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First I would like to congratulate the authors Botond Szabó, Aad van der Vaart
and Harry van Zanten for a fine piece of work on the extremely important topic of
frequentist coverage of adaptive nonparametric credible sets. Credible sets are used
by Bayesians to quantify uncertainty of estimation, which is typically viewed as
more informative than point estimation. Such sets are often easily constructed, for
instance, by sampling from the posterior, while confidence sets in the frequentist
setting may need evaluating limiting distributions, or resampling, which needs ad-
ditional justification. Bayesian uncertainty quantification in parametric problems
from the frequentist view is justified through the Bernstein–von Mises theorem. In
recent years, such results have also been obtained for the parametric part in cer-
tain semiparametric models, guaranteeing coverage of Bayesian credible sets for
it. However, as mentioned by the authors, inadequate coverage of nonparametric
credible sets has been observed [Cox (1993), Freedman (1999)] in the white noise
model, arguably the simplest nonparametric model. A clearer picture emerged af-
ter the work of Knapik, van der Vaart and van Zanten (2011) that undersmoothing
priors can resolve the issue of coverage; see also Leahu (2011) and Castillo and
Nickl (2013).

In the present paper, the authors address the issue of coverage of credible sets
in a white noise model under the inverse problem setting, when the underlying
smoothness (i.e., regularity) of the true parameter is not known, so a procedure
must adapt to the smoothness. The authors follow an empirical Bayes approach
where a key regularity parameter in the prior is estimated from its marginal like-
lihood function. As the authors mentioned, undersmoothing leads to inferior point
estimation and is also difficult to implement when the smoothness of the parameter
is not known. We shall see that the issue of coverage can also be addressed by two
other alternative approaches.

Before entering a discussion on the contents of the paper, let us take another
look at the coverage problem for Bayesian credible sets in an abstract setting. Sup-
pose that we have a family of experiments based on observations Y (n) and indexed
by a parameter θ ∈ �, some appropriate metric space. Let εn be the minimax con-
vergence rate for estimating θ . Let γn ∈ [0,1] be a sequence which can be fixed or
may tend to 0. For some mn → ∞, typically a slowly varying sequence, the goal
is to find a subset C(Y (n)) ⊆ � such that uniformly on θ0 ∈ B:
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(i) �(θ ∈ C(Y (n))|Y (n)) ≥ 1 − γn,
(ii) P

(n)
θ0

(θ0 ∈ C(Y (n))) → 1,

(iii) diam(C(Y (n))) = O
P

(n)
θ0

(mnεn),

where B varies over a class of compact balls in �.
In the formulation, credibility may increase with the sample size. We find it

natural that when the information content is increasing, a researcher should quan-
tify uncertainty with more and more confidence, instead of staying at a fixed level,
just like one seeks for more precise point estimators or tests. If γn → 0, it can be
seen that the problems of mismatch of credibility and coverage pointed out in Cox
(1993) and Freedman (1999) go away. Thus, although the uncertainty quantifica-
tion of a Bayesian and a frequentist may not match at finite levels, they do match
at the infinitesimal level. For finer matching, one may also like to impose some
requirement on how fast P

(n)
θ0

(θ0 ∈ C(Y (n))) should approach 1, but we shall forgo
the issue in this discussion. Another approach is to obtain a (1 − γn)-credible ball
around the posterior mean typically with fixed γn and inflate the region by a fac-
tor mn, to be called the inflation factor, to ensure adequate frequentist coverage.
The size of the original credible region is typically of the order of the minimax
convergence rate εn so that the third condition will be met. The factor mn can
be considered as a reasonable price for the increased level of coverage. Typically,
the resulting extra cost mn is low, for instance, in an asymptotic normality set-
ting, while adopting (1 − γn)-credible sets with γn → 0, the additional cost is
mn = o(

√
log(1/γn)). In the setting we shall discuss, the inflation factor may be

taken as a sufficiently large constant. The supremum over compact sets in the for-
mulation imposes honesty of the coverage.

As mentioned by the authors, fully adaptive honest nonparametric confidence
regions are not possible by any means, so in the adaptive context � will be replaced
by an appropriate subset of the parameter space, such as the set of self-similar
sequences or polished tailed sequences in the context of the paper. The concept of
polished tail is pretty elegant as it blends nicely in the adaptive setting without any
direct reference to the smoothness of the parameter.

