n̄2 = nπ2 nodes to community 2. Let r

be the out-in probability ratio, and

P = λn

(
1 r

r ω

)
(3.3)

be the probability matrix. We assume that the node degree parameters θi are an
i.i.d. sample from a distribution with E[θi] = 1 and 1/ξ ≤ θi ≤ ξ for some constant
ξ ≥ 1. The adjacency matrix A is symmetric and for i > j has independent entries
generated by Aij = Bernoulli(θiθjPcicj

). Throughout the paper, we let λn depend
on n, and fix r , ω, π , and ξ . Since λn and the network expected node degree are
of the same order, in a slight abuse of notation, we also denote by λn the network
expected node degree.

Theorem 2 establishes consistency of our method in this setting.

THEOREM 2. Let A be the adjacency matrix generated from the DCSBM with
λn growing at least as log2 n as n → ∞. Let UA be an approximation of UE[A],
and e∗ the label vector defined by (2.3) with fA = QDC. Then for any δ ∈ (0,1),
there exists a constant M = M(r,ω,π, ξ, δ) > 0 such that with probability at least
1 − δ, we have

1

n

∥∥c − e∗∥∥2 ≤ M logn
(
λ−1/2

n + ‖UA − UE[A]‖)
.

In particular, if UA is a matrix whose row vectors are leading eignvectors of A,
then the fraction of misclustered nodes is bounded by M logn/

√
λn.

Note that assumption (2) is difficult to check for QDC but a weaker version,
namely convexity along a certain direction, is sufficient for proving Theorem 2.
The proof of Theorem 2 consists of checking assumptions (1), (3), (4) and a weaker
version of assumption (2). For details, see the supplement [22].
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3.2. Maximizing the likelihood of the stochastic block model. While the reg-
ular SBM is a special case of DCSBM when θi = 1 for all i, its likelihood is
different and thus maximizing it gives a different solution. With two communities,
(1.3) admits the form

QBM(e) = QDC(e) + 2O1 log
O1

n1
+ 2O2 log

O2

n2
,

where n1 = n1(e) and n2 = n2(e) are the numbers of nodes in two communities
and can be written as

n1 = 1
2(1 + e)T 1 = 1

2

(
n + eT 1

)
, n2 = 1

2(1 − e)T 1 = 1
2

(
n − eT 1

)
.(3.4)

THEOREM 3. Let A be the adjacency matrix generated from the SBM with
λn growing at least as log2 n as n → ∞. Let UA be an approximation of UE[A],
and e∗ the label vector defined by (2.3) with fA = QBM. Then for any δ ∈ (0,1),
there exists a constant M = M(r,ω,π, ξ, δ) > 0 such that with probability at least
1 − n−δ , we have

1

n

∥∥c − e∗∥∥2 ≤ M logn
(
λ−1/2

n + ‖UA − UE[A]‖)
.

In particular, if UA is a matrix whose row vectors are leading eigenvectors of A,
then the fraction of misclustered nodes is bounded by M logn/

√
λn.

Note that QBM does not have the exact form of (2.1) but a small modification
shows that Lemma 1 still holds for QBM. Also, assumption (2) is difficult to check
for QBM but again a weaker condition of convexity along a certain direction is
sufficient for proving Theorem 3. The proof of Theorem 3 consists of showing
the analog of Lemma 1, checking assumptions (3), (4) and a weaker version of
assumption (2). For details, see the supplement [22].

3.3. Maximizing the Newman–Girvan modularity. When a network has two
communities, up to a constant factor the modularity (1.2) takes the form

QNG(e) = O11 + O22 − O2
1 + O2

2

O1 + O2
= 2O1O2

O1 + O2
− 2O12.

Again, QNG does not have the exact form (2.1), but with a small modification, the
argument used for proving Lemma 1 and Theorem 1 still holds for QNG under the
regular SBM.

THEOREM 4. Let A be the adjacency matrix generated from the SBM with
λn growing at least as logn as n → ∞. Let UA be an approximation of UE[A],
and e∗ the label vector defined by (2.3) with fA = QNG. Then for any δ ∈ (0,1),
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there exists a constant M = M(r,ω,π, ξ, δ) > 0 such that with probability at least
1 − n−δ , we have

1

n

∥∥c − e∗∥∥2 ≤ M
(
λ−1/2

n + ‖UA − UE[A]‖)
.

