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In the low-dimensional case, the generalized additive coefficient model
(GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006) 1423–1446]
has been demonstrated to be a powerful tool for studying nonlinear inter-
action effects of variables. In this paper, we propose estimation and infer-
ence procedures for the GACM when the dimension of the variables is high.
Specifically, we propose a groupwise penalization based procedure to distin-
guish significant covariates for the “large p small n” setting. The procedure
is shown to be consistent for model structure identification. Further, we con-
struct simultaneous confidence bands for the coefficient functions in the se-
lected model based on a refined two-step spline estimator. We also discuss
how to choose the tuning parameters. To estimate the standard deviation of
the functional estimator, we adopt the smoothed bootstrap method. We con-
duct simulation experiments to evaluate the numerical performance of the
proposed methods and analyze an obesity data set from a genome-wide asso-
ciation study as an illustration.

1. Introduction. Regression analysis is a commonly used statistical tool for
modeling the relationship between a scalar dependent variable Y and one or more
explanatory variables denoted as T = (T1, T2, . . . , Tp)T. To study the marginal ef-
fects of the predictors on the response, one may fit a generalized linear model
(GLM),

E(Y |T) = μ(T) = g−1{
η(T)

}
, η(T) =

p∑
�=1

α�0T�,(1)
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where g is a known monotone link function, and α�0, 1 ≤ � ≤ p, are unknown pa-
rameters. Sometimes, the effect of one variable may change with other variables;
that is, there is an interaction effect. By letting T1 = 1, to incorporate the interac-
tion effects of T and the other variables, denoted as X = (X1, . . . ,Xd)T, model (1)
can be modified to E(Y |X,T) = μ(X,T) = g−1{η(X,T)} with

η(X,T) = α10 +
p∑

�=2

α�0T� +
d∑

k=1

α1kXk +
p∑

�=2

d∑
k=1

α�kXkT�,(2)

where α�k for 0 ≤ k ≤ d and 1 ≤ � ≤ p are parameters. After a direct reformula-
tion, model (2) can be written as

η(X,T) =
p∑

�=1

(
α�0 +

d∑
k=1

α�kXk

)
T�.(3)

Here the effect of each T� changes linearly with Xk . However, in practice, this
simple linear relationship may not reflect the true changing patterns of the co-
efficient with other covariates. We here use an example of gene and environment
(G×E) interactions for illustration. It has been noticed in the literature that obesity
is linked to genetic factors. Their effects, however, can be altered under different
environmental factors such as sleeping hours [Knutson (2012)] and physical activ-
ity [Wareham, van Sluijs and Ekelund (2005)]. To have a rough idea of how the
effects of the genetic factors change with the environment, we explore data from
the Framingham Heart Study [Dawber, Meadors and Moore (1951)]. In Figure 1
we plot the estimated mean body mass index (BMI) against sleeping hours per day
and activity hours per day, respectively, for people with three possible genotype
categories represented by AA, Aa and aa, and for one single nucleotide polymor-
phism (SNP). A detailed description and the analysis of this data set are given in
Section 5. We define allele A as the minor (less frequent) allele. This figure clearly
shows different nonlinear curves for the three groups in each of the two plots. By

FIG. 1. Plots of the estimated BMI against sleeping hours per day (left panel) and activity hours
per day (right panel) for the three genotypes AA (solid line), Aa (dashed line) and aa (dotted line) of
SNP rs242263 in the Framingham study, where A is the minor allele.
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letting T� be the indicator for the group �, the linear function in model (3) is clearly
misspecified.

To relax the linearity assumption, we allow each α�kXk term to be an unknown
nonlinear function of Xk , and thus extend model (3) to the generalized additive
coefficient model (GACM)

η(X,T) =
p∑

�=1

{
α�0 +

d∑
k=1

α�k(Xk)

}
T� =

p∑
�=1

α�(X)T�.(4)

For identifiability, the functional components satisfy E{α�k(Xk)} = 0 for 1 ≤ k ≤
d and 1 ≤ � ≤ p. The conditional variance of Y is modeled as a function of the
mean, that is, var(Y |X,T) = V {μ(X,T)} = σ 2(X,T). In each coefficient function
of the GACM, covariates Xk are continuous variables. If some of them are discrete,
they will enter linearly. For example, if Xk is binary, we let α�k(Xk) = α�kXk . In
such a case, model (4) turns out to be a partially linear additive coefficient model.
The linearity of (4) in T� is particularly appropriate when those factors are discrete,
for example, SNPs in a genome-wide association study (GWAS), as in the data
example of Section 5.

For the low-dimensional case that the dimensions of X and T are fixed, esti-
mation of model (4) has been studied; see Liu and Yang (2010), Xue and Liang
(2010), Xue and Yang (2006) for a spline estimation procedure and Lee, Mam-
men and Park (2012) for a backfitting algorithm. In modern data applications,
model (4), however, is particularly useful when p is large. For example, in GWAS,
the number of SNPs, which is p, can be very large, but the dimension of X such
as the environmental factors, which is d , is inevitably relatively small. Moreover,
the number of variables in T which have nonzero effects is small. It therefore,
poses new challenges to apply model (4) to the high-dimensional case includ-
ing: (i) how to identify those important variables in T, (ii) how to estimate the
coefficient functions for the important covariates and (iii) how to conduct infer-
ences for the nonzero coefficient functions. For example, it is of interest to know
whether they are a function of a specific parametric form such as constant, linear
or quadratic, etc.

In the high-dimensional data setting, studying nonlinear interaction effects has
found much attention in recent years, and a few strategies have been proposed. For
example, Jiang and Liu (2014) proposed to detect variables under the general in-
dex model, which enables the study of high-order interactions among components
of continuous predictors, which are assumed to have a multivariate normal distri-
bution. Moreover, Lian (2012) considered variable selection in varying coefficient
models which allows the coefficient functions to depend on one index variable,
such as a time-dependent variable.

When we would like to see how the effect of each genetic factor changes under
the influence of multiple environmental variables, the proposed high-dimensional
GACM (4) becomes a natural approach to consider, since both the index model
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[Jiang and Liu (2014)] and the varying coefficient model [Lian (2012)] cannot
address this question; the former is used to study interactions of components
in a set of continuous predictors, and the latter only allows one index variable.
For model selection and estimation, we apply a groupwise penalization method.
Moreover, most existing high-dimensional nonparametric modeling papers [Lian
(2012), Meier, van de Geer and Bühlmann (2009), Ravikumar et al. (2009), Wang
et al. (2014), Huang, Horowitz and Wei (2010)] focus on variable selection and
estimation. In this paper, after variable selection, we also propose a simultaneous
inferential tool to further test the shape of the coefficient function for each selected
variable, which has not been studied in the previous works.

To this end, we aim to address questions (i)–(iii). Specifically, for estimation
and model selection, we apply a groupwise regularization method based on a pe-
nalized quasi-likelihood criterion. The penalty is imposed on the L2 norm of the
spline coefficients of the spline estimators for α�(·). We establish the asymptotic
consistency of model selection and estimation for the proposed group penalized
estimators with the quasi-likelihood criterion in the high-dimensional GACM (4).
We allow p to grow with n at an almost exponential order. Importantly, establish-
ment of these results is technically more difficult than other work based on least
squares, since no closed-form of the estimators exists from the penalized quasi-
likelihood method.

After selecting the important variables, the next question of interest is what
shapes the nonzero coefficient functions may have. Then we need to provide an
inferential tool to further check whether a coefficient function has some specific
parametric form. For example, when it is a constant or a linear function, the cor-
responding covariate has no or linear interaction effects with another covariate,
respectively. For global inference, we construct simultaneous confidence bands
(SCBs) for the nonparametric additive functions based on a two-step estimation
procedure. By using the selected variables, we first propose a refined two-step
spline estimator for the function of interest, which is proved to have a pointwise
asymptotic normal distribution and oracle efficiency. We then establish the bounds
for the SCBs based on the absolute maxima distribution of a Gaussian process and
on the strong approximation lemma [Csörgő and Révész (1981)]. Some other re-
lated works on SCBs for nonparametric functions include Claeskens and Van Kei-
legom (2003), Hall and Titterington (1988), Härdle and Marron (1991), among
others. We provide an asymptotic formula for the standard deviation of the spline
estimator for the coefficient function, which involves unknown population parame-
ters to be estimated. The formula has somewhat complex expressions and contains
many parameters. Direct estimation therefore may be not accurate, particularly
with the small or moderate sample sizes. As an alternative, the bootstrap method
provides us a reliable way to calculate the standard deviation by avoiding estimat-
ing those population parameters. We here apply the smoothed bootstrap method
suggested by Efron (2014), which advocated that the method can improve cov-
erage probability to calculate the pointwise estimated standard deviations for the
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estimators of the coefficient functions. This method was originally proposed for
calculating the estimated standard deviation of the estimate of a parameter of inter-
est, such as the conditional mean. We extend this method to the case of functional
estimation. We demonstrate by simulation studies in Section 4 that compared to
the traditional resampling bootstrap method, the smoothed bootstrap method can
successfully improve the empirical coverage rate.

The paper is organized as follows. Section 2 introduces the B-spline estimation
procedure for the nonparametric functions, describes the adaptive group Lasso
estimators and the initial Lasso estimators and presents asymptotic results. Sec-
tion 3 describes the two-step spline estimators and introduces the simultaneous
confidence bands and the bootstrap methods for calculating the estimated stan-
dard deviation. Section 4 describes simulation studies, and Section 5 illustrates the
method through the analysis of an obesity data set from a genome-wide associa-
tion study. Proofs are in the Appendix and additional supplementary material [Ma
et al. (2015)].