The main result proved in the paper, namely, honest coverage of adaptive poste-
rior credible regions for θ = (θ1, θ2, . . .) in the model Yi = κiθi + n−1/2εi , where

θ ∈ 	2 and εi
i.i.d.∼ N(0,1), for all polished tail sequences is certainly exciting. In

terms of the equivalent (and perhaps more directly relevant) white noise inverse
problem model dY (t) = Kf (t) dt + n−1/2 dW(t), this translates into honest cov-
erage of credible regions for f through Parseval’s identity, where the distance on f

is measured in terms of the L2-distance. However, L2-regions for functions do not
look like bands, and may be a little harder to visualize. This aspect may be relevant
for covering a true function that has a bump like the one given by equation (4.1)
in the paper under discussion, since L2-closeness does not even imply pointwise
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closeness, let alone uniform closeness. Regions on function spaces given by L∞-
neighborhoods are easier to visualize and interpret. Moreover, such uniform close-
ness has other implications. For instance, if derivatives of the functions in a region
are uniformly εn-close to the derivative of the true function and the derivative of
the true function has a well separated mode, then the mode of a function in that re-
gion is O(εn)-close to the true mode. The observation can be used to induce honest
confidence regions for the mode from those for the derivative function under the
L∞-distance.

Study of coverage of L∞-regions with chosen credibility needs studying poste-
rior contraction rates under the L∞-norm, which is easier if conjugacy is present,
like in the white noise model or nonparametric regression using a random series
with normal coefficients. Below we shall argue that in the white noise model cred-
ible regions for the L∞-norm can also be characterized and computed relatively
easily, and their coverage can be shown to be adequate. Interestingly, we can use a
fixed level of credibility (any value higher than 1/2 works) and the inflation factor
can be taken to be a constant. We shall follow techniques similar to those used in
Yoo and Ghosal (2014), who considered the problem of multivariate nonparametric
regression using a random series of tensor product B-splines in the known smooth-
ness setting. In a sense the present treatment of the simpler white noise model will
be easier, but there are certain differences as well, particularly since the number of
basis elements used in constructing the prior is infinite in the present case, unlike
the case treated by Yoo and Ghosal (2014). For the sake of simplicity of the discus-
sion, we focus on the direct problem, that is, κi ≡ 1, and consider a Fourier basis
φ1(x) = 1, φ2i (x) = √

2 cos(2πix), φ2i+1(x) = √
2 sin(2πix), i = 1,2, . . . . Let

the true function be denoted by f0 and the true sequence by θ0 = (θ01, θ02, . . .).
Since we intend to study the L∞-contraction rate and coverage of L∞-regions,
we need to assume that the true function f0 belongs to a Hölder class or, stated
in terms of coefficients

∑∞
i=1 iα|θ0i | < ∞, which is stronger than the analogous

Sobolev condition
∑∞

i=1 i2αθ2
0i < ∞. The logarithmic factor we obtain in the rate

is not optimal—it is off by the factor (logn)1/2(2α+1). Using a more refined anal-
ysis or perhaps using a different basis like B-splines or wavelets, an optimal log-
arithmic factor may be obtained as in Yoo and Ghosal (2014) or Giné and Nickl
(2011). Also, because we use a Fourier basis, we assume that the true function is
periodic, but this does not dampen the essential spirit of the argument.

Consider the white noise model dY (t) = f (t) dt + n−1/2 dW(t) and its equiva-
lent normal sequence model Yi = θi + n−1/2εi , where Yi = ∫

φi(x) dY (x), θi =∫
φi(x)f (x) dx and εi = ∫

φi(x) dW(x), i = 1,2, . . . . Let the prior � be de-

fined by θi
ind∼ N(0, i−2α+1). Let f̂ = E(f |Dn), where Dn stands for the data.

Note that f̂ (x) = ∑∞
i=1 θ̂iφi(x), where θ̂i = E(θi |Yi) = nYi/(i

2α+1 + n), and
var(θi |Yi) = (i2α+1 + n)−1. Let B(α,R) = {f :

∑∞
i=1 iα|θi | ≤ R}. Below we shall

write “�” for inequality up to a constant and “�” for equality in order.
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THEOREM 1. For any Mn → ∞, Ef0�α(f :‖f − f0‖∞ > Mnεn|Dn) → 0
uniformly for all f0 ∈ B(α,R), where εn = n−α/(2α+1)

√
logn and for a sufficiently

large constant M > 0, Pf0{‖f0 − f̂ ‖∞ ≤ Mhn} → 1 where hn is determined by
�α(f :‖f − f̂ ‖∞ ≤ hn|Dn) = 1−γ , γ ≥ 1/2 is a predetermined constant. More-
over, hn � εn.

The theorem implies that the (1 − γ )-credible region for L∞-distance around
the posterior mean for any γ ≤ 1/2 inflated by a sufficiently large factor M has
asymptotic coverage 1 and its size hn is not larger than the posterior contraction
rate, which is nearly optimal. It is interesting to note that hn is actually determinis-
tic since the posterior distribution of f − f̂ is free of the observations. Analytical
computation of hn may be difficult, but can be easily determined by simulations.

