
The Annals of Statistics
2015, Vol. 43, No. 6, 2331–2352
DOI: 10.1214/15-AOS1314
© Institute of Mathematical Statistics, 2015

EFFICIENT CALIBRATION FOR IMPERFECT COMPUTER
MODELS

BY RUI TUO1 AND C. F. JEFF WU2

Chinese Academy of Sciences and Georgia Institute of Technology

Many computer models contain unknown parameters which need to be
estimated using physical observations. Tuo and Wu (2014) show that the cali-
bration method based on Gaussian process models proposed by Kennedy and
O’Hagan [J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 (2001) 425–464] may lead
to an unreasonable estimate for imperfect computer models. In this work, we
extend their study to calibration problems with stochastic physical data. We
propose a novel method, called the L2 calibration, and show its semipara-
metric efficiency. The conventional method of the ordinary least squares is
also studied. Theoretical analysis shows that it is consistent but not efficient.
Numerical examples show that the proposed method outperforms the existing
ones.

1. Introduction. Computer simulations are widely used by researchers and
engineers to understand, predict or control complex systems. Many physical phe-
nomena and processes can be modeled with mathematical tools, like partial differ-
ential equations. These mathematical models are solved by numerical algorithms
like the finite element method. For example, computer simulations can help pre-
dict the trajectory of a storm. In engineering, computer simulations have become
more popular and sometimes indispensable in product and process designs. The
design and analysis of experiments is a classic area of statistics. A new field has
emerged, which considers the design and analysis for experiments in computer
simulations, commonly referred to as “computer experiments.” Unlike the physi-
cal experiments, computer experiments are usually deterministic. In addition, the
input variables for computer experiments usually take real values, not discrete lev-
els as in many physical experiments. Therefore, interpolation methods are widely
used in computer experiments, while conventional methods, like ANOVA or re-
gression models, are used much less often.
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In many computer experiments, some of the input parameters represent certain
inherent attributes of the physical system. The true values of these variables are
unknown because there may not be enough knowledge about the physical systems.
For instance, in underground water simulations, the soil permeability is an impor-
tant input parameter, but its true value is usually unknown. A standard approach to
identify the unknown model parameters is known as calibration. To calibrate the
unknown parameters, one needs to run the computer model under different model
parameters, and run some physical experiments. The basic idea of calibration is to
find the combination of the model parameters, under which the computer outputs
match the physical responses.

One important topic in the calibration of computer models is to tackle the model
uncertainty. Most physical models are built under certain assumptions or simpli-
fications, which may not hold in reality. As a result, the computer output can
rarely fit the physical response perfectly, even if the true values of the calibra-
tion parameters are known. We call such computer models imperfect. Kennedy
and O’Hagan (2001) first discuss this model uncertainty problem and propose
a Bayesian method, which models the discrepancy between the physical pro-
cess and the computer output as a Gaussian process. Because of the impor-
tance of calibration for computer models, Kennedy–O’Hagan’s approach has been
widely used, including hydrology, radiological protection, cylinder implosion,
spot welding, micro-cutting, climate prediction and cosmology. See Higdon et al.
(2004, 2008, 2013), Bayarri et al. (2007a, 2007b), Joseph and Melkote (2009),
Wang, Chen and Tsui (2009), Han, Santner and Rawlinson (2009), Goldstein and
Rougier (2004), Murphy et al. (2007) and Goh et al. (2013).

Tuo and Wu (2014) study the asymptotic properties of the calibration parameter
estimators given by Kennedy and O’Hagan (2001) and show that their method can
lead to unreasonable estimate. The first theoretical framework for calibration prob-
lems of the Kennedy–O’Hagan type is established by Tuo and Wu (2014) under
the assumption that the physical responses have no random error. This assumption
is needed to make the mathematical analysis for a version of Kennedy–O’Hagan’s
approach feasible. Given the fact that the responses in physical experiments are
rarely deterministic, it is necessary to extend the study to cases where the physical
responses have measurement or observational errors. For convenience, we use the
term “stochastic physical experiments” to denote physical responses with random
errors.

In Tuo and Wu (2014), the theory of native spaces is used to derive the con-
vergence rate for calibration with deterministic physical systems. Because of the
random error in the current context, the interpolation theory fails to work. In this
work, we will mainly use mathematical tools of weak convergence, including the
limiting theory of empirical processes.

The main theme of this article is to propose a general framework for calibra-
tion and provide an efficient estimator for the calibration parameter. We utilize a
nonparametric regression method to model the physical outputs. Similar models
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are also considered in the literature of response surface methodology; see Myers
(1999) and Anderson-Cook and Prewitt (2005). To estimate the calibration pa-
rameter, we extend the L2 calibration method proposed by Tuo and Wu (2014)
to the present context. This novel method is proven to be semiparametric effi-
cient when the measurement error follows a normal distribution. A conventional
method, namely, the ordinary least squares method, is also studied, and shown to
be consistent but not efficient.

This paper is organized as follows. In Section 2, we extend the L2 projection
defined by Tuo and Wu (2014) to stochastic systems and propose the L2 calibra-
tion method in the current context. In Section 3, the asymptotic behavior for L2
calibration is studied. In Section 4, we consider the ordinary least squares method.
The proposed method is illustrated and its performance studied in two numerical
examples in Section 5. Concluding remarks are given in Section 6.

2. L2 projection for systems with stochastic physical experiments. Let �

denote the region of interest for the control variables, which is a convex and com-
pact subset of Rd . Let x1, . . . , xn be a set of points on �. Suppose the physical ex-
periment is conducted once on each xi , with the corresponding response denoted
by y

p
i , for i = 1, . . . , n, where the superscript p stands for “physical.” In this work,

we assume the physical system is stochastic, that is, the physical responses have
random measurement or observational errors. To incorporate this randomness, we
consider the following nonparametric model:

yi = ζ(xi) + ei,(2.1)

where ζ(·) is an unknown deterministic function and {ei}ni=1 is a sequence of in-
dependent and identically distributed random variables with Eei = 0 and Ee2

i =
σ 2 < +∞. This model is also adopted by Kennedy and O’Hagan (2001), where
ζ(·) is called the true process. In addition, Kennedy and O’Hagan assumes that
ei ’s follow a normal distribution. Such a distribution assumption will be slightly
relaxed in our theoretical analysis.