2. Penalization based variable selection. Let (Yi,XT
i ,TT

i ), i = 1, . . . , n, be
random vectors that are independently and identically distributed as (Y,XT,TT),
where Xi = (Xi1, . . . ,Xid)T and Ti = (Ti1, . . . , Tip)T. Write the negative quasi-
likelihood function Q(μ,y) = ∫ y

μ {(y−ζ )/V (ζ )}dζ . Estimation of the mean func-
tion can be achieved by minimizing the negative quasi-likelihood of the observed
data

n∑
i=1

Q
{
g−1{

η(Xi ,Ti)
}
, Yi

}
.(5)

2.1. Spline approximation. We approximate the smooth functions α�k(·), 1 ≤
k ≤ d and 1 ≤ � ≤ p in (4) by B-splines. As in most work on nonparametric
smoothing, estimation of the functions α�k(·) is conducted on compact sets. With-
out loss of generality, let the compact set be X = [0,1]. Let G0

n be the space of
polynomial splines of order q ≥ 2. We introduce a sequence of spline knots

t−q−1 = · · · = t−1 = t0 = 0 < t1 < · · · < tN < 1 = tN+1 = · · · = tN+q,

where N ≡ Nn is the number of interior knots. In the following, let Jn =
Nn + q . For 0 ≤ j ≤ N , let Hj = tj+1 − tj be the distance between neighbor-
ing knots and let H = max0≤s≤N Hj . Following Zhou, Shen and Wolfe (1998),
to study asymptotic properties of the spline estimators for α�k(·), we assume that
max0≤j≤N−1 |Hj+1 − Hj | = o(N−1) and H/min0≤j≤N Hj ≤ M , where M > 0
is a predetermined constant. Such an assumption is necessary for numerical im-
plementation. In practice, we can use the quantiles as the locations of the knots.
Let {bj,k(xk) : 1 ≤ j ≤ Jn}T be the qth order B spline basis functions given on
page 87 of de Boor (2001). For positive numbers an and bn, an � bn means that
limn→∞ an/bn = c, where c is some nonzero finite constant. For 1 ≤ j ≤ Jn, we
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adopt the centered B-spline functions given in Xue and Yang (2006) such that
Bj,k(xk) = √

N [bj,k(xk) − {E(bj,k)/E(b1,k)}b1,k(xk)], so that E{Bj,k(Xk)} = 0
and var{Bj,k(Xk)} � 1. Define the space Gn of additive spline functions as the
linear space spanned by B(x) = {1,Bj,k(xk),1 ≤ j ≤ Jn,1 ≤ k ≤ d}T, where
x = (x1, . . . , xd)T. According to the result on page 149 of de Boor (2001), for
α�k(·) satisfying condition (C3) in Appendix A.2 such that α

(r−1)
�k (xk) ∈ C0,1[0,1]

for given integer r ≥ 1, where C0,1[0,1] is the space of Lipschitz continuous func-
tions on [0,1] defined in Appendix A.2, there is a function

α0
�k(xk) =

Jn∑
j=1

γj,�kBj (xk) ∈ G0
n,(6)

such that supxk∈[0,1] |α0
�k(xk) − α�k(xk)| = O(J−r

n ). Then for every 1 ≤ � ≤ p,
α�(x) can be approximated well by a linear combination of spline functions in G0

n,
so that

α�(x) ≈ α0
�(x) = γ�0 +

d∑
k=1

Jn∑
j=1

γj,�kBj,k(xk) = B(x)Tγ �,(7)

where γ � = (γ�0,γ
T
�1, . . . ,γ

T
�d)T, in which γ �k = (γj,�k : 1 ≤ j ≤ Jn)

T. Thus the
minimization problem in (5) is equivalent to finding γ̃ 0 = (γ̃ 0T

� ,1 ≤ � ≤ p)T

with γ̃ 0
� = (γ̃ 0

�0, γ̃
0T
�1 , . . . , γ̃ 0T

�d )T and γ̃ 0
�k = (γ̃ 0

j,�k : 1 ≤ j ≤ Jn)
T to minimize∑n

i=1 Q[g−1{∑p
�=1 B(Xi)

Tγ �T�}, Yi]. The components of the additive coefficients

are estimated by α̃0
�k(xk) = ∑Jn

j=1 γ̃ 0
j,�kBj (xk) = B(x)Tγ̃ 0

�k and α̃0
�0 = γ̃ 0

�0.

2.2. Adaptive group Lasso estimator. We now describe the procedure for esti-
mating and selecting the additive coefficient functions by using the adaptive group
Lasso. The estimators are obtained by minimizing a penalized negative quasi-
likelihood criterion. We establish asymptotic selection consistency as well as the
convergence rate of the estimators to the true nonzero functions. For any vector

a = (a1, . . . , as)
T, let its L2 norm be ‖a‖2 =

√
a2

1 + · · · + a2
s . For any measurable

L2-integrable function φ on [0,1]d , define the L2 norm as ‖φ‖2 = E{φ2(X)}.
We are interested in identifying the significant components of the vector T =

(T1, . . . , Tp)T. Let s, a fixed number, be the total number of nonzero α�’s and
I1 = {� : ‖α�‖ = 0,1 ≤ � ≤ p}. Let I2 be the complementary set of I1; that is, I2 =
{� : α�(·) ≡ 0,1 ≤ � ≤ p}. Recalling the approximation given in (7), γ � is zero if
and only if each element of γ � is zero; that is, ‖γ �‖2 = 0. We apply the adaptive
group Lasso approach in Huang, Horowitz and Wei (2010) for variable selection in
model (4). In order to identify zero additive coefficients, we penalize the L2 norm
of the coefficients γ � for 1 ≤ � ≤ p. Let wn = (wn1, . . . ,wnp)T be a given vector of
weights, which needs to be chosen appropriately to achieve selection consistency.
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Their choice will be discussed in Section 2.3. We consider the penalized negative
quasi-likelihood

Ln(γ ) =
n∑

i=1

Q

[
g−1

{ p∑
�=1

BT(Xi )γ �T�

}
, Yi

]
+ nλn

p∑
�=1

wn�‖γ �‖2,(8)

where λn is a regularization parameter controlling the amount of shrinkage. The
estimator γ̂ = (γ̂ T

1 , . . . , γ̂ T
p)T is obtained by minimizing (8). Minimization of (8)

is solved by local quadratic approximation as adopted by Fan and Li (2001).
For � = 1, . . . , p, the �th additive coefficient function is estimated by

α̂�(x) = γ̂�0 +
d∑

k=1

Jn∑
j=1

γ̂j,�kBj,k(xk) = BT(x)γ̂ �.

We will make the following two assumptions on the order requirements of the
tuning parameters. Write wn,I1 = (wn� : � ∈ I1).

ASSUMPTION 1. J 2
n {n log(n)}−1 → 0 and λn‖wn,I1‖2 → 0, as n → ∞.

ASSUMPTION 2. nλn‖wn,I1‖2 + n1/2J
1/2
n

√
log(pJn) + nJ−r

n = o(nλnwn�),
for all � ∈ I2.

The following theorem presents the selection consistency and estimation prop-
erties of the adaptive group Lasso estimators.

THEOREM 1. Under conditions (C1)–(C5) in the Appendix and Assumptions 1
and 2: (i) as n → ∞, P(‖α̂�‖ > 0, � ∈ I1 and ‖α̂�‖ = 0, � ∈ I2) → 1, and (ii)
‖α̂� − α�‖ = Op(λn‖wn,I1‖2 + n−1/2J

1/2
n + J−r

n ), � ∈ I1.

2.3. Choice of the weights. We now discuss how to choose the weights used
in (8) based on the initial estimates. For low-dimensional data settings with p < n,
an unpenalized estimator such as least squares estimator [Zou (2006)] can be used
as an initial estimate. For high-dimensional settings with p � n, it has been dis-
cussed [Meier and Bühlmann (2007)] that the Lasso estimator is a more appro-
priate choice. Following Huang, Horowitz and Wei (2010), we obtain an initial
estimate with the group Lasso by minimizing

Ln1(γ ) =
n∑

i=1

Q

[
g−1

{ p∑
�=1

B(Xi )
Tγ �T�

}
, Yi

]
+ nλn1

p∑
�=1

‖γ �‖2,

with respect to γ = (γ T
1 , . . . ,γ T

p)T. Denote the resulting estimators by γ̃ =
(γ̃ T

1 , . . . , γ̃ T
p)T. Let Ĩ1 = {� : ‖γ̃ �‖2 = 0,1 ≤ � ≤ p}, and let s̃ be the number of

elements in Ĩ1.
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Under conditions (C1)–(C5) in the Appendix, and when λn1 ≥ Cn−1/2J
1/2
n ×√

log(pJn) for a sufficiently large constant C, we have: (i) the number of esti-
mated nonzero functions are bounded; that is, as n → ∞, there exists a constant
1 < C1 < ∞ such that P (̃s ≤ C1s) → 1; (ii) if λn1 → 0, then P(‖γ̃ �‖2 > 0 for
all l ∈ I1) → 1; (iii) ‖γ̃ − γ ‖2 = Op(λn1 + n−1/2J

1/2
n + J−r

n ). We refer to Theo-
rems 1(i) and (ii) of Huang, Horowitz and Wei (2010) for the proofs of (i) and (ii),
and Theorem 1 in our paper for the proof of (iii).

The weights we use are wn� = ‖γ̃ �‖−1
2 , if ‖γ̃ �‖2 > 0; wn� = ∞, if ‖γ̃ �‖2 = 0.

