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FUNCTIONAL DATA ANALYSIS FOR DENSITY FUNCTIONS BY
TRANSFORMATION TO A HILBERT SPACE
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Functional data that are nonnegative and have a constrained integral can
be considered as samples of one-dimensional density functions. Such data are
ubiquitous. Due to the inherent constraints, densities do not live in a vector
space and, therefore, commonly used Hilbert space based methods of func-
tional data analysis are not applicable. To address this problem, we introduce
a transformation approach, mapping probability densities to a Hilbert space
of functions through a continuous and invertible map. Basic methods of func-
tional data analysis, such as the construction of functional modes of varia-
tion, functional regression or classification, are then implemented by using
representations of the densities in this linear space. Representations of the
densities themselves are obtained by applying the inverse map from the lin-
ear functional space to the density space. Transformations of interest include
log quantile density and log hazard transformations, among others. Rates of
convergence are derived for the representations that are obtained for a gen-
eral class of transformations under certain structural properties. If the subject-
specific densities need to be estimated from data, these rates correspond to the
optimal rates of convergence for density estimation. The proposed methods
are illustrated through simulations and applications in brain imaging.

1. Introduction. Data that consist of samples of one-dimensional distribu-
tions or densities are common. Examples giving rise to such data are income dis-
tributions for cities or states, distributions of the times when bids are submitted in
online auctions, distributions of movements in longitudinal behavior tracking or
distributions of voxel-to-voxel correlations in fMRI signals (see Figure 1). Densi-
ties may also appear in functional regression models as predictors or responses.

The functional modeling of density functions is difficult due to the two con-
strains

∫
f (x) dx = 1 and f ≥ 0. These characteristics imply that the functional

space where densities live is convex but not linear, leading to problems for the
application of common techniques of functional data analysis (FDA) such as func-
tional principal components analysis (FPCA). This difficulty has been recognized
before and an approach based on compositional data methods has been sketched
in [17], applying theoretical results in [21], which define a Hilbert structure on the
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FIG. 1. Densities based on kernel density estimates for time course correlations of BOLD signals
obtained from brain fMRI between voxels in a region of interest. Densities are shown for n = 68
individuals diagnosed with Alzheimer’s disease. For details on density estimation, see Section 2.3.
Details regarding this data analysis, which illustrates the proposed methods, can be found in Sec-
tion 6.2.

space of densities. Probably the first work on a functional approach for a sample
of densities is [32], who utilized FPCA directly in density space to analyze sam-
ples of time-varying densities and focused on the trends of the functional principal
components over time as well as the effects of the preprocessing step of estimating
the densities from actual observations. Box–Cox transformations for a single non-
random density function were considered in [48], who aimed at improving global
bandwidth choice for kernel estimation of a single density function.

Density functions also arise in the context of warping, or registration, as time-
warping functions correspond to distribution functions. In the context of functional
data and shape analysis, such time-warping functions have been represented as
square roots of the corresponding densities [42–44], and these square root densi-
ties reside in the Hilbert sphere, about which much is known. For instance, one
can define the Fréchet mean on the sphere and also implement a nonlinear PCA
method known as Principal Geodesic Analysis (PGA) [23]. We will compare this
alternative methodology with our proposed approach in Section 6.

In this paper, we propose a novel and straightforward transformation approach
with the explicit goal of using established methods for Hilbert space valued data
once the densities have been transformed. The key idea is to map probability den-
sities into a linear function space by using a suitably chosen continuous and in-
vertible map ψ . Then FDA methodology, which might range anywhere from ex-
ploratory techniques to predictive modeling, can be implemented in this linear
space. As an example of the former, functional modes of variation can be con-
structed by applying linear methods to the transformed densities, then mapping
back into the density space by means of the inverse map. Functional regression
or classification applications that involve densities as predictors or responses are
examples of the latter.
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We also present theoretical results about the convergence of these representa-
tions in density space under suitable structural properties of the transformations.
These results draw from known results for estimation in FPCA and reflect the
additional uncertainty introduced through both the forward and inverse transfor-
mations. One rarely observes data in the form of densities; rather, for each density,
the data are in the form of a random sample generated by the underlying distribu-
tion. This fact will need to be taken into account for a realistic theoretical analysis,
adding a layer of complexity. Specific examples of transformations that satisfy the
requisite structural assumptions are the log quantile density and the log hazard
transformations.

A related approach can be found in a recent preprint by [29], where the compo-
sitional approach of [17] was extended to define a version of FPCA on samples of
densities. The authors represent densities by a centered log-ratio, which provides
an isometric isomorphism between the space of densities and the Hilbert space
L2, and emphasize practical applications, but do not provide theoretical support
or consider the effects of density estimation. Our methodology differs in that we
consider a general class of transformations rather than one specific transformation.
In particular, the transformation can be chosen independent of the metric used on
the space of densities. This provides flexibility since, for many commonly-used
metrics on the space of densities (see Section 2.2) corresponding isometric iso-
morphisms do not exist with the L2 distance in the transformed space.

The paper is organized as follows: Pertinent results on density estimation and
background on metrics in density space can be found in Section 2. Section 3 de-
scribes the basic techniques of FPCA, along with their shortfalls when dealing with
density data. The main ideas for the proposed density transformation approach are
in Section 4, including an analysis of specific transformations. Theory for this
method is discussed in Section 5, with all proofs relegated to the Appendix. In
Section 6.1, we provide simulations that illustrate the advantages of the trans-
formation approach over the direct functional analysis of density functions, also
including methods derived from properties of the Hilbert sphere. We also demon-
strate how densities can serve as predictors in a functional regression analysis by
using distributions of correlations of fMRI brain imaging signals to predict cogni-
tive performance. More details about this application can be found in Section 6.2.

2. Preliminaries.

2.1. Density modeling. Assume that data consist of a sample of n (random)
density functions f1, . . . , fn, where the densities are supported on a common in-
terval [0, T ] for some T > 0. Without loss of generality, we take T = 1. The as-
sumption of compact support is for convenience, and does not usually present a
problem in practice. Distributions with unbounded support can be handled anal-
ogously if a suitable integration measure is used. The main theoretical challenge
for spaces of functions defined on an unbounded interval is that the uniform norm
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is no longer weaker than the L2 norm, if the Lebesgue measure is used for the
latter. This can be easily addressed by replacing the Lebesgue measure dx with a
weighted version, for example, e−x2

dx.
Denote the space of continuous and strictly positive densities on [0,1] by G.

The sample consists of i.i.d. realizations of an underlying stochastic process, that
is, each density is independently distributed as f ∼ F, where F is an L2 process
[3] on [0,1] taking values in some space F ⊂ G. A basic assumption we make on
the space F is:

(A1) For all f ∈ F , f is continuously differentiable. Moreover, there is a con-
stant M > 1 such that, for all f ∈ F , ‖f ‖∞, ‖1/f ‖∞ and ‖f ′‖∞ are all bounded
above by M .

Densities f can equivalently be represented as cumulative distribution func-
tions (c.d.f.) F with domain [0,1], hazard functions h = f/(1 − F) (possibly on
a subdomain of [0,1] where F(x) < 1) and quantile functions Q = F−1, with
support [0,1]. Occasionally of interest is the equivalent notion of the quantile-
density function q(t) = Q′(t) = d

dt
F−1(t) = [f (Q(t))]−1, from which we obtain

f (x) = [q(F (x))]−1, where we use the notation of [30]. This concept goes back to
[37] and [46]. Another classical notion of interest is the density-quantile function
f (Q(t)), which can be interpreted as a time-synchronized version of the density
function [50]. All of these functions provide equivalent characterizations of distri-
butions.

In many situations, the densities themselves will not be directly observed. In-
stead, for each i, we may observe an i.i.d. sample of data Wil , l = 1, . . . ,Ni , that
are generated by the random density fi . Thus, there are two random mechanisms
at work that are assumed to be independent: the first generates the sample of densi-
ties and the second generates the samples of real-valued random data; one sample
for each random density in the sample of densities. Hence, the probability space
can be thought of as a product space (�1 × �2,A,P ), where P = P1 ⊗ P2.

2.2. Metrics in the space of density functions. Many metrics and semimetrics
on the space of density functions have been considered, including the L2, L1 [18],
Hellinger and Kullback–Leibler metrics, to name a few. In previous applied and
methodological work [8, 34, 50], it was found that a metric dQ based on quantile
functions dQ(f, g)2 = ∫ 1

0 (F−1(t) − G−1(t))2 dt is particularly promising from a
practical point of view.

This quantile metric has connections to the optimal transport problem [47], and
corresponds to the Wasserstein metric between two probability measures,

dW(f, g)2 = inf
X∼f,Y∼g

E(X − Y)2,(2.1)

where the expectation is with respect to the joint distribution of (X,Y ). The equiv-
alence dQ = dW can be most easily seen by applying a covariance identity due
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to [28]; details can be found in the supplemental article [38]. We will develop our
methodology for a general metric, which will be denoted by d in the following,
and may stand for any of the above metrics in the space of densities.

2.3. Density estimation. A common occurrence in functional data analysis is
that the functional data objects of interest are not completely observed. In the case
of a sample of densities, the information about a specific density in the sample
usually is available only through a random sample that is generated by this density.
Hence, the densities themselves must first be estimated. Consider the estimation of
a density f ∈F from an i.i.d. sample (generated by f ) of size N by an estimator f̌ .
Here, N = N(n) will implicitly represent a sequence that depends on n, the size of
the sample of random densities. In practice, any reasonable estimator can be used
that produces density estimates that are bona fide densities and which can then be
transformed into a linear space. For the theoretical results reported in Section 5, a
density estimator f̌ must satisfy the following consistency properties in terms of
the L2 and uniform metrics (denoted as d2 and d∞, resp.):

(D1) For a sequence bN = o(1), the density estimator f̌ , based on an i.i.d.
sample of size N , satisfies f̌ ≥ 0,

∫ 1
0 f̌ (x) dx = 1 and

sup
f ∈F

E
(
d2(f, f̌ )2)= O

(
b2
N

)
.

