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FREQUENTIST COVERAGE OF ADAPTIVE NONPARAMETRIC
BAYESIAN CREDIBLE SETS1,2

BY BOTOND SZABÓ, A. W. VAN DER VAART AND J. H. VAN ZANTEN

TU Eindhoven, Leiden University and University of Amsterdam

We investigate the frequentist coverage of Bayesian credible sets in a
nonparametric setting. We consider a scale of priors of varying regularity
and choose the regularity by an empirical Bayes method. Next we consider a
central set of prescribed posterior probability in the posterior distribution of
the chosen regularity. We show that such an adaptive Bayes credible set gives
correct uncertainty quantification of “polished tail” parameters, in the sense
of high probability of coverage of such parameters. On the negative side, we
show by theory and example that adaptation of the prior necessarily leads to
gross and haphazard uncertainty quantification for some true parameters that
are still within the hyperrectangle regularity scale.

1. Introduction. In Bayesian nonparametrics posterior distributions for func-
tional parameters are often visualized by plotting a center of the posterior distri-
bution, for instance, the posterior mean or mode, together with upper and lower
bounds indicating a credible set, that is, a set that contains a large fraction of the
posterior mass (typically 95%). The credible bounds are intended to visualize the
remaining uncertainty in the estimate. In this paper we study the validity of such
bounds from a frequentist perspective in the case of priors that are made to adapt
to unknown regularity.

It is well known that in infinite-dimensional models Bayesian credible sets are
not automatically frequentist confidence sets, in the sense that under the assump-
tion that the data are in actual fact generated by a “true parameter,” it is not auto-
matically true that they contain that truth with probability at least the credible level.
The earliest literature focused on negative examples, showing that for many com-
binations of truths and priors, Bayesian credible sets can have very bad or at least
misleading frequentist behavior; see, for instance, Cox (1993), Freedman (1999),
Johnstone (2010). [An exception is Wahba (1983), who showed encouraging simu-
lation results and gives heuristic arguments for good performance.] However, cred-
ible sets do not always have bad frequentist coverage. In the papers Leahu (2011),
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Knapik, van der Vaart and van Zanten (2011, 2013) this matter was investigated
in the setting of the canonical (inverse) signal-in-white-noise model, where, es-
sentially, the unknown parameter was a function with a fixed regularity and the
(Gaussian) prior had a fixed regularity as well. The main message in these pa-
pers is that Bayesian credible sets typically have good frequentist coverage in case
of undersmoothing (using a prior, i.e., less regular than the truth), but can have
coverage zero and be far too small in the other case. Simulation studies corrobo-
rate these theoretical findings and show that the problem of misleading uncertainty
quantification is a very practical one.

The solution to undersmooth the truth, which gives good uncertainty quantifi-
cation, is unattractive for two reasons. First, it leads to a loss in the quality of the
reconstruction, for example, by the posterior mode or mean. Second, the true regu-
larity of the functional parameter is never known and hence cannot be used to select
a prior that undersmoothes the right regularity. Therefore, in practice, it is common
to try and “estimate” the regularity from the data, and thus to adapt the method to
the unknown regularity. Bayesian versions of this approach can be implemented
using empirical or hierarchical Bayes methods. Empirical Bayes methods estimate
the unknown regularity using the marginal likelihood for the data in the Bayesian
setup; see Section 2 for a precise description. Hierarchical Bayes methods equip
the regularity parameter with a prior and follow a full Bayesian approach.

In the present paper we concentrate on the empirical Bayes approach. In the
context of the inverse signal-in-white-noise model, this method has been shown
to be rate-adaptive, in the sense that the posterior contracts at a (near) optimal
rate around the truth for a range of true regularities, without using information
about this regularity [see Knapik et al. (2012) for an analysis of the method in the
present paper or Ray (2013) for similar work]. However, these papers only address
contraction of the posterior and do not investigate frequentist coverage of credible
sets, which is perhaps more important than rate-adaptiveness to validate the use of
these methods. In the present paper we study whether the empirical Bayes method,
which is optimal from the point of view of contraction rates, also performs well
from the perspective of coverage. In particular, we investigate to which extent the
method yields adaptive confidence sets.

Bayesian credible sets can of course not beat the general fundamental limita-
tions of adaptive confidence sets. As pointed out by Low (1997), it is in general not
possible to construct confidence sets that achieve good coverage across a range of
nested models with varying regularities and at the same time possess a size of opti-
mal order when the truth is assumed to be in one of the particular sub-models. Sim-
ilar statements, in various contexts, can be found in Juditsky and Lambert-Lacroix
(2003), Cai and Low (2004, 2006), Robins and van der Vaart (2006), Genovese
and Wasserman (2008), and Hoffmann and Nickl (2011).

We show in this paper that for the standard empirical Bayes procedure (which
is rate-adaptive), there always exist truths that are not covered asymptotically by
its credible sets. This bad news is alleviated by the fact that there are only a few
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of these “inconvenient truths” in some sense. For instance, the minimax rate of
estimation does not improve after removing them from the model; they form a
small set in an appropriate topological sense; and they are unlikely under any of
the priors. The good news is that after removing these bad truths, the empirical
Bayes credible sets become adaptive confidence sets with good coverage.

Our results are inspired by recent (non-Bayesian) results of Giné and Nickl
(2010) and Bull (2012). These authors also remove a “small” set of undesirable
truths from the model and focus on so-called self-similar truths. Whereas these
papers use theoretical frequentist methods of adaptation, in the present paper our
starting point is the Bayesian (rate-adaptive) procedure. This generates candidate
confidence sets for the true parameter (the credible sets), that are routinely used in
practice. We next ask for which truths this practice can be justified and for which
not. Self-similar truths, defined appropriately in our setup, are covered, but also a
more general class of parameters, which we call polished tail sequences.