REMARK 1. Assumptions 1 and 2 give the order requirements of Jn and λn.
Based on the condition that J 2

n {n log(n)}−1 → 0 given in Assumption 1, we
need Jn � {n log(n)}1/2, where an � bn denotes that an/bn = o(1) for any
positive numbers an and bn, and λn needs to satisfy n−1/2J

1/2
n

√
log(pJn) ×

{min�∈I2(wn�)}−1 � λn � 1. From the above theoretical properties of the group
Lasso estimators, we know that, with probability approaching 1, ‖γ̃ �‖2 > 0 for
nonzero components, and then the corresponding weights wn� are bounded away
from 0 and infinity for � ∈ I1. By defining 0 · ∞ = 0, the components not se-
lected by the group Lasso are not included in the adaptive group Lasso proce-
dure. Let Jn � n1/(2r+1), so that Jn has the optimal order for spline regression.
If p = exp[o{n2r/(2r+1)}], then n−1/2J

1/2
n

√
log(pJn) → 0. This means the dimen-

sion p can diverge with the sample size at an almost exponential rate.

2.4. Selection of tuning parameters. Tuning parameter selection always plays
an important role in model and variable selection. An underfitted model can lead
to severely biased estimation, and an overfitted model can seriously degrade the
estimation efficiency. Among different data-driven methods, the Bayesian infor-
mation criterion (BIC) tuning parameter selector has been shown to be able to
identify the true model consistently in the fixed dimensional setting [Wang, Li and
Tsai (2007)]. In the high-dimensional setting, an extend BIC (EBIC) and a gener-
alized information criterion have been proposed by Chen and Chen (2008) and Fan
and Tang (2013), respectively. In this paper, we adopt the EBIC method [Chen and
Chen (2008)] to select the tuning parameter λn in (8). Specifically, the EBIC(λn)

is defined as

2
n∑

i=1

(
Q

[
g−1

{ p∑
�=1

B(Xi)
Tγ̂ �Ti�

}
, Yi

])
+ s∗(1 + dJn) log(n) + 2ν log

(
p

s∗
)

,

where (γ̂ �)
p
�=1 is the minimizer of (8) for a given λn, s∗ is the number of nonzero

estimated functions (α̂�)
p
�=1 and 0 ≤ ν ≤ 1 is a constant. Here we use ν = 0.5.

When ν = 0, the EBIC is ordinary BIC.
We use cubic B-splines for the nonparametric function estimation, so that q = 4.

In the penalized estimation procedure, we let the number of interior knots N =
�cn1/(2q+1)� satisfy the optimal order, where �a� denotes the largest integer no
greater than a and c is a constant. In the simulations, we take c = 2.
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3. Inference and the bootstrap smoothing procedure.

3.1. Background. After model selection, our next step is to conduct statistical
inference for the coefficient functions of those important variables. We will es-
tablish a simultaneous confidence band (SCB) based on a two-step estimator for
global inference. An asymptotic formula of the SCB will be provided based on the
distribution of the maximum value of the normalized deviation of the spline func-
tional estimate. To improve accuracy, we calculate the estimated standard deviation
in the SCB by using the nonparametric bootstrap smoothing method as discussed in
Efron (2014). For specificity, we focus on the construction of α�1(x1), with α�k(xk)

for k ≥ 2 defined similarly, for � ∈ Î1, where Î1 = {� : ‖α̂�‖ = 0,1 ≤ � ≤ p}.
Although the one-step penalized estimation in Section 2 can quickly identify

nonzero coefficient functions, no asymptotic distribution is available for the re-
sulting estimators. Thus we construct the SCB based on a refined two-step spline
estimator for α�1(x1), which will be shown to have the oracle property that the
estimator of α�1(x1) has the same asymptotic distribution as the univariate oracle
estimator obtained by pretending that α�0 and α�k(Xk) for � ∈ Î1, k ≥ 2 and α�(X)

for � /∈ Î1 are known. See Horowitz, Klemelä and Mammen (2006), Horowitz and
Mammen (2004), Liu, Yang and Härdle (2013) for kernel-based two-step estima-
tors in generalized additive models, which also have the oracle property but are not
as computationally efficient as the two-step spline method. We next introduce the
oracle estimator and the proposed two-step estimator before we present the SCB.

3.2. Oracle estimator. In the following, we describe the oracle estimator of
α�1(x1). We rewrite model (4) as

μ(X,T) = g−1{
η(X,T)

}
(9)

= ∑
�∈Î1

α�1(X1)T� + ∑
�∈Î1

{
α�0 + ∑

k≥2

α�k(Xk)

}
T� + ∑

�/∈Î1

α�(X)T�.

By assuming that α�0 and α�k(Xk) for � ∈ Î1, k ≥ 2 and α�(X) for � /∈ Î1 are
known, estimation in (9) involves only the nonparametric functions α�1(X1) of a
scalar covariate X1. It will be shown in Theorem 2 that the estimator achieves
the univariate optimal convergence rate when the optimal order for the num-
ber of knots is applied. We estimate α1(x1) = {α�1(x1), � ∈ Î1}T by minimiz-
ing the negative quasi-likelihood function as follows. Denote the oracle estima-
tor by α̂OR

�1 (x1) = BS
1 (x1)

Tγ̂ OR
�1 , where γ̂ OR

�1 is defined directly below, BS
1 (x1) =

{BS
j,1(x1),1 ≤ j ≤ JS

n } where BS
j,1(x1) is the centered B-spline function defined

in the same way as Bj,1(x1) in Section 2, but with NS = NS
n interior knots and

JS
n = NS

n + q . Rates of increase for JS
n are described in Assumptions 3 and 4

below. Let α�,−1(Xi) = α�0 + ∑
k≥2 α�k(Xik). Then γ̂ OR

,1 = {(γ̂ OR
�1 )T, � ∈ Î1}T is
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obtained by minimizing the negative quasi-likelihood

LOR
n (γ ,1) =

n∑
i=1

Q

[
g−1

{∑
�∈Î1

BS
1 (Xi1)

Tγ �1Ti�

(10)

+ ∑
�∈Î1

α�,−1(Xi)Ti� + ∑
�/∈Î1

α�(Xi)Ti�

}
, Yi

]
,

where γ ,1 = {(γ �1)
T, � ∈ Î1}T. Similarly, the oracle estimator of α0 = {α�0, � ∈

Î1}T, which is denoted as α̂OR
0 = {α̂OR

�0 , � ∈ Î1}T = {γ̂ OR
�0 , � ∈ Î1}T, is obtained

by minimizing LOR
n (γ ,0) = ∑n

i=1 Q[g−1{∑�∈Î1
γ�0Ti� + ∑

�∈Î1
α�,−0(Xi )Ti� +∑

�/∈Î1
α�(Xi)Ti�}, Yi], where γ ,0 = (γ �0, � ∈ Î1) and α�,−0(Xi) = ∑d

k=1 α�k(Xik).

3.3. Initial estimator. The oracle estimator is infeasible because it assumes
knowledge of the other functions. In order to obtain the two-step estimators
of α�1(x1) for � ∈ Î1, we first need initial estimators for α�0 and α�k(xk) for
k ≥ 2 and � ∈ Î1, denoted as α̂ini

�0 = γ̂ ini
�0 and α̂ini

�k (xk) = B ini
k (xk)

Tγ̂ ini
�k , where

B ini
k (xk) = {B ini

j,k(xk) : 1 ≤ j ≤ J ini
n }T and B ini

j,k(xk) are B-spline functions with the

number of interior knots N ini
n and J ini

n = N ini
n + q . Rates of increase for J ini

n are
described in Assumptions 3 and 4 below. We need an undersmoothed procedure in
the first step, so that the approximation bias can be reduced, and the difference be-
tween the two-step and oracle estimators is asymptotically negligible. We obtain
γ̂ ini

Î1
= {(γ̂ ini

� )T : � ∈ Î1}T, where γ̂ ini
� = {γ̂ ini

�0 , (γ̂ ini
�k )T}T, by minimizing the neg-

ative quasi-likelihood
∑n

i=1 Q[g−1{∑�∈Î1
B(Xi)

Tγ �T�}, Yi]. The adaptive group
Lasso penalized estimator γ̂ Î1

= {(γ̂ �)
T : � ∈ Î1}T obtained in Section 2 can also

be used as the initial estimator. We, however, refit the model with the selected vari-
ables and obtain the initial estimator γ̂ ini

Î1
in order to improve estimation accuracy

in high-dimensional data settings.

3.4. Final estimator. In the second step, we construct the two-step estima-
tor of α�1 for � ∈ Î1. We replace α�0 and α�k(Xk) by the initial estimators α̂ini

�0
and α̂ini

�k (Xk) for � ∈ Î1 and k ≥ 2 and replace α�(X) for � /∈ Î1 by α̂�(X) = 0.
Let α̂ini

�,−1(Xi) = α̂ini
�0 + ∑

k≥2 α̂ini
�k (Xik). Denote the two-step spline estimator of

α�1(x1) as α̂S
�1(x1) = BS

1 (x1)
Tγ̂ S

�1 with γ̂ S
,1 = {(γ̂ S

�1)
T, � ∈ Î1}T minimizing

LS
n (γ ,1) =

n∑
i=1

Q

[
g−1

{∑
�∈Î1

BS
1 (Xi1)

Tγ �1Ti�

(11)

+ ∑
�∈Î1

α̂ini
�,−1(Xi )Ti� + ∑

�/∈Î1

α̂�(Xi )Ti�

}
, Yi

]
.
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Then the two-step of α�0, denoted as α̂S
�0 = γ̂ S

�0, is obtained in the same way as α̂OR
�0

by replacing α�,0(Xi ) with α̂ini
�,0(Xi) = ∑d

k=1 α̂ini
�k (Xik) for � ∈ Î1 and replacing

α�(Xi) with α̂�(Xi ) = 0 for � /∈ Î1. Let α̂S
0 = {α̂S

�0, � ∈ Î1}T.