Let � be the parameter space for the calibration parameter θ . Suppose � is
a compact region in Rq . Denote the output of the deterministic computer code
at (x, θ) ∈ � × � by ys(x, θ), where the superscript s stands for “simulation.”
In the frequentist framework of calibration established by Tuo and Wu (2014),
the concept of L2 projection plays a central role. Because the “true” calibration
parameter [as stated in Kennedy and O’Hagan (2001)] is unidentifiable, Tuo and
Wu (2014) define the purpose of calibration as that of finding the L2 projection
θ∗, which minimizes the L2 distance between the physical response surface and
the computer outputs as a function of the control variables. In the present context,
the physical responses are observed with errors. A good definition of the “true”
value of θ should exclude the uncertainty in yp . Thus, we suggest the following
definition for the L2 projection using the true process ζ(·):

θ∗ := argmin
θ∈�

∥∥ζ(·) − ys(·, θ)
∥∥
L2(�).(2.2)
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The main focus of this article is on the statistical inference for θ∗.

2.1. L2 calibration. In this section, we will extend the L2 calibration method
proposed by Tuo and Wu (2014) to the present context. Since Tuo and Wu as-
sume that the physical experiment is deterministic, they use the kernel interpola-
tion method to approximate the physical response surface. Because of the existence
of the random error in (2.1), the kernel interpolation can perform poorly because
interpolation methods generally suffer from the problem of overfitting.

In spatial statistics, the effect of the random error is usually modeled with a
white noise process, which is also referred to as a nugget term in the kriging mod-
eling [Cressie (1993)]. In the computer experiment literature, it is also common to
use the nugget term in Gaussian process modeling to tackle the numerical instabil-
ity problems [Gramacy and Lee (2012), Peng and Wu (2014)].

Let z(·) be a Gaussian process with mean zero and covariance function �(·, ·).
Suppose {(xi, yi)}yi=1 are obtained, which satisfy yi = z(xi) + εi with εi’s being
i.i.d. and distributed as N(0, σ 2). Then the predictive mean of z(·) is given by

ẑ(x) =
n∑

i=1

ui�(xi, x),(2.3)

where u = (u1, . . . , un)
T is the solution to the linear system

Y = (
� + σ 2I

)
u,(2.4)

with Y = (y1, . . . , yn)
T and � = (�(xi, xj ))ij . By the representer theorem

[Schölkopf, Herbrich and Smola (2001), Wahba (1990)], ẑ(x) given by (2.3) and
(2.4) is the solution of the following minimization problem with some λ > 0:

argmin
f ∈N�(�)

1

n

n∑
i=1

(
yi − f (xi)

)2 + λ‖f ‖2
N�(�),(2.5)

where ‖ · ‖N�(�) is the norm of the reproducing kernel Hilbert space N�(�) gen-
erated by the kernel function �. We refer to Wendland (2005) and Wahba (1990)
for detailed discussions about these spaces. The solution to (2.5) is referred to as
the nonparametric regressor in the reproducing kernel Hilbert space [Berlinet and
Thomas-Agnan (2004)].

Now we are ready to define the L2 calibration method for systems with stochas-
tic physical experiments. Suppose the physical experiment is conducted over a
design set {x1, . . . , xn}. Define

ζ̂ := argmin
f ∈N�(�)

1

n

n∑
i=1

(
y

p
i − f (xi)

)2 + λ‖f ‖2
N�(�),(2.6)

where the smoothing parameter λ can be chosen using certain model selection
criterion, for example, generalized cross validation (GCV); see Wahba (1990). We
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define the L2 calibration for θ as

θ̂L2 := argmin
θ∈�

∥∥ζ̂ (·) − ŷs(·, θ)
∥∥
L2(�),

where ŷs(·, ·) is an emulator for the computer code ys(·, ·). In this work, the em-
ulator for the computer model can be constructed by any method provided that
it approximates ys well. For instance, ŷs can be constructed by the radial basis
function approximation [Wendland (2005)], Gaussian process models [Santner,
Williams and Notz (2003)] or the polynomial chaos approximation [Xiu (2010)].

3. Asymptotic results for L2 calibration. We now consider the asymptotic
behavior of θ̂L2 as the sample size n becomes large. For mathematical rigor, we
write

ζ̂n = argmin
f ∈N�(�)

1

n

n∑
i=1

(
y

p
i − f (xi)

)2 + λn‖f ‖2
N�(�),(3.1)

for all sufficiently large n, where {λn}ni=1 is a prespecified sequence of positive
values. For the ease of mathematical treatment, we assume the xi ’s are a sequence
of random samples rather than fixed design points. We also write the L2 calibration
estimator indexed by n as

θ̂L2
n := argmin

θ∈�

∥∥ζ̂n(·) − ŷs
n(·, θ)

∥∥
L2(�),(3.2)

where the emulator ŷs is also indexed by n. We assume that ŷs
n has increasing

approximation power as n becomes large.

3.1. Asymptotic results for ζ̂n. Before stating the asymptotic results for θ̂
L2
n ,

we need first to show that ζ̂n tend to ζ . To study the convergence, we need some
additional definitions from the theory of empirical processes [Kosorok (2008)]. For
function space F over �, define the covering number N(δ,F,‖ · ‖L∞(�)) as the
smallest value of N for which there exist functions f1, . . . , fN , such that for each
f ∈F , ‖f −fj‖L∞(�) ≤ δ for some j ∈ {1, . . . ,N}. The L2 covering number with
bracketing N[](δ,F,‖ · ‖L2(�)) is the smallest value of N for which there exist L2

functions {f L
1 , f U

1 , . . . , f L
N ,f U

N } with ‖f U
j − f L

j ‖L2(�) ≤ δ, j = 1, . . . ,N such

that for each f ∈ F there exists a j such that f L
j ≤ f ≤ f U

j .
We now state a result for general nonparametric regression. Suppose F is a

space of functions over a compact region � equipped with a norm ‖ · ‖. Suppose
the true model is

yi = f0(xi) + εi,(3.3)

and xi are i.i.d. from the uniform distribution U(�) over �. In addition, the se-
quences {xi} and {ei} are independent and ei has zero mean. We use “�” to denote
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that the left-hand side is dominated by the right-hand side up to a constant. Let

f̂n = argmin
f ∈F

1

n

n∑
i=1

(
yi − f (xi)

)2 + λn‖f ‖2,(3.4)

for some λn > 0.

