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1. Introduction. I would like to congratulate Botond Szabó, Aad van der
Vaart and Harry van Zanten [12] for a fundamental and thought provoking article
on a highly important topic. One of the key contributions of statistics to modern
science may arguably be the theory of uncertainty quantification. Assessing the ac-
curacy of an estimate by a confidence statement goes beyond the mere search for
an efficient statistical algorithm. In particular, within the contemporary search for
adaptive procedures, research of the last decade has revealed that the construction
of adaptive confidence statements is fundamentally harder—in an information the-
oretic sense—than the construction of adaptive algorithms. Confidence statements
are at the same time crucial for the main application of modern data analysis, which
is to accept or reject hypotheses.

Szabó, van der Vaart and van Zanten tackle the important topic as to whether
increasingly popular Bayesian methodology can actually provide objective uncer-
tainty quantification methods in nonparametric models or not. The nonparametric
setting is a key test-case for the general paradigm of high-dimensional modeling
that has emerged recently in statistics.

My discussion of the paper surrounds the two focal points of why “Bayesian un-
certainty quantification” is a mathematically and conceptually nontrivial problem:
the first has nothing to do with adaptation and addresses some of the probabilistic
subtleties intrinsic to the Bayesian approach to provide “credible sets.” The second
point is common to all frequentist procedures and is about the fact that adaptive
uncertainty quantification is in general only possible under “signal-strength” con-
ditions on the underlying parameter.

2. Freedman’s paradox and the nonparametric Bernstein–von Mises the-
orem. I first want to discuss the fact that the frequentist coverage probabilities
obtained by Szabó, van der Vaart and van Zanten for their credible sets are not
exact, that is to say, not of the precise asymptotic level 1 −α, and the related ques-
tion of why obtaining exact posterior asymptotics in the nonparametric situation is
a subtle matter.

Consider observations Y ∼ Pθ with parameter space θ ∈ �, a prior � on �

and resulting posterior distribution �(·|Y) of θ |Y . The classical finite-dimensional
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(� ⊆ R
p) Bernstein–von Mises theorem asserts—under fairly mild assumptions on

� and on the parameterization θ �→ Pθ —that we have approximately

L
(√

n(θ − θ̄ )|Y ) ≈ N
(
0, I (θ0)

−1)
when Y ∼ Pθ0, θ0 ∈ �.

Here θ̄ = θ̄ (Y ) is any efficient estimator of θ such as the maximum likelihood
estimator (MLE) or the posterior mean E(θ |Y), I (θ0) is the Fisher informa-
tion, and the approximation holds in the small noise or large sample limit, in
total variation distance. As a consequence, computing posterior probabilities is
approximately equivalent to computing “optimal frequentist” probabilities under
N(θ̄, I (θ0)

−1/n), and the natural level 1 − α Bayesian credible set

Cn = {
θ :

∥∥θ − E(θ |Y)
∥∥ ≤ rα,n

}
with rα,n s.t. �(Cn|Y) = 1 − α(1)

asymptotically coincides with the classical one based on the MLE. In particular,
we have frequentist coverage

Pθ0(θ0 ∈ Cn) → 1 − α as n → ∞.(2)

For the frequentist the main idea behind this phenomenon is similar to the boot-
strap: if Y ∼ Pθ0 , the (known) posterior distribution of θ |Y − E(θ |Y) serves as a
proxy for the (unknown) distribution of E(θ |Y) − θ0.

In his influential 1999 Wald lecture, Freedman [5] has shown that in the case
where � is infinite-dimensional, the above phenomenon need not occur. Freedman
considered precisely the setting of Szabó, van der Vaart and van Zanten: in the
standard nonparametric sequence space model

Yk = θk + 1√
n
gk, k ∈ N; gk

i.i.d.∼ N(0,1), θ ∈ �2,(3)

one considers natural conjugate Gaussian priors

� = ⊗
k∈N

N
(
0, k−1−2γ )

, γ > 0,(4)

for a γ -regular signal θ . Freedman then showed that even when the true signal θ0
is β-regular with β > γ —so in a favorably “well-specified” situation where β is
known—the natural posterior credible set paralleling (1),

Cn = {
θ ∈ �2 :

∥∥θ − E(θ |Y)
∥∥
�2

≤ rα,n

}
(5)

with rα,n s.t. �(Cn|Y) = 1 − α,

does in fact not satisfy (2) as n → ∞, rather the frequentist and Bayesian variances
of ‖θ − E(θ |Y)‖2

�2
scale differently and the Bernstein–von Mises theorem does

not hold in this infinite-dimensional setting. See Freedman’s original paper [5] and
also Leahu [8] for a recent account.