The paper is structured as follows. In the next section we describe the setting:
the inverse signal-in-white-noise model and the adaptive empirical Bayes proce-
dure. In Section 3 the associated credible sets are constructed and analyzed. A first
theorem exhibits truths that are not covered asymptotically by these sets. The sec-
ond theorem shows that when these “inconvenient truths” are removed, the credible
sets yield adaptive, honest confidence sets. The theoretical results are illustrated in
Section 4 by a simulation study. Proofs are given in Sections 5–10. In Section 11
we conclude with some remarks about possible extensions and generalizations. Fi-
nally, the Appendix is a self-contained proof of a version of an important auxiliary
result first proved in Knapik et al. (2012).

We conclude the Introduction by further discussions of adaptive nonparametric
confidence sets and the coverage of credible sets.

The credible sets we consider in this paper are �2-balls, even though we believe
that similar conclusions will be true for sets of different shapes. It is known that
�2-confidence balls can be honest over a model of regularity α and possess a ra-
dius that adapts to the minimax rate whenever the true parameter is of smoothness
contained in the interval [α,2α]. Thus, these balls can adapt to double a coars-
est smoothness level [Juditsky and Lambert-Lacroix (2003), Cai and Low (2006),
Robins and van der Vaart (2006), Bull and Nickl (2013)]. The fact that the coars-
est level α and the radius of the ball must be known [as shown in Bull and Nickl
(2013)] makes this type of adaptation somewhat theoretical. This type of adap-
tation is not considered in the present paper (in fact, we do not have a coarsest
regularity level α). Work we carried out subsequent to the present paper [Szabó,
van der Vaart and Zanten (2014)] indicates that this type of adaptation can be in-
corporated in the Bayesian framework, but requires a different empirical Bayes
procedure as the one in the present paper [based on the likelihood (2.5)]. Inter-
estingly, with the latter method and for known α, adaptation occurs for all true
parameters, also the inconvenient ones.
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The credible sets considered in the present paper result from posterior distribu-
tions for infinite-dimensional parameters, or functions, which implicitly make the
bias–variance trade-off that is characteristic of nonparametric estimation. These
posterior distributions induce marginal posterior distributions for real-valued func-
tionals of the parameter. If such a functional is sufficiently smooth, then the cor-
responding marginal posterior distribution may satisfy a Bernstein–von Mises the-
orem, which typically entails that the bias is negligible relative to the variance of
estimation. Just as in the case of finite-dimensional models, such an approxima-
tion implies that the credible sets for the functional are asymptotically equivalent
to frequentist confidence sets. In this sense nonparametric priors and posteriors
may yield exact, valid credible sets. By extending this principle to an (infinite)
collection of smooth functionals that identifies the parameter, Castillo and Nickl
(2013) even obtain an exact credible set for the full parameter. However, elegant
as their construction may be, it seems that no method that avoids dealing with the
bias–variance trade-off will properly quantify the uncertainty of nonparametric
Bayesian inference as it is applied in current practice.

1.1. Notation. The �2-norm of an element θ ∈ �2 is denoted by ‖θ‖, that
is, ‖θ‖2 = ∑∞

i=1 θ2
i . The hyperrectangle and Sobolev space of order β > 0 and

(square) radius M > 0 are the sets

�β(M) =
{
θ ∈ �2 : sup

i≥1
i1+2βθ2

i ≤ M
}
,(1.1)

Sβ(M) =
{
θ ∈ �2 :

∞∑
i=1

i2βθ2
i ≤ M

}
.(1.2)

For two sequences (an) and (bn) of numbers, an � bn means that |an/bn| is
bounded away from zero and infinity, an � bn that an/bn is bounded, an ∼ bn that
an/bn → 1, and an 
 bn that an/bn → 0, all as n tends to infinity. The maximum
and minimum of two real numbers a and b are denoted by a ∨ b and a ∧ b.

2. Statistical model and adaptive empirical Bayes procedure. We formu-
late and prove our results in the canonical setting of the inverse signal-in-white-
noise model. As usual, we reduce it to the sequence formulation. See, for instance,
Cavalier (2011) and the references therein for more background and many exam-
ples fitting this framework.

The observation is a sequence X = (X1,X2, . . .) satisfying

Xi = κiθ0,i + 1√
n
Zi, i = 1,2, . . . ,(2.1)

where θ0 = (θ0,1, θ0,2, . . .) ∈ �2 is the unknown parameter of interest, the κi’s are
known constants (transforming the truth) and the Zi are independent, standard
normally distributed random variables. The rate of decay of the κi’s determines
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the difficulty of the statistical problem of recovering θ0. We consider the so-called
mildly ill-posed case where

C−2i−2p ≤ κ2
i ≤ C2i−2p,(2.2)

for some fixed p ≥ 0 and C > 0. In particular, the choice p = 0 corresponds to the
ordinary signal-in-white-noise model, whereas p > 0 gives a true inverse problem.

For α > 0 we define a prior measure �α for the parameter θ0 in (2.1) by

�α =
∞⊗
i=1

N
(
0, i−1−2α)

.(2.3)

The coordinates θi are independent under this prior. Since the corresponding co-
ordinates of the data are also independent, the independence is retained in the
posterior distribution, which by univariate conjugate Gaussian calculation can be
seen to be

�α(· | X) =
∞⊗
i=1

N

(
nκ−1

i

i1+2ακ−2
i + n

Xi,
κ−2
i

i1+2ακ−2
i + n

)
.(2.4)

The prior (2.3) puts mass 1 on Sobolev spaces and hyperrectangles of every order
strictly smaller than α (see Section 1.1 for definitions), and hence expresses a
prior belief that the parameter is regular of order (approximately) α. Indeed, it is
shown in Knapik, van der Vaart and van Zanten (2011) that if the true parameter
θ0 in (2.1) belongs to a Sobolev space of order α, then the posterior distribution
contracts to the true parameter at the minimax rate n−2α/(1+2α+2p) for this Sobolev
space. A similar result can be obtained for hyperrectangles. On the other hand, if
the regularity of the true parameter is different from α, then the contraction can be
much slower than the minimax rate.