In particular, if UA is a matrix whose row vectors are leading eigenvectors of A,
then the fraction of misclustered nodes is bounded by M/

√
λn.

It is easy to see that QNG is Lipschitz with respect to O1, O2 and O12, which
is stronger than assumption (1) and ensures the proof of Lemma 1 goes through.
The proof of Theorem 4 consists of checking assumptions (2), (3), (4) and the
Lipschitz condition for QNG. For details, see the supplement [22].

3.4. Maximizing the community extraction criterion. Identifying the commu-
nity V to be extracted with a label vector e, the criterion (1.5) can be written as

QEX(e) = n2

n1
O11 − O12,

where n1, n2 are defined by (3.4). Once again QEX does not have the exact form
(2.1), but with small modifications of the proof, Lemma 1 and Theorem 1 still hold
for QEX.

THEOREM 5. Let A be the adjacency matrix generated from the SBM with the
probability matrix (3.3), ω = r , and λn growing at least as logn as n → ∞. Let
UA be an approximation of UE[A], and e∗ the label vector defined by (2.3) with
fA = QEX. Then for any δ ∈ (0,1), there exists a constant M = M(r,ω,π, ξ, δ) >

0 such that with probability at least 1 − n−δ , we have

1

n

∥∥c − e∗∥∥2 ≤ M
(
λ−1/2

n + ‖UA − UE[A]‖)
.

In particular, if UA is a matrix whose row vectors are leading eigenvectors of A,
then the fraction of misclustered nodes is bounded by M/

√
λn.

The proof of Theorem 5 consists of verifying a version of Lemma 1 and as-
sumptions (2), (3) and (4), and is included in the supplement [22].

3.5. An alternative to exhaustive search. While the projected feasible space is
much smaller than the original space, we may still want to avoid the exhaustive
search for e∗ in (2.3). The geometry of the projection of the cube can be used to
derive an approximation to e∗ that can be computed without a search.

Recall that UE[A] is an 2 × n matrix whose rows are the leading eigenvectors of
E[A], and UA approximates UE[A]. For SBM, it is easy to see that UE[A][−1,1]n,
the projection of the unit cube onto the two leading eigenvectors of UE[A], is
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FIG. 1. The projection of the cube [−1,1]n onto two-dimensional subspace. Blue corresponds to
the projection onto eigenvectors of A, and red onto the eigenvectors of E[A]. The red contour is
the boundary of UE[A][−1,1]n; the blue dots are the extreme points of UA[−1,1]n. Circles (at the
corners) are ± projections of the true label vector; squares are ± projections of the vector of all 1s.

a parallelogram with vertices {±UE[A]1,±UE[A]c}, where 1 ∈ R
n is a vector of

all 1s (see Lemma 6 in the supplement [22]). We can then expect the projection
UA[−1,1]n to look somewhat similar; see the illustration in Figure 1. Note that
±UE[A]c are the farthest points from the line connecting the other two vertices,
UE[A]1 and −UE[A]1. Motivated by this observation, we can estimate c by

ĉ = arg max
{〈
UAe, (UA1)⊥

〉 : e ∈ {−1,1}n}
(3.5)

= sign
(
uT

1 1u2 − uT
2 1u1

)
,

where UA = (u1, u2)
T and (UA1)⊥ is the unit vector perpendicular to UA1.

Note that ĉ depends on UA only, not on the objective function, a property it
shares with spectral clustering. However, ĉ provides a deterministic estimate of
the labels based on a geometric property of UA, while spectral clustering uses
K-means, which is iterative and typically depends on a random initialization. Us-
ing this geometric approximation allows us to avoid both the exhaustive search
and the iterations and initialization of K-means, although it may not always be as
accurate as the search. When the community detection problem is relatively easy,
we expect the geometric approximation to perform well, but when the problem
becomes harder, the exhaustive search should provide better results. This intuition
is confirmed by simulations in Section 4. Theorem 6 shows that ĉ is a consistent
estimator. The proof is given in Appendix B.