We note that this “paradox” has nothing to do with “adaptation” (since β is
known above), but is a mathematical artefact of the Bayesian formalism to con-
struct credible sets in the infinite-dimensional setting. It prevents Bayesian 1 − α
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credible balls in �2 from being asymptotically exact frequentist 1 − α confidence
balls. The pathology occurs because one insists on “exact” asymptotic level 1 −α,
and the results by Szabó, van der Vaart and van Zanten show that if one “blows up
the Bayesian radius rα,n” by a factor of L as in equation (3.2) of their paper [12],
then as L → ∞ this allows to obtain “conservative” frequentist confidence sets in
the sense that, as n → ∞,

Pθ0(θ0 ∈ Cn) → 1 ≥ 1 − α.

While such a construction is theoretically satisfactory from a frequentist point of
view, this approach has a practical drawback: in applications one does not know
how to choose L and prefers to have a simple, fully Bayesian, rule that discards
5% of all posterior draws and uses the remaining 95% to graphically describe a
credible region.

In the recent papers [3, 4] by Castillo and myself, a new approach to nonpara-
metric Bernstein–von Mises theorems has been put forward. In essence, the idea
is to modify the geometry of the credible set in (5) and to replace �2-balls by other
shapes. These shapes correspond to norms in sequence space that induce weaker
topologies than �2 and for which a “weak functional Bernstein–von Mises theo-
rem” can be proved. For instance, if we consider ellipsoids in a sequence space of
the form

E(M) =
{
(θk) :

∑
k

θ2
k

wk

≤ M2
}
,

wk

k(log k)δ
↑ ∞, δ > 1,0 < M < ∞(6)

or, in case the sequence space model corresponds to a double-indexed basis
{elk : l ∈ N∪ {0}, k = 0, . . . ,2l − 1}, multi-scale sup-norm balls of the form

E(M) =
{
(θlk) : sup

l≥0

maxk |θlk|
wl

≤ M

}
,

wl√
l
↑ ∞,0 < M < ∞,(7)

then, under mild assumptions on the prior, [3, 4] prove that, as n → ∞,

L
(√

n(θ − θ̄ )|Y ) → N weakly in H,(8)

in Pθ0 -probability. Here H are the sequence spaces that have norm balls {θ :‖θ‖H ≤
1} = E(1), N is the Gaussian measure on H corresponding to a pure white
noise

⊗
k∈N N(0,1), and θ̄ = θ̄ (Y ) is equal to the maximum likelihood estima-

tor Y = (Yk :k ∈ N) or to the posterior mean E(θ |Y).
As a consequence of weak convergence toward N , one can show that

sup
M

∣∣Pr
(√

n
(
θ − E(θ |Y)

) ∈ E(M)|Y ) −N
(
E(M)

)∣∣ Pθ0→ 0(9)

as n → ∞, and from this [3, 4] deduce that credible sets

Cn = {
θ :

∥∥θ − E(θ |Y)
∥∥
H

≤ rα,n

}
where rα,n is such that �(Cn|Y) = 1 − α



1432 R. NICKL

have correct asymptotic frequentist coverage: as n → ∞,

Pθ0(θ0 ∈ Cn) → 1 − α.

Two main questions arise from this construction, one theoretical, one practical.
The theoretical one asks whether such confidence sets can reconstruct nonparamet-
ric signals in a minimax optimal way. In [3, 4] it is shown that this can be the case
by using high-frequency information in the posterior appropriately. This can be ex-
tended to the adaptive setting (see Ray [11]), where nonparametric Bernstein–von
Mises theorems in H are proved for the empirical Bayes procedure of Szabó, van
der Vaart and van Zanten.