LEMMA 1. Under the model (3.3), suppose f0 ∈ F . Let F(ρ) := {f ∈ F :
‖f ‖ ≤ ρ}. Suppose there exists C0 > 0 such that E[exp(C0|ei |)] < ∞. Moreover,
there exists 0 < τ < 2 such that

logN[]
(
δ,F(ρ),‖ · ‖L2(�)

) � ρτ δ−τ ,

for all δ, ρ > 0. Then if λ−1
n = O(n2/(2+τ)), the estimator f̂n given by (3.4) satisfies

‖f̂n‖ = Op(1) and ‖f̂n − f0‖L2(�) = Op

(
λ1/2

n

)
.

PROOF. See van de Geer (2000). �

The covering numbers for some reproducing kernel Hilbert spaces have been
calculated accurately in the literature. For instance, consider a Matérn kernel func-
tion given by

�(s, t;ν,φ) = 1

�(v)2ν−1

(
2
√

νφ‖s − t‖)ν
Kν

(
2
√

νφ‖s − t‖)
,(3.5)

with ν ≥ 1 [Santner, Williams and Notz (2003), Stein (1999)]. The reproduc-
ing kernel Hilbert space generated by this kernel function is equal to the (frac-
tional) Sobolev space Hν+d/2(�), and ‖ · ‖N�(�) and ‖ · ‖Hν+d/2(�) are equivalent;
see Corollary 1 of Tuo and Wu (2014). Let Hμ(�,ρ) := {f : ‖f ‖Hμ(�) ≤ ρ}.
Edmunds and Triebel (1996) prove that for μ > d/2, the covering number of
Hμ(�,ρ) is bounded by

logN
(
δ,Hμ(�,ρ),‖ · ‖L∞(�)

) ≤
(

Cρ

δ

)d/μ

,

where C is independent of ρ and δ. To calculate the L2 metric entropy with brack-
eting, we note the fact that every f,f ′ ∈ Hμ(�,ρ) with ‖f − f ′‖ ≤ δ satisfy
the inequality f ′ − δ ≤ f ≤ f ′ + δ. Thus, the union of the δ-balls centered at
f1, . . . , fn is covered by the union of the “brackets” [f1 − δ, f1 + δ], . . . , [fn −
δ, fn + δ], which together with the definition of the covering number and the L2
covering number with bracketing, implies that

logN[]
(
2δ

√
Vol(�),Hμ(�,ρ),‖ · ‖L2(�)

) ≤
(

Cρ

δ

)d/μ

,(3.6)

where Vol(�) denotes the volume of �, and 2δ
√

Vol(�) is the L2(�) norm of the
function 2δ. Then by applying Lemma 1, the following result can be obtained after
direct calculations.
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PROPOSITION 1. Under model (3.3), suppose f0 ∈ F = N�(�) and N�(�)

can be embedded into Hμ(�) with μ > d/2. Choose ‖ · ‖ = ‖ · ‖N�(�). Then for
λ−1

n = O(n2μ/(2μ+d)), the estimator f̂n given by (3.4) satisfies

‖f̂n‖N�(�) = Op(1) and ‖f̂n − f0‖L2(�) = Op

(
λ1/2

n

)
.

In Proposition 1, one can choose λ � n−2μ/(2μ+d) to obtain the best conver-
gence rate ‖f̂n−f0‖L2(�) = Op(n−μ/(2μ+d)), where “�” denotes that its left-hand
and the right-hand sides have the same order of magnitude. This rate is known to
be optimal [Stone (1982)].

3.2. Asymptotic normality. The main purpose of calibration is to estimate the
calibration parameter θ∗. In this section, we will prove some convergence proper-
ties of the L2 calibration: its convergence rate is given by ‖θ̂L2

n −θ∗‖ = Op(n−1/2)

and the distribution of
√

n(θ̂
L2
n −θ∗) tends to normal as n → ∞ under certain con-

ditions. This is a nontrivial result because the convergence rate for the nonparamet-
ric part ‖ζ̂n(·) − ζ‖L2(�) is generally slower than Op(n−1/2) (see Proposition 1).

We first list necessary conditions for the convergence result, which are grouped
in three categories.

The first group consists of regularity conditions on the model. For any θ ∈ � ⊂
Rq , write θ = (θ1, . . . , θq).

A1: The sequences {xi} and {ei} are independent; xi ’s are i.i.d. from U(�); and
{ei} is a sequence of i.i.d. random variables with zero mean and finite variance.

A2: θ∗ is the unique solution to (2.2), and is an interior point of �.
A3: supθ∈� ‖ys(·, θ)‖L2(�) < +∞.

A4: V := E[ ∂2

∂θ ∂θT (ζ(x1) − ys(x1, θ
∗))2] is invertible.

A5: There exists a neighborhood U ⊂ � of θ∗, such that

sup
θ∈U

∥∥∥∥∂ys

∂θj

(·, θ)

∥∥∥∥
N�(�)

< +∞,
∂2ys

∂θj ∂θk

(·, ·) ∈ C(� × U),

for all θ ∈ U and j, k = 1, . . . , q .

Next, we need some conditions on the nonparametric part.

B1: ζ ∈N�(�) and N�(�,ρ) is Donsker for all ρ > 0.
B2: ‖ζ̂ − ζ‖L2(�) = op(1).
B3: ‖ζ̂‖N�(�) = Op(1).
B4: λn = op(n−1/2).

The Donsker property is an important concept in the theory of empirical pro-
cesses. For its definition and detailed discussion, we refer to van der Vaart and
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Wellner (1996) and Kosorok (2008). One major result is that a class of functions
over domain �, denoted as F , is Donsker, if∫ ∞

0

√
logN[]

(
δ,F,L2(�)

)
dδ < +∞.

Thus, from (3.6) we can see that if N�(�) can be embedded into Hμ(�) for some
μ > d/2, N�(�) is Donsker. Actually, if we further assume condition A1 and
E[exp(C|ei |)] < +∞ for some C > 0, the conditions of Proposition 1 are satisfied.
Then by choosing a suitable sequence of {λn}, say λ � n−2μ/(2μ+d), one can show
that condition B4 holds and conditions B2 and B3 are ensured by Proposition 1.

Finally, we need to assume some convergence properties for the emulator. In
this work, we assume that the approximation error caused by emulating the com-
puter experiment is negligible compared to the estimation error caused by the mea-
surement error in the physical experiment. Under this assumption, the asymptotic
behavior of θ̂

L2
n − θ∗ is determined by the central limit theorem. Given that com-

puter experiment is usually much cheaper to run than physical experiment, such
an assumption is reasonable because the size of computer runs is in general much
larger than the size of physical trials.