3.5. Asymptotic normality and uniform oracle efficiency. We now establish
the asymptotic normality and uniform oracle efficiency for the oracle and final
estimators. Let Zij�,1 = BS

j,1(Xi1)Ti� and Zi,1 = (Zij�,1,1 ≤ j ≤ J S
n , � ∈ Î1)

T. Let

s∗ be the number of elements in Î1. By Theorem 1, P(s∗ = s) → 1. For simplicity
of notation, denote σ 2

i = σ 2(Xi ,Ti ) and ηi = η(Xi ,Ti). Define s∗ × s∗JS
n matrix

BS(x1) as⎡⎢⎢⎣
BS

1,1(x1) · · · BS
JS
n ,1

(x1) 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 BS
1,1(x1) · · · BS

JS
n ,1

(x1)

⎤⎥⎥⎦ .

To establish the asymptotic distribution of the two-step estimator, in addition to
Assumptions 1 and 2 given in Section 2, we make the following two assumptions
on the number of basis functions JS

n and J ini
n :

ASSUMPTION 3. (i) s∗(JS
n )2{n log(n)}−1 = o(1) and s∗(JS

n )−r = o(1), and
(ii) n(logn)−1(JS

n J ini
n )−1 → ∞, as n → ∞.

ASSUMPTION 4. (n/JS
n )1/2(J ini

n )−r → 0, as n → ∞.

First we describe the asymptotic normality of the oracle estimator α̂OR
�1 (x1) of

α�1(x1). Let α̂OR
1 (x1) = {α̂OR

�1 (x1), � ∈ Î1}T. Let b1(x1) = E{α̂OR
1 (x1)|X,T} and

b�1(x1) = E{α̂OR
�1 (x1)|X,T}, for � ∈ Î1, where (X,T) = (Xi ,Ti)

n
i=1.

THEOREM 2. Under conditions (C1)–(C5) and Assumption 3(i), for any vec-
tor a ∈ Rs∗

with ‖a‖2 = 1, for any x1 ∈ [0,1], aTσ−1
n (x1){α̂OR

1 (x1) − b1(x1)} →
N(0,1), where

σ 2
n (x1) = BS(x1)

[
n∑

i=1

Zi,1Z
T
i,1

{
ġ−1(ηi)

}2
/

σ 2
i

]−1

BS(x1)
T,(12)

where ġ−1(ηi) is the first-order derivative of g−1(ηi) with respect to ηi , and∑
�∈Î1

∥∥α̂OR
�1 − b�1

∥∥2 = Op

(
s∗JS

n n−1)
,

∑
�∈I1

‖b�1 − α�1‖2 = Op

{(
s∗)2(

JS
n

)−2r}
.

Thus for � ∈ Î1, σ−1
n1 (x1){α̂OR

�1 (x1) − b�1(x1)} → N(0,1), where

σ 2
n1(x1) = eT

� σ 2
n (x1)e�,(13)

and e� is the s∗-dimensional vector with the �th element 1 and other elements 0,
and ‖α̂OR

0 − α0‖2 = Op(
√

s∗/n).
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The next result shows the uniform oracle efficiency of the two-step estimator
that the difference between the two-step estimator α̂S

�1(x1) and oracle estimator
α̂OR

�1 (x1) is uniformly asymptotically negligible, and thus the two-step estimator
is oracle in the sense that it has the same asymptotic distribution as the oracle
estimator. Let α̂S

1 (x1) = {α̂S
�1(x1), � ∈ Î1}T.

THEOREM 3. Under conditions (C1)–(C5) in the Appendix and Assump-
tions 1–3,

sup
x1∈[0,1]

∥∥α̂S
1 (x1) − α̂OR

1 (x1)
∥∥∞ = Op

{(
n−1 logn

)1/2 + (
J ini

n

)−r}
,

‖α̂S
0 − α̂OR

0 ‖2 = op(n−1/2), and furthermore under Assumption 4,

sup
x1∈[0,1]

∣∣aTσ−1
n (x1)

{
α̂S

1 (x1) − α̂OR
1 (x1)

}∣∣ = op(1),

for any vector a ∈ Rs∗
with ‖a‖2 = 1 and σ 2

n (x1) given in (12). Hence, for any
x1 ∈ [0,1], aTσ−1

n (x1){α̂S
1 (x1) − b1(x1)} → N(0,1).

REMARK 2. Under Assumptions 1 and 2, by Theorem 1, with probability
approaching 1, s∗ = s, which is a fixed number. In the second step, by let-
ting JS

n � n1/(2r+1), the nonparametric functions α�1 for � ∈ Î1 are approxi-
mated by spline functions with the optimal number of knots. By the condi-
tions that (n/JS

n )(J ini
n )−1 → 0 and n(logn)−1(JS

n J ini
n )−1 → ∞ given in As-

sumptions 3 and 4, J ini
n needs to satisfy n1/(2r+1) � J ini

n � n2r/(2r+1)(logn)−1

where r ≥ 1. By using the adaptive group lasso estimator as the initial estima-
tor, Assumption 1 requires that J ini

n � {n log(n)}1/2. Hence n1/(2r+1) � J ini
n �

{n log(n)}1/2. We therefore can let J ini
n � n(1+ϑ)/(2r+1), where ϑ is any small

positive number close to 0. This increase in the number of basis functions en-
sures undersmoothing in the first step in order that the uniform difference be-
tween the two-step and the oracle estimators become asymptotically negligi-
ble. Based on Assumptions 1 and 2, the tuning parameter λn needs to satisfy

n−1/2(J ini
n )1/2

√
log(pJ ini

n ){min�∈I2(wn�)}−1 � λn � 1.

REMARK 3. The number of interior knots has the same order requirement
as the number of basis functions. In the first step, with the undersmoothing re-
quirement as discussed in Remark 2, we let the number of interior knots N ini =
�cn(1+0.01)/(2q+1)�, where c is a constant, by assuming that r = q . In the simula-
tions, we let c = 2. In the second-step estimation, we use BIC to select the number
of knots NS , so the optimal NS ranges in [�n1/(2q+1)�, �2n1/(2q+1)�] by minimiz-
ing BIC: BIC(NS) = 2LS

n (γ̂ S
,1) + d(NS + q)log(n).
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3.6. Simultaneous confidence bands. In this section, we propose a SCB for
α�1(x1) by studying the asymptotic behavior of the maximum of the normal-
ized deviation of the spline functional estimate. To construct asymptotic SCBs for
α�1(x1) over the interval x1 ∈ [0,1] with confidence level 100(1−α)%, α ∈ (0,1),
we need to find two functions l�n(x1) and u�n(x1) such that

lim
n→∞P

(
l�n(x1) ≤ α�1(x1) ≤ u�n(x1) for all x1 ∈ [0,1]) = 1 − α.(14)

In practice, we consider a variant of (14) and construct SCBs over a subset Sn,1 of
[0,1] with Sn,1 becoming denser as n → ∞. We, therefore, partition [0,1] accord-
ing to Ln equally spaced intervals based on 0 < ξ0 < ξ1 < · · · < ξLn < ξLn+1 = 1
where Ln → ∞ as n → ∞. Let Sn,1 = (ξ0, . . . , ξLn). Define dLn(α) = 1 −
{2 log(Ln + 1)}−1[log{−(1/2) log(1 − α)} + (1/2){log log(Ln + 1) + log(4π)}],
and QLn(α) = {2 log(Ln + 1)}1/2dLn(α).

THEOREM 4. Under conditions (C1)–(C5) in the Appendix, and Ln � JS
n �

n1/(2r+1) and n1/(2r+1) � J ini
n � n2r/(2r+1){log(n)}−1, we have

lim
n→∞P

{
sup

x1∈Sn,1

∣∣σ−1
n1 (x1)

{
α̂S

�1(x1) − α�1(x1)
}∣∣ ≤ QLn(α)

}
= 1 − α,

and thus an asymptotic 100(1 − α)% confidence band for α�1(x1) over x1 ∈ Sn,1
is

α̂S
�1(x1) ± σn1(x1)QLn(α).(15)

REMARK 4. Compared to the pointwise confidence intervals with width
2Z1−α/2σn(x1), the width of the confidence bands (15) is inflated by a rate
{2 log(Ln+1)}1/2dLn(α)/Z1−α/2, where Z1−α/2 is the cut-off point of the 100(1−
α)th percentile of the standard normal.

3.7. Bootstrap smoothing for calculating the standard error. Theorem 4 es-
tablishes a thresholding value QLn(α) for the SCB. One critical question is how to
estimate the standard deviation σn1(x1) in order to construct the SCB. We can use
a sample estimate of σn1(x1) according to the asymptotic formula given in (12),
which may have approximation error and thus lead to inaccurate results for infer-
ence. The bootstrap estimate of the standard deviation provides an alternative way.
We here propose a bootstrap smoothed confidence band by adopting the nonpara-
metric bootstrap smoothing idea from Efron (2014), which can eliminates discon-
tinuities in jumpy estimates. The procedure is described as follows.