The second question is as follows: is such a construction practical, and do such
credible sets look substantially different from the (perhaps) more intuitive �2-type
credible sets? From a computational point of view the sets Cn are quite tractable:
for instance, in the multi-scale case the computation of Cn consists of finding con-
stants rα,n such that

|θlk − E(θlk|Y)|
wl

≤ rα,n ∀k, l

happens for (1 − α) × 100% of the posterior draws. The theory in [4] implies

√
n · rα,n

Pθ0→ const �= 0,

and so a multi-scale posterior credible ball has a natural interpretation as a si-
multaneous credible set for a large class of semi-parametric coordinate projection
functionals obtained from thresholding each projection at a level slightly larger
than 1/

√
n (recalling that wl is slightly larger than

√
l).

More concretely, simulations by Ray [11] show that the differences to the stan-
dard �2-approach are marginal in several practical examples; see Figure 1 below.

It is striking to observe that, although the norms ‖ · ‖�2 and ‖ · ‖H, as well as the
rules these norms induce to accept or reject posterior draws in the construction of
a credible set, are quite different, the visualized credible sets of both approaches
look very similar.

It is also worthwhile noting that in both cases the credible ball actually “covers
the true function” despite the graph suggesting that pointwise coverage fails. The
reason is that �2-confidence balls are insensitive to lack of coverage on intervals of
small Lebesgue measure. A frequentist theory for simultaneous credible “bands”
is thus also of interest—some first results in this direction are given in [4, 11].

I am unsure to which extent �2-credible sets are “applied in current practice”
as claimed in the Introduction of [12], particularly if one has to choose “blow-up”
constants L. Practitioners may prefer to avoid such choices, and instead compute
posterior credible balls in H-spaces. At any rate, it remains a mathematical fact
that the nonparametric Bernstein–von Mises theorem does hold in the spaces H,
whereas it does not hold in �2.
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FIG. 1. The top display shows a credible set generated from ellipsoids (6) and the bottom from
an �2 ball. Both credible sets are based on observations in Gaussian white noise (n = 1000), and
with Gaussian priors, with 100,000 posterior draws plotted as grey clouds. The red curve depicts
the posterior mean and the black curve the true function. See [11] for details and more extensive
simulation results.

3. “Honest” nonparametric models and “self-similar” functions. Perhaps
more important than the question of how to obtain exact coverage statements for
Bayesian credible sets (discussed in the previous section) is the question of ex-
istence of adaptive confidence sets—Bayesian or not. It is one of the more sur-
prising insights of the theory of nonparametric and high-dimensional inference
that estimators that adapt to unknown regularity properties (such as smoothness
or sparsity) exist, whereas associated confidence sets in general do not. Roughly
speaking, the reason behind this is that an “honest” (=uniform in the parameter θ )
adaptive confidence set implicitly solves the testing problem of whether a signal
belongs to a given regularity class or not, and that such tests simply do not exist
over the entire parameter spaces considered in nonparametric estimation. Rather,
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some kind of signal-strength condition needs to be enforced on the elements of
the parameter space to construct confidence sets for adaptive estimators. See Hoff-
mann and Nickl [7] and Nickl and van de Geer [10] for two basic instances of this
fact (in nonparametrics and sparse regression, resp.).

Among such signal-strength conditions, the “self-similarity” assumptions intro-
duced in Giné and Nickl [6] have proved compatible with commonly used adaptive
frequentist procedures (such as Lepski’s method). In the L∞-setting of confidence
bands they are also shown to be necessary (see [1]) if one wants to adapt to a con-
tinuum of smoothness parameters, as is usually the case in nonparametric statis-
tics. The starting point of Szabó, van der Vaart and van Zanten is to transpose the
L∞-type self-similarity condition from [6] into their �2-risk setting:

ρN∑
k=N

θ2
k ≥ ε‖θ‖2

Sβ N−2β ∀N ≥ N0 with “tolerance” factor ε > 0,(10)

whenever θ belongs to a Sobolev space Sβ with norm

‖θ‖2
Sβ = ∑

k

θ2
k k2β, Sβ(B) = {

θ :‖θ‖Sβ ≤ B
}
.