THEOREM 6. Let A be an adjacency matrix generated from the SBM with λn

growing at least as logn as n → ∞. Let UA be an approximation to UE[A]. Then
for any δ ∈ (0,1) there exists M = M(r,ω,π, ξ, δ) > 0 such that with probability
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at least 1 − n−δ , we have

1

n
‖ĉ − c‖2 ≤ M‖UA − UE[A]‖2.

In particular, if UA is a matrix whose row vectors are leading eigenvectors of A,
then the fraction of misclustered nodes is bounded by M/λn.

3.6. Theoretical comparisons. There are several results on the consistency of
recovering the true label vector under both the SBM and the DCSBM. The bal-
anced planted partition model G(n, a

n
, b

n
), which is the simplest special case of

the SBM, has received much attention recently, especially in the probability litera-
ture. This model assumes that there are two communities with n/2 nodes each, and
edges are formed within communities and between communities with probabilities
a/n and b/n, respectively. When (a−b)2 ≤ 2(a+b), no method can find the com-
munities [29]. Algorithms based on non-backtracking random walks that can re-
cover the community structure better than random guessing if (a − b)2 > 2(a + b)

have been proposed in [27, 31]. Moreover, if (a − b)2/(a + b) → ∞ as n → ∞
then the fraction of misclustered nodes goes to zero with high probability. Under
the model G(n, a

n
, b

n
), our theoretical results require that a + b grows at least as

logn. This matches the requirements on the expected degree λn needed for consis-
tency in [6] for the SBM and in [47] for the DCSBM.

When the expected node degree λn is of order logn, spectral clustering using
eigenvectors of the adjacency matrix can correctly recover the communities, with
fraction of misclustered nodes up to O(1/ logn) [23]. In this regime, our method
for maximizing the Newman–Girvan and the community extraction criteria mis-
clusters at most O(1/

√
λn) fraction of the nodes. For maximizing the likelihoods

of the SBM and DCSBM, we require that λn is of order log2 n, and the fraction of
misclustered nodes is bounded by O(logn/

√
λn). For Newman–Girvan modular-

ity as well as the SBM likelihood, [6] proved strong consistency (perfect recovery
with high probability) under the SBM when λn grows faster than logn. However,
they used a label-switching algorithm for finding the maximizer, which is compu-
tationally infeasible for larger networks. A much faster algorithm based on pseudo-
likelihood was proposed by [3], who assumed that the initial estimate of the labels
(obtained in practice by regularized spectral clustering) has a certain correlation
with the truth, and showed that the fraction of misclustered nodes for their method
is O(1/λn). Recently, [21] analyzed regularized spectral clustering in the sparse
regime when λn = O(1), and showed that with high probability, the fraction of
misclustered nodes is O(log6 λn/λn). In summary, our assumptions required for
consistency are similar to others in the literature even though the approximation
method is fairly general.
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4. Numerical comparisons. Here, we briefly compare the empirical perfor-
mance of our extreme point projection method to several other methods for com-
munity detection, both general (spectral clustering) and those designed specifically
for optimizing a particular community detection criterion, using both simulated
networks and two real network datasets, the political blogs and the dolphins data
described in Section 4.5. Our goal in this comparison is to show that our general
method does as well as the algorithms tailored to a particular criterion, and thus
we are not trading off accuracy for generality.

For the four criteria discussed in Section 3, we compare our method of maxi-
mizing the relevant criterion by exhaustive search over the extreme points of the
projection (EP, for extreme points), the approximate version based on the geometry
of the feasible set described in Section 3.5 (AEP, for approximate extreme points)
and regularized spectral clustering (SCR) proposed by [3], which are all general
methods. We also include one method specific to the criterion in each comparison.
For the SBM, we compare to the unconditional pseudo-likelihood (UPL) and for
the DCSBM, to the conditional pseudo-likelihood (CPL), two fast and accurate
methods developed specifically for these models by [3]. For the Newman–Girvan
modularity, we compare to the spectral algorithm of [34], which uses the leading
eigenvector of the modularity matrix (see details in Section 4.3). Finally, for com-
munity extraction we compare to the algorithm proposed in the original paper [46]
based on greedy label switching, as there are no faster algorithms available.