Let D = {D1, . . . ,Dn} be the data we have, where Di = {Yi,Xi , (Ti�, � ∈
Î1)}. Denote D∗ = {D∗

1, . . . ,D∗
n} as a nonparametric bootstrap sample from

{D1, . . . ,Dn}, and D∗
(j) = {D∗

(j)1, . . . ,D∗
(j)n} as the j th bootstrap sample in B

draws. Let α̂∗S
�1,(j)(x1) be the two-step estimator of α�1(x1) by using the data
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D∗
(j). We first present an empirical standard deviation by the traditional resam-

pling method which is given as

σ̂�1,B(x1) =
[

B∑
j=1

{
α̂∗S

�1,(j)(x1) − α̂∗S
�1,·(x1)

}2
/

(B − 1)

]1/2

,(16)

where α̂∗S
�1,·(x1) = ∑B

j=1 α̂∗S
�1,(j)(x1)/B . Then a 100(1 − α)% unsmoothed boot-

strap SCB for α�1(x1) over x1 ∈ Sn,1 is given as

α̂S
�1(x1) ± σ̂�1,B(x1)QLn(α).(17)

Another choice is the smoothed bootstrap SCB which eliminates discontinuities in
the estimates [Efron (2014)]. Let

α̃S
�1(x1) =

B∑
j=1

α̂∗S
�1,(j)(x1)/B

be the smoothed estimate of α�1(x1) obtained by averaging over the bootstrap
replications. Let C∗

(j)i = #{D∗
(j)i′ = Di} be the number of elements in D∗

(j)i′ equal-
ing Di .

PROPOSITION 1. At each point x1 ∈ Sn,1, the nonparametric delta-method
estimate of the standard deviation for the smoothed bootstrap statistic α̃S

�1(x1) is
σ̃�1(x1) = {∑n

i=1 cov2
i (x1)}1/2, where covi (x1) = cov∗{C∗

(j)i , α̂
∗S
�1,(j)(x1)} which is

the bootstrap covariance between C∗
(j)i and α̂∗S

�1,(j)(x1).

The proof of Proposition 1 essentially follows the same arguments as the proof
for Theorem 1 in Efron (2014). Based on Proposition 1, to construct the smoothed
bootstrap SCB, we use the nonparametric estimate of the standard deviation given
as

σ̃�1,B(x1) =
{

n∑
i=1

ĉov2
i,B(x1)

}1/2

,(18)

where

ĉov�i,B(x1) =
B∑

j=1

(
C∗

(j)i − C∗·i
)(

α̂∗S
�1,(j)(x1) − α̂∗S

�1,·(x1)
)
/B

with C∗·i = ∑B
j=1 C∗

(j)i/B . The 100(1 − α)% smoothed bootstrap SCB for α�1(x1)

over x1 ∈ Sn,1 is given as

α̃S
�1(x1) ± σ̃�1,B(x1)QLn(α).(19)
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4. A simulation study. In this section, we present a simulation study to eval-
uate the finite sample performance of our proposed penalized estimation procedure
and the simultaneous confidence bands. More numerical studies are located in the
supplementary materials [Ma et al. (2015)].

EXAMPLE 1. In this example, we use 1286 SNPs located on the sixth chro-
mosome from the Framingham Heart Study to simulate the binary response from
the logistic model

logit
{
P(Yi = 1|Xi ,Ti)

} =
p∑

�=1

α�(Xi)Ti� =
p∑

�=1

{
α�0 +

2∑
k=1

α�k(Xik)

}
Ti�,(20)

with the four SNPs ss66063578, ss66236230, ss66194604 and ss66533844 se-
lected from the real data analysis in Section 5 as important covariates and the
other SNPs as unimportant covariates, so that s = 4 (the number of impor-
tant covariates), p = 1286 and the sample size n = 300. The three possible al-
lele combinations are coded as 1, 0 and −1 for each SNP. The covariates Xik ,
k = 1,2, are simulated environmental effects, which are generated from inde-
pendent uniform distributions on [0,1]. We generate the coefficient functions as
α10 = 0.5, α11(x1) = 4 cos(2πx1), α12(x2) = 5{(2x2 − 1)2 − 1/3}, α20 = 0.5,
α21(x1) = 6x1 − 3, α22(x2) = 4{sin(2πx2) + cos(2πx2)}, α30 = 0.5, α31(x1) =
4 sin(2πx1), α32(x2) = 6x2 − 3, α40 = 0.5, α41(x1) = 4 cos(2πx1), α42(x2) =
5{(2x2 − 1)2 − 1/3} and α�(Xi ) = 0 for l = 5, . . . ,1286. We conducted 500 repli-
cations for each simulation. We fit the data with the GACM (20) by using the
adaptive group lasso (AGL) and group lasso (GL). In the literature, the general-
ized varying coefficient model [GVCM; Lian (2012)], which considers one in-
dex variable in the coefficient function for each predictor Ti�, has been widely
used to study nonlinear interactions. To apply the GVCM method [Lian (2012)]
in this setting, we first perform principal component analysis (PCA) on Xi and
then use the first principal component as the index variable in the GVCM. Then
we apply the AGL and GL methods to the GVCM: logit{P(Yi = 1|Xi ,Ti)} =∑p

�=1 α�(Ui)Ti�, where Ui is the first principal component obtained by PCA on
Xi . Moreover, we also fit the data with the parametric logistic regression by as-
suming linear coefficient functions (3) with the AGL method. We also compare
our proposed method with the conventional screening method by parametric logis-
tic regression for Genome-Wide Association Studies [GWAS; Murcray, Lewinger
and Gauderman (2009)]. In the screening method, we fit a logistic model for
each SNP: logit{P(Yi = 1|Xi , Ti�)} = α0 + αTXi + β�Ti� + ∑2

k=1 β�kXikTi�, for
� = 1, . . . ,1286. Then we conduct a likelihood ratio test for the genetic and in-
teraction effects of H0 : β� = β�1 = β�2 = β�3 = 0. Let α0 = 0.05 be the overall
type I error for the study and M = 1286 be the number of SNPs in this study.
We apply the multiple testing correction procedure for GWAS with H0 rejected
when the p-value < α0/Meff, where Meff is the Cheverud–Nyholt estimate of
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TABLE 1
Variable selection and estimation results by the adaptive group lasso and the group lasso with the
GACM and GVCM, respectively, and parametric logistic regression with adaptive group lasso and
screening methods based on 500 replications. The columns of C, O and I show the percentage of
correct-fitting, over-fitting and incorrect-fitting. The columns TP, FP and MR show true positives,

false positives and model errors, respectively

C O I TP FP MR

GACM AGL 0.410 0.460 0.130 3.860 0.870 0.059
GL 0.140 0.764 0.096 3.904 2.540 0.083

GVCM AGL 0.030 0.000 0.970 1.636 5.685 0.142
GL 0.060 0.000 0.940 2.076 20.670 0.120

Logistic regression AGL 0.000 0.000 1.000 1.872 1.174 0.159
Screening 0.000 0.000 1.000 1.056 0.786 0.141

the effective number of tests [Cheverud (2001), Nyholt (2004)] calculated by
Meff = 1 + M−1 ∑M

j=1
∑M

k=1(1 − r2
jk) and rjk are the correlation coefficients of

the SNPs, and we obtain Meff = 1275.65.
Table 1 presents the percentages of correct-fitting (C) (exactly the important

covariates are selected), over-fitting (O) (both the important covariates and some
unimportant covariates are selected) and incorrect-fitting (I) (some of the impor-
tant covariates are not selected), the average true positives (TP), that is, the av-
erage number of selected covariates among the important covariates, the average
false positives (FP), that is, the average number of selected covariates among the
unimportant covariates, and the average model errors (MR), the latter defined as∑n

i=1{μ̂i(Xi ,Ti) − μi(Xi ,Ti)}2/n, where μ̂i(Xi ,Ti) and μi(Xi ,Ti ) are the esti-
mated and true conditional means for Yi , respectively. We see that by fitting the
proposed GACM, the GL method has larger percentage of over-fitting as well
as larger average false positives than the AGL methods. The AGL improves the
correct-fitting percentage by 26%. As a result, the AGL reduces the model fitting
error by (0.083 − 0.059)/0.059 = 40.7% compared to the GL method. Moreover,
both the logistic model and the GVCM fail to identify those important covari-
ates with incorrect-fitting percentage close to or being 1. Furthermore, by using
the screening method with logistic regression, the average true positive is 1.056,
which is much less than 4 (the number of those important SNPs). This further il-
lustrates that the traditional screening method is not an effective tool to identify
important genetic factors in this context. In addition, we observe that the results
for the AGL method in Table 1 are comparable to the results in Table S.1 of Ex-
ample 2 (in the supplementary materials) at p = 1000 with the simulated SNPs in
terms of having similar correct-fitting percentages and MR values.

Next, we investigate the empirical coverage rates of the unsmoothed and
smoothed SCBs given in (17) and (19). To calculate the unsmoothed and smoothed
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TABLE 2
The empirical coverage rates (cov) and the sample average of median and mean of the standard

deviations (sd.median and sd.mean) for the unsmoothed SCB (17) and smoothed SCB (19) for the
coefficient functions α�1(x1) for � = 1,2,3,4

Unsmoothed bootstrap Smoothed bootstrap

cov sd.median sd.mean cov sd.median sd.mean

α11 0.610 0.689 0.809 0.818 0.735 0.982
α21 0.628 0.563 0.725 0.846 0.666 0.932
α31 0.636 0.736 0.832 0.869 0.837 1.053
α41 0.646 0.768 0.843 0.882 0.891 1.064

bootstrap standard deviations (16) and (18), we use B = 500 bootstrap replications.
The confidence bands are constructed at Ln = 20 equally spaced points. At 95%
confidence level, Table 2 reports the empirical coverage rates (cov) and the sam-
ple averages of median and mean standard deviations (sd.median and sd.mean),
respectively, for the unsmoothed SCB (17) and smoothed SCB (19) for coefficient
functions α�1(x1), � = 1,2,3,4. We see that the smoothed bootstrap method leads
to better performance, having empirical coverage rates closer to the nominal con-
fidence level 0.95.