C1: ‖ŷs
n − ys‖L∞(�×�) = op(n−1/2).

C2: ‖ ∂ŷs

∂θi
− ∂ys

∂θi
‖L∞(�×�) = op(n−1/2), for i = 1, . . . , q .

Now we are ready to state the main theorem of this section on the asymptotic
normality of the L2 calibration.

THEOREM 1. Under conditions A1–A5, B1–B4 and C1–C2, we have

θ̂L2
n − θ∗ = −2V −1

{
1

n

n∑
i=1

ei

∂ys

∂θ

(
xi, θ

∗)} + op

(
n−1/2)

,(3.7)

where V is defined in condition A4.

PROOF. We first prove that θ̂n →p θ∗. From the definitions of θ∗ and θ̂
L2
n

in (2.2) and (3.2), it suffices to prove that ‖ζ̂n(·) − ŷs
n(·, θ)‖L2(�) converges to

‖ζ(·) − ys(·, θ)‖L2(�) uniformly with respect to θ ∈ � in probability, which is
ensured by∥∥ζ̂n(·) − ŷs(·, θ)

∥∥2
L2(�) − ∥∥ζ(·) − ys(·, θ)

∥∥2
L2(�)

=
∫
�

(
ζ̂n(z) − ζ(z) − ŷs(z, θ) + ys(z, θ)

)
× (

ζ̂n(z) + ζ(z) − ys(z, θ) − ŷs(z, θ)
)
dz(3.8)

≤ (‖ζ̂n − ζ‖L2(�) + ∥∥ŷs(·, θ) − ys(·, θ)
∥∥
L2(�)

)
× (∥∥ζ̂n(·)

∥∥
L2(�) + ∥∥ζ(·)∥∥L2(�) + ∥∥ys(·, θ)

∥∥
L2(�) + ∥∥ŷs(·, θ)

∥∥
L2(�)

)
,
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where the inequality follows from the Schwarz inequality and the triangle inequal-
ity. Denote the volume of � by Vol(�). It is easily seen that

‖f ‖L2(�) ≤ Vol(�)‖f ‖L∞(�)

holds for all f ∈ L∞(�). Thus,∥∥ŷs(·, θ) − ys(·, θ)
∥∥
L2(�) ≤ √

Vol(�)
∥∥ŷs(·, θ) − ys(·, θ)

∥∥
L∞(�)

(3.9)
≤ √

Vol(�)
∥∥ŷs − ys

∥∥
L∞(�×�).

Additionally, we have

‖ζ̂n‖L2(�) ≤ Vol(�)‖ζ̂n‖L∞(�)

= Vol(�) sup
x∈�

〈
ζ̂n,�(·, x)

〉
N�(�)(3.10)

≤ Vol(�)‖ζ̂n‖N�(�) sup
x∈�

∥∥�(·, x)
∥∥
N�(�) = Vol(�)‖ζ̂n‖N�(�).

Combining (3.9), (3.10), B2 and C1, we have that (3.8) convergence to 0 uniformly
with respect to θ ∈ �, which yields the consistency of θ̂

L2
n .

Since θ̂ minimizes (3.2), following A1, A2 and A5 we have

0 = ∂

∂θ

∥∥ζ̂n(·) − ŷs(·, θ̂L2
n

)∥∥2
L2(�)

= 2
∫
�

(
ζ̂n(z) − ŷs(z, θ̂L2

n

))∂ŷs

∂θ

(
z, θ̂L2

n

)
dz,

which, together with B2, C1 and C2, implies∫
�

(
ζ̂n(z) − ys(z, θ̂L2

n

))∂ys

∂θ

(
z, θ̂L2

n

)
dz = op

(
n−1/2)

.(3.11)

Let Ln(f ) = n−1 ∑n
i=1(y

p
i − f (xi))

2 + λn‖f ‖2
N�(�). By (2.6), ζ̂n minimizes Ln

over N�(�). Since θ̂
L2
n is consistent, by A5, ∂ys

∂θj
(·, θ̂L2

n ) ∈ N�(�) for j = 1, . . . , q

and sufficiently large n. Thus, we have

0 = ∂

∂t
L

(
ζ̂n(·) + t

∂ys

∂θj

(·, θ̂L2
n

))∣∣∣∣
t=0

= 2

n

n∑
i=1

{
ζ̂n(xi) − y

p
i

}∂ys

∂θj

(
xi, θ̂

L2
n

) + 2λn

〈
ζ̂n,

∂ys

∂θj

(·, θ̂L2
n

)〉
N�(�)

= 2

n

n∑
i=1

{
ζ̂n(xi) − ζ(xi)

}∂ys

∂θj

(
xi, θ̂

L2
n

) − 2

n

n∑
i=1

ei

∂ys

∂θj

(
xi, θ̂

L2
n

)
(3.12)

+ 2λn

〈
ζ̂n,

∂ys

∂θj

(·, θ̂L2
n

)〉
N�(�)

=: 2(Cn + Dn + En).
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First, we consider Cn. Let Ai(g, θ) = {g(xi) − ζ(xi)} ∂ys

∂θj
(xi, θ) for (g, θ) ∈

N�(�,ρ) × U with some ρ > 0 to be specified later. Then E[Ai(g, θ)] =∫
�{g(z) − ζ(z)} ∂ys

∂θj
(z, θ) dz. Define the empirical process

E1n(g, θ) = n−1/2
n∑

i=1

{
Ai(g, θ) − E

[
Ai(g, θ)

]}
.

By B1, N�(�,k) is Donsker. Thus, F1 = {g − ζ : g ∈N�(�,ρ)} is also Donsker.
Condition A5 implies that F2 = { ∂ys

∂θj
(·, θ) : θ ∈ U} is Donsker. Since both F1 and

F2 are uniformly bounded, the product class F1 × F2 is also Donsker. For theo-
rems on Donsker classes, we refer to Kosorok (2008) and the references therein.
Thus, the asymptotic equicontinuity property holds, which suggests that [see The-
orem 2.4 of Mammen and van de Geer (1997)] for any ξ > 0 there exists a δ > 0
such that

lim sup
n→∞

P

(
sup

f ∈F1×F2,‖f ‖≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

(
f (xi) − E

(
f (xi)

))∣∣∣∣∣ > ξ

)
< ξ,

where ‖ · ‖ is defined as ‖f ‖2 := E[f (xi)]2. This implies that for all ξ > 0 there
exists a δ > 0 such that

lim sup
n→∞

P
(

sup
g∈N�(�,ρ),θ∈U,‖g−ζ‖L2(�)≤δ

∣∣E1n(g, θ)
∣∣ > ξ

)
< ξ.(3.13)

Now fix ε > 0. Condition B3 implies that there exists ρ0 > 0, such that
P(‖ζ̂n‖N�(�) > ρ0) ≤ ε/3. Choose δ0 to be a possible value of δ satisfying (3.13)
with ρ = ρ0 and ξ = ε/3. Define

ζ̂ ◦
n :=

{
ζ̂n, if ‖ζ̂n‖N�(�) ≤ ρ0 and ‖ζ̂n − ζ‖L2(�) ≤ δ0,

ζ, elsewise.