The suboptimality in the case the true regularity is unknown can be overcome
by a data-driven choice of α. The empirical Bayes procedure consists in replacing
the fixed regularity α in (2.4) by (for given A, possibly dependent on n)

α̂n = argmax
α∈[0,A]

�n(α),(2.5)

where �n is the marginal log-likelihood for α in the Bayesian setting: θ | α ∼ �α

and X | (θ,α) ∼ ⊗
i N(κiθi,1/n). This is given by

�n(α) = −1

2

∞∑
i=1

(
log

(
1 + n

i1+2ακ−2
i

)
− n2

i1+2ακ−2
i + n

X2
i

)
.(2.6)

If there exist multiple maxima, any one of them can be chosen.
The empirical Bayes posterior is defined as the random measure �α̂n

(· | X)

obtained by substituting α̂n for α in the posterior distribution (2.4), that is,

�α̂n
(· | X) = �α(· | X)|α=α̂n

.(2.7)
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In Knapik et al. (2012) this distribution is shown to contract to the true parameter
at the (near) minimax rate within the setting of Sobolev balls and also at the near
optimal rate in situations of supersmooth parameters. Extension of their results
shows that the posterior distribution also performs well for many other models, in-
cluding hyperrectangles. Thus, the empirical Bayes posterior distribution manages
to recover the true parameter by adapting to unknown models.

We now turn to the main question of the paper: can the spread of the empirical
Bayes posterior distribution be used as a measure of the remaining uncertainty in
this recovery?

2.1. Notational assumption. We shall from now on assume that the first coor-
dinate θ0,1 of the parameter θ0 is zero. Because the prior (2.3) induces a N(0,1)

prior on θ0,1, which is independent of α, the marginal likelihood function (2.6)
depends on X1 only through a vertical shift, independent of α. Consequently, the
estimator α̂n does not take the value of θ0,1 into account. While this did not cause
problems for the minimax adaptivity mentioned previously, this does hamper the
performance of credible sets obtained from the empirical Bayes posterior distribu-
tion, regarding uniformity in the parameter. [In fact, the posterior distribution for θ1
has mean equal to nκ−1

1 /(κ−2
1 +n)X1, independent of α. The bias of this estimator

of θ0,1 for fixed n would lead to arbitrarily small coverage for values θ0,1 → ±∞,
invalidating the main result of the paper, Theorem 3.6 below.] One solution would
be to use the variances (i + 1)−1−2α in (2.3). For notational simplicity we shall
instead assume that θ0,1 = 0 throughout the remainder of the paper.

3. Main results: Asymptotic behavior of credible sets. For fixed α > 0, let
θ̂n,α be the posterior mean corresponding to the prior �α [see (2.4)]. The centered
posterior is a Gaussian measure that does not depend on the data and, hence, for
γ ∈ (0,1) there exists a deterministic radius rn,γ (α) such that the ball around the
posterior mean with this radius receives a fraction 1 −γ of the posterior mass, that
is, for α > 0,

�α

(
θ :‖θ − θ̂n,α‖ ≤ rn,γ (α) | X) = 1 − γ.(3.1)

In the exceptional case that α = 0, we define the radius to be infinite. The empirical
Bayes credible sets that we consider in this paper are the sets obtained by replacing
the fixed regularity α by the data-driven choice α̂n. Here we introduce some more
flexibility by allowing the possibility of blowing up the balls by a factor L. For
L > 0 we define

Ĉn(L) = {
θ ∈ �2 :‖θ − θ̂n,α̂n

‖ ≤ Lrn,γ (α̂n)
}
.(3.2)

By construction, �α̂n
(Ĉn(L) | X) ≥ 1 − γ iff L ≥ 1.

We are interested in the performance of the random sets Ĉn(L) as frequentist
confidence sets. Ideally, we would like them to be honest in the sense that

inf
θ0∈�0

Pθ0

(
θ0 ∈ Ĉn(L)

) ≥ 1 − γ,
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for a model �0 that contains all parameters deemed possible. In particular, this
model should contain parameters of all regularity levels. At the same time we
would like the sets to be adaptive, in the sense that the radius of Ĉn(L) is (nearly)
bounded by the optimal rate for a model of a given regularity level, whenever θ0
belongs to this model. As pointed out in the Introduction, this is too much to ask,
as confidence sets with this property, Bayesian or non-Bayesian, do not exist. For
the present procedure we can explicitly exhibit examples of “inconvenient truths”
that are not covered at all.

THEOREM 3.1. For given β,M > 0 and 1 ≤ ρj ↑ ∞, and positive integers nj

with nj+1 ≥ (2ρ2
j+1)

1+2β+2pnj , define θ0 = (θ0,1, θ0,2, . . .) by

θ2
0,i =

⎧⎪⎪⎨
⎪⎪⎩

0, if ρ−1
j n

1/(1+2β+2p)
j ≤ i < n

1/(1+2β+2p)
j , j = 1,2, . . . ,

0, if 2n
1/(1+2β+2p)
j ≤ i ≤ ρjn

1/(1+2β+2p)
j , j = 1,2, . . . ,

Mi−1−2β, otherwise.

Then the constant M can be chosen such that Pθ0(θ0 ∈ Ĉnj
(Lnj

)) → 0 as j → ∞
for every Lnj

�
√

Mρ
(1+2p)/(8+8β+8p)
j .

For the proof see Section 9.
By construction, the (fixed) parameter θ0 defined in Theorem 3.1 belongs to the

hyperrectangle �β(M), and in this sense is “good,” because of the “smooth” truth.
However, it is an inconvenient truth, as it tricks the empirical Bayes procedure,
making this choose the “wrong” regularity α, for which the corresponding credible
set does not cover θ0. The intuition behind this counterexample is that for a given
sample size or noise level n the empirical Bayes procedure, and any other statistical
method, is able to judge the coordinates θ0,1, θ0,2, . . . only up to a certain effective
dimension Nn, fluctuations in the higher coordinates being equally likely due to
noise as to a nonzero signal. Now if (θ0,1, . . . , θ0,Nn) does not resemble the infinite
sequence (θ0,1, θ0,2, . . .), then the empirical Bayes procedure will be tricked into
choosing a smoothness α̂n that does not reflect the smoothness of the full sequence,
and failure of coverage results. The particular example θ0 in Theorem 3.1 creates
this situation by including “gaps” of 0-coordinates. If the effective dimension is at
the end of a gap of such 0-coordinates, then the empirical Bayes procedure will
conclude that θ0 is smoother than it really is, and make the credible set too narrow.