5. Data application. We illustrate our method via analysis of the Framing-
ham Heart Study [Dawber, Meadors and Moore (1951)] to investigate the effects
of G × E interactions on obesity. People are defined as obese when their body
mass index (BMI) is 30 or greater: this is the definition of being obese made by the
U.S. Centers for Disease Control and Prevention; see http://www.cdc.gov/obesity/
adult/defining.html. We defined the response variable to be Y = 1 for BMI ≥ 30;
and Y = 0 for BMI < 30. We use X1 = sleeping hours per day; X2 = activity hours
per day; and X3 = diastolic blood pressure as the environmental factors, and use
single nucleotide polymorphisms (SNPs) located in the sixth chromosome as the
genetic factors. The three possible allele combinations are coded as 1, 0 and −1.
As in the simulation, we thus are fitting a multiplicative risk model in the SNPs.
For details on genotyping, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?studyid=phs000007.v3.p2. A total of 1286 SNPs remain in our analysis
after eliminating SNPs with minor allele frequency <0.05, those with departure
from Hardy–Weinberg equilibrium and those having correlation coefficient with
the response between −0.1 and 0.1. We have n = 300 individuals left in our study
after deleting observations with missing values.

http://www.cdc.gov/obesity/adult/defining.html
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?studyid=phs000007.v3.p2
http://www.cdc.gov/obesity/adult/defining.html
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?studyid=phs000007.v3.p2
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To see possible nonlinear main effects of the environmental factors, we first fit
a generalized additive model by using X1, X2 and X3 as predictors such that

E(Yi |Xi ,Ti ) = g−1{
η(Xi)

}
with η(Xi) = m0 +

3∑
k=1

mk(Xik).(21)

Figure S.1 given in the supplementary material [Ma et al. (2015)] depicts the plots
of m̂k(·) for k = 1,2,3 by one-step cubic spline estimation. Clearly the estimate
of each nonparametric function has a nonlinear pattern. We refer to Section S.2 for
the detailed description of this figure. Based on the plots shown in Figure S.1, we
fit the GACM model

η(Xi ,Ti) =
1287∑
�=1

{
α�0 +

3∑
k=1

α�k(Xik)

}
Ti�,(22)

where Ti = (Ti1, Ti2, . . . , Ti1287)
T with Ti1 = 1, and Ti� are the SNP covariates for

� = 2, . . . ,1287. The nonparametric function α�k(·) is estimated by cubic splines,
and the number of interior knots for each step is selected based on the criterion
described in Section 2.4. We select variables in model (22) by the proposed adap-
tive group lasso (AGL) and the group lasso (GL). To compare the proposed model
with linear models, we perform the group lasso by assuming linear interaction ef-
fects (Linear) such that α�(Xi) = α�0 + ∑3

k=1 β�kXik , and we also perform the
lasso by assuming no interaction effects (No interaction) such that α�(Xi) = α�0.
We also apply the screening method with parametric logistic regression (Screen-
ing) as described in Example 2. Table 3 reports the variable selection results in
these five scenarios. After model selection, we calculate the estimated leave-one-
out cross-validation prediction error (CVPE) for the model with the selected vari-
ables as shown in the last row of Table 3. Among the selected SNPs by the AGL
method, two SNPs, rs4714924 and rs6543930, have been scientifically confirmed
by Randall et al. (2013) to have strong associations with obesity. Moreover, com-
pared to the linear, no interaction and screening methods, our proposed AGL with
GACM method enables us to identify more genetic factors, which may be im-
portant to the response but missed out by other methods. As a result, it has the
smallest CVPE (0.078), so that it significantly improves model prediction com-
pared to other methods. We also see that the logistic model that completely ignores
interactions has the largest CVPE (0.152). The screening method has the second
largest CVPE (0.149), which is larger than that of the penalization method (0.124)
obtained by fitting the same logistic regression model but including interaction
considered. This result demonstrates that the screening method is not as effective
as the penalization method for analysis of this data set, a result which also agrees
with our simulations.

Next we fit the final GACM selected variables from the AGL procedure as

η(Xi ,Ti) =
10∑

�=1

{
α�0 +

3∑
k=1

α�k(Xik)

}
Ti�.(23)
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TABLE 3
Variable selection results for the group lasso (GL) and the adaptive group lasso (AGL) in

model (22), the group lasso by assuming linear interaction effects (linear), the lasso by assuming no
interaction effects (no interaction) and the screening method (screening). The symbol

√
indicates

that the SNP was selected into the model. The last row shows the cross validation prediction errors
(CVPE)

SNPs GL AGL Linear No interaction Screening

rs9296244
√ √

rs6910353
√ √

rs3130813
√ √

rs9353447
√ √

rs4714924
√ √ √

rs242263
√ √ √ √

rs282123
√

rs282128
√ √

rs6929006
√

rs9353711
√

rs12199154
√ √

rs2277114
√

rs749517
√

rs729888
√

rs203139
√

rs6914589
√ √

rs6543930
√ √

CVPE 0.099 0.078 0.124 0.152 0.149

To illustrate the main effects of the environmental factors, Figure 2 plots the
smoothed two-step estimated functions α̃S

1k(·) of the functions αS
1k(·), for k =

1,2,3, and the associated 95% smoothed SCBs (upper and lower solid lines). The
plots of the functional estimates have the same nonlinear change patterns as the
corresponding plots in Figure S.1, although because of the addition of the SCBs,
the scale of the plot has changed.

To illustrate the effects of the genetic factors changing with the environmen-
tal factors, in Figure 3 we plot the smoothed two-step estimated functions α̃S

6k(·)
and the associated 95% smoothed SCBs of the coefficient functions αS

6k(·) for the
SNP rs242263. To further demonstrate how the probability of developing obesity
changes with the environmental factors for each category of SNP rs242263, Fig-
ure 4 plots the estimated conditional probability of obesity against each environ-
mental factor by letting Ti� = 0 for � = 6. Letting A be the minor allele, the curves
are for aa (solid line), Aa (dashed line) and AA (dotted line). Figure 3 indicates
different changing patterns of the interaction effects under different environments.
For example, sleeping hours seem to have an overall more significant interaction
effect with this particular SNP than the other two variables. The effect of this SNP
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FIG. 2. Plots of the smoothed two-step estimated functions α̃S1k(·) for k = 1,2,3 and the associated
95% SCBs based on model (23).

changes from positive to negative and then to positive again as the sleeping hours
increase. The coefficient functions of the SNP have an increasing pattern along
with the activity hours and diastolic blood pressure, respectively. From Figure 4,
we observe that there are stronger differences among the levels AA, Aa, and aa of
SNP rs242263 for both large and small values of the environmental factors.There
are other interesting results worth further study. For example, in the 2–6 hours per
day sleeping range, the AA group (dotted lines) have much higher rates of obesity
than the aa group (solid line), but the opposite occurs in the 6–9 hour range. For
those with low amounts of activity per day, again the AA group is more obese
than the aa group, while when activity increases, the AA group is less obese than
the aa group. A similar noticeable difference occurs between the <60 diastolic
blood pressure group, those who are hypotensive, and the >90 group, those who
are hypertensive, although there are few subjects in the former group.

6. Discussions. The generalized additive coefficient model (GACM) pro-
posed by Xue and Yang (2006) and Xue and Liang (2010) has been demonstrated
to be a powerful tool for studying nonlinear interaction effects of variables. To pro-
mote the use of the GACM in modern data applications such as gene-environment
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FIG. 3. Plots of the smoothed two-step estimated functions α̃S5k(·) for k = 1,2,3 and the associated
95% SCBs based on model (23).

(G × E) interaction effects in GWAS, we have proposed estimation and inference
procedures for the GACM when the dimension of the variables is high. Specif-
ically, we have devised a groupwise penalization method in the GACM for si-
multaneous model selection and estimation. We showed by numerical studies that
we can effectively identify important genetic factors by using the proposed non-
parametric model while traditional generalized parametric models such as logis-
tic regression model fails to do so when nonlinear interactions exist. Moreover,
by comparing with the conventional screening method with logistic regression as
commonly used in the GWAS community, our proposed groupwise penalization
method with the GACM has been demonstrated to be more effective for variable
selection and model estimation. After identifying those important covariates, we
have further constructed simultaneous confidence bands for the nonzero coefficient
functions based on a refined two-step estimator. We estimate the standard devia-
tion of the functional estimator by a smoothed bootstrap method as proposed in
Efron (2014). The method was shown to have good numerical performance by re-
ducing variability as well as improving the empirical coverage rate of the proposed
simultaneous confidence bands. Our methods can be extended to longitudinal data
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FIG. 4. Plots of the estimated conditional probability of obesity against each environmental factor
by letting Ti� = 0 for � = 5. With A being the minor allele, the curves are aa (solid line), Aa (dashed
line) and AA (dotted line), based on model (23).

settings through marginal models or mixed-effects models. More work, however,
is needed to understand the properties of the estimators in such new settings. More-
over, extending this work to the setting with the dimensions for both genetic and
environmental factors growing with the sample size can be a future project to be
considered. Some associated theoretical properties with respect to model selection
and estimation as well as inference need to be carefully investigated.