(D2) For a sequence aN = o(1) and some R > 0, the density estimator f̌ , based
on an i.i.d. sample of size N , satisfies

sup
f ∈F

P
(
d∞(f, f̌ ) > RaN

)→ 0.

When this density estimation step is performed for densities on a compact in-
terval, which is the case in our current framework, the standard kernel density esti-
mator does not satisfy these assumptions, due to boundary effects. Much work has
been devoted to rectify the boundary effects when estimating densities with com-
pact support [15, 35], but the resulting estimators leave the density space and have
not been shown to satisfy (D1) and (D2). Therefore, we introduce here a modified
density estimator of kernel type that is guaranteed to satisfy (D1) and (D2).

Let κ be a kernel that corresponds to a continuous probability density func-
tion and h < 1/2 be the bandwidth. We define a new kernel density estimator to

estimate the density f ∈ F on [0,1] from a sample W1, . . . ,WN
i.i.d.∼ f by

f̌ (x) =
N∑

l=1

κ

(
x − Wl

h

)
w(x,h)

/ N∑
l=1

∫ 1

0
κ

(
y − Wl

h

)
w(y,h)dy,(2.2)

for x ∈ [0,1] and 0 elsewhere. Here, the kernel κ is assumed to satisfy the follow-
ing additional conditions:
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(K1) The kernel κ is of bounded variation and is symmetric about 0.
(K2) The kernel κ satisfies

∫ 1
0 κ(u)du > 0, and

∫
R

|u|κ(u)du,
∫
R

κ2(u) du and∫
R

|u|κ2(u) du are finite.

The weight function

w(x,h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫ 1

−x/h
κ(u) du

)−1

, for x ∈ [0, h),(∫ (1−x)/h

−1
κ(u)du

)−1

, for x ∈ (1 − h,1], and

1, otherwise,

is designed to remove boundary bias.
The following result demonstrates that this modified kernel estimator indeed

satisfies conditions (D1) and (D2). Furthermore, this result provides the rate in
(D1) for this estimator as bN = N−1/3, which is known to be the optimal rate under
our assumptions [45], where the class of densities F is assumed to be continuously
differentiable, and it also shows that rates aN = N−c, for any c ∈ (0,1/6) are
possible in (D2).

PROPOSITION 1. If assumptions (A1), (K1) and (K2) hold, then the mod-
ified kernel density estimator (2.2) satisfies assumption (D1) whenever h → 0
and Nh → ∞ as N → ∞ with b2

N = h2 + (Nh)−1. By taking h = N−1/3 and
aN = N−c for any c ∈ (0,1/6), (D2) is also satisfied. In (S1), we may take
m(n) = nr for any r > 0.

Alternative density estimators could also be used. In particular, the beta kernel
density estimator proposed in [14] is a promising prospect. The convergence of
the expected squared L2 metric was established in [14], while weak uniform con-
sistency was proved in [10]. This density estimator is nonnegative, but requires
additional normalization to guarantee that it resides in the density space.

3. Functional data analysis for the density process. For a generic density
function process f ∼ F, denote the mean function by μ(x) = E(f (x)), the co-
variance function by G(x,y) = Cov(f (x), f (y)), and the orthonormal eigenfunc-
tions and eigenvalues of the linear covariance operator (Af )(t) = ∫ G(s, t)f (s) ds

by {φk}∞k=1 and {λk}∞k=1, where the latter are positive and in decreasing order. If
f1, . . . , fn are i.i.d. distributed as f , then by the Karhunen–Loève expansion, for
each i,

fi(x) = μ(x) +
∞∑

k=1

ξikφk(x),
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where ξik = ∫ 1
0 (fi(x) − μ(x))φk(x) dx are the uncorrelated principal components

with zero mean and variance λk . The Karhunen–Loève expansion constitutes the
foundation for the commonly used FPCA technique [4, 6, 7, 16, 26, 27, 33].

The mean function μ of a density process F is also a density function, as the
space of densities is convex, and can be estimated by

μ̃(x) = 1

n

n∑
i=1

fi(x) respectively μ̂(x) = 1

n

n∑
i=1

f̌i(x),

where the version μ̃ corresponds to the case when the densities are fully observed
and the version μ̂ corresponds to the case when they are estimated using suitable
estimators such as (2.2); this distinction will be used throughout. However, in the
common situation where one encounters horizontal variation in the densities, this
mean is not a good measure of center. This is because the cross-sectional mean can
only capture vertical variation. When horizontal variation is present, the L2 metric
does not induce an adequate geometry on the density space. A better method is
quantile synchronization [50], a version of which has been introduced in [8] in
the context of a genomics application. Essentially, this involves considering the
cross-sectional mean function, Q⊕(t) = E(Q(t)), of the corresponding quantile
process, Q. The synchronized mean density is then given by f⊕ = (Q−1⊕ )′.

The quantile synchronized mean can be interpreted as a Fréchet mean with re-
spect to the Wasserstein metric d = dW , where for a metric d on F the Fréchet
mean of the process F is defined by

f⊕ = arg inf
g∈F E

(
d(f, g)2),(3.1)

and the Fréchet variance is E(d(f,f⊕)2). Hence, for the choice d = dW , the
Fréchet mean coincides with the quantile synchronized mean. Further discussion
of this Wasserstein–Fréchet mean and its estimation is provided in the supplemen-
tal article [38]. Noting that the cross-sectional mean corresponds to the Fréchet
mean for the choice d = d2, the Fréchet mean provides a natural measure of cen-
ter, adapting to the chosen metric or geometry.

Modes of variation [13] have proved particularly useful in applications to inter-
pret and visualize the Karhunen–Loève representation and FPCA [31, 39]. They
focus on the contribution of each eigenfunction φk to the stochastic behavior of
the process. The kth mode of variation is a set of functions indexed by a parameter
α ∈ R that is given by

gk(x,α) = μ(x) + α
√

λkφk(x).(3.2)

In order to construct estimates of these modes, and generally to perform FPCA,
the following estimates of the covariance function G of F are needed:

G̃(x, y) = 1

n

n∑
i=1

fi(x)fi(y) − μ̃(x)μ̃(y) respectively



190 A. PETERSEN AND H.-G. MÜLLER

Ĝ(x, y) = 1

n

n∑
i=1

f̌i(x)f̌i(y) − μ̂(x)μ̂(y).

The eigenfunctions of the corresponding covariance operators, φ̃k or φ̂k , then serve
as estimates of φk . Similarly, the eigenvalues λk are estimated by the empirical
eigenvalues (λ̃k or λ̂k).

The empirical modes of variation are obtained by substituting estimates for the
unknown quantities in the modes of variation (3.2),

g̃k(x,α) = μ̃(x) + α

√
λ̃kφ̃k(x) respectively ĝk(x,α) = μ̂(x) + α

√
λ̂kφ̂k(x).

These modes are useful for visualizing the FPCA in a Hilbert space. In a nonlinear
space such as the space of densities, they turn out to be much less useful. Consider
the eigenfunctions φk . In [32], it was observed that estimates of these eigenfunc-
tions for samples of densities satisfy

∫ 1
0 φ̂k(x) dx = 0 for all k. Indeed, this is true

of the population eigenfunctions as well. To see this, consider the following argu-
ment. Let 1(x) ≡ 1 so that 〈f − μ,1〉 = 0. Take ϕ to be the projection of φ1 onto
{1}⊥. It is clear that ‖ϕ‖2 ≤ 1 and Var(〈f − μ,φ1〉) = Var(〈f − μ,ϕ〉). However,
by definition, Var(〈f − μ,φ1〉) = max‖φ‖2=1 Var(〈f − μ,φ〉). Hence, in order to
avoid a contradiction, we must have ‖ϕ‖2 = 1, so that 〈φ1,1〉 = 0. The proof for
all of the eigenfunctions follows by induction.

At first, this seems like a desirable characteristic of the eigenfunctions since it
enforces

∫
gk(x,α) dx = 1 for any k and α. However, for |α| large enough, the

resulting modes of variation leave the density space since 〈φk,1〉 = 0 implies at
least one sign change for all eigenfunctions. This also has the unfortunate con-
sequence that the modes of variation intersect at a fixed point which, as we will
see in Section 6, is an undesirable feature for describing variation of samples of
densities.

In practical applications, it is customary to adopt a finite-dimensional approx-
imation of the random functions by a truncated Karhunen–Loève representation,
including the first K expansion terms,

fi(x,K) = μ(x) +
K∑

k=1

ξikφk(x).(3.3)

Then the functional principal components (FPC) ξik, k = 1, . . . ,K , are used to
represent each sample function. For fully observed densities, estimates of the FPCs
are obtained through their interpretation as inner products,

ξ̃ik =
∫ 1

0

(
fi(x) − μ̃(x)

)
φ̃k(x) dx.

The truncated processes in (3.3) are then estimated by simple plug-in. Since the
truncated finite-dimensional representations as derived from the finite-dimensional
Karhunen–Loève expansion are designed for functions in a linear space, they are
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good approximations in the L2 sense, but (i) may lack the defining characteristics
of a density and (ii) may not be good approximations in a nonlinear space.

Thus, while it is possible to directly apply FPCA to a sample of densities,
this approach provides an extrinsic analysis as the ensuing modes of variation
and finite-dimensional representations leave the density space. One possible rem-
edy would be to project these quantities back onto the space of densities, say by
taking the positive part and renormalizing. In the applications presented in Sec-
tion 6, we compare this ad hoc procedure with the proposed transformation ap-
proach.