The simulated networks are generated using the parameterization of [3], as
follows. Throughout this section, the number of nodes in the network is fixed
at n = 300, the number of communities K = 2, and the true label vector c is
fixed. The number of replications for each setting is 100. First, the node degree
parameters θi are drawn independently from the distribution P(� = 0.2) = γ , and
P(� = 1) = 1 − γ . Setting γ = 0 gives the standard SBM, and γ > 0 gives the
DCSBM, with 1 − γ the fraction of hub nodes. The matrix of edge probabilities P

is controlled by two parameters: the out-in probability ratio r , which determines
how likely edges are formed within and between communities, and the weight vec-
tor w = (w1,w2), which determines the relative node degrees within communities.
Let

P0 =
[
w1 r

r w2

]
.

The difficulty of the problem is largely controlled by r and the overall expected
network degree λ. Thus we rescale P0 to control the expected degree, setting

P = λP 0

(n − 1)(πT P 0π)(E[�])2 ,

where π = n−1(n1, n2), and nk is the number of nodes in community k. Finally,
edges Aij are drawn independently from a Bernoulli distribution with P(Aij =
1) = θiθjPcicj

.
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As discussed in Section 2.1, a good approximation to the eigenvectors of E[A]
is provided by the eigenvectors of the regularized Laplacian. SCR uses these eigen-
vectors u1, u2 as input to K-means (computed here with the kmeans function in
Matlab with 40 random initial starting points). EP and AEP use {D1/2u1,D

1/2u2}
to compute the matrix UA (see Section 2.1). To find extreme points and corre-
sponding label vectors in the second step of EP, we use the algorithm of [14]. For
m = 2, it essentially consists of sorting the angles of between the column vectors
of UA and the x-axis. In case of multiple maximizers, we break the tie by choosing
the label vector whose projection is the farthest from the line connecting the pro-
jections of ±1 (following the geometric idea of Section 3.5). For CPL and UPL,
following [3], we initialize with the output of SCR and set the number of outer
iterations to 20.

We measure the accuracy of all methods via the normalized mutual infor-
mation (NMI) between the label vector c and its estimate e. NMI takes values
between 0 (random guessing) and 1 (perfect match), and is defined by [44] as
NMI(c, e) = −∑

i,j Rij log Rij

Ri+R+j
(
∑

ij Rij logRij )
−1, where R is the confusion

matrix between c and e, which represents a bivariate probability distribution, and
its row and column sums Ri+ and R+j are the corresponding marginals.

4.1. The degree-corrected stochastic block model. Figure 2 shows the per-
formance of the four methods for fitting the DCSBM under different parameter
settings. We use the notation EP[DC] to emphasize that EP here is used to max-
imize the log-likelihood of DCSBM. In this case, all methods perform similarly,

FIG. 2. The degree-corrected stochastic block model. Top row: boxplots of NMI between true
and estimated labels. Bottom row: average NMI against the out-in probability ratio r . In all plots,
n1 = n2 = 150, λ = 15 and γ = 0.5.
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FIG. 3. The stochastic block model. Top row: boxplots of NMI between true and estimated labels.
Bottom row: average NMI against the out-in probability ratio r . In all plots, n1 = n2 = 150, λ = 15
and γ = 0.

with EP performing the best when community-level degree weights are different
(w = (1,3)), but just slightly worse than CPL when w = (1,1). The AEP is always
somewhat worse than the exact version, especially when w = (1,3), but overall
their results are comparable.

4.2. The stochastic block model. Figure 3 shows the performance of the four
methods for fitting the regular SBM (γ = 0). Over all, four methods provide quite
similar results, as we would hope good fitting methods will. The performance of
the approximate method AEP is very similar to that of EP, and the model-specific
UPL marginally outperforms the three general methods.