APPENDIX

Denote the space of the qth order smooth functions as C(q)([0,1]) = {φ|φ(q) ∈
C[0,1]}. For any s × s symmetric matrix A, denote its Lq norm as ‖A‖q =
maxς∈Rs,‖ς‖2=1 ‖Aς‖q . Let ‖A‖∞ = max1≤i≤s

∑s
j=1 |aij |. For a vector a, let

‖a‖∞ = max1≤i≤s |ai |.
Let C0,1(Xw) be the space of Lipschitz continuous functions on Xw , that is,

C0,1(Xw) =
{
ϕ : ‖ϕ‖0,1 = sup

w =w′,w,w′∈Xw

|ϕ(w) − ϕ(w′)|
|w − w′| < +∞

}
,
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in which ‖ϕ‖0,1 is the C0,1-norm of ϕ. Denote qj (η, y) = ∂jQ{g−1(η), y}/∂ηj ,
so that

q1(η, y) = ∂

∂η
Q

{
g−1(η), y

} = −{
y − g−1(η)

}
ρ1(η),

q2(η, y) = ∂2

∂η2 Q
{
g−1(η), y

} = ρ2(η) − {
y − g−1(η)

}
ρ′

1(η),

where ρj (η) = {ġ−1(η)}j /V {g−1(η)}.

A.1. Assumptions. Throughout the paper, we assume the following regular-
ity conditions:

(C1) The joint density of X, denoted by f (x), is absolutely continuous,
and there exist constants 0 < cf ≤ Cf < ∞, such that cf ≤minx∈[0,1]d f (x) ≤
maxx∈[0,1]d f (x) ≤ Cf .

(C2) The function V is twice continuously differentiable, and the link function
g is three times continuously differentiable. The function q2(η, y) < 0 for η ∈ R

and y in the range of the response variable.
(C3) For 1 ≤ � ≤ p, 1 ≤ k ≤ d , α(r−1)

�k (xk) ∈ C0,1[0,1], for given integer r ≥ 1.
The spline order satisfies q ≥ r .

(C4) Let εi = Yi − μ(Xi ,Ti),1 ≤ i ≤ n. The random variables ε1, . . . , εn are
i.i.d. with E(εi) = 0 and var(εi |Xi ,Ti) = σ 2(Xi ,Ti). Furthermore, their tail prob-
abilities satisfy P(|εi | > x) < K exp(−Cx2), i = 1, . . . , n, for all x ≥ 0 and for
some positive constants C and K .

(C5) The eigenvalues of E(TI1TT
I1

|X = x), where TI1 = (T�, � ∈ I1)
T, are uni-

formly bounded away from 0 and ∞ for all x ∈ [0,1]d . There exist constants
0 < c1 < C1 < ∞, such that c1 ≤ E(T 2

� |X = x) ≤ C1, for all x ∈ [0,1]d , � ∈ I2.

Conditions (C1)–(C5) are standard conditions for nonparametric estimation.
Condition (C1) is the same as condition (C1) in Xue and Yang (2006) and condition
(C5) in Xue and Liang (2010). The first condition in (C2) gives the assumptions
on V and the link function g, which can be found in condition (E) of Lam and Fan
(2008). The second condition in (C2) guarantees that the negative quasi-likelihood
function Q{g−1(η), y} is convex in η ∈ R, which is also given in condition (D)
of Lam and Fan (2008) and (a) of condition 1 in Carroll et al. (1997). Condition
(C3) is typical for polynomial spline smoothing; see the same condition given in
Section 5.2 of Huang (2003). Condition (C4) is the same as assumption (A2) given
in Huang, Horowitz and Wei (2010). Condition (C5) is given in condition (C5) of
Xue and Liang (2010) and condition (A5) in Ma and Yang (2011b).

A.2. Preliminary lemmas. Define α0
�(x) = ∑d

k=1 α0
�k(xk) = B(x)Tγ �, where

α0
�k(xk) is defined in (6). Let γ I1

= (γ � : � ∈ I1)
T. To prove Theorem 1, we next
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define the oracle estimator of γ I1
by minimizing the penalized negative quasi-

likelihood with all irrelevant predictors eliminated as such

Ln(γ I1
) =

n∑
i=1

Q

[
g−1

{∑
�∈I1

B(Xi)
Tγ �T�

}
, Yi

]
+ nλn

∑
�∈I1

wn�‖γ �‖2,(24)

so that γ̂ 0
I1

= (γ̂ 0
� : � ∈ I1)

T = arg minγ I1
Ln(γ I1

). Define γ̂ 0
I2

= (γ̂ 0
� : � ∈ I2)

T

with γ̂ 0
� ≡ 0dJn+1 for � ∈ I2, where 0dJn+1 is a (dJn + 1)-dimensional zero vector.

We next present several lemmas, whose detailed proofs are given in the online
supplementary materials [Ma et al. (2015)]. Lemma A.1 is used for the proof of
Theorem 1, while Lemma A.2 is needed in the proof of Theorem 3.

LEMMA A.1. Under the conditions of Theorem 1, one has∥∥γ̂ 0
I1

− γ I1

∥∥
2 = Op

(
λn‖wn,I1‖ + n−1/2J 1/2

n + J−r
n

)
,(25)

and as n → ∞,

P
{
γ̂ = (

γ̂
0T
I1

, γ̂ 0T
I2

)T} → 1.(26)

LEMMA A.2. Under conditions (C1)–(C5) and Assumptions 1–3,∥∥γ̂ S
,1 − γ̂ OR

,1

∥∥∞ = Op

(√
logn/

(
JS

n n
) + (

JS
n

)−1/2(
J ini

n

)−r
)
.(27)

A.3. Proof of Theorem 1. By (25) and (26),∑
�∈I1

‖α̂� − α�‖ � ‖γ̂ I1
− γ I1

‖2 = Op

(
λn‖wn,I1‖ + n−1/2J 1/2

n + J−r
n

)
,

P
(‖α̂�‖ > 0, � ∈ I1 and ‖α̂�‖ = 0, � ∈ I2

) → 1.

A.4. Proof of Theorem 2. Let γ ,1 = (γ �1, � ∈ Î1)
T, where γ �1 is defined

in (7). By Taylor’s expansion, from (10), one has

γ̂ OR
,1 − γ ,1 =

[
n∑

i=1

Zi,1Z
T
i,1

{
ġ−1(

η∗
i

)}2
/

σ 2
i

]−1

×
[

n∑
i=1

Zi,1
{
Yi − g−1(

η0
i

)}(
ġ−1(

η0
i

)
/σ 2

i

)]
,

where η0
i = ∑p

�=1{α�0 + ∑d
k=2 α�k(Xik)}Ti� + ∑p

�=1 BS(x1)
Tγ �1Ti� and

η∗
i =

p∑
�=1

{
α�0 +

d∑
k=2

α�k(Xik)

}
Ti� +

p∑
�=1

BS(x1)
Tγ ∗

�1Ti�,
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where γ ∗
,1 = (γ ∗

�1, � ∈ Î1)
T ∈ (γ ,1, γ̂

OR
,1 ). Following similar reasoning as the

proofs for (25), we have ‖γ̂ OR
,1 −γ ,1‖2 = op(1). Then γ̂ OR

,1 −γ ,1 = (γ̂ OR
,1e + γ̂ OR

,1μ)+
op(1), where

γ̂ OR
,1e =

[
n∑

i=1

Zi,1Z
T
i,1

{
ġ−1(ηi)

}2
/

σ 2
i

]−1[
n∑

i=1

Zi,1εi

{
ġ−1(ηi)/σ

2
i

}]
,

γ̂ OR
,1μ =

[
n∑

i=1

Zi,1Z
T
i,1

{
ġ−1(ηi)

}2
/

σ 2
i

]−1

(28)

×
[

n∑
i=1

Zi,1
{
g−1(ηi) − g−1(

η0
i

)}{
ġ−1(ηi)/σ

2
i

}]
.

Therefore, var(γ̂ OR
,1e |X,T) = [∑n

i=1 Zi,1Z
T
i,1{ġ−1(ηi)}2/σ 2

i ]−1. By Theorem 5.4.2
of DeVore and Lorentz (1993), for sufficiently large n, there exist constants 0 <

cB ≤ CB < ∞, such that cBIJS
n ×JS

n
≤ E(BS

1 (Xi1)B
S
1 (Xi1)

T) ≤ CBIJS
n ×JS

n
. By

condition (C5), for n large enough, there are constants 0 < CT ,C′ < ∞, such that

E
[
Zi,1Z

T
i,1

{
ġ−1(ηi)

}2
/σ 2

i

]
≤ C′E

[{
BS

1 (Xi1)B
S
1 (Xi1)

T} ⊗ {
E(T�T�′ |X)

}
�,�′∈Î1

]
≤ CCT s∗E

{
BS

1 (Xi1)B
S
1 (Xi1)

T} ⊗ Is∗×s∗ ≤ C′CT CBs∗IJS
n ×JS

n
⊗ Is∗×s∗

= Cs∗IJS
n s∗×JS

n s∗,

where C = C′CT CB . Similarly, we have E[Zi,1Z
T
i,1{ġ−1(ηi)}2/σ 2

i ] ≥
cIJS

n s∗×JS
n s∗ for some constant 0 < c < ∞. Thus, following the same reasoning as

the proof for (S.5) in the supplementary materials [Ma et al. (2015)], we have with
probability 1, for n → ∞,

C−1(
s∗)−1

n−1IJS
n s∗×JS

n s∗ ≤
[

n∑
i=1

Zi,1Z
T
i,1

{
ġ−1(ηi)

}2
/

σ 2
i

]−1

(29)
≤ c−1n−1IJS

n s∗×JS
n s∗ .