4. Transformation approach. The proposed transformation approach is to
map the densities into a new space L2(T ) via a functional transformation ψ ,
where T ⊂ R is a compact interval. Then we work with the resulting L2 process
X := ψ(f ). By performing FPCA in the linear space L2(T ) and then mapping
back to density space, this transformation approach can be viewed as an intrinsic
analysis, as opposed to ordinary FPCA. With ν and H denoting the mean and co-
variance functions, respectively, of the process X, {ρk}∞k=1 denoting the orthonor-
mal eigenfunctions of the covariance operator with kernel H with corresponding
eigenvalues {τk}∞k=1, the Karhunen–Loève expansion for each of the transformed
processes Xi = ψ(fi) is

Xi(t) = ν(t) +
∞∑

k=1

ηikρk(t), t ∈ T ,

with principal components ηik = ∫T (Xi(t) − ν(t))ρk(t) dt .
Our goal is to find suitable transformations ψ : G → L2(T ) from density space

to a linear functional space. To be useful in practice and to enable derivation of con-
sistency properties, the maps ψ and ψ−1 must satisfy certain continuity require-
ments, which will be given at the end of this section. We begin with two specific
examples of relevant transformations. For clarity, for functions in the native den-
sity space G we denote the argument by x, while for functions in the transformed
space L2(T ) the argument is t .

The log hazard transformation. Since hazard functions diverge at the right end-
point of the distribution, which is 1, we consider quotient spaces induced by iden-
tifying densities which are equal on a subdomain T = [0,1δ], where 1δ = 1 − δ

for some 0 < δ < 1. With a slight abuse of notation, we denote this quotient space
as G as well. The log hazard transformation ψH : G → L2(T ) is

ψH(f )(t) = log
(
h(t)
)= log

{
f (t)

1 − F(t)

}
, t ∈ T .

Since the hazard function is positive but otherwise not constrained on T , it is easy
to see that ψ indeed maps density functions to L2(T ). The inverse map can be
defined for any continuous function X as

ψ−1
H (X)(x) = exp

{
X(x) −

∫ x

0
eX(s) ds

}
, x ∈ [0,1δ].
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Note that for this case one has a strict inverse only modulo the quotient space.
However, in order to use metrics such as dW , we must choose a representative.
A straightforward way to do this is to assign the remaining mass uniformly, that
is,

ψ−1
H (X)(x) = δ−1 exp

{
−
∫ 1δ

0
eX(s) ds

}
, x ∈ (1δ,1].

The log quantile density transformation. For T = [0,1], the log quantile density
(LQD) transformation ψQ : G → L2(T ) is given by

ψQ(f )(t) = log
(
q(t)
)= − log

{
f
(
Q(t)
)}

, t ∈ T .

It is then natural to define the inverse of a continuous function X on T as the
density given by exp{−X(F(x))}, where Q(t) = F−1(t) = ∫ t0 eX(s) ds. Since the
value F−1(1) is not fixed, the support of the densities is not fixed within the trans-
formed space, and as the inverse transformation should map back into the space
of densities with support on [0,1], we make a slight adjustment when defining the
inverse by

ψ−1
Q (X)(x) = θX exp

{−X
(
F(x)
)}

, F−1(t) = θ−1
X

∫ t

0
eX(s) ds,

where θX = ∫ 1
0 eX(s) ds. Since F−1(1) = 1 whenever X ∈ ψQ(G), this definition

coincides with the natural definition mentioned above on ψQ(G).
To avoid the problems that afflict the linear-based modes of variation as de-

scribed in Section 3, in the transformation approach we construct modes of vari-
ation in the transformed space for processes X = ψ(f ) and then map these back
into the density space, defining transformation modes of variation

gk(x,α,ψ) = ψ−1(ν + α
√

τkρk)(x).(4.1)

Estimation of these modes is done by first estimating the mean function ν and
covariance function H of the process X. Letting X̂i = ψ(f̌i), the empirical esti-
mators are

ν̃(t) = 1

n

n∑
i=1

Xi(t) respectively ν̂(t) = 1

n

n∑
i=1

X̂i(t);(4.2)

H̃ (s, t) = 1

n

n∑
i=1

Xi(s)Xi(t) − ν̃(s)ν̃(t) respectively

(4.3)

Ĥ (s, t) = 1

n

n∑
i=1

X̂i(s)X̂i(t) − ν̂(s)ν̂(t).
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Estimated eigenvalues and eigenfunctions (τ̃k and ρ̃k , resp., τ̂k and ρ̂k) are then
obtained from the mean and covariance estimates as before, yielding the transfor-
mation mode of variation estimators

g̃k(x,α,ψ) = ψ−1(ν̃ + α

√
τ̃kρ̃k)(x) respectively

(4.4)
ĝk(x,α,ψ) = ψ−1(ν̂ + α

√
τ̂kρ̂k)(x).

In contrast to the modes of variation resulting from ordinary FPCA in (3.2), the
transformation modes are bona fide density functions for any value of α. Thus, for
reasonably chosen transformations, the transformation modes can be expected to
provide a more interpretable description of the variability contained in the sample
of densities. Indeed, the data application in Section 6.2 shows that this is the case,
using the log quantile density transformation as an example.

The truncated representations of the original densities in the sample are then
given by

fi(x,K,ψ) = ψ−1

(
ν +

K∑
k=1

ηikρk

)
(x).(4.5)

Utilizing (4.2), (4.3) and the ensuing estimates of the eigenfunctions, the (transfor-
mation) principal components, for the case of fully observed densities, are obtained
in a straightforward manner,

η̃ik =
∫
T

(
Xi(t) − ν̃(t)

)
ρ̃k(t) dt,(4.6)

whence

f̃i(x,K,ψ) = ψ−1

(
ν̃ +

K∑
k=1

η̃ikρ̃k

)
(x).

In practice, the truncation point K can be selected by choosing a cutoff for the
fraction of variance explained. This raises the question of how to quantify total
variance. For the chosen metric d , we propose to use the Fréchet variance

V∞ := E
(
d(f,f⊕)2),(4.7)

which is estimated by its empirical version

Ṽ∞ = 1

n

n∑
i=1

d(fi, f̃⊕)2,(4.8)

using an estimator f̃⊕ of the Fréchet mean. Truncating at K included components
as in (3.3) or in (4.5) and denoting the truncated versions as fi,K , the variance
explained by the first K components is

VK := V∞ − E
(
d(f1, f1,K)2),(4.9)
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which is estimated by

ṼK = Ṽ∞ − 1

n

n∑
i=1

d(fi, f̃i,K)2.(4.10)

The ratio VK/V∞ is called the fraction of variance explained (FVE), and is esti-
mated by ṼK/Ṽ∞. If the truncation level is chosen so that a fraction p, 0 < p < 1,
of total variation is to be explained, the optimal choice of K is

K∗ = min
{
K : VK

V∞
> p

}
,(4.11)

which is estimated by

K̃∗ = min
{
K : ṼK

Ṽ∞
> p

}
.(4.12)

As will be demonstrated in the data illustrations, this more general notion of vari-
ance explained is a useful concept when dealing with densities or other functions
that are not in a Hilbert space. Specifically, we will show that density represen-
tations in (4.5), obtained via transformation, yield higher FVE values than the
ordinary representations in (3.3), thus giving more efficient representations of the
sample of densities.

For the theoretical analysis of the transformation approach, certain structural
assumptions on the transformations need to be satisfied. The required smoothness
properties for maps ψ and ψ−1 are implied by the three conditions (T0)–(T3)
below. Here, the L2 and uniform metrics are denoted by d2 and d∞, respectively,
and the uniform norm is denoted by ‖ · ‖∞.

(T0) Let f , g ∈ G with f differentiable and ‖f ′‖∞ < ∞. Set

D0 ≥ max
(‖f ‖∞,‖1/f ‖∞,‖g‖∞,‖1/g‖∞,

∥∥f ′∥∥∞).
Then there exists C0 depending only on D0 such that

d2
(
ψ(f ),ψ(g)

)≤ C0d2(f, g), d∞
(
ψ(f ),ψ(g)

)≤ C0d∞(f, g).

(T1) Let f ∈ G be differentiable with ‖f ′‖∞ < ∞ and let D1 be a constant
bounded below by max(‖f ‖∞,‖1/f ‖∞,‖f ′‖∞). Then ψ(f ) is differentiable
and there exists C1 > 0 depending only on D1 such that ‖ψ(f )‖∞ ≤ C1 and
‖ψ(f )′‖∞ ≤ C1.

(T2) Let d be the selected metric in density space, Y be continuous and X

be differentiable on T with ‖X′‖∞ < ∞. There exist constants C2 = C2(‖X‖∞,

‖X′‖∞) > 0 and C3 = C3(d∞(X,Y )) > 0 such that

d
(
ψ−1(X),ψ−1(Y )

)≤ C2C3d2(X,Y )

and, as functions, C2 and C3 are increasing in their respective arguments.
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(T3) For a given metric d on the space of densities and f1,K = f1(·,K,ψ)

[see (4.5)], V∞ − VK → 0 and E(d(f,f1,K)4) = O(1) as K → ∞.

Here, assumptions (T0) and (T2) relate to the continuity of ψ and ψ−1, while
(T1) means that bounds on densities in the space G are accompanied by corre-
sponding bounds of the transformed processes X. Assumption (T3) is needed to
ensure that the finitely truncated versions in the transformed space are consistent,
as the truncation parameter increases.

To establish these properties for the log hazard and log quantile density trans-
formations, denoting as before the mean function, covariance function, eigenfunc-
tions and eigenvalues associated with the process X by (ν,H,ρk, τk), assumption
(T1) implies that ν, H , ρk , ν′ and ρ′

k are bounded for all k (see Lemma 2 in the
Appendix for details). In turn, these bounds imply a nonrandom Lipschitz constant
for the residual process X −XK =∑∞

k=K+1 ηkφk as follows. Under (A1), the con-
stant C1 in (T1) can be chosen uniformly over f ∈ F . As a consequence, we have
‖X‖∞ < C1 almost surely so that ‖ν‖∞ < C1 and

|ηk| =
∣∣∣∣∫T (X(t) − ν(t)

)
φk(t) dt

∣∣∣∣≤ 2C1

∫
T

∣∣φk(t)
∣∣dt ≤ 2C1|T |1/2,(4.13)

almost surely. Additionally, ‖ν′‖∞ < C1 and ‖ρ′
k‖∞ < ∞ for all k by dominated

convergence, so that

∥∥X′
K

∥∥∞ ≤ ∥∥ν′∥∥∞ +
K∑

k=1

|ηk|
∥∥ρ′

k

∥∥∞ ≤ C1

(
1 + 2|T |1/2

K∑
k=1

∥∥ρ′
k

∥∥∞
)
.