Therefore, for sufficiently large n we have

P
(∣∣E1n

(
ζ̂n, θ̂

L2
n

)∣∣ > ε
)

≤ P
(∣∣E1n

(
ζ̂ ◦
n , θ̂L2

n

)∣∣ > ε
) + P

(‖ζ̂n‖N�(�) > ρ0
)

+ P
(‖ζ̂n − ζ‖L2(�) > δ0

)
≤ P

(∣∣E1n

(
ζ̂ ◦
n , θ̂L2

n

)∣∣ > ε/3
) + ε/3 + ε/3

≤ P
(

sup
g∈N (�,ρ0),θ∈U,‖g−ζ‖L2(�)≤δ0

∣∣E1n(g, θ)
∣∣ > ε/3

)
+ ε/3 + ε/3

≤ ε,
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where the first and the third inequalities follow from the definition of ζ̂ ◦
n ; the sec-

ond inequality follows from B2; the last inequality follows from (3.13). This im-
plies that E1n(ζ̂n, θ̂

L2
n ) tends to zero in probability. Thus, we have

op(1) = E1n

(
ζ̂n, θ̂

L2
n

) = n−1/2
n∑

i=1

{
ζ̂n(xi) − ζ(xi)

}∂ys

∂θj

(
xi, θ̂

L2
n

)

− n1/2
∫
�

{
ζ̂n(z) − ζ(z)

}∂ys

∂θj

(
z, θ̂L2

n

)
dz

= n1/2Cn − n1/2
∫
�

{
ζ̂n(z) − ζ(z)

}∂ys

∂θj

(
z, θ̂L2

n

)
dz,

which implies

Cn =
∫
�

{
ζ̂n(z) − ζ(z)

}∂ys

∂θj

(
z, θ̂L2

n

)
dz + op

(
n−1/2)

.(3.14)

By substituting (3.11) to (3.14) and using A2, we can apply the Taylor expansion
to (3.14) at θ∗ and obtain

Cn =
∫
�

{
ys(z, θ̂L2

n

) − ζ(z)
}∂ys

∂θj

(
z, θ̂L2

n

)
dz + op

(
n−1/2)

(3.15)

=
{

1

2

∫
�

∂2

∂θT∂θj

(
ys(z, θ̃n) − ζ(z)

)2
dz

}(
θ̂L2
n − θ∗) + op

(
n−1/2)

,

where θ̃n lies between θ̂n and θ∗. By the consistency of θ̂
L2
n , we have θ̃n →p θ∗.

This implies that ∫
�

∂2

∂θT ∂θ

(
ys(z, θ̃n) − ζ(z)

)2
dz

p→
∫
�

∂2

∂θT ∂θ

(
ys(z, θ∗) − ζ(z)

)2
dz(3.16)

= V.

Now we consider Dn. Define the empirical process

E2n(θ) = n−1/2
n∑

i=1

{
ei

∂ys

∂θj

(xi, θ) − ei

∂ys

∂θj

(
xi, θ

∗)

− E

[
ei

∂ys

∂θj

(xi, θ) − ei

∂ys

∂θj

(
xi, θ

∗)]}

= n−1/2
n∑

i=1

{
ei

∂ys

∂θj

(xi, θ) − ei

∂ys

∂θj

(
xi, θ

∗)}
,
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where θ ∈ U . By A5, the set {fθ ∈ C(R×�) : fθ (e, x) = e
∂ys

∂θj
(x, θ)−e

∂ys

∂θj
(x, θ∗),

θ ∈ U} is a Donsker class. This ensures that E2n(·) weakly converges in L∞(U) to
a tight Guassian process, denoted by G(·). Without loss of generality, we assume
that G(·) has continuous sample paths. We note that G(θ∗) = 0 because E2n(θ

∗)
for all n. Then as a consequence of the consistency of θ̂

L2
n and the continuous

mapping theorem [van der Vaart (1998)], E2n(θ̂
L2
n ) →p G(θ∗) = 0, which gives

Dn = 1

n

n∑
i=1

ei

∂ys

∂θj

(
xi, θ

∗) + op

(
n−1/2)

.(3.17)

Finally, we estimate En. Applying A5, B3, B4, we have

En ≤ λn‖ζ̂‖N�(�)

∥∥∥∥∂ys

∂θj

(·, θ̂ )

∥∥∥∥
N�(�)

= op

(
n−1/2)

.(3.18)

By combining (3.12), (3.15), (3.16), (3.17) and (3.18), we prove the desired
result. �

Theorem 1 implies the asymptotic normality of
√

n(θ̂
L2
n − θ∗), provided that

W := E

[
∂ys

∂θ

(
xi, θ

∗) ∂ys

∂θT

(
xi, θ

∗)]
(3.19)

is positive definite. Specifically,

√
n
(
θ̂L2
n − θ∗) d→N

(
0,4σ 2V −1WV −1)

.(3.20)

3.3. Semiparametric efficiency. In this section, we discuss the efficiency of the
proposed L2 calibration. It will be shown that, as a semiparametric method, the
L2 calibration method reaches the highest possible efficiency if the measurement
errors follow a normal distribution.

In statistics, a parametric model is one whose parameter space is finite dimen-
sional, while a nonparametric model is one with an infinite dimensional parameter
space. The definition of semiparametric models is, nevertheless, more complicated.
Refer to Bickel et al. (1993), Groeneboom and Wellner (1992) for details. In sim-
ple terms, a semiparametric problem has an infinite dimensional parameter space
but the parameter of interest in this problem is only finite dimensional. The cal-
ibration problems under consideration are semiparametric. To see this, consider
the calibration model given by (2.1) and (2.2). The parameter space of model (2.1)
contains an infinite dimensional function space which covers ζ . On the other hand,
the parameter of interest is θ∗ in (2.2), which is q-dimensional.