PROOF OF THEOREM 1. We have f (x) = ∑∞
i=1 θiφi(x). Thus, given Dn, Z =

f − f̂ is a mean-zero Gaussian process with covariance kernel

cov

( ∞∑
i=1

θiφi(s),

∞∑
i=1

θiφi(t)
∣∣∣Dn

)
=

∞∑
i=1

(
i2α+1 + n

)−1
φi(s)φi(t)

and

E
(∣∣Z(s) − Z(t)

∣∣2|Dn

) =
∞∑
i=1

var(θi |Dn)
∣∣φi(s) − φi(t)

∣∣2

�
∞∑
i=1

(
i2α+1 + n

)−1
i2|s − t |2

� n2(α−1)/(2α+1)|s − t |2

by standard estimates and the fact |φi(s) − φi(t)| ≤ 2
√

2πi|s − t |, a consequence
of the mean value theorem and the boundedness of trigonometric functions. Using
a uniform grid with mesh-width δn � n−p for p > 0 sufficiently large and a chain-
ing argument for Gaussian processes with values of Z at the chosen grid points,
Lemma 2.2.2 and Corollary 2.2.8 of van der Vaart and Wellner (1996) give the

estimate E‖Z‖∞ ≤
√

E‖Z‖2∞ � n−α/(2α+1)
√

logn.

Let V (x) = f̂ (x) − Ef0 f̂ (x) = ∑∞
i=1

√
nεiφi(x)/(i2α+1 + n). Then V is a

mean-zero Gaussian process with covariance kernel
∑∞

i=1 n(i2α+1 + n)−2φi(s) ×
φi(t) and

E
∣∣V (s) − V (t)

∣∣2 =
∞∑
i=1

n
(
i2α+1 + n

)−2∣∣φi(s) − φi(t)
∣∣2.

Arguing as before, it follows that Ef0‖V ‖∞ � n−α/(2α+1)
√

logn.
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Now using the uniform boundedness of the basis functions and
∑∞

i=1 iα|θ0i | ≤
R, uniformly for f0 ∈ B(α,R), we have for any k,

∑
i>k |θ0i | ≤ Rk−α . Therefore,

‖Ef0 f̂ − f0‖∞ =
∥∥∥∥∥

∞∑
i=1

(
n

i2α+1 + n
− 1

)
θ0iφi

∥∥∥∥∥∞

≤ √
2R

(
kα+1

n
+ k−α

)
� n−α/(2α+1)

by choosing k = kα � n1/(2α+1).
Combining the three pieces, it follows using Chebyshev’s inequality that the

posterior contraction rate under the L∞-distance is εn.
Now we find a lower bound for the size of the credible region. By definition

hn, the (1 − γ )-quantile of the distribution of ‖Z‖∞ for the mean-zero Gaussian
process Z with covariance kernel

∑∞
i=1(i

2α+1 + n)−1φi(s)φi(t) is at least as large
as the median of the distribution of ‖Z‖∞. Now σ 2

Z = sup E|Z(t)|2 is easily seen to
be O(n−2α/(2α+1)). Since E‖Z‖2∞ ≥ σ 2

Z , standard facts about Gaussian processes
imply that E‖Z‖∞ and the median of ‖Z‖∞ are of the same order [cf. Ledoux
and Talagrand (1991), pages 52 and 54]. Hence, to find a lower bound for hn, it
suffices to lower bound E‖Z‖∞. We shall show that the order of the lower bound
is n−α/(2α+1)

√
logn.

To this end, we observe that ‖Z‖∞ ≥ max{Z(j/kα) : j = 1, . . . , kα}, and

E
∣∣Z(j/kα) − Z(l/kα)

∣∣2 =
∞∑
i=1

(
i2α+1 + n

)−1∣∣φi(j/kα) − φi(l/kα)
∣∣2.

With a sufficiently small fixed ε > 0, there exists a δ > 0 such that | sin s − sin t | >
ε if |s − t | > δ and |s + t − π | > δ, and a similar assertion holds for the cosine
function. Therefore, it is observed that for j, l = 1, . . . , kα , j 
= l, φi(j/kα) and
φi(l/kα) differ by at least a fixed positive number for a positive fraction of i ∈
{2, . . . , kα}. From this we obtain that there exists c > 0 such that

E
∣∣Z(j/kα) − Z(l/kα)

∣∣2 ≥ cn−2α/(2α+1).