Since ‖X′‖∞ < C1 almost surely, setting

LK := 2C1

(
1 + |T |1/2

K∑
k=1

∥∥ρ′
k

∥∥∞
)

(4.14)

then yields the almost sure bound∣∣(X − XK)(s) − (X − XK)(t)
∣∣≤ LK |s − t |.

The following result demonstrates the continuity of the log hazard and log quan-
tile density transformations for classes of processes X that have suitably fast de-
clining eigenvalues and suitable smoothness of the finite approximations.

PROPOSITION 2. Assumptions (T0)–(T2) are satisfied for both ψH and ψQ

with either d = d2 or d = dW . Let LK denote the Lipschitz constant given in (4.14).
If:

(i) LK

∑∞
k=K+1 τk = O(1) as K → ∞ and

(ii) there is a sequence rm, m ∈ N, such that E(η2m
1k ) ≤ rmτm

k for large k and
(
rm+1
rm

)1/3 = o(m),
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are satisfied, then assumption (T3) is also satisfied for both ψH and ψQ with either
d = d2 or d = dW .

As example, consider the Gaussian case for transformed processes X [or,
similarly, the truncated Gaussian case in light of (4.13)] with components
η1k ∼ N(0, λk). Then E(η2m

1k ) = τm
k (2m − 1)!!, whence rm = (2m − 1)!! so that

(rm+1/rm)1/3 = o(m) in (ii) is trivially satisfied. If the eigenfunctions correspond
to the trigonometric basis, then ‖ρ′

k‖∞ = O(k), so that LK = O(K2). Hence, any
eigenvalue sequence satisfying τk = O(k−4) would satisfy (i) in this case.

5. Theoretical results. The transformation modes of variation as defined in
(4.1), together with the FVE values and optimal truncation points in (4.11), consti-
tute the main components of the proposed approach. In this section, we investigate
the weak consistency of the estimators of these quantities, given in (4.4) and (4.12),
respectively, for the case of a generic density metric d , as n → ∞. While asymp-
totic properties of estimates in FPCA are well established [9, 33], the effects of
density estimation and transformation need to be studied in order to validate the
proposed transformation approach. When densities are estimated, a lower bound m

on the sample sizes available for estimating each density is required, as stipulated
in the following assumption:

(S1) Let f̌ be a density estimator that satisfies (D2), and suppose densities
fi ∈ F are estimated by f̌i from i.i.d. samples of size Ni = Ni(n), i = 1, . . . , n,
respectively. There exists a sequence of lower bounds m(n) ≤ min1≤i≤n Ni such
that m(n) → ∞ as n → ∞ and

n sup
f ∈F

P
(
d∞(f, f̌ ) > Ram

)→ 0,

where, for generic f ∈ F , f̌ is the estimated density from a sample of size N(n) ≥
m(n).

Proposition 1 in Section 2.3 implies that, for the density estimator in (2.2), prop-
erty (S1) is satisfied for sequences of the form m(n) = nr for arbitrary r > 0. For
r < 3/2, this rate dominates the rate of convergence in Theorem 1 below, which
thus cannot be improved under our assumptions. While the theory we provide is
general in terms of the transformation and metric, of particular interest are the spe-
cific transformations discussed in Section 4 and the Wasserstein metric dW . Proofs
and auxiliary lemmas are in the Appendix.

To study the transformation modes of variation, auxiliary results involving con-
vergence of the mean, covariance, eigenvalue and eigenfunction estimates in the
transformed space are needed. These auxiliary results are given in Lemma 3 and
Corollary 1 in the Appendix. A critical component in these rates is the spacing
between eigenvalues

δk = min
1≤j≤k

(τj − τj+1).(5.1)
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These spacings become important as one aims to estimate an increasing number of
transformation modes of variation simultaneously.

The following result provides the convergence of estimated transformation
modes of variation in (4.4) to the true modes gk(·, α,ψ) in (4.1), uniformly over
mode parameters |α| ≤ α0 for any constant α0 > 0. For the case of estimated densi-
ties, if (D1), (D2) and (S1) are satisfied, m = m(n) denotes the increasing sequence
of lower bounds in (S1), and bm is the rate of convergence in (D1), indexed by the
bounding sequence m.

THEOREM 1. Fix K and α0 > 0. Under assumptions (A1), (T1) and (T2), and
with g̃k, ĝk as in (4.4),

max
1≤k≤K

sup
|α|≤α0

d
(
gk(·, α,ψ), g̃k(·, α,ψ)

)= Op

(
n−1/2).

Additionally, there exists a sequence K(n) → ∞ such that

max
1≤k≤K(n)

sup
|α|≤α0

d
(
gk(·, α,ψ), g̃k(·, α,ψ)

)= op(1).

If assumptions (T0), (D1), (D2) and (S1) are also satisfied and K , α0 are fixed,

max
1≤k≤K

sup
|α|≤α0

d
(
gk(·, α,ψ), ĝk(·, α,ψ)

)= Op

(
n−1/2 + bm

)
.

Moreover, there exists a sequence K(n) → ∞ such that

max
1≤k≤K(n)

sup
|α|≤α0

d
(
gk(·, α,ψ), ĝk(·, α,ψ)

)= op(1).

In addition to demonstrating the convergence of the estimated transformation
modes of variation for both fully observed and estimated densities, this result also
provides uniform convergence over increasing sequences of included components
K = K(n). Under assumptions on the rate of decay of the eigenvalues and the up-
per bounds for the eigenfunctions, one also can get rates for the case K(n) → ∞.
For example, suppose the densities are fully observed, τk = ce−θk for c, θ > 0 and
supk ‖ρk‖∞ ≤ A (as would be the case for the trigonometric basis, but this could
be easily replaced by a sequence Ak of increasing bounds). Additionally, suppose
C2 = a0e

a1‖X‖∞ in (T2), as is the case for the log quantile density transformation
with the metric dW (see the proof of Proposition 2). Then, following the proof of
Theorem 1, one finds that, for K(n) = � 1

4θ
logn�,

max
1≤k≤K(n)

sup
|α|≤α0

d
(
gk(·, α,ψ), g̃k(·, α,ψ)

)= Op

(
n−1/4).

For the truncated representations in (4.5), the truncation point K may be viewed
as a tuning parameter. When adopting the fraction of variance explained criterion
[see (4.7) and (4.9)] for the data-adaptive selection of K , a user will typically
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choose the fraction p ∈ (0,1), for which the corresponding optimal value K∗ is
given in (4.11), with the data-based estimate in (4.12). This requires estimation
of the Fréchet mean f⊕ (3.1), for which we assume the availability of an es-
timator f̃⊕ that satisfies d(f⊕, f̃⊕) = Op(γn) for the given metric d in density
space and some sequence γn → 0. For the choice d = dW , γn = n−1/2 is admissi-
ble [38].

This selection procedure for the truncation parameter is a generalization of the
scree plot in multivariate analysis, where the usual fraction of variance concept
that is based on the eigenvalue sequence is replaced here with the corresponding
Fréchet variance. As more data become available, it is usually desirable to increase
the fraction of variance explained in order to more accurately represent the true
underlying functions. Therefore, it makes sense to choose a sequence pn ∈ (0,1),
with pn ↑ 1. The following result provides consistent recovery of the fraction of
variance explained values VK/V∞ as well as the optimal choice K∗ for such se-
quences.

THEOREM 2. Assume (A1) and (T1)–(T3) hold. Additionally, suppose an es-
timator f̃⊕ of f⊕ satisfies d(f⊕, f̃⊕) = Op(γn) for a sequence γn → 0. Then there
is a sequence pn ↑ 1 such that

max
1≤K≤K∗

∣∣∣∣VK

V∞
− ṼK

Ṽ∞

∣∣∣∣= op(1)

and, consequently,

P
(
K∗ �= K̃∗)→ 0.

Specific choices for the sequence pn and their implications for the correspond-
ing sequence K∗(n) can be investigated under additional assumptions. For exam-
ple, consider the case where τk = ce−θk , supk ‖ρk‖∞ ≤ A, V∞ − VK = be−ωK ,
C2 = a0e

a1‖X‖∞ in (T2) and γn = n−1/2. Then, by following the proofs of
Lemma 4 and Theorem 2, we find that if r < [2(2a1C1|T |1/2A + θ + ω)]−1, the
choice

pn = 1 − b(1 + eω)

2V∞
n−ωr

leads to a corresponding sequence of tuning parameters K∗(n) = �r logn�. In par-
ticular, this means that

max
1≤K≤K∗

∣∣∣∣VK

V∞
− ṼK

Ṽ∞

∣∣∣∣= Op

((
logn

n

)1/2)
and the relative error (K̃∗ −K∗)/K∗ converges at the rate op(1/ logn) under these
assumptions.
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TABLE 1
Simulation designs for comparison of methods

Setting Random component Resulting density

1 log(σi) ∼ U [−1.5,1.5], i = 1, . . . ,50 N (0, σ 2
i ) truncated on [−3,3]

2 μi ∼ U [−3,3], i = 1, . . . ,50 N (μi,1) truncated on [−5,5]
3 log(σi) ∼ U [−1,1], μi ∼ U [−2.5,2.5], N (μi, σ

2
i ) truncated on [−5,5]

μi and σi independent, i = 1, . . . ,50

6. Illustrations.

6.1. Simulation studies. Simulation studies were conducted to compare the
performance between ordinary FPCA applied to densities, the proposed transfor-
mation approach using the log quantile density transformation, ψQ, and methods
derived for the Hilbert sphere [23, 42–44] for three simulation settings that are
listed in Table 1. The first two settings represent vertical and horizontal variation,
respectively, while the third setting is a combination of both. We considered the
case where the densities are fully observed, as well as the more realistic case where
only a random sample of data generated by a density is available for each density.
In the latter case, densities were estimated from a sample of size 100 each, using
the density estimator in (2.2) with the kernel κ being the standard normal density
and a bandwidth of h = 0.2.