By the Lindeberg central limit theorem, it can be proved that

aTσ−1
n (x1)

{
BS(x1)γ̂

OR
,1e

} → N(0,1),(30)

for any a ∈ Rs∗
with ‖a‖2 = 1. Since aTσ−1

n (x1){α̂OR
1 (x1) − b1(x1)} =

aTσ−1
n (x1){BS(x1)γ̂

OR
,1e } + op(1), by (30) and Slutsky’s theorem, we have

aTσ−1
n (x1)

{
α̂OR

1 (x1) − b1(x1)
} → N(0,1).(31)
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By (28) and (29), with probability approaching 1,∑
�∈I1

∥∥α̂OR
�1 − b�1

∥∥2 � ∥∥γ̂ OR
,1e

∥∥2
2

≤ c−2n−2

[
n∑

i=1

εiZ
T
i,1

(
ġ−1(ηi)/σ

2
i

)][
n∑

i=1

Zi,1εi

(
ġ−1(ηi)/σ

2
i

)]

� c−2n−1E
[
ZT

i,1Zi,1
{
ġ−1(ηi)

}2
/σ 2

i

] � s∗JS
n n−1;

∥∥aT(
α̂OR

1 − b1
)∥∥2 ≤ Ca

∥∥γ̂ OR
,1e

∥∥2
2 ≤ Cac

−1n−2

(
n∑

i=1

εiZ
T
i,1

)(
n∑

i=1

Zi,1εi

)

� Cac
−1n−1E

(
ZT

i,1Zi,1
) � s∗JS

n n−1.

Since supx1∈[0,1] |α�1(x1) − BS
1 (x1)

Tγ �1| = O{(JS
n )−r}, it can be proved that

‖aTγ̂ OR
,1μ‖ ≤ ‖γ̂ OR

,1μ‖2 = Op{(s∗)1/2(JS
n )−r}, and ‖aT(b1 − α0

1)‖ � ‖aTγ̂ OR
,1μ2‖ =

Op{(s∗)1/2(JS
n )−r}. Hence∥∥aT(b1 − α1)

∥∥ ≤ ∥∥aT(
b1 − α0

1
)∥∥ + ∥∥aT(

α0
1 − α1

)∥∥ = Op

{
s∗(

JS
n

)−r}
.

By (31), {eT
� σ 2

n (x1)e�}−1/2{α̂OR
�1 (x1) − b�1} → N(0,1), and sup�∈Î1

|α̂OR
�0 − α�0| =

Op(n−1/2) follows from the central limit theorem.

A.5. Proof of Theorem 3. By (27) in Lemma A.2,

sup
x1∈[0,1]

∥∥α̂S
1 (x1) − α̂OR

1 (x1)
∥∥∞ ≤ sup

x1∈[0,1]

JS
n∑

j=1

∣∣BS
j,1(x1)

∣∣∥∥γ̂ S
,1 − γ̂ OR

,1

∥∥∞.

The right-hand side is bounded by Op{(n−1 logn)1/2 + (J ini
n )−r}. ‖α̂S

0 − α̂OR
0 ‖2 =

op(n−1/2) can be proved following the same procedure and thus omitted. By (29),
with probability approaching 1, for large enough n, for any x1 ∈ [0,1], and a ∈ Rs∗

with ‖a‖2 = 1, one has

aTσ 2
n (x1)a ≤ c−1

Z n−1aTBS(x1)B
S(x1)

Ta ≤ c−1JS
n n−1aTa,

aTσ 2
n (x1)a ≥ C−1

Z

(
s∗)−1

n−1aTBS(x1)B
S(x1)

Ta ≥ C−1JS
n

(
s∗)−1

n−1aTa,

where σ 2
n (x1) is defined in (12). Thus

sup
x1∈[0,1]

∣∣aTσ−1
n (x1)

{
α̂S

1 (x1) − α̂OR
1 (x1)

}∣∣
≤ sup

x1∈[0,1]
∥∥σ−1

n (x1)
∥∥

2

∥∥α̂S
1 (x1) − α̂OR

1 (x1)
∥∥

2

= Op

[
s∗{(

logn/JS
n

)1/2 + (
n/JS

n

)1/2(
J ini

n

)−r}] = op(1).
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A.6. Proof of Theorem 4. Using the strong approximation lemma given in
Theorem 2.6.7 of Csörgő and Révész (1981), we can prove by the same procedure
as Lemma A.7 in Ma, Yang and Carroll (2012) that

sup
x1∈[0,1]

∣∣α̂OR
�1 (x1) − b�1(x1) − α̂0

�1,ε(x1)
∣∣ = oa.s.

(
nt )(32)

for some t < −r/(2r + 1) < 0, where α̂0
�1,ε(x1) is

eT
� BS(x1)

[
n∑

i=1

Zi,1Z
T
i,1

{
ġ−1(ηi)

}2
/

σ 2
i

]−1[
n∑

i=1

Zi,1ei

{
ġ−1(ηi)/σ

2
i

}]
,

and ei,1 ≤ i ≤ n, are i.i.d. N(0,1) independent of Zi,1. For σ 2
n (x1) defined

in (12) and σn1(x1) � (JS
n /n)1/2{1 + op(1)} uniformly in x1 ∈ [0,1]. By (32),

JS
n � n1/(2r+1) and t < −r/(2r + 1) < 0, we have

sup
x1∈[0,1]

∣∣{log(Ln + 1)
}−1/2

σ−1
n1 (x1)

{
α̂OR

�1 (x1) − b�1(x1) − α̂0
�1,ε(x1)

}∣∣
= oa.s.

({
log(Ln + 1)

}−1/2(
n/JS

n

)1/2
nt )(33)

= oa.s.
({

log(Ln + 1)
}−1/2

nr/(2r+1)−t ) = oa.s.(1).

Define η(x1) = σ−1
n1 (x1)α̂

0
�1,ε(x1). It is apparent that L{η(ξJ )|Zi,1,1 ≤ i ≤ n} =

N(0,1), so L{η(ξJ )} = N(0,1) for 0 ≤ J ≤ Ln. Moreover, the eigenvalues of
(EZi,1Z

T
i,1)

−1 � JS
n . Then with probability approaching 1, for J = J ′,∣∣E{

η(ξJ )η(ξJ ′)
}∣∣ � (

n/JS
n

)
n−1∣∣eT

� BS(ξJ )
(
EZi,1Z

T
i,1

)−1
BS(ξJ ′)Te�

∣∣
� ∣∣eT

� BS(ξJ )BS(ξJ ′)Te�

∣∣ =
JS
n∑

j=1

BS
j,1(ξJ )BS

j,1(ξJ ′)

and
∑JS

n

j=1 BS
j,1(ξJ )BS

j,1(ξJ ′) � C for a constant 0 < C < ∞ when |jJ − jJ ′ | ≤
(q−1) and

∑JS
n

j=1 BS
j,1(ξJ )BS

j,1(ξJ ′) = 0 when |jJ −jJ ′ | > (q−1), in which jJ de-

notes the index of the knot closest to ξJ from the left. Therefore, by Ln � JS
n , there

exist constants 0 < C1 < ∞ and 0 < C2 < ∞ such that with probability approach-

ing 1, for J = J ′, |E{η(ξJ )η(ξJ ′)}| ≤ C
−|jJ −jJ ′ |
1 ≤ C

−|J−J ′|
2 . By Lemma A1 given

in Ma and Yang (2011a), we have

lim
n→∞P

{
sup

0≤J≤Ln

∣∣{2 log(Ln + 1)
}−1/2

η(ξJ )
∣∣ ≤ dNn(α)

}
= 1 − α,

and hence

lim
n→∞P

{
sup

x1∈Sn,1

∣∣{2 log(Ln + 1)
}−1/2

σ−1
n1 (x1)α̂

0
�1,ε(x1)

∣∣ ≤ dNn(α)
}

= 1 − α.(34)



GACM FOR NONLINEAR INTERACTIONS 2129

Furthermore, according to the result on page 149 of de Boor (2001), we have

sup
x1∈[0,1]

∣∣{log(Ln + 1)
}−1/2

σ−1
n1 (x1)

{
b�1(x1) − α�1(x1)

}∣∣
(35)

= Op

({
log(Ln + 1)

}−1/2(
n/JS

n

)1/2(
JS

n

)−r) = op(1).

Moreover, α̂OR
�1 (x1) − α�1(x1) = α̂0

�1,ε(x1) + {α̂OR
�1 (x1) − b�1(x1) − α̂0

�1,ε(x1)} +
{b�1(x1) − α�1(x1)}. Hence by (33) and (35), we have

lim
n→∞P

{
sup

x1∈Sn,1

{
log(Ln + 1)

}−1/2
σ−1

n1 (x1)
∣∣α̂OR

�1 (x1) − α�1(x1)
∣∣ ≤ dNn(α)

}
= lim

n→∞P
{

sup
x1∈Sn,1

{
log(Ln + 1)

}−1/2
σ−1

n1 (x1)
∣∣α̂0

�1,ε(x1)
∣∣ ≤ dNn(α)

}
(36)

= 1 − α,

where the last step follows from (34). By the oracle property given in Theorem 3,
and JS

n � n1/(2r+1) and n1/(2r+1) � J ini
n , we have

sup
x1∈[0,1]

{
log(Ln + 1)

}−1/2
σ−1

n1 (x1)
∣∣α̂S

�1(x1) − α̂OR
�1 (x1)

∣∣
(37)

= Op

[
log(Ln + 1)−1/2(

n/JS
n

)1/2(
n−1 logn

)1/2 + (
J ini

n

)−r ] = op(1).

Therefore, by (36) and (37), we have

lim
n→∞P

{
sup

x1∈Sn,1

{
log(Ln + 1)

}−1/2
σ−1

n1 (x1)
∣∣α̂S

�1(x1) − α�1(x1)
∣∣ ≤ dNn(α)

}
= 1 − α,

and hence the result in Theorem 4 is proved.
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