4.3. Newman–girvan modularity. The modularity function Q̂NG can be ap-
proximately maximized via a fast spectral algorithm when partitioning into two
communities [34]. Let B = A − P where Pij = didj /m, and write Q̂NG(e) =

1
2m

eT Be. The approximate solution (LES, for leading eigenvector signs) assigns
node labels according to the signs of the corresponding entries of the leading eigen-
vector of B . For a fair comparison to other methods relying on eigenvectors, we
also use the regularized A + τ11T instead of A here, since empirically we found
that it slightly improves the performance of LES. Figure 4 shows the performance
of AEP, EP[NG] and LES, when the data are generated from a regular block model
(γ = 0). The two extreme point methods EP[NG] and AEP both do slightly better
than LES, especially for the unbalanced case of w = (1,3), and there is essentially
no difference between EP[NG] and AEP here.
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FIG. 4. Newman–Girvan modularity. Top row: boxplots of NMI between true and estimated labels.
Bottom row: average NMI against the out-in probability ratio r . In all plots, n1 = n2 = 150, λ = 15
and γ = 0.

4.4. Community extraction criterion. Following the original extraction paper
of [46], we generate a community with background from the regular block model
with K = 2, n1 = 60, n2 = 240 and the probability matrix proportional to

P0 =
(

0.4 0.1
0.1 0.1

)
.

Thus, nodes within the first community are tightly connected, while the rest of the
nodes have equally weak links with all other nodes and represent the background.
We consider four values for the average expected node degree, 15, 20, 25 and 30.
Figure 5 shows that EP[EX] performs better than SCR and AEP, but somewhat
worse than the greedy label-switching tabu search used in the original paper for
maximizing the community extraction criterion (TS). However, the tabu search is
very computationally intensive and only feasible up to perhaps a thousand nodes,
so for larger networks it is not an option at all, and no other method has been
previously proposed for this problem. The AEP method, which does not agree with
AE as well as in the other cases, probably suffers from the inherent asymmetry of
the extraction problem.

4.5. Real-world network data. The first network we test our methods on, as-
sembled by [1], consists of blogs about US politics and hyperlinks between blogs.
Each blog has been manually labeled as either liberal or conservative, which we
use as the ground truth. Following [20] and [47], we ignore directions of the hy-
perlinks and only examine the largest connected component of this network, which



OPTIMIZATION VIA LOW-RANK APPROXIMATION 391

FIG. 5. Community extraction. The boxplots of NMI between true and estimated labels. In all plots,
n1 = 60, n2 = 240 and γ = 0.

has 1222 nodes and 16,714 edges, with the average degree of approximately 27.
Table 1 and Figure 6 show the performance of different methods. While AEP,
EP[DC] and CPL give reasonable results, SCR, UPL and EP[BM] clearly mis-
cluster the nodes. This is consistent with previous analyses which showed that the
degree correction has to be used for this network to achieve the correct partition,
because of the presence of hub nodes.

The second network we study represents social ties between 62 bottlenose dol-
phins living in Doubtful Sound, New Zealand [24, 25]. At some point during the
study, one well-connected dolphin (SN100) left the group, and the group split into
two separate parts, which we use as the ground truth in this example. Table 1 and
Figure 7 show the performance of different methods. In Figure 7, node shapes
represent the actual split, while the colors represent the estimated label. The star-
shaped node is the dolphin SN100 that left the group. Excepting that dolphin, SCR,
EP[BM], EP[DC], UPL and CPL all miscluster one node, while AEP misclusters
two nodes. Since this small network can be well modeled by the SBM, there is no

TABLE 1
The NMI between true and estimated labels for real-world networks

Method SCR AEP EP[BM] EP[DC] UPL CPL

Blogs 0.290 0.674 0.278 0.731 0.001 0.725

Dolphins 0.889 0.814 0.889 0.889 0.889 0.889
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FIG. 6. The network of political blogs. Node diameter is proportional to the logarithm of its degree
and the colors represent community labels.

difference between DCSBM and SBM based methods, and all methods perform
well.

APPENDIX A: PROOF OF RESULTS IN SECTION 2

The following lemma bounds the Lipschitz constants of hB,j and fB on
UB[−1,1]n.
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FIG. 7. The network of 62 bottlenose dolphins. Node shapes represent the split after the dolphin
SN100 (represented by the star) left the group. Node colors represent their estimated labels.