In order to compare the different methods, we assessed the efficiency of the
resulting representations. Efficiency was quantified by the fraction of variance ex-
plained (FVE), ṼK/Ṽ∞, as given by the Fréchet variance [see (4.8) and (4.10)], so
that higher FVE values reflect superior representations. As this quantity depends
on the chosen metric d , we computed these values for both the L2 and Wasserstein
metrics. The FVE results for the two metrics were similar, so we only present the
results using the L2 metric here. Those corresponding to the Wasserstein metric
dW are given in the supplemental article [38]. As mentioned in Section 3, the trun-
cated representations in (3.3) given by ordinary FPCA are not guaranteed to be
bona fide densities. Hence, the representations were first projected onto the space
of densities by taking the positive part and renormalizing, a method that has been
systematically investigated by [24].

Boxplots for the FVE values (using the metric d2) for the three simulation set-
tings are shown in Figure 2, where the first row corresponds to fully observed
densities and the second row to estimated densities. The number of components
used to compute the fraction of variance explained was K = 1 for settings 1 and 2,
and K = 2 for setting 3, reflecting the true dimensions of the random process gen-
erating the densities. Even in the first simulation setting, where the variation is
strictly vertical, the transformation method outperformed both the standard FPCA
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(a) Setting 1 − K = 1 (b) Setting 2 − K = 1 (c) Setting 3 − K = 2

(d) Setting 1 − K = 1 (e) Setting 2 − K = 1 (f) Setting 3 − K = 2

FIG. 2. Boxplots of FVE (fraction of Fréchet variance explained, larger is better) values for 200
simulations, using the L2 distance d2. The first row corresponds to fully observed densities and the
second corresponds to estimated densities. The columns correspond to settings 1, 2 and 3 from left
to right (see Table 1). The methods are denoted by “FPCA” for ordinary FPCA on the densities,
“LQD” for the transformation approach with ψQ and “HS” for the Hilbert sphere method.

and Hilbert sphere methods. The advantage of the transformation is most notice-
able in settings 2 and 3 where horizontal variation is prominent.

As a qualitative comparison, we also computed the Fréchet means correspond-
ing to three metrics: The L2 metric (cross-sectional mean), Wasserstein metric
and Fisher–Rao metric. This last metric corresponds to the geodesic metric on
the Hilbert sphere between square-root densities. This fact was exploited in [42],
where an estimation algorithm was introduced that we have implemented in our
analyses. For details on the estimation of the Wasserstein–Fréchet mean, see the
supplemental article [38]. To summarize these mean estimates across simulations,
we again took the Fréchet mean (i.e., a Fréchet mean of Fréchet means), using the
respective metric.

Note that a natural center for each simulation, if one knew the true random
mechanism generating the densities, is the (truncated) standard normal density.
Figure 3 plots the average mean estimates across all simulations (in the Fréchet
sense) for the different settings along with the truncated standard normal density.
One finds that in setting 2 for fully observed densities, the Wasserstein–Fréchet
mean is visually indistinguishable from truncated normal density. Overall, it is
clear that the Wasserstein–Fréchet mean yields a better concept for the “center”
of the distribution of data curves than either the cross-sectional or Fisher–Rao–
Fréchet means.
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(a) Setting 1 (b) Setting 2 (c) Setting 3

(d) Setting 1 (e) Setting 2 (f) Setting 3

FIG. 3. Average Fréchet means across 200 simulations. The first row corresponds to fully observed
densities and the second corresponds to estimated densities. The columns correspond to settings 1, 2
and 3 from left to right (see Table 1). Truncated N (0,1)—solid line; Cross-sectional—short-dashed
line; Fisher–Rao—dotted line; Wasserstein—long-dashed line.

6.2. Intra-hub connectivity and cognitive ability. In recent years, the problem
of identifying functional connectivity between brain voxels or regions has received
a great deal of attention, especially for resting state fMRI [2, 22, 41]. Subjects are
asked to relax while undergoing a fMRI brain scan, where blood-oxygen-level de-
pendent (BOLD) signals are recorded and then processed to yield voxel-specific
time courses of signal strength. Functional connectivity between voxels is custom-
arily quantified in this area by the Pearson product-moment correlation [1, 5, 49]
which, from a functional data analysis point of view, corresponds to a special case
of dynamic correlation for random functions [19]. These correlations can be used
for a variety of purposes. A traditional focus has been on characterizing voxel re-
gions that have high correlations [11], which have been referred to as “hubs.” For
each such hub, a so-called seed voxel is identified as the voxel with the signal that
has the highest correlation with the signals of nearby voxels.

As a novel way to characterize hubs, we analyzed the distribution of the corre-
lations between the signal at the seed voxel of a hub and the signals of all other
voxels within an 11 × 11 × 11 cube of voxels that is centered at the seed voxel.
For each subject, the target is the density within a specified hub that is then es-
timated from the observed correlations. The resulting sample of densities is then
an i.i.d. sample across subjects. To demonstrate our methods, we select the Right
inferior/superior Parietal Lobule hub (RPL) that is thought to be involved in higher
mental processing [11].
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FIG. 4. Comparison of means for distributions of seed voxel correlations for the RPL hub. Cross–
sectional mean—solid line; Fisher–Rao–Fréchet mean—short-dashed line; Wasserstein–Fréchet
mean—long-dashed line.

The signals for each subject were recorded over the interval [0, 470] (in sec-
onds), with 236 measurements available at 2 second intervals. For the fMRI data
recorded for n = 68 subjects that were diagnosed with Alzheimer’s disease at UC
Davis, we performed standard preprocessing that included the steps of slice-time
correction, head motion correction and normalization to the Montreal Neurolog-
ical Institute (MNI) fMRI template, in addition to linear detrending to account
for signal drift, band-pass filtering to include only frequencies between 0.01 and
0.08 Hz and regressing out certain time-dependent covariates (head motion param-
eters, white matter and CSF signal).

For the estimation of the densities of seed voxel correlations, the density estima-
tor in (2.2) was utilized, with kernel κ chosen as the standard Gaussian density and
a bandwidth of h = 0.08. As negative correlations are commonly ignored in con-
nectivity analyses, the densities were estimated on [0,1]. Figure 1 shows the esti-
mated densities for all 68 subjects. A notable feature is the variation in the location
of the mode, as well as the associated differences in the sharpness of the density at
the mode. The Fréchet means that one obtains with different approaches are plot-
ted in Figure 4. As in the simulations, the cross-sectional and Fisher–Rao–Fréchet
means are very similar, and neither reflects the characteristics of the distributions
in the sample. In contrast, the Wasserstein–Fréchet mean displays a sharper mode
of the type that is seen in the sample of densities. Therefore, it is clearly more
representative of the sample.

Next, we examined the first and second modes of variation, which are shown
in Figure 5. The first mode of variation for each method reflects the horizontal
shifts in the density modes, the location of which varies by subject. The modes
for the Hilbert sphere method closely resemble those for ordinary FPCA and both
FPCA and Hilbert sphere modes of variation do not adequately reflect the nature
of the main variability in the data, which is the shift in the modes and associated
shape changes. In contrast, the transformation modes of variation using the log
quantile density transformation retain the sharp peaks seen in the sample and give
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(a) Ordinary FPCA (b) Log quantile density transformation (c) Hilbert sphere method

(d) Ordinary FPCA (e) Log quantile density transformation (f) Hilbert sphere method

FIG. 5. Modes of variation for distributions of seed voxel correlations. The first row corresponds
to the first mode and the second row to the second mode of variation. The values of α used in the
computation of the modes are quantiles (α1 = 0.1, α2 = 0.25, α3 = 0.75, α4 = 0.9) of the stan-
dardized estimates of the principal component (geodesic) scores for each method, and the solid line
corresponds to α = 0.

a clear depiction of the horizontal variation. The second mode describes vertical
variation. Here, the superiority of the transformation modes is even more appar-
ent. The modes of ordinary FPCA and, to a lesser extent, those for the Hilbert
sphere method, capture this form of variation awkwardly, with the extreme val-
ues of α moving toward bimodality—a feature that is not present in the data. In
contrast, the log quantile density modes of variation capture the variation in the
peaks adequately, representing all densities as unimodal density functions, where
unimodality is clearly present throughout the sample of density estimates.

In terms of connectivity, the first transformation mode reflects mainly horizontal
shifts in the densities of connectivity with associated shape changes that are less
prominent, and can be characterized as moving from low to higher connectivity.
The second transformation mode of variation provides a measure of the peaked-
ness of the density, and thus to what extent connectivity is focused around a central
value. The fraction of variance explained as shown in Figure 6 demonstrates that
the transformation method provides not only more interpretable modes of varia-
tion, but also more efficient representations of the distributions than both ordinary
FPCA and the Hilbert sphere methods. Thus, while the transformation modes of
variation provide valuable insights into the variation of connectivity across sub-
jects, this is not the case for the ordinary or Hilbert sphere modes of variation.

We also compared the utility of the densities and their transformed versions to
predict a cognitive test score which assesses executive performance in the frame-
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FIG. 6. Fraction of variance explained for K = 1,2,3 components, using the metric d2. Ordi-
nary FPCA—solid line/circle marker; log quantile density transformation—short-dashed line/square
marker; Hilbert Sphere method—long-dashed line/diamond marker.

work of a functional linear regression model. As the Hilbert sphere method does
not give a linear representation, it cannot be used in this context. Denote the densi-
ties by fi with functional principal components ξik , the log quantile density func-
tions by Xi = ψQ(fi) with functional principal components ηik and the test scores
by Yi . Then the two models [12, 25] are

Yi = B10 +
∞∑

k=1

B1kξik + ε1i and

Yi = B20 +
∞∑

k=1

B2kηik + ε2i , i = 1, . . . ,65,

where three subjects who had missing test scores were removed. In practice, the
sums are truncated in order to produce a model fit. These models were fit for
different values of the truncation parameter K [see (3.3) and (4.5)] using the PACE
package for MATLAB (code available at http://anson.ucdavis.edu/~mueller/data/
pace.html) and 10-fold cross validation (averaged over 50 runs) was used to obtain
the mean squared prediction error estimates give in Table 2.