A more technical explanation can be given in terms of a bias–variance trade-off.
For the given truth in Theorem 3.1 the bias of the posterior mean is of “correct or-
der” n−β/(1+2β+2p) corresponding to �β(M), but (along the subsequence nj ) the
spread of the posterior is of strictly smaller order. Thus, the posterior distribution
is overconfident about its performance. See Section 9 for details.

Intuitively, it is not surprising that such bad behavior occurs, as nonparametric
credible or confidence sets always necessarily extrapolate into aspects of the truth
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that are not visible in the data. Honest uncertainty quantification is only possible
by a priori assumptions on those latter aspects. In the context of regularity, this
may be achieved by “undersmoothing,” for instance, by using a prior of fixed reg-
ularity smaller than the true regularity. Alternatively, we may change the notion
of regularity and strive for honesty over different models. In the latter spirit we
shall show that the empirical Bayes credible sets Ĉn(L) are honest over classes of
“polished” truths.

DEFINITION 3.2. A parameter θ ∈ �2 satisfies the polished tail condition if,
for fixed positive constants L0, N0 and ρ ≥ 2,

∞∑
i=N

θ2
i ≤ L0

ρN∑
i=N

θ2
i ∀N ≥ N0.(3.3)

We denote by �pt(L0,N0, ρ) the set of all polished tail sequences θ ∈ �2 for
the given constants L0, N0 and ρ. As the constants N0 and ρ are fixed in most
of the following (e.g., at N0 = 2 and ρ = 2), we also use the shorter �pt(L0). [It
would be possible to make a refined study with N0 and L0 tending to infinity, e.g.,
at logarithmic rates, in order to cover a bigger set of parameters, eventually. The
result below would then go through provided the constant L in the credible sets
Cn(L) would also tend to infinity at a related rate.]

The condition requires that the contributions of the blocks (θN, . . . , θNρ) of
coordinates to the �2-norm of θ cannot surge over the contributions of earlier
blocks as N → ∞. Sequences θ of exact polynomial order θ2

i � i−1−2β on the
“boundary” of hyperrectangles are obvious examples, but so are the sequences
θi � iqe−ζ ic and the sequences θ2

i � (log i)qi−1−2β (for q ∈ R, ζ, c > 0). Further-
more, because the condition is not on the individual coordinates θi , but on blocks
of coordinates of increasing size, the set of polished tail sequences is in fact much
larger than these coordinatewise regular examples suggest.

In particular, the set includes the “self-similar” sequences. These were defined
by Picard and Tribouley (2000) and employed by Giné and Nickl (2010) and Bull
(2012), in the context of wavelet bases and uniform norms. An �2 definition in the
same spirit with reference to hyperrectangles is as follows.

DEFINITION 3.3. A parameter θ ∈ �β(M) is self-similar if, for some fixed
positive constants ε, N0 and ρ ≥ 2,

ρN∑
i=N

θ2
i ≥ εMN−2β ∀N ≥ N0.(3.4)

We denote the class of self-similar elements of �β(M) by �
β
ss(M, ε). The pa-

rameters N0 and ρ are fixed and omitted from the notation.
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If we think of θ as a sequence of Fourier coefficients, then the right-hand side
of (3.4) without ε is the maximal energy at frequency N of a sequence in a hyper-
rectangle of radius

√
M . Thus, (3.4) requires that the total energy in every block of

consecutive frequency components is a fraction of the energy of a typical signal:
the signal looks similar at all frequency levels. Here the blocks increase with fre-
quency (with lengths proportional to frequency), whence the required similarity is
only on average over large blocks.

Self-similar sequences are clearly polished tail sequences, with L0 = ε−1.
Whereas the first refer to a particular regularity class, the latter do not. As polished
tail sequences are defined by self-referencing, they might perhaps be considered
“self-similar” in a generalized sense. We show in Theorem 3.6 that the polished
tail condition is sufficient for coverage by the credible sets (3.2). Self-similarity is
restrictive. For instance, the polished tail sequence θi = i−β−1/2(log i)−q/2 is con-
tained in the hyperrectangle �β(1) for every q ≥ 0, and also in Sβ(M) for some
M if q > 1, but it is not self-similar for any q > 0. This could be remedied by in-
troducing (many) different types of self-similar sequences, but the self-referencing
of polished tail sequences seems much more elegant.

REMARK 3.4. An alternative to condition (3.4) would be the slightly weaker
∞∑

i=N

θ2
i ≥ εMN−2β ∀N ≥ N0.

This removes the parameter ρ, but, as θ is assumed to be contained in the hyper-
rectangle �β(M), it can be seen that this seemingly relaxed condition implies (3.4)
with ε replaced by ε/2 and ρ sufficiently large that

∑
i>ρN i−1−2β < ε/2N−2β .

One should ask how many parameters are not polished tail or self-similar. We
give three arguments that there are only few: topological, minimax, and Bayesian.

A topological comparison of the classes of self-similar and non self-similar
functions obviously depends on the chosen topology. From the proof of Theo-
rem 3.1 it is clear that the lack of coverage is due to the tail behavior of the non
self-similar (or nonpolished-tail) truth in the statement of the theorem. Hence, by
modifying the tail behavior of an arbitrary sequence θ we can get a non self-similar
sequence with asymptotic coverage 0. Similarly, every element of �β(M) can be
made self-similar by modifying its tail. So we see that in the �2-norm topology
the difference in size between the two classes does not become apparent. Both the
self-similar and the bad, non self-similar truths are dense in �β(M). Following
Giné and Nickl (2010), one can also consider matters relative to the finer smooth-
ness topology on �β(M). Similar to their Proposition 4, it can then be shown that
the set of non self-similar functions is nowhere dense, while the set of self-similar
functions is open and dense. This suggests that self-similarity is the norm rather
than the exception, as is also expressed by the term generic in the topological
sense.
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The minimax argument for the neglibility of nonpolished-tail sequences is that
restriction to polished tail (or self-similar) truths does not reduce the statistical
difficulty of the problem. We show below (see Proposition 3.7) that restriction to
self-similarity changes only the constant in the minimax risk for hyperrectangles
and not the order of magnitude or the dependence on the radius of the rectangle.
Similarly, the minimax risk over Sobolev balls is reduced by at most a logarithmic
factor by a restriction to polished tail sequences (see Proposition 3.12).