LEMMA 2. Assume that assumption (1) holds. For any j ≤ κ [see (2.1)], and
x, y ∈ UB[−1,1]n, we have∣∣hB,j (x) − hB,j (y)

∣∣ ≤ 4
√

n‖B‖ · ‖x − y‖,∣∣fB(x) − fB(y)
∣∣ ≤ M

√
n log(n)‖B‖ · ‖x − y‖,

where M is a constant independent of n.

PROOF. Let e, s ∈ [−1,1]n such that x = UBe, y = UBs and denote L =
|hB,j (x) − hB,j (y)|. Then

L = ∣∣(e + sj1)
T B(e + sj2) − (s + sj1)

T B(s + sj2)
∣∣

= ∣∣eT B(e − s) + (e − s)T Bs + (sj2 + sj1)
T B(e − s)

∣∣
≤ 4

√
n
∥∥B(e − s)

∥∥.
Let B = ∑m

i=1 ρiuiu
T
i be the eigen-decomposition of B . Then

∥∥B(e − s)
∥∥2 =

∥∥∥∥∥
m∑

i=1

ρiuiu
T
i (e − s)

∥∥∥∥∥
2

=
∥∥∥∥∥

m∑
i=1

ρi(xi − yi)ui

∥∥∥∥∥
2

=
m∑

i=1

ρ2
i (xi − yi)

2 ≤ ‖B‖2
m∑

i=1

(xi − yi)
2 = ‖B‖2 · ‖x − y‖2.

Therefore, L ≤ 4
√

n‖B‖ · ‖x − y‖. Since hB,j are quadratic, they are of order
O(n2). Hence, by assumption (1), the Lipschitz constants of gj are of order log(n).
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Therefore, ∣∣fB(x) − fB(y)
∣∣ ≤ 4

√
n log(n)‖B‖ · ‖x − y‖,

which completes the proof. �

In the following proofs, we use M to denote a positive constant independent of
n the value of which may change from line to line.

PROOF OF LEMMA 1. Since ‖e + sj1‖ ≤ 2
√

n and ‖e + sj2‖ ≤ 2
√

n,∣∣hA,j (e) − hB,j (e)
∣∣ = ∣∣(e + sj1)

T (A − B)(e + sj2)
∣∣

≤ 4n‖A − B‖.
Since hA,j and hB,j are of order O(n2), g′

j are bounded by log(n). Together with
assumption (1), it implies that there exists M > 0 such that∣∣fA(e) − fB(e)

∣∣ ≤ Mn log(n)‖A − B‖.(A.1)

Let ê = arg max{fB(e), e ∈ EA}. Then fA(e∗) ≥ fA(ê) and by (A.1) we get

fB(ê) − fB

(
e∗) ≤ fB(ê) − fA(ê) + fA

(
e∗) − fB

(
e∗)

(A.2)
≤ Mn log(n)‖A − B‖.

Denote by conv(S) the convex hull of a set S. Then UAc ∈ conv(UAEA) and there-
fore, there exists ηe ≥ 0,

∑
e∈EA

ηe = 1 such that

UAc = ∑
e∈EA

ηeUA(e) = UA

( ∑
e∈EA

ηee

)
.

Hence,

dist
(
UBc, conv(UBEA)

) ≤
∥∥∥∥UBc − UB

( ∑
e∈EA

ηee

)∥∥∥∥
=

∥∥∥∥(UB − UA)c + (UA − UB)
∑
e∈EA

ηee

∥∥∥∥(A.3)

≤ 2
√

n‖UA − UB‖.
Let y ∈ conv(UBEA) be the closest point from conv(UBEA) to UBc, that is,

‖UBc − y‖ = dist
(
UBc, conv(UBEA)

)
.

By A.3 and Lemma 2, we have

fB(UBc) − fB(y) ≤ Mn log(n)‖B‖ · ‖UA − UB‖.(A.4)
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The convexity of fB implies that fB(y) ≤ fB(UBê), and in turn,

fB(UBc) − fB(UBê) ≤ Mn log(n)‖B‖ · ‖UA − UB‖.(A.5)

Note that fB(UBe) = fB(e) for every e ∈ [−1,1]n. Adding (A.2) and (A.5), we
get (2.4) for T = B . The case T = A then follows from (A.1) because replacing
B with A induces an error which is not greater than the upper bound of (2.4) for
T = B . �

APPENDIX B: PROOF OF THEOREM 6

We first present the closed form of eigenvalues and eigenvectors of E[A] under
the regular block models.