Now we briefly review the estimation efficiency in semiparametric problems.
For details, we refer to Bickel et al. (1993), Kosorok (2008). Let � be an infinite
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dimensional parameter space whose true value is denoted by ξ0. Denote the feature
of interest as ν(ξ0) with a known map ν : � �→ Rd . Suppose Tn is an estimator for
ν(ξ0) based on n independent samples and that

√
n(Tn − ν(ξ0)) is asymptotically

normal. Now let �0 be an arbitrary finite dimensional subset of � satisfying ξ0 ∈
�0. We consider the statistical estimation problem with the same observed data
but with the parameter space �0. Under this parametric assumption and some other
regularity conditions, an efficient estimator can be obtained by using the maximum
likelihood (ML) method, denoted by S

�0
n . Since the construction of S

�0
n uses more

assumptions than Tn, the asymptotic variance of S
�0
n should be less than or equal

to that of Tn. We call Tn semiparametric efficient if there exists a �0 such that S
�0
n

has the same asymptotic variance as Tn.
For the calibration problem given by (2.1) and (2.2), consider the following

q-dimensional parametric model indexed by γ :

ζγ (·) = ζ(·) + γ T ∂ys

∂θ

(·, θ∗)
,(3.21)

with γ ∈ Rq . Then (2.1) and (3.21) form a linear regression model. Regarding
(2.1), the true value of γ is γ0 = 0. Suppose that ei in (2.1) follows N(0, σ 2) with
an unknown σ 2. Under the regularity conditions of Theorem 1, the ML estimator
for observations {(xi, yi)}ni=1 is the least squares estimator, with the asymptotic
expression

γ̂n = 1

n
W−1

n∑
i=1

ei

∂ys

∂θ

(
xi, θ

∗) + op

(
n−1/2)

,(3.22)

where W is defined in (3.19). Then a natural estimator for θ∗ in (2.2) is

θ̂n = argmin
θ∈�

∥∥ζγ̂n
(·) − ys(·, θ)

∥∥
L2(�).(3.23)

Again, we simplify the problem in (3.23) by assuming that ys is a known function.
The asymptotic variance of θ̂n can be obtained by the delta method. As in A1,
assume that xi follows the uniform distribution over �. Then ‖f ‖2

L2(�) = Ef 2(xi)

for all f . Define

θ(t) = argmin
θ∈�

E
[
ζt (xi) − ys(xi, θ)

]2
,(3.24)

for each t near 0. Let

�(θ, t) = ∂

∂θ
E

[
ζt (xi) − ys(xi, θ)

]2

= ∂

∂θ
E

[
ζ(xi) − tT ∂ys

∂θ

(
xi, θ

∗) − ys(xi, θ)

]2

.
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Then (3.24) implies �(θ(t), t) = 0 for all t near 0. From the implicit function
theorem, we have

∂θ(t)

∂tT

∣∣∣∣
t=0

= −
(

∂�

∂θT

(
θ∗,0

))−1 ∂�

∂tT

(
θ∗,0

)
(3.25)

= −
(
E

∂2

∂θ ∂θT

[
ζ(xi) − ys(xi, θ

∗)]2
)−1

2E

[
∂ys

∂θT

(
xi, θ

∗)∂ys

∂θ

(
xi, θ

∗)]

= −2V −1W.

By the delta method,

θ̂n − θ∗ = θ(γ̂n) − θ(0) = ∂θ(t)

∂tT

∣∣∣∣
t=0

γ̂n + op

(
n−1/2)

,(3.26)

which, together with (3.22) and (3.25), yields

θ̂n − θ∗ = −2V −1
n∑

i=1

ei

∂ys

∂θ

(
xi, θ

∗) + op

(
n−1/2)

.(3.27)

Noting that the asymptotic expression of the L2 calibration given by (3.7) has the
same form as the ML estimator for the parametric model in (3.27), we obtain the
following theorem.

THEOREM 2. Under the assumptions of Theorem 1, if ei in (2.1) follows a
normal distribution, then the L2 calibration (3.2) is semiparametric efficient.

Since the normal distribution is commonly used to model the random error in
physical experiments [see, e.g., Wu and Hamada (2009)] and the calibration for
computer experiments [see, e.g., Kennedy and O’Hagan (2001)]. Theorem 2 sug-
gests that the proposed method is efficient for many practical problems. For non-
normal error distributions, the ML estimator does not agree with the least squares
estimator. Thus, the ML estimator cannot be expressed by (3.22). Consequently,
the L2 calibration defined by (3.1) and (3.2) is not semiparametric efficient. How-
ever, if the random error is from a parametric model, the proposed L2 calibration
can be modified to achieve the semiparametric efficiency. Denote the likelihood
function of ei by l(β; ei) with β ∈ B, that is, ei has a density l(β0; ·) for some
unknown β0 ∈ B. Suppose L(·;x) := log l(·;x) is convex for all x. Then the pe-
nalized ML estimator for ζ is

ζ̂ML := argmin
β∈B,f ∈N�(�)

1

n

n∑
i=1

L
(
β;yi − f (xi)

) + λ‖f ‖2
N�(�).(3.28)
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Then define the modified L2 calibration as

θ̂ML := argmin
θ∈�

∥∥ζ̂ML(·) − ŷs(·, θ)
∥∥
L2(�).(3.29)

By using similar arguments, it can be proved that, under some regularity condi-
tions, θ̂ML is semiparametric efficient. For a related discussion, we refer to Shen
(1997).

4. Ordinary least squares. In this section, we will study an alternative
method, namely, the ordinary least squares (OLS) calibration. There are several
versions of the OLS method discussed in statistics and applied mathematics for
calibration problems and inverse problems [e.g., Evans and Stark (2002), Joseph
and Melkote (2009)]. Here, we consider a general form, which is apparently new
but covers the existing versions. As before, let ŷs

n be a sequence of surrogate mod-
els for ys . Define the OLS estimator for the calibration parameter as

θ̂OLS
n = argmin

θ∈�

n∑
i=1

(
y

p
i − ŷs

n(xi, θ)
)2

,(4.1)

where xi ’s and yi ’s are from model (2.1).
Obviously, the OLS calibration is a natural choice when there is no difference

between the true process and the optimal computer output, that is, ζ(·) = ys(·, θ∗).
However, we are particularly interested in the asymptotic behavior of the OLS
calibration when ζ(·) and ys(·, θ∗) are different.