A third type of reasoning is that polished tail sequences are natural once one has
adapted the Bayesian setup with priors of the form (2.3). The following proposition
shows that almost every realization from such a prior is a polished tail sequence
for some N0. By making N0 large enough we can make the set of polished tail
sequences have arbitrarily large prior probability. This is true for any of the priors
�α under consideration. Thus, if one believes one of these priors, then one ac-
cepts the polished tail condition. The result may be compared to Proposition 4 of
Hoffmann and Nickl (2011) and Proposition 2.3 of Bull (2012).

Recall that �pt(L0,N0, ρ) is the set of θ ∈ �2 that satisfy (3.3).

PROPOSITION 3.5. For every α > 0 the prior �α in (2.3) satisfies
�α(

⋃
N0

�pt(2/α + 1,N0,2)) = 1.

PROOF. Let θ1, θ2, . . . be independent random variables with θi ∼ N(0,

i−1−2α), and let 
N be the event {∑i≥N θ2
i > (2/α + 1)

∑2N
i=N θ2

i }. By the Borel–
Cantelli lemma it suffices to show that

∑
N∈N �α(
N) < ∞. We have that

E

(
2 + α

α

2N∑
i=N

θ2
i − ∑

i≥N

θ2
i

)
= 2 + α

α

2N∑
i=N

1

i1+2α
− ∑

i≥N

1

i1+2α

≥ 2

α

2N∑
i=N

1

i1+2α
−

∫ ∞
2N

x−1−2α dx

≥ (
2−2α−1/α

)
N−2α.

Therefore, by Markov’s inequality, followed by the Marcinkiewitz–Zygmund and
Hölder inequalities, for q ≥ 2 and r > 1,

�α(
N) � N2αqE

∣∣∣∣∣
2N∑
i=N

(
θ2
i − Eθ2

i

) − ∑
i>2N

(
θ2
i − Eθ2

i

)∣∣∣∣∣
q

� N2αqE
(∑

i≥N

(
θ2
i − Eθ2

i

)2
)q/2

� N2αq
∑
i≥N

E
(
θ2
i − Eθ2

i

)q
ir(q/2−1)

(∑
i≥N

i−r

)q/2−1

.
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Since E(θ2
i − Eθ2

i )q � i−2qα−q , for −2qα − q + r(q/2 − 1) < −1 (e.g., q > 2
and r close to 1), the right-hand side is of the order N2αqN−2qα−q+r(q/2−1)+1 ×
N−(r−1)(q/2−1) = N−q/2. This is summable for q > 2. �

The next theorem is the main result of the paper. It states that when the parame-
ter is restricted to polished tail sequences, the empirical Bayes credible ball Ĉn(L)

is an honest, frequentist confidence set, if L is not too small. In Sections 3.1–3.3
this theorem will be complemented by additional results to show that Ĉn(L) has
radius rn,γ (α̂n) of minimax order over a range of regularity classes.

Recall that �pt(L0) is the set of all polished tail sequences θ ∈ �2 for the given
constant L0, and A is the constant in (2.5).

THEOREM 3.6. For any A,L0,N0 there exists a constant L such that

inf
θ0∈�pt (L0)

Pθ0

(
θ0 ∈ Ĉn(L)

) → 1.(3.5)

Furthermore, for A = An ≤ √
logn/(4

√
logρ ∨ e) this is true with a slowly vary-

ing sequence [L := Ln � (3ρ3(1+2p))An works].

PROOF. See Section 5. �

The theorem shows that the sets Ĉn(L) are large enough to catch any truth that
satisfies the polished tail condition, in the sense of honest confidence sets. With
the choice L as in the theorem, their coverage in fact tends to 1, so that they are
conservative confidence sets. In Knapik, van der Vaart and van Zanten (2011) it
was seen that for deterministic choices of α, the constant L cannot be adjusted so
that exact coverage 1−γ results; and L in (3.5) may have to be larger than 1. Thus,
the credible sets Ĉn(L) are not exact confidence sets, but in combination with the
results of Sections 3.1–3.3 the theorem does indicate that their order of magnitude
is correct in terms of frequentist confidence statements.

As the credible sets result from a natural Bayesian procedure, this message is
of interest by itself. In the next subsections we complement this by showing that
the good coverage is not obtained by making the sets Ĉn(L) unduly large. On
the contrary, their radius Lrn,γ (α̂n) is of the minimax estimation rate for various
types of models. In fact, it is immediate from the definition of the radius in (3.1)
that rn,γ (α̂n) = OP (εn), whenever the posterior distribution contracts to the true
parameter at the rate εn, in the sense that for every Mn → ∞,

Eθ0�α̂n

(
θ :‖θ − θ0‖ > Mnεn | X) → 0.

Such contraction was shown in Knapik et al. (2012) to take place at the (near) min-
imax rate εn = n−β/(2β+2p+1) uniformly in parameters ranging over Sobolev balls
Sβ(M), adaptively in the regularity level β . In the next subsections we refine this
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in various ways: we also consider other models, and give refined and oracle state-
ments for the behavior of the radius under polished tail or self-similar sequences.