In addition, the models were fitted using all data points to obtain an R2

goodness-of-fit measurement for each truncation value K . The transformed densi-
ties were found to be better predictors of executive function than the ordinary den-
sities for all values of K , both in terms of prediction error and R2 values. While the

TABLE 2
Estimated mean squared prediction errors as obtained by 10-fold cross validation, averaged over 50

runs. Functional R2 values for the fitted model using all data points are given in parentheses

K 1 2 3 4

FPCA 0.180 (0.0031) 0.185 (0.0135) 0.193 (0.0233) 0.201 (0.0244)
LQD 0.180 (0.0030) 0.176 (0.0715) 0.169 (0.1341) 0.173 (0.1431)

http://anson.ucdavis.edu/~mueller/data/pace.html
http://anson.ucdavis.edu/~mueller/data/pace.html
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R2 values were generally small, as only a relatively small fraction of the variation
of the cognitive test score can generally be explained by connectivity, they were
much larger for the model that used the transformation scores as predictors. These
regression models relate transformation components of brain connectivity to cog-
nitive outcomes, and thus shed light on the question of how patterns of intra-hub
connectivity relate to cognitive function.

7. Discussion. Due to the nonlinear nature of the space of density functions,
ordinary FPCA is problematic for functional data that correspond to densities, both
theoretically and practically, and the alternative transformation methods as pro-
posed in this paper are more appropriate. The transformation based representations
always satisfy the constraints of the density space and retain a linear interpretation
in a suitably transformed space. The latter property is particularly useful for func-
tional regression models with densities as predictors. Notions of mean and fraction
of variance explained can be extended by the corresponding Fréchet quantities
once a metric has been chosen. The Wasserstein metric is often highly suitable for
the modeling of samples of densities.

While it is well known that for the L2 metric d2 the representations provided
by ordinary FPCA are optimal in terms of maximizing the fraction of explained
variance among all K-dimensional linear representations using orthonormal eigen-
functions, this is not the case for other metrics or if the representations are con-
strained to be in density space. In the transformation approach, the usual notion
of explained variance needs to be replaced. We propose to do this by adopting
the Fréchet variance, which in general will depend on the chosen transformation
space and metric. As the data analysis indicates, even in the case of the L2 metric,
the log quantile density transformation performs better compared to FPCA or the
Hilbert sphere approach in explaining most of the variation in a sample of den-
sities by the first few components. The FVE plots, as demonstrated in Section 6,
provide a convenient characterization of the quality of a transformation and can be
used to compare multiple transformations or even to determine whether or not a
transformation is better than no transformation.

In terms of interpreting the variation of functional density data, the transforma-
tion modes of variation emerge as clearly superior in comparison to the ordinary
modes of variation, which do not keep the constraints to which density functions
are subject. Overall, ordinary FPCA emerges as ill-suited to represent samples of
density functions. When using such representations as an intermediate step, for ex-
ample, if prediction of an outcome or classification with densities as predictors is
of interest, it is likely that transformation methods are often preferable, as demon-
strated in our data example.

Various transformations can be used that satisfy certain continuity conditions
that imply consistency. In our experience, the log quantile density transformation
emerges as the most promising of these. While we have only dealt with one-
dimensional densities in this paper, extensions to densities with more complex
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support are possible. Since hazard and quantile functions are not immediately gen-
eralizable to multivariate densities, there is no obvious extension of the transforma-
tions based on these concepts to the multivariate case. However, for multivariate
densities, a relatively straightforward approach is to apply the one-dimensional
methodology to the conditional densities used by the Rosenblatt transformation
[40] to represent higher-dimensional densities, although this approach would be
computationally demanding and is subject to the curse of dimensionality and re-
duced rates of convergence as the dimension increases. However, it would be quite
feasible for two- or three-dimensional densities. In general, the transformation ap-
proach is flexible, as it can be adopted for any transformation that satisfies some
regularity conditions and maps densities to a Hilbert space.

APPENDIX: DETAILS ON THEORETICAL RESULTS

A.1. Proofs of propositions and theorems. This section contains proofs of
Propositions 1 and 2 and Theorems 1 and 2. We also include some auxiliary lem-
mas. Additional proofs and a complete listing of all assumptions can be found
in [38].

PROOF OF PROPOSITION 1. Clearly, f̌ ≥ 0 and
∫ 1

0 f̌ (x) dx = 1. Set

◦
f (x) = 1

Nh

N∑
l=1

κ

(
x − Wl

h

)
w(x,h),

so that f̌ = ◦
f/
∫ ◦

f . Set cκ = (
∫ 1

0 κ(u)du)−1. For any x ∈ [0,1] and h < 1/2, we
have 1 ≤ w(x,h) ≤ cκ , so that

c−1
κ ≤ inf

y∈[0,1]

∫ (1−y)h−1

−yh−1
κ(u)du ≤

∫ 1

0

◦
f (x) dx ≤ cκ .

This implies∣∣∣∣1 −
(∫ 1

0

◦
f (x) dx

)−1∣∣∣∣≤ min
{
cκ − 1, cκd2(

◦
f,f ), cκd∞(

◦
f,f )
}
,

which, together with assumption (A1), implies

d2(f̌, f ) ≤ cκ(M + 1) d2(
◦

f,f ) and d∞(f̌, f ) ≤ cκ(M + 1)d∞(
◦

f,f ).

Thus, we only need prove the remaining requirements in assumptions (D1) and
(D2) for the estimator

◦
f .

The expected value is given by

E
( ◦
f (x)
)= h−1

∫ 1

0
κ

(
x − y

h

)
w(x,h)f (y) dy

= f (x) + hw(x,h)

∫ (1−x)h−1

−xh−1
f ′(x∗)uκ(u)dv,
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for some x∗ between x and x + uh. Thus, E(
◦

f (x)) = f (x) + O(h), where the
O(h) term is uniform over x ∈ [0,1] and f ∈ F . Here, we have used the fact that
supf ∈F ‖f ′‖∞ < M and

∫
R

|u|κ(u)du < ∞. Similarly,

Var
( ◦
f (x)
)≤ c2

κ

Nh

(
f (x)

∫ 1

0
κ2(u) du + h

∫ 1

0
uκ2(u)f ′(x∗)du

)
,

for some x∗ between x and x + uh, so that the variance is of the order (Nh)−1

uniformly over x ∈ [0,1] and f ∈ F . This proves (D1) for b2
N = h2 + (Nh)−1.

To prove assumption (D2), we use the triangle inequality to see that

d∞(f,
◦

f ) ≤ d∞
(
f,E
( ◦
f (·)))+ d∞

( ◦
f,E
( ◦
f (·))).

Using the DKW inequality [20], there are constants c1, c2 and a sequence
Lh = O(h) such that, for any R > 0,

P
(
d∞(f,

◦
f ) > 2RaN

)≤ c1 exp
{−c2R

2a2
NNh2}+ I {Lh > RaN },

where I is the indicator function. Notice that the bound is independent of f ∈ F .
By taking h = N−1/3 and aN = N−c for c ∈ (0,1/6), we have Lh < RaN for large
enough N , and thus, for such N ,

sup
f ∈F

P
(
d∞(f,

◦
f ) > 2RaN

)≤ c1 exp
{−c2R

2N1/3−2c}= o(1) as N → ∞.

In assumption (S1), we may then take m = nr for any r > 0, since

n sup
f ∈F

P
(
d∞(f,

◦
f ) > 2RaN

)≤ c1n exp
{−c2R

2nr/3−2rc}= o(1)

as n → ∞. �

PROOF OF PROPOSITION 2. First, we deal with the log hazard transformation.
Let f and g be two densities as specified in assumption (T0), with distribution
functions F and G. Then

d∞(F,G) ≤ d2(f, g) ≤ d∞(f, g).

Also, 1 − F and 1 − G are both bounded below by δD−1
0 on [0,1δ]. Then, for

x ∈ [0,1δ],∣∣ψH(f )(x) − ψH(g)(x)
∣∣≤ ∣∣∣∣log

(
f (x)

g(x)

)∣∣∣∣+ ∣∣∣∣log
(

1 − F(x)

1 − G(x)

)∣∣∣∣
≤ D0
[∣∣f (x) − g(x)

∣∣+ δ−1∣∣F(x) − G(x)
∣∣],

whence

d∞
(
ψH(f ),ψH (g)

)≤ D0
(
1 + δ−1)d∞(f, g),

d2
(
ψH(f ),ψH (g)

)2 ≤ 2D2
0

[∫ 1δ

0

(
f (x) − g(x)

)2
dx + δ−2d2(f, g)2

]
≤ 2D2

0
(
1 + δ−2)d2(f, g)2.
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These bounds provide the existence of C0 in (T0). For (T1), observe that

δD−2
1 <

f (x)

1 − F(x)
≤ δ−1D2

1,

so that ∥∥ψH(f )
∥∥∞ = sup

x∈[0,1δ]

∣∣∣∣log
f (x)

1 − F(x)

∣∣∣∣≤ 2 logD1 − log δ and

∥∥ψH(f )′
∥∥∞ = sup

x∈[0,1δ]

∣∣∣∣f ′(x)(1 − F(x)) + f (x)2

f (x)(1 − F(x))

∣∣∣∣≤ 2δ−1D4
1,

which proves the existence of C1.
Next, let X and Y be functions as in (T2) for T = [0,1δ] and set f = ψ−1

H (X)

and g = ψ−1
H (Y ). Let �X(x) = ∫ x0 eX(s) ds and �Y (x) = ∫ x0 eY(s) ds. Then∣∣�X(x) − �Y (x)

∣∣≤ ∫ x

0

∣∣eX(s) − eY(s)
∣∣ds ≤ e‖X‖∞+d∞(X,Y )d2(X,Y ),

whence

d2
(
ψ−1

H (X),ψ−1
H (Y )

)2
≤ 2e2‖X‖∞[d2(�X,�Y )2 dx + e2d∞(X,Y )d2(X,Y )2]

(A.1)
+ δ−1(�X(1δ) − �Y (1δ)

)2
≤ 2e2‖X‖∞[(e2‖X‖∞ + δ−1)+ 1

]
e2d∞(X,Y )d2(X,Y )2.