Analogous to Theorem 1 for the L2 calibration, we have the following theorem
on the asymptotic behavior of the OLS calibration.

THEOREM 3. In addition to conditions A1–A4 and C1–C2, suppose that
there exists a neighborhood U of θ∗, such that ys(x, ·) ∈ C2,1(U) for all x ∈ �,
where C2,1 denotes the space of functions whose second derivatives are Lipschitz.
Then

θ̂OLS
n − θ∗ = V −1

{
1

n

n∑
i=1

∂

∂θ

(
y

p
i − ys(xi, θ

∗))2
}

+ op

(
n−1/2)

.

PROOF. First, we prove θ̂OLS
n →p θ∗. By condition A2, it suffices to show that

sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

(
y

p
i − ŷs

n(xi, θ)
)2 − (∥∥ζ(·) − ys(·, θ)

∥∥2
L2(�) + σ 2)∣∣∣∣∣

(4.2)
p→0.
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Note that∣∣∣∣∣1

n

n∑
i=1

(
y

p
i − ŷs

n(xi, θ)
)2 − 1

n

n∑
i=1

(
y

p
i − ys(xi, θ)

)2

∣∣∣∣∣
=

∣∣∣∣∣1

n

n∑
i=1

(
ys(xi, θ) − ŷs(xi, θ)

)(
2y

p
i − ys(xi, θ) − ŷs(xi, θ)

)∣∣∣∣∣(4.3)

≤ ∥∥ys − ŷs
∥∥
L∞(�)

(
1

n

n∑
i=1

2
(
y

p
i − ys(xi, θ)

) + ∥∥ys − ŷs
∥∥
L∞(�)

)
.

Since � is compact, the uniform law of large numbers [van der Vaart and Wellner
(1996)] implies

sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

(
y

p
i − ys(xi, θ)

) − E
[
y

p
i − ys(xi, θ)

]∣∣∣∣∣ p→0(4.4)

and

sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

(
y

p
i − ys(xi, θ)

)2 − E
[
y

p
i − ys(xi, θ)

]2

∣∣∣∣∣ p→0.(4.5)

Direct calculations give

E
[
y

p
i − ys(xi, θ)

]2 =
∫
�

(
ζ(z) − ys(z, θ)

)2
dz + σ 2,(4.6)

which, together with (4.3), (4.4), (4.5) and (4.6), proves (4.2).
By definition (4.1), condition A2 and the consistency of θ̂OLS

n , we have

0 = ∂

∂θ

{
1

n

n∑
i=1

(
y

p
i − ŷs

n

(
xi, θ̂

OLS
n

))2
}

= 2

n

n∑
i=1

∂ŷs
n

∂θ

(
xi, θ̂

OLS
n

){
ŷs
n

(
xi, θ̂

OLS
n

) − y
p
i

}
,

which, together with the law of large numbers and conditions C1 and C2, yield

op

(
n−1/2) = 2

n

n∑
i=1

∂ys

∂θ

(
xi, θ̂

OLS
n

){
ys(xi, θ̂

OLS
n

) − y
p
i

}

= 1

n

n∑
i=1

∂

∂θ

(
y

p
i − ys(xi, θ̂

OLS
n

))2
.

The remainder of the proof follows from some direct calculations using the stan-
dard asymptotic theory for Z-estimators [van der Vaart (1998)]. �
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Theorem 3 shows that the OLS calibration is consistent even if the computer
code is imperfect. Compared with the L2 calibration, the OLS calibration is com-
putationally more efficient. Also, the OLS calibration does not require tuning,
while in the L2 calibration the value of the tuning parameter λ in (2.6) needs to
be determined. However, according to Theorem 3, the asymptotic variance of the
OLS calibration does not reach the semiparametric lower bound given by (3.27).

We now study the conditions under which the L2 calibration and the OLS cali-
bration are asymptotically equivalent. Let �1 = 4σ 2W . Then the asymptotic vari-
ance of the L2 calibration given by (3.20) is V −1�1V

−1. Let

�2 = E

[
∂

∂θ

(
y

p
i − ys(xi, θ

∗))2
]2

= 4E

[(
ei + ζ(xi) − ys(xi, θ

∗))2 ∂ys

∂θ

(
xi, θ

∗) ∂ys

∂θT

(
xi, θ

∗)]
(4.7)

= 4σ 2W + 4E

[(
ζ(xi) − ys(xi, θ

∗))2 ∂ys

∂θ

(
xi, θ

∗) ∂ys

∂θT

(
xi, θ

∗)]
.

Then Theorem 3 shows that the asymptotic variance for the OLS calibration is
V −1�2V

−1. From (4.7), it is seen that �2 −�1 ≥ 0. Additionally, �1 = �2 if and
only if

E

[(
ζ(xi) − ys(xi, θ

∗))2 ∂ys

∂θ

(
xi, θ

∗) ∂ys

∂θT

(
xi, θ

∗)] = 0.(4.8)

Suppose ∂ys

∂θ
(x, θ∗) �= 0 for all x ∈ �. Then (4.8) holds only if ζ(x) = ys(x, θ∗)

for almost every x ∈ �, that is, there exists a perfect computer model. In this
case, the OLS calibration has the same asymptotic distribution as the L2 calibra-
tion. However, as suggested by Kennedy and O’Hagan (2001), the bias between
ys(·, θ∗) and ζ(·) can be large in practical situations. Thus, in general the OLS
calibration is less efficient than the L2 calibration.

5. Numerical studies. In this section, we compare the numerical behaviors
of three methods for the estimation of the calibration parameters: the L2 calibra-
tion, the OLS calibration and a version of the method proposed by Kennedy and
O’Hagan (2001). The original version of the Kennedy–O’Hagan (abbreviated as
KO) method is a Bayesian approach. In order to compare with the proposed fre-
quentist methods, we consider the frequentist version of the KO method stated in
Tuo and Wu (2014), where the maximum likelihood estimation is used.