Generally speaking, the size of the credible sets Ĉn(L) are of (near) optimal size
whenever the empirical Bayes posterior distribution (2.7) contracts at the (near)
optimal rate. This is true for many but not all possible models for two reasons. On
the one hand, the choice of priors with variances i−1−2α , for some α, is linked to
a certain type of regularity in the parameter. These priors yield a particular col-
lection of posterior distributions �α(· | X), and even the best possible (or oracle)
choice of the tuning parameter α procedure is restricted to work through this col-
lection of posterior distributions. Thus, the resulting procedure cannot be expected
to be optimal for every model. One may think, for instance, of a model defined
through a wavelet expansion, which has a double index and may not fit the Sobolev
scale. Second, even in a situation that the collection �α(· | X) contains an optimal
candidate, the empirical Bayes procedure (2.5), linked to the likelihood, although
minimax over the usual models, may fail to choose the optimal α for other mod-
els. Other empirical Bayes procedures sometimes perform better, for instance, by
directly relating to the bias–variance trade-off.

The radii rn,γ (α) of the credible sets are decreasing in α. Hence, if the empirical
Bayes choice α̂n in (2.5) is restricted to a bounded interval [0,A], then the credible
set Ĉn(L) has radius not smaller than rn,γ (A), which is bigger than necessary if
the true parameter has greater “regularity” than A. By the second statement of
the theorem this can be remedied by choosing A dependent on n, at the cost of
increasing the radius by a slowly varying term.

3.1. Hyperrectangles. The hyperrectangle �β(M) of order β and radius M

is defined in (1.1). The minimax risk for this model in the case of the direct (not
inverse) problem where κi = 1 is given in Donoho, Liu and MacGibbon (1990).
A slight variation of their proof gives that the minimax risk for square loss in
our problem is bounded above and below by multiples of M(1+2p)/(1+2β+2p) ×
n−2β/(1+2β+2p), where the constant depends on C and p in (2.2) only. Further-
more, this order does not change if the hyperrectangle is reduced to self-similar
sequences.

PROPOSITION 3.7. Assume (2.2). For all β,M > 0,

inf
θ̂n

sup
θ0∈�β(M)

Eθ0‖θ̂n − θ0‖2 � M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p),

where the infimum is over all estimators. This remains true if �β(M) is replaced
by �

β
ss(M, ε), for any sufficiently small ε > 0.

PROOF. The problem of estimating (θi) based on the data (2.1) is equiva-
lent to estimating (θi) based on independent Y1, Y2, . . . with Yi ∼ N(θi, n

−1κ−2
i ).

As explained in Donoho, Liu and MacGibbon (1990) (who consider identical
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variances instead of σ 2
i = n−1κ−2

i depending on i, but this does not affect the
argument), the minimax estimator for a given hyperrectangle is the vector of es-
timators T = (T1, T2, . . .), where Ti is the minimax estimator in the problem of
estimating θi based on the single Yi ∼ N(θi, σ

2
i ), for each i, where it is known that

θ2
i ≤ Mi := Mi−1−2β . Furthermore, Donoho, Liu and MacGibbon (1990) show

that in these univariate problems the minimax risk when restricting to estimators
Ti(Yi) that are linear in Yi is at most 5/4 times bigger than the (unrestricted, true)
minimax risk, where the former linear minimax risk is easily computed to be equal
to Miσ

2
i /(Mi +σ 2

i ). Thus, the minimax risk in the present situation is up to a factor
5/4 equal to

∞∑
i=1

Miσ
2
i

Mi + σ 2
i

=
∞∑
i=1

i−1−2βMn−1κ−2
i

i−1−2βM + n−1κ−2
i

.

Using assumption (2.2) and Lemma 10.2 (with l = 1, m = 0, r = 1 + 2β + 2p,
s = 2p, and Mn instead of n), we can evaluate this as the right-hand side of the
proposition.

To prove the final assertion, we note that the self-similar functions �
β
ss(M, ε)

are sandwiched between �β(M) and the set

{
θ :

√
εMρ1+2βi−1/2−β ≤ θi ≤ √

Mi−1/2−β for all i
}
.

Likewise, the minimax risk for �
β
ss(M, ε) is sandwiched between the mini-

max risks of these models. The smaller model, given in the display, is actu-
ally also a hyperrectangle, which can be shifted to the centered hyperrectan-

gle �β((1 −
√

ερ1+2β)2M/4). By shifting the observations likewise we obtain

an equivalent experiment. The �2-loss is equivariant under this shift. There-
fore, the minimax risks of the smaller and bigger models in the sandwich

are proportional to (1 −
√

ερ1+2β)2M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p)/4 and

M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p), respectively, by the preceding paragraph. �

Theorem 3.6 shows that the credible sets Cn(L) cover self-similar parameters
in �β(M) and, more generally, parameters satisfying the polished tail condition,
uniformly in regularity parameters β ∈ [0,A] and also uniformly in the radius M

(but dependent on ε in the definition of self-similarity or L0 in the definition of the
polished tail condition).

Straightforward adaptation of the proof of Theorem 2 in Knapik et al. (2012)
shows that the empirical Bayes posterior distribution �α̂n

(· | X) contracts to the
true parameter at the minimax rate, by a logarithmic factor, uniformly over any
hyperrectangle �β(M) with β ≤ A. This immediately implies that the radius
rn,γ (α̂n) is at most a logarithmic factor larger than the minimax rate, and hence
the size of the credible sets Ĉn(L) adapts to the scale of hyperrectangles. Closer
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inspection shows that the logarithmic factor in this result arises from the bias term
and is unnecessary for the radius rn,γ (α̂n). Furthermore, this radius also adapts to
the constant M in the optimal manner.

PROPOSITION 3.8. For every β ∈ (0,A] and M > 0,

inf
θ0∈�β(M)

Pθ0

(
rn,γ (α̂n) ≤ KM(1/2+p)/(1+2β+2p)n−β/(1+2β+2p)) → 1.

The proof of this proposition and of all further results in this section is given in
Section 6.

This encouraging result can be refined to an oracle type result for self-similar
true parameters. Recall that �

β
ss(M, ε) is the collection of self-similar parameters

in �β(M).