Here ρ > 2,N0 ∈N are fixed constants; see equation (3.4) in [12]. Note that finite-
ness of the Sobolev norm implies∑

k≥N

θ2
k ≤ ‖θ‖2

SβN−2β ∀N ∈N,(11)

and the idea behind (10) is hence that over repeated blocks {N, . . . , ρN} the signal
θ indicates that it is actually exactly β-regular. A nice observation of Szabó, van
der Vaart and van Zanten is that this condition can in fact be substituted by the
slightly more general “polished tail” condition

ρN∑
k=N

θ2
k ≥ L−1

0

∑
k≥N

θ2
k ∀N ≥ N0 for some L0 > 0,(12)

which effectively means that the blocks in (10) have, for every N large enough and
up to a small constant L−1

0 , the same signal strength as the full tail series
∑

k≥N θ2
k .

This condition is conceptually somewhat cleaner than (10), as it does not require
the identification of the unknown regularity parameter β , although it implicitly
does so in the sense that (12) implies that (10) and (11) cannot hold for multiple
values of β .

The key issue I want to discuss here is in which sense exactly conditions like (10) or (12)
are necessary for adaptive inference procedures to exist in the setting of the paper [12]
under discussion.

Since Szabó, van der Vaart and van Zanten are considering �2-risk, the situation
is qualitatively different from the L∞-setting for which the lower bounds in [1]
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apply. First of all, as also noted by the authors, when adaptation is sought after
for β contained in fixed smoothness windows [β0,2β0], a direct construction of
an adaptive confidence set is possible without any restrictions on the parameter
space. However, the constraint β ∈ [β0,2β0] is not satisfactory in the typical situ-
ations of nonparametric inference. Once relaxed, information-theoretic arguments
imply that restrictions on the parameter space Sβ become necessary (e.g., Theo-
rems 1 or 4 in [2]). Employing conditions of the kind (10) or (12) to enforce such
restrictions, one notices that these assumptions can be weakened quantitatively by
increasing the windows [N,ρN] over which the lower bound of the signal is al-
lowed to accrue. The question arises whether the window sizes [N,ρN ] with ρ > 2
are minimal conditions for the existence of adaptive confidence sets or whether
larger windows are admissible, pertaining to larger parameter spaces for which in-
ference is possible. For self-similar classes it is shown in [9] that condition (10) is
not optimal, and that in turn (12) can also not be.

Let us describe the results from [9] to understand in what sense weaker condi-
tions are possible: let N0 ∈N,0 < b < B < ∞. For ε ∈ (0,1] and cβ = 16×22β+1,
define the set

Sβ
ε =

{
θ ∈ Sβ(B) :

N∑
k=N(1−ε)

θ2
k ≥ cβ‖θ‖2

SβN−2β ∀N ≥ N0

}
.(13)

Again, as in (10), sufficiently large signal blocks have to appear repeatedly. But
now these blocks are allowed to have increased window-width since

Nε � ρ as N → ∞,

and allow for an asymptotically shrinking tolerance factor

ε = N−2εβcβ → 0 as N → ∞
in the lower bound. In particular, (13) only approximately identifies the smooth-
ness of θ in the sense that it can be satisfied, unlike (10) or (12), for multiple
values of β simultaneously.

As shown in [9], signal strength conditions enforced through (13) allow for the
construction of honest adaptive confidence �2-balls for signals

θ ∈ ⋃
βmin≤β≤βmax

S
β
ε(β), 0 < βmin < βmax < ∞,

under (effectively) the following conditions on ε:

ε(β) < 1
2 ∀β ∈ [βmin, βmax] is necessary,

whereas

ε(β) <
β

2β + 1/2
∀β ∈ [βmin, βmax] is sufficient.
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Note that βmin < βmax are arbitrary, and hence the lower bound cannot be improved
in general, since in the limit β → ∞ we have β/(2β + 1/2) → 1/2.

We conclude that requiring lower bounds in windows of size [N,ρN ] as in
(10), (12) is too strong a requirement for adaptive �2-confidence sets, and the re-
sults in the paper by Szabó, van der Vaart and van Zanten are suboptimal from
an information-theoretic perspective. It would be interesting to know whether this
suboptimality is an artefact of the proofs or of the particular Bayesian inference
procedure used, although it may be difficult to answer this question.

Acknowledgment. I would like to thank Kolyan Ray for allowing me to re-
produce Figure 1 from his paper [11].
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