5.1. Example 1: Perfect computer model. Suppose the true process is

ζ(x) = exp(x/10) sinx,(5.1)

for x ∈ � = (0,2π). The physical observations are given by

y
p
i = ζ(xi) + ei,(5.2)
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TABLE 1
Numerical comparison for perfect computer model. MSE = mean square error

σ 2 = 0.1 σ 2 = 1

True value: −1 −1

Mean MSE Mean MSE

L2 −0.9990 6.497 × 10−5 −0.8876 0.0906
OLS −0.9999 1.160 × 10−4 −0.9306 0.0908
KO −0.9993 8.065 × 10−5 −0.9325 0.0468

with

xi = 2πi/50, ei ∼ N
(
0, σ 2)

for i = 0, . . . ,50.(5.3)

We will consider two levels of σ 2 (with σ 2 = 0.1 and σ 2 = 1) so that the numerical
stability of the methods with different noise levels is investigated.

Suppose the computer output is

ys(x, θ) = ζ(x) − |θ + 1|(sin θx + cos θx).(5.4)

Then we have ζ(·) = ys(·,−1). Thus, θ∗ = −1. And there is no discrepancy be-
tween ζ(·) and ys(·, θ∗), that is, the computer model is perfect. For simplicity, we
suppose that (5.4) is a known function so that we do not need an emulator for it.

We conducted 1000 random simulations to examine the performance of the L2
calibration, the OLS calibration and the KO calibration for σ 2 = 0.1 and σ 2 = 1,
respectively. For the L2 calibration and the KO calibration, the Gaussian correla-
tion family �(x1, x2) = exp{−φ(x1 − x2)

2} is used with the model parameter φ

chosen by the cross-validation method [Rasmussen and Williams (2006), Santner,
Williams and Notz (2003)]. The tuning parameters in the nonparametric regression
is selected by the generalized cross validation [Wahba (1990)].

Table 1 shows the simulation results. The results for σ 2 = 0.1 and σ 2 = 1 are
given in columns 2–3 and 4–5, respectively. The true values of θ∗ are given in the
second row. The last three rows give the mean value and the mean square error
(MSE) over 1000 random simulations for the three methods.

It can be seen from Table 1 that all three methods give good estimation results
in this example. The good performance of the KO method is not surprising be-
cause the computer model here is perfect. In their theoretical study on the KO
method with deterministic physical experiments, Tuo and Wu (2014) obtained the
limiting value of the KO method under certain conditions. Using Theorem 1 of
Tuo and Wu (2014), it can be seen that, for deterministic physical experiments, the
Kennedy–O’Hagan method would be consistent if the computer model is perfect.
The simulation results in this example suggest that this statement may also hold
for stochastic physical systems.
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FIG. 1. L2 discrepancy function in Example 2.

5.2. Example 2: Imperfect computer model. Now we consider an example
with an imperfect computer model. Suppose the true process and the physical ob-
servations are the same as in Example 1, given by (5.1), (5.2) and (5.3). Suppose
the computer model is

ys(x, θ) = ζ(x) −
√

θ2 − θ + 1(sin θx + cos θx).(5.5)

As in Example 1, we suppose ys is known. From (5.5), it can be seen that there
does not exist a real number θ satisfying ys(·, θ) = ζ(·), because the quadratic
function θ2 − θ + 1 is always positive. Thus, this computer model is imperfect.

The L2 discrepancy between the computer model and the physical model has
an explicit form:

∥∥ζ − ys(·, θ)
∥∥2
L2(�) = (

θ2 − θ + 1
)(

2π − cos(4πθ) − 1

2θ

)
,(5.6)

with a continuous extension at θ = 0. Figure 1 plots the function (5.6) with −2 <

θ < 2. Numerical optimization shows that the minimizer of (5.6) is θ∗ ≈ −0.1789.
As in Example 1, we conducted 1000 random simulations to compare the L2

calibration, the OLS calibration and the KO calibration. We keep the remaining
setup of this experiment the same as in Example 1. The mean value and standard
deviation (SD) over 1000 simulations are shown in Table 2.

It can be seen from Table 2 that the L2 calibration and the OLS calibration
outperform the KO calibration. Furthermore, the mean value of the KO estimator
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TABLE 2
Numerical comparison for imperfect computer model. SD = standard deviation

σ 2 = 0.1 σ 2 = 1

True value: −0.1789 −0.1789

Mean SD Mean SD

L2 −0.1792 2.665 × 10−3 −0.1773 0.0711
OLS −0.1770 2.674 × 10−3 −0.1684 0.1060
KO −0.1224 7.162 × 10−3 0.0034 0.3244

changes a lot as σ 2 changes. This is undesirable because a good estimator should
not be sensitive to random error for large samples. Table 2 also shows that the
standard deviation of the L2 calibration is smaller than that of the OLS calibration.
This agrees with our theoretical analysis, which shows that the L2 calibration is
more efficient than the OLS calibration for imperfect computer models. Overall,
the KO calibration underperforms the L2 calibration or the OLS calibration.

6. Concluding remarks and further discussions. In this work, we extend
the framework established in Tuo and Wu (2014) to stochastic physical systems.
We propose a novel method, called the L2 calibration, and prove its asymptotic
normality and semiparametric efficiency. We also study the OLS method and prove
that it is consistent but not efficient. Although the OLS calibration is computation-
ally less costly, the L2 calibration should be seriously considered because of its
high estimation efficiency. By using a more efficient estimator, fewer physical trials
are needed to achieve the same estimation efficiency. In most practical problems,
physical experiments are more expensive to run. Therefore, it would be worthwhile
to save the physical runs by doing more computation. Thus, we recommend using
the L2 calibration over the OLS calibration.

Because of the identifiability problem in calibration, we define the purpose of
calibration as that of finding the L2 projection, that is, the parameter value which
minimizes the discrepancy between the true process and the computer output un-
der the L2 norm. Noting that the “true” value of the calibration parameter in our
framework depends on the choice of the norm, one may also consider the asymp-
totic results for calibration under a different norm. After some calculations, it can
be shown that the main results of this work still hold if the new norm is equivalent
to the L2 norm. However, if a norm that is not equivalent to the L2 norm, such
as the L∞ norm, is used, the idea in the proof of Theorem 1 will not work. We
believe that, for those norms, there do not exist estimators with convergence rate
O(n−1/2). This will require further work.

We have reported the asymptotic properties of the L2 calibration under the ran-
dom design, that is, xi are sampled independently from the uniform distribution.



EFFICIENT CALIBRATION 2351

Given the fact that many physical experiments are conducted under fixed designs
[see books by Box, Hunter and Hunter (2005) and Wu and Hamada (2009)], the
results for calibration for fixed designs need further investigation.

Acknowledgements. The authors are grateful to the Associate Editor and the
referees for helpful comments.
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