THEOREM 3.9. For all ε there exists a constant K(ε) such that, for all M ,

inf
θ0∈�

β
ss(M,ε)

Pθ0

(
r2
n,γ (α̂n) ≤ K(ε) inf

α∈[0,A]Eθ0‖θ̂n,α − θ0‖2
)

→ 1.(3.6)

The theorem shows that for self-similar truths θ0 the square radius of the credi-
ble set is bounded by a multiple of the mean square error infα∈[0,A] Eθ0‖θ̂n,α −θ0‖2

of the best estimator in the class of all Bayes estimators of the form θ̂n,α , for
α ∈ [0,A]. The choice α can be regarded as made by an oracle with knowledge
of θ0. The class of estimators θ̂n,α is not complete, but rich. In particular, the propo-
sition below shows that it contains a minimax estimator for every hyperrectangle
�β(M) with β ≤ A.

PROPOSITION 3.10. For every β ∈ (0,A] and M > 0,

inf
α∈[0,A] sup

θ0∈�β(M)

Eθ0‖θ̂n,α − θ0‖2 � M(1+2p)/(1+2p+2β)n−2β/(1+2β+2p).

Within the scale of hyperrectangles it is also possible to study the asymptotic
behavior of the empirical Bayes regularity α̂n and corresponding posterior distribu-
tion. For parameters in �

β
ss(M) the empirical Bayes estimator estimates β , which

might thus be considered a “true” regularity β .

LEMMA 3.11. For any 0 < β ≤ A − 1 and M ≥ 1, there exist constants K1
and K2 such that Prθ0(β − K1/ logn ≤ α̂n ≤ β + K2/ logn) → 1 uniformly in

θ0 ∈ �
β
ss(M, ε).

Inspection of the proof of the lemma shows that the constant K2 will be nega-
tive for large enough M , meaning that the empirical Bayes estimate α̂n will then
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actually slightly (up to a 1/ logn factor) undersmooth the “true” regularity. The
assumption that θ0 ∈ �

β
ss(M, ε) implies not only that θ0 is of regularity β , but also

that within the rectangle it is at a distance proportional to M from the origin. Thus,
an increased distance from the origin in a rectangle of fixed regularity β is viewed
by the empirical Bayes procedure as “a little less smooth than β .” (This is intu-
itively reasonable and perhaps the smoothness of such θ0 should indeed be viewed
as smaller than β .) The “undersmoothing” is clever, and actually essential for the
coverage of the empirical Bayes credible sets, uniformly over all radii M > 0.

3.2. Sobolev balls. The Sobolev ball Sβ(M) of order β and radius M is de-
fined in (1.2). The minimax risk for this model is well known to be of the same or-
der as for the hyperrectangles considered in Section 3.1 [see Cavalier et al. (2002)
or Cavalier (2008)]. A restriction to polished tail sequences decreases this by at
most a logarithmic factor.

PROPOSITION 3.12. Assume (2.2). For all β,M > 0,

inf
θ̂n

sup
θ0∈Sβ(M)∩�pt (L0)

Eθ0‖θ̂n − θ0‖2

� M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p)(logn)−(2+4p)/(1+2β+2p),

where the infimum is over all estimators.

PROOF. The set Sβ(M) ∩ �pt(L0) contains the set{
θ ∈ �2 : εMi−1−2β(log i)−2 ≤ θi ≤ ε′Mi−1−2β(log i)−2},

for suitable ε < ε′. This is a translate of a hyperrectangle delimited by the rate
sequence Mi−1−2β(log i)−2. The minimax risk over this set can be computed as
in the proof of Proposition 3.7. �

By Theorem 2 of Knapik et al. (2012) the empirical Bayes posterior distribution
�α̂n

(· | X) (with A set to logn) contracts to the true parameter at the minimax rate,
up to a logarithmic factor, uniformly over any Sobolev ball Sβ(M). This implies
that the radius rn,γ (α̂n) is at most a logarithmic factor larger than the minimax rate,
and hence the size of the credible sets Ĉn(L) adapts to the Sobolev scale. Again,
closer inspection shows that the logarithmic factors do not enter into the radii, and
the radii adapt to M in the correct manner. The proof of the following theorem can
be found in Section 7.

THEOREM 3.13. There exists a constant K such that, for all β ∈ [0,A], M

and L0,

inf
θ0∈Sβ(M)

Pθ0

(
r2
n,γ (α̂n) ≤ KM(1+2p)/(1+2β+2p)n−2β/(1+2β+2p)) → 1.
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Thus, the empirical Bayes credible sets are honest confidence sets, uniformly
over the scale of Sobolev balls (for β ∈ [0,A] and M > 0) intersected with the
polished tail sequences, of the minimax size over every Sobolev ball.

If A in (2.5) is allowed to grow at the order
√

logn, then these results are true
up to logarithmic factors.

3.3. Supersmooth parameters. Classes of supersmooth parameters are de-
fined by, for fixed N,M,c, d > 0,

C00(N0,M) =
{
θ ∈ �2 : sup

i>N0

|θi | = 0 and sup
i≤N0

|θi | ≤ M1/2
}
,(3.7)

S∞,c,d(M) =
{
θ ∈ �2 :

∞∑
i=1

ecid θ2
i ≤ M

}
.(3.8)

The minimax rate over these classes is n−1/2 or n−1/2 up to a logarithmic factor.
Every class C00(N0,M) for fixed N0 and arbitrary M consists of polished tail
sequences only.

If the empirical Bayes regularity α̂n in (2.5) is restricted to a compact interval
[0,A], then it will tend to the upper limit A whenever the true parameter is in one
of these supersmooth models. Furthermore, the bias of the posterior mean will be
of order O(1/n), which is negligible relative to its variance at α = A (which is the
smallest over [0,A]). Coverage by the credible sets then results.

More interestingly, for α̂n in (2.5) restricted to [0, logn], it is shown in Knapik
et al. (2012) that the posterior distribution contracts at the rate n−1/2 up to a lower
order factor, for θ0 ∈ S∞,c,1. Thus, the empirical Bayes credible sets then adapt to
the minimal size over these spaces. Coverage is not automatic, but does take place
uniformly in polished tail sequences by Theorem 3.6.

The following theorem extends the findings on the sizes of the credible sets.