LEMMA 3. Under the SBM, the nonzero eigenvalues ρi and corresponding
eigenvectors ūi of E[A] have the following form. For i = 1,2,

ρi = λn

2

[
(π1 + π2ω) + (−1)i−1

√
(π1 + π2ω)2 − 4π1π2

(
ω − r2

)]
,

ūi = 1√
n(π1r

2
i + π2)

(ri, ri, . . . , ri,1,1, . . . ,1)T ,

where

ri = 2π2r

(π2ω − π1) + (−1)i
√

(π1 + π2ω)2 − 4π1π2(ω − r2)
.

The first n̄1 = nπ1 entries of ūi equal ri(n(π1r
2
i + π2))

−1/2 and the last n̄2 = nπ2

entries of ūi equal (n(π1r
2
i + π2))

−1/2.

PROOF. Under the SBM E[A] is a two-by-two block matrix with equal entries
within each block. It is easy to verify directly that E[A]ūi = ρiūi for i = 1,2. �

Lemma 4 bounds the difference between the eigenvalues and eigenvectors of A

and those of E[A] under the SBM. It also provides a way to simplify the general
upper bound of Theorem 1.

LEMMA 4. Under the SBM, let UA and UE[A] be 2 × n matrices whose rows
are the leading eigenvectors of A and E[A], respectively. For any δ > 0, there exists
a constant M = M(r,ω,π, δ) > 0 such that if λn > M log(n) then with probability
at least 1 − n−δ , we have ∥∥A −E[A]∥∥ ≤ M

√
λn,(B.1)

‖UA − UE[A]‖ ≤ M√
λn

.(B.2)
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PROOF. Inequality (B.1) follows directly from Theorem 5.2 of [23] and the
fact that the maximum of the expected node degrees is of order λn. Inequality (B.2)
is a consequence of (B.1) and the Davis–Kahan theorem (see Theorem VII.3.2 of
[5]) as follows. By Lemma 3, the nonzero eigenvalues ρ1 and ρ2 of Ā are of order
λn. Let

S = [ρ2 − M
√

λn,ρ1 + M
√

λn].
Then ρ1, ρ2 ∈ S and the gap between S and zero is of order λn. Let P̄ be the
projector onto the subspace spanned by two leading eigenvectors of E[A]. Since
λn grows faster than ‖A−E[A]‖ by B.1, only two leading eigenvalues of A belong
to S . Let P be the projector onto the subspace spanned by two leading eigenvectors
of A. By the Davis–Kahan theorem,

‖UA − UE[A]‖ = ‖P̄ − P‖ ≤ 2‖A −E[A]‖
λn

≤ 2M√
λn

,

which completes the proof. �

Before proving Theorem 6, we need to establish the following lemma.

LEMMA 5. Let x, y, x̄ and ȳ be unit vectors in R
n such that 〈x, y〉 = 〈x̄, ȳ〉 =

0. Let P and P̄ be the orthogonal projections on the subspaces spanned by {x, y}
and {x̄, ȳ}, respectively. If ‖P − P̄‖ ≤ ε, then there exists an orthogonal matrix K
of size 2 × 2 such that ‖(x, y)K − (x̄, ȳ)‖F ≤ 9ε.

PROOF. Let x0 = P x̄ and y0 = P ȳ. Since ‖P − P̄‖ ≤ ε, it follows that ‖x̄ −
x0‖ ≤ ε and ‖ȳ − y0‖ ≤ ε. Let x⊥ = x0‖x0‖ , then∥∥x̄ − x⊥∥∥ ≤ ‖x̄ − x0‖ + ∥∥x0 − x⊥∥∥ ≤ ε + ∣∣1 − ‖x0‖

∣∣ ≤ 2ε.