Taking C2 = √
2e‖X‖∞[(e2‖X‖∞ + δ−1) + 1]1/2 and C3 = ed∞(X,Y ), (T2) is estab-

lished for d = d2.
For d = dW , the cdf’s of f and g for x ∈ [0,1δ] are given by F(x) = 1 −

e−�X(x) and G(x) = 1 − e−�Y (x), respectively. For x ∈ (1δ,1],
F(x) = F(1δ) + δ−1(1 − F(1δ)

)
(x − 1δ),

G(x) = G(1δ) + δ−1(1 − G(1δ)
)
(x − 1δ),

so that |F(x) − G(x)| ≤ |F(1δ) − G(1δ)| for such x. Hence, for all x ∈ [0,1]∣∣F(x) − G(x)
∣∣≤ sup

x∈[0,1δ]
∣∣�X(x) − �Y (x)

∣∣≤ e‖X‖∞+d∞(X,Y )d2(X,Y ).

Note that for t ∈ [0,1] and t �= F(1δ),(
F−1)′(t) = [f (F−1(t)

)]−1 ≤ exp
{
e‖X‖∞}max

(
δ−1, e‖X‖∞)=: cL,

so that F−1 is Lipschitz with constant cL. Thus, letting t ∈ [0,1] and x = G−1(t),∣∣F−1(t) − G−1(t)
∣∣= ∣∣F−1(G(x)

)− F−1(F(x)
)∣∣≤ cLe‖X‖∞+d∞(X,Y )d2(X,Y ),
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whence

dW

(
ψ−1

H (X),ψ−1
H (Y )

)= d2
(
F−1,G−1)≤ cLe‖X‖∞ed∞(X,Y )d2(X,Y ).(A.2)

Using (A.2), we establish (T2) for dW by setting C2 = cLe‖X‖∞ and C3 =
ed∞(X,Y ).

To establish (T3), we let X = ψH(f1) and XK = ν +∑K
k=1 η1kρk . Set f1,K =

ψ−1
H (XK) and take C1 as in (T1). Then, by assumption (A1) and equations (A.1)

and (A.2),

E
(
d2(f1, f1,K)2)≤ b1

√
E
(
e4d∞(X,XK)

)
E
(
d2(X,XK)4

)
and

E
(
dW(f1, f1,K)2)≤ b2

√
E
(
e4d∞(X,XK)

)
E
(
d2(X,XK)4

)
,

where b1 = 2e2C1[(e2C1 + δ−1) + 1] and b2 = exp{2(eC1 + C1)}max(δ−2, e2C1).
Note that d2(X,XK)2 =∑∞

k=K+1 η2
1k ≤ ‖X‖2

2 ≤ C2
1 |T |, so that

E
(
d2(X,XK)4)≤ C2

1 |T |E
( ∞∑

k=K+1

η2
1k

)
= C2

1 |T |
∞∑

k=K+1

τk → 0.

So, we just need to show that E(e4d∞(X,XK)) = O(1).
For the following, we need two lemmas that are listed below, and whose

proofs are in the online supplement [38]. By applying assumptions (A1) and (T1),
Lemma 2 implies the existence of the Lipschitz constant LK for the residual pro-
cess X − XK [see (4.14)]. By Lemma 1, we have

E
(
e4d∞(X,XK))≤ E

(
exp
{
8|A|−1/2d2(X,XK)

}+ exp
{
8L

1/3
K d2(X,XK)2/3}).

Since d2(X,XK) ≤ ‖X‖2 < C1|T |1/2, the first expectation is bounded. For the
second, we use Jensen’s inequality to find

E
(
exp
{
8L

1/3
K d2(X,XK)2/3})

(A.3)

≤ 1 +
∞∑

m=1

8m[Lm
KE(d2(X,XK)2m)]1/3

m! .

For r.v.s. Y1, . . . , Ym, E(
∏m

i=1 Yi) ≤∏m
i=1 E(Ym

i )1/m, so that

E
(
d2(X,XK)2m)= ∞∑

k1=K+1

· · ·
∞∑

km=K+1

E

(
m∏

i=1

η2
1ki

)

≤
∞∑

k1=K+1

· · ·
∞∑

km=K+1

m∏
i=1

E
(
η2m

1ki

)1/m =
( ∞∑

k=K+1

E
(
η2m

1k

)1/m

)m

.
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Next, by assumption, there exists B such that LK

∑∞
k=K+1 τk ≤ B for large K .

Then, by the assumption on the higher moments of η2m
1k , for large K

Lm
KE
(
d2(X,XK)2m)≤ (LK

∞∑
k=K+1

E
(
η2m

1k

)1/m

)m

≤
(
LK

∞∑
k=K+1

(
rmτm

k

)1/m

)m

≤ rmBm.

Inserting this into (A.3), for large K

E
(
exp
{
8L

1/3
K d2(X,XK)2/3})≤ 1 +

∞∑
m=1

8mBm/3r
1/3
m

m! .

Using the assumption that (
rm+1
rm

)1/3 = o(m), the ratio test shows the sum con-
verges. Since the sum is independent of K for K large, this establishes that
E(dW(f1, f1,K)2) = o(1) and E(d2(f1, f1,K)2) = o(1). Using similar arguments,
we can show that E(dW(f1, f1,K)4) and E(d2(f1, f1,K)4) are both O(1), which
completes the proof.

Next, we prove (T0)–(T3) for the log quantile density transformation. Let f

and g be two densities as specified in assumption (T0) with cdf’s F and G. For
t ∈ [0,1],∣∣ψQ(f )(t) − ψQ(g)(t)

∣∣
= ∣∣logf

(
F−1(t)

)− logg
(
G−1(t)

)∣∣
≤ D0
(∣∣f (F−1(t)

)− f
(
G−1(t)

)∣∣+ ∣∣f (G−1(t)
)− g
(
G−1(t)

)∣∣)
≤ D2

0
∣∣F−1(t) − G−1(t)

∣∣+ D0
∣∣f (G−1(t)

)− g
(
G−1(t)

)∣∣.
Since F ′ = f is bounded below by D−1

0 , for any t ∈ [0,1] and x = G−1(t),∣∣F−1(t) − G−1(t)
∣∣= ∣∣F−1(G(x)

)− F−1(F(x)
)∣∣≤ D0

∣∣F(x) − G(x)
∣∣.

Recall that d∞(F,G) ≤ d2(f, g) ≤ d∞(f, g). Hence,

d∞
(
ψQ(f ),ψQ(g)

)≤ D0
(
D2

0 + 1
)
d∞(f, g),

d2
(
ψQ(f ),ψQ(g)

)2 ≤ 2D2
0

[
D4

0d2(f, g)2 +
∫ 1

0

(
f (x) − g(x)

)2
g(x) dx

]
≤ 2D3

0
(
D3

0 + 1
)
d2(f, g)2,

whence C0 in (T0). Next, we find that∥∥ψQ(f )
∥∥∞ ≤ logD1 and

∥∥ψQ(f )′
∥∥∞ ≤ D3

1,

whence C1 in (T1).
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Now, let X and Y be as stated in (T2). Let F and G be the quantile functions
corresponding to f = ψ−1

Q (X) and g = ψ−1
Q (Y ), respectively. Then

∣∣F−1(t) − G−1(t)
∣∣≤ θ−1

X

∣∣∣∣∫ t

0

(
eX(s) − eY(s))ds

∣∣∣∣+ ∣∣θ−1
X − θ−1

Y

∣∣ ∫ t

0
eY(s) ds

≤ 2θ−1
X |θX − θY |,

where θX = ∫ 1
0 eX(s) ds and θY = ∫ 1

0 eY(s) ds. It is clear that θ−1
X ≤ e‖X‖∞ and

|θX − θY | ≤ e‖X‖∞+d∞(X,Y )d2(X,Y ), whence∣∣F−1(t) − G−1(t)
∣∣≤ 2e2‖X‖∞+d∞(X,Y )d2(X,Y ).

This implies

dW

(
ψ−1

Q (X),ψ−1
Q (Y )

)≤ 2e4‖X‖∞e2d∞(X,Y )d2(X,Y ).(A.4)

For d = d2, using similar arguments as above, we find that

d2
(
ψ−1

Q (X),ψ−1
Q (Y )

)
(A.5)

≤ √
2e6‖X‖∞(4∥∥X′∥∥2∞ + 3

)1/2
e2d∞(X,Y )d2(X,Y ).

Equations (A.4) and (A.5) can then be used to find the constants C2 and C3 in (T2)
for both d = dW and d = d2, and also to prove (T3) in a similar manner to the log
hazard transformation. �

The following auxiliary results, which are proved in the online supplement, are
needed.

LEMMA 1. Let A be a closed and bounded interval of length |A| and assume
X : A →R is continuous with Lipschitz constant L. Then

‖X‖∞ ≤ 2 max
(|A|−1/2‖X‖2,L

1/3‖X‖2/3
2

)
.

LEMMA 2. Let X be a stochastic process on a closed interval T ⊂ R such
that ‖X‖∞ < C and ‖X′‖∞ < C almost surely. Let ν and H be the mean and
covariance functions associated with X, and ρk and τk , k ≥ 1, be the eigenfunc-
tions and eigenvalues of the integral operator with kernel H . Then ‖ν‖∞ < C,
‖H‖∞ < 4C2 and ‖ρk‖∞ < 4C2|T |1/2τ−1

k for all k ≥ 1. Additionally, ‖ν′‖∞ < C

and ‖ρ′
k‖∞ < 4C2|T |1/2τ−1

k for all k ≥ 1.