Let Uj = √
2c−1/2nα/(2α+1)Z(j/kα), j = 1, . . . , kα , so that E(Uj − Ul)

2 ≥
E(Vj − Vl)

2, where V1, . . . , Vkα

i.i.d.∼ N(0,1). Hence, by Slepian’s inequality [cf.
Corollary 3.14 of Ledoux and Talagrand (1991)] and equation (3.14) of Ledoux
and Talagrand (1991), we obtain

E
(
max

j
Uj

)
≥ E

(
max

j
Vj

)
�

√
log kα �

√
logn,

which upon rescaling gives E‖Z‖∞ ≥ E(maxZ(j/kα)) � n−α/(2α+1)
√

logn.
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Now turning to coverage, the lack of coverage of the credible set inflated by a
sufficiently large constant M is given by

Pf0

{‖f0 − f̂ ‖∞ > Mhn

} ≤ P
{‖V ‖ > M ′εn − ‖Ef̂ − f0‖∞

}
≤ 2e−C logn → 0

by virtue of Borell’s inequality [cf. second assertion of Proposition A.2.1 of
van der Vaart and Wellner (1996)], since supt var(Z(t)) � n−2α/(2α+1) and εn �
n−α/(2α+1)

√
logn, uniformly for f0 ∈ B(α,R), where M ′ and C are positive con-

stants.
Finally, we estimate the size of the inflated credible region. For that we need to

find an upper bound for the (1 − γ )-quantile of the distribution of ‖Z‖∞ given
Dn. By Borell’s inequality [cf. third assertion of Proposition A.2.1 of van der
Vaart and Wellner (1996)], it is clear that the (1 − γ )-quantile is bounded by√

8E‖Z‖2∞ log(2/γ ), which is of the order n−α/(2α+1)
√

logn. �

We also wish to study the coverage problem for L∞-credible regions when the
regularity α is not known. Consider the empirical Bayes device of the paper under
discussion and assume that the true sequence has a polished tail. The heuristic
arguments given below seem to indicate that the credible region constructed by
plugging in the empirical Bayes estimate of α should have adequate coverage.

Because we deal with various values of α simultaneously, let us include α in
the notation �α for the prior, Zα and Vα for the Gaussian processes introduced
in the proof, and εn,α = n−α/(2α+1)

√
logn for the sup-norm posterior contraction

rate. We observe that εn,α is decreasing in α. By Theorem 5.1 of the paper un-
der discussion, it follows that the empirical Bayes estimate α̂ of α lies, with high
probability, between two deterministic bounds α and α, and that εn,α � εn,α .

In the proof of the result on coverage of the credible region, one needs to lower
bound the radius of the credible ball around the estimate and show that its order is
at least as large as the convergence rate of the point estimator given by the center
of the credible region. When α̂ is plugged in, the radius of the credible region is
of the order of the expected value of the supremum of the Gaussian process Zα̂ .
The randomness of this process comes from posterior variation conditioned on the
sample, and hence α̂ can be considered as a constant. Therefore, as argued in the
proof of the theorem, radius of the credible region is of the order εn,α̂ � εn,α �
εn,α .

The sampling error of the Bayes estimator f̂α using �α has two parts—
variability around its expectation Zα and its bias. Now for any t, s ∈ [0,1],
E|Zα(t) − Zα(s)|2 is decreasing in α, so, by Slepian’s inequality,

sup
{
E‖Zα‖∞ :α ≤ α ≤ α

} = E‖Zα‖∞ � εn,α � εn,α,

and fixed quantiles of ‖Zα‖∞ also have the same order as the expectation of
‖Zα‖∞ by Borell’s inequality. On the other hand, the bias of f̂α increases with α,
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and hence its maximum is attained at α for α ≤ α ≤ α. Note that if α underesti-
mates the true α, then the order of the bias is εn,α � εn,α , and so for every α lying
in the range [α,α], the posterior contraction rate would be the same. Lemma 3.11
seems to indicate that this may be the case. This will ensure adequate coverage of
the empirical Bayes credible set.

Another issue that might be of interest for future investigation is the handling
of unknown variance. In the nonadaptive setting, both empirical and hierarchical
Bayes approaches can fruitfully address the issue of unknown variance as demon-
strated by Yoo and Ghosal (2014) for nonparametric regression. In the adaptive
setting, this is somewhat unclear, as the empirical Bayes estimate of smoothness
and variance will depend on each other.

It is also natural to ask if the hierarchical Bayes credible sets can also have
adequate coverage in the adaptive setting. This may not have an affirmative answer,
as indicated by Rivoirard and Rousseau (2012).

Finally, for other curve estimation problems like density estimation or nonpara-
metric regression, what should be a proper analog of conditions like self-similarity
of polished tail, and how may that help in establishing coverage? The nonparamet-
ric regression problem may be more tractable than the density estimation, since
for the former a basis expansion approach reduces the function of interest to a se-
quence of real-valued parameters which are typically given normal priors as well
and conjugacy holds in the model. Usually it is more convenient to use a truncated
series expansion, but then the sequence of parameters form a triangular array. It
seems that the main challenge will be to identify a proper analog of a condition on
the tail of the sequence in such a setting.
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