Also 〈x⊥, y0〉 = 〈x⊥, y0 − ȳ〉 + 〈x⊥ − x̄, ȳ〉 implies that |〈x⊥, y0〉| ≤ 3ε. Define
z = y0 − 〈y0, x

⊥〉x⊥. Then 〈z, x⊥〉 = 0, ‖ȳ − z‖ ≤ ‖ȳ − y0‖ + ‖y0 − z‖ ≤ 4ε, and
|1 − ‖z‖| = |‖ȳ‖ − ‖z‖| ≤ 4ε. Let y⊥ = 1

‖z‖z, then∥∥ȳ − y⊥∥∥ ≤ ‖ȳ − z‖ + ∥∥z − y⊥∥∥ ≤ 4ε + ∣∣1 − ‖z‖∣∣ ≤ 8ε.

Therefore, ‖(x̄, ȳ) − (x⊥, y⊥)‖F ≤ 9ε. Finally, let K = (x, y)T (x⊥, y⊥). �

PROOF OF THEOREM 6. Denote ε = ‖UA − UE[A]‖, U = (u1, u2)
T = UA,

and Ū = (ū1, ū2)
T = UE[A]. We first show that there exists a constant M > 0 such

that with probability at least 1 − δ,

min
∥∥(

uT
1 1u2 − uT

2 1u1
) ± (

ūT
1 1ū2 − ūT

2 1ū1
)∥∥ ≤ Mε

√
n.(B.3)

Let R = (0 −1
1 0

)
be the π/2-rotation on R

2. Then

uT
1 1u2 − uT

2 1u1 = UT RU1, ūT
1 1ū2 − ūT

2 1ū1 = ŪT RŪ1.
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By Lemma 4 and Lemma 5, there exists an orthogonal matrix K such that if E =
(E1,E2) = UT − ŪT K then ‖E‖F ≤ 9ε. By replacing UT with E + ŪT K, the
left-hand side of (B.3) becomes

min
∥∥(

E + ŪT K
)
R

(
E + ŪT K

)T 1 ± ŪT RŪ1
∥∥.

Note that KT RK = R if K is a rotation, and KT RK = −R if K is a reflection.
Therefore, it is enough to show that∥∥ŪT KRET 1 + ERKT Ū1 + ERET 1

∥∥ ≤ Mε
√

n.

Note that |ET
i 1| ≤ √

n‖Ei‖ ≤ 9ε
√

n and ‖E‖F ≤ 9ε ≤ 18, so∥∥ERET 1
∥∥ = ∥∥ET

2 1E1 − ET
1 1E2

∥∥ ≤ 182ε
√

n.

From Lemma 3 we see that Ū1 = √
n(s1, s2)

T for some s1 and s2 not depending
on n. It follows that∥∥ERKT Ū1

∥∥ = √
n
∥∥(E2 − E1)KT (s1, s2)

T
∥∥ ≤ Mε

√
n

for some M > 0. Analogously,∥∥ŪT KRET 1
∥∥ = ∥∥ŪT K

(−ET
2 1,ET

1 1
)T ∥∥ ≤ Mε

√
n,

and (B.3) follows. By Lemma 3, we have

ŪT RŪ1 = α(π2, π2, . . . , π2,−π1, . . . ,−π1)
T ,

where α does not depend on n; the first n1 entries of ŪT RŪ1 equal απ2 and
the last n2 entries of ŪT RŪ1 equal απ1. For simplicity, assume that in (B.3) the
minimum is when the sign is negative (because ĉ is unique up to a factor of −1).
If node i is misclustered by ĉ then∣∣(UT RU1

)
i − (

ŪT RŪ1
)
i

∣∣ ≥ min
i

∣∣(ŪT RŪ1
)
i

∣∣ =: η.

Let k be the number of misclustered nodes, then by (B.3), η
√

k ≤ Mε
√

n. There-
fore the fraction of misclustered nodes, k/n, is of order ε2. If UA is formed by the
leading eigenvectors of A, then it remains to use inequality (B.2) of Lemma 4. �
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SUPPLEMENTARY MATERIAL

Supplement to “Optimization via low-rank approximation for community
detection in networks” (DOI: 10.1214/15-AOS1360SUPP; .pdf). This supple-
ment contains proofs of Theorems 2, 3, 4 and 5.

http://dx.doi.org/10.1214/15-AOS1360SUPP
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