LEMMA 3. Under assumptions (A1) and (T1), with ν̂, ν̃, Ĥ , H̃ as in (4.2)
and (4.3),

d2(ν, ν̃) = Op

(
n−1/2), d2(H, H̃ ) = Op

(
n−1/2),

d∞(ν, ν̃) = Op

((
logn

n

)1/2)
, d∞(H, H̃ ) = Op

((
logn

n

)1/2)
.
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Under the additional assumptions (D1), (D2) and (S1), we have

d2(ν, ν̂) = Op

(
n−1/2 + bm

)
, d2(H, Ĥ ) = Op

(
n−1/2 + bm

)
,

d∞(ν, ν̂) = Op

((
logn

n

)1/2

+ am

)
, d∞(H, Ĥ ) = Op

((
logn

n

)1/2

+ am

)
.

LEMMA 4. Assume (A1), (T1) and (T2) hold. Let Ak = ‖ρk‖∞, M as in (A1),
δk as in (5.1), and C1 as in (T1) with D1 = M . Let K∗(n) → ∞ be any sequence
which satisfies τK∗n1/2 → ∞ and

K∗∑
k=1

[
(logn)1/2 + δ−1

k + Ak + τK∗δ−1
k Ak

]= O
(
τK∗n1/2).

Let C2 be as in (T2), Xi,K = ν +∑K
k=1 ηikρk , X̃i,K = ν̃ +∑K

k=1 η̃ikρ̃k , and set

SK∗ = max
1≤K≤K∗ max

1≤i≤n
C2
(‖Xi,K‖∞,

∥∥X′
i,K

∥∥∞).
Then

max
1≤K≤K∗ max

1≤i≤n
d
(
fi(·,K,ψ), f̃i(·,K,ψ)

)= Op

(
SK∗
∑K∗

k=1 δ−1
k

n1/2

)
.

We now can also state the following corollary, the proof of which utilizes a
lemma from [36].

COROLLARY 1. Under assumption (A1) and (T1), letting Ak = ‖ρk‖∞, with
δk as in (5.1),

|τk − τ̃k| = Op

(
n−1/2),

d2(ρk, ρ̃k) = δ−1
k Op

(
n−1/2) and

d∞(ρk, ρ̃k) = τ̃−1
k Op

(
(logn)1/2 + δ−1

k + Ak

n1/2

)
,

where all Op terms are uniform over k. If the additional assumptions (D1), (D2)
and (S1) hold,

|τk − τ̂k| = Op

(
n−1/2 + bm

)
,

d2(ρk, ρ̂k) = δ−1
k Op

(
n−1/2 + bm

)
and

d∞(ρk, ρ̂k) = τ̂−1
k Op

(
(logn)1/2 + δ−1

k + Ak

n1/2 + am + bm

[
δ−1
k + Ak

])
,

where again all Op terms are uniform over k.
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PROOF OF THEOREM 1. We will show the result for the fully observed case.
The same arguments apply to the case where the densities are estimated.

First, suppose K is fixed. We may use the results of Lemma 2 due to (A1) and
(T1) and define Ak as in Corollary 1. From

Yk,α = ν + α
√

τkρk and Ỹk,α = ν̃ + α

√
τ̃kρ̃k,

gk(·, α,ψ) = ψ−1(Yk,α) and similarly for g̃k . Observe that, if |α| ≤ α0,

d∞(Yk,α, Ỹk,α) ≤ d∞(ν, ν̃) + α0
(√

τ̃1d∞(ρk, ρ̃k) + Ak|√τk −
√

τ̃k|).(A.6)

Next, max1≤k≤K |√τk − √
τ̃k| = Op(n−1/2) and max1≤k≤K d∞(ρk, ρ̃k) = Op(1)

by Corollary 1, so that d∞(Yk,α, Ỹk,α) = Op(1), uniformly in k and |α| ≤ α0. For
C2,k,α = C2(‖Yk,α‖∞,‖Y ′

k,α‖∞) and C3,k,α = C3(d∞(Yk,α, Ỹk,α)) as in (T2),

max
1≤k≤K

max|α|≤α0
C2,k,α < ∞ and max

1≤k≤K
max|α|≤α0

C3,k,α = Op(1).

Furthermore,

d2(Yk,α, Ỹk,α) ≤ d2(ν, ν̃) + α0
(√

τ̃1d2(ρk, ρ̃k) + |√τk −
√

τ̃k|)= Op

(
n−1/2),

uniformly in k and |α| ≤ α0, by Lemma 3. This means

max
1≤k≤K

max|α|≤α0
d
(
gk(·, α,ψ), g̃k(·, α,ψ)

) ≤ max
1≤k≤K

max|α|≤α0
C2,k,αC3,k,αd2(Yk,α, Ỹk,α)

= Op

(
n−1/2).

Next, we consider K = K(n) → ∞. Define

SK = max|α|≤α0
max

1≤k≤K
C2,k,α.

Let BK = max1≤k≤K Ak and take K to be a sequence which satisfies:

(i) τKn1/2 → ∞,
(ii) (logn)1/2 + δ−1

K + BK = O(τKn1/2), and
(iii) SK = o(δKn1/2).

For |α| ≤ α0, we still have inequality (A.6). The term d∞(ν, ν̃) is op(1) indepen-
dently of K . From (i) and the above, it follows that max1≤k≤K τ̃−1

k = Op(τ−1
K ) and

we find

max
1≤k≤K

|√τk −
√

τ̃k| = Op

(
1

(τKn)1/2

)
.

Using Corollary 1 and (ii), this implies max1≤k≤K d∞(ρk, ρ̃k) = op(1), so that
d∞(Yk,α, Ỹk,α) = Op(1), uniformly over k ≤ K and |α| ≤ α0. Hence,
max1≤k≤K max|α|≤α0 C3,k,α = Op(1).
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Similarly, we find that

d2(Yk,α, Ỹk,α) = Op

(
1

δKn1/2

)
,

uniformly over k ≤ K(n) and |α| ≤ α0. With (iii), this yields

max|α|≤α0
max

1≤k≤K
d
(
gk(·, α,ψ), g̃k(·, α,ψ)

)≤ Op

(
SK

δKn1/2

)
= op(1). �

PROOF OF THEOREM 2. We begin by placing the following restrictions on
the sequence pn:

(i) pn ↑ 1 and
(ii) for large n, pn �= VKV −1∞ for any K .

Furthermore, the corresponding sequence K∗ must satisfy the assumption of
Lemma 4. Set εK = εK(n) = |VKV −1∞ − pn|, K = 1, . . . ,K∗, where K∗ is
given in (4.11), and define πK∗ = min{ε1, . . . , εK∗}. Letting SK∗ be defined as
in Lemma 4 and βK∗ = n−1/2(SK∗

∑K∗
k=1 δ−1

k ), we also require that((
K∗

n

)1/2

+ βK∗ + γn

)
π−1

K∗ → 0.(A.7)

None of these restrictions are contradictory.
Next, let fi,K = fi(·,K,ψ) and define

V̂∞ = 1

n

n∑
i=1

d(fi, f⊕)2 and V̂K = V̂∞ − 1

n

n∑
i=1

d(fi, fi,K)2.

Observe that V̂∞ − V∞ = Op(n−1/2) by the law of large numbers. Also, by (T3),
for any R > 0,

P
(

max
1≤K≤K∗

∣∣(V̂∞ − V̂K) − (V∞ − VK)
∣∣> R
)

≤ K∗

R2n
max

1≤K≤K∗ E
(
d(f1, f1,K)4)

= O

(
K∗

R2n

)
.

Hence,

max
1≤K≤K∗

∣∣∣∣ V̂K

V̂∞
− VK

V∞

∣∣∣∣= max
1≤K≤K∗

∣∣∣∣ V̂∞ − V̂K

V̂∞
− V∞ − VK

V∞

∣∣∣∣= Op

((
K∗

n

)1/2)
.

Define f̃i,K = f̃i(·,K,ψ). Then observe that∣∣(V̂∞ − V̂K) − (Ṽ∞ − ṼK)
∣∣≤ 1

n

n∑
i=1

∣∣d(fi, fi,K)2 − d(fi, f̃i,K)2∣∣
≤ 1

n

n∑
i=1

d(fi,K, f̃i,K)
(
2d(fi, fi,K) + d(fi,K, f̃i,K)

)
.
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By using (T3), Lemma 4 and the assumptions on the sequence K∗, we find that

max
1≤K≤K∗

∣∣(V̂∞ − V̂K) − (Ṽ∞ − ṼK)
∣∣= Op(βK∗).

By using similar arguments, we find that V̂∞ − Ṽ∞ = Op(γn), which yields

max
1≤K≤K∗

∣∣∣∣VK

V∞
− ṼK

Ṽ∞

∣∣∣∣= Op

((
K∗

n

)1/2

+ βK∗ + γn

)
.(A.8)

To finish, observe that, since pn �= VKV −1∞ for any K when n is large, for such n

{
K∗ �= K̃∗}= { max

1≤K≤K∗

∣∣∣∣VK

V∞
− ṼK

Ṽ∞

∣∣∣∣> πK∗
}
.

Then, by (A.8), for any ε > 0 there is R > 0 such that

P

(
max

1≤K≤K∗

∣∣∣∣VK

V∞
− ṼK

Ṽ∞

∣∣∣∣> R

((
K∗

n

)1/2

+ βK∗ + γn

))
< ε

for all n. Then, by (A.7), for n large enough we have P(K∗ �= K̃∗) < ε. �
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SUPPLEMENTARY MATERIAL

The Wasserstein metric, Wasserstein–Fréchet mean, simulation results and
additional proofs (DOI: 10.1214/15-AOS1363SUPP; .pdf). The supplementary
material includes additional discussion on the Wasserstein distance and the rate
of convergence of the Wasserstein–Fréchet mean is derived. Additional simulation
results are presented for FVE values using the Wasserstein metric, similar to the
boxplots in Figure 2, which correspond to FVE values using the L2 metric. All
assumptions are listed in one place. Lastly, additional proofs of auxiliary results
are provided.
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