THEOREM 3.14. There exists a constant K such that, for A = An =√
logn/(4 logρ),

inf
θ0∈C00(N0,M)

Pθ0

(
r2
n,γ (α̂n) ≤ Ke(3/2+3p)

√
logN0

√
lognn−1) → 1,(3.9)

inf
θ0∈S∞,c,d (M)

Pθ0

(
r2
n,γ (α̂n) ≤ e(1/2+p)

√
logn log lognn−1) → 1.(3.10)

4. Simulation example. We investigate the uncertainty quantification of the
empirical Bayes credible sets in an example. Assume that we observe the process

Xt =
∫ t

0

∫ s

0
θ0(u) duds + 1√

n
Bt , t ∈ [0,1],

where B denotes a standard Brownian motion and θ0 is the unknown function
of interest. It is well known and easily derived that this problem is equivalent
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to (2.1), with θ0,i the Fourier coefficients of θ0 relative to the eigenfunctions
ei(t) = √

2 cos(π(i − 1/2)t) of the Volterra integral operator Kθ(t) = ∫ t
0 θ(u) du,

and κi = 1/(i − 1/2)/π the corresponding eigenvalues. In particular, p = 1
in (2.2), that is, the problem is mildly ill posed.

For various signal-to-noise ratios n we simulate data from this model corre-
sponding to the true function

θ0(t) =
∞∑
i=1

(
i−3/2 sin(i)

)√
2 cos

(
π(i − 1/2)t

)
.(4.1)

This function θ0 is self-similar with regularity parameter β = 1. In Figure 1 we
visualize 95% credible sets for θ0 (gray), the posterior mean (blue) and the true
function (black), by simulating 2000 draws from the empirical Bayes posterior
distribution and plotting the 95% draws out of the 2000 that are closest to the pos-
terior mean in the L2-sense. The credible sets are drawn for n = 104,106,108 and
1010, respectively. The pictures show good coverage, as predicted by Theorem 3.6.
We note that we did not blow up the credible sets by a factor L > 1.

To illustrate the negative result of Theorem 3.1, we also computed credible sets
for a “bad truth.” We simulated data using the following function:

θ0(t) =
∞∑
i=1

θ0,i

√
2 cos

(
π(i − 1/2)t

)
,

FIG. 1. Empirical Bayes credible sets. The true function is drawn in black, the posterior mean in
blue and the credible set in grey. We have n = 103,106,108 and 1010, respectively.
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where

θ0,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8, for i = 1,

2, for i = 3,

−2, if i = 50,

i−3/2, if 24j
< i ≤ 2 ∗ 24j

, for j ≥ 3,

0, else.

Figure 2 shows the results, with again the true function θ0 in black, the posterior
mean in blue and the credible sets in gray. The noise levels are n = 20,50,103,6 ∗
104,5 ∗ 105 and 5 ∗ 106, respectively. As predicted by Theorem 3.1, the coverage
is very bad along a subsequence. For certain values of n the posterior mean is far
from the truth, yet the credible sets very narrow, suggesting large confidence in the
estimator.

5. Proof of Theorem 3.6. The proof of Theorem 3.6 is based on a character-
ization of two deterministic bounds on the data-driven choice α̂n of the smoothing
parameter. Following Knapik et al. (2012) and Szabó, van der Vaart and van Zanten
(2013), define a function hn = hn(·; θ0) by

hn(α; θ0) = 1 + 2α + 2p

n1/(1+2α+2p) logn

∞∑
i=1

n2i1+2α(log i)θ2
0,i

(i1+2α+2p + n)2 , α ≥ 0.(5.1)

Next define

αn(θ0) = inf
{
α ∈ [0,A] :hn(α; θ0) ≥ 1/

(
16C8)},(5.2)

αn(θ0) = sup
{
α ∈ [0,A] :hn(α; θ0) ≤ 8C8}.(5.3)

An infimum or supremum over an empty set can be understood to be A or 0,
respectively. The value A is as in (2.5). If it depends on n, then this dependence is
copied into the definitions.

The following theorem shows that uniformly in parameters θ0 that satisfy the
polished tail condition, the sequences αn(θ0) and αn(θ0) capture α̂n with probabil-
ity tending to one. Furthermore, these sequences are at most a universal multiple
of 1/ logn (or slightly more if A depends on n) apart, leading to the same “rate”
n−α/(1+2α+2p), again uniformly in polished tail sequences θ0.

THEOREM 5.1. For every L0 ≥ 1,

inf
θ0∈�pt (L0)

Pθ0

(
αn(θ0) ≤ α̂n ≤ αn(θ0)

) → 1,(5.4)

sup
θ0∈�pt (L0)

n−2αn(θ0)/(1+2αn(θ0)+2p)

n−2αn(θ0)/(1+2αn(θ0)+2p)
≤ K3,n,(5.5)
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FIG. 2. Empirical Bayes credible sets for a non self-similar function. The true function is drawn in
black, the posterior mean in blue and the credible sets in grey. From left to right and top to bottom
we have n = 20,50,103,6 ∗ 104,5 ∗ 105 and 5 ∗ 106.

for logn ≥ 2 + 4A + 2p ∨ C0, where C0 depends on N0,

K3,n ≤ c
(
29C16L2

0ρ
5+10A+6p)1+2p

,

for some universal constant c.

PROOF. The proof of (5.4) is similar to proofs given in Knapik et al. (2012).
However, because the exploitation of the polished tail condition and the required
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uniformity in the parameters are new, we provide a complete proof of this assertion
in the Appendix. Here we only prove inequality (5.5).

Let Nα = n1/(1+2α+2p) and set

�j =
ρj∑

i=ρj−1+1

θ2
i .

Then the polished tail condition (3.3) implies that �j ≤ L0�j ′ for all j ≥ j ′,
whence

hn(α; θ) = 1

Nα logNα

∞∑
i=1

n2i1+2αθ2
i log i

(i1+2α+2p + n)2

≤ 1

Nα logNα

∞∑
j=1

�j

n2ρj(1+2α)j logρ

(ρ(j−1)(1+2α+2p) + n)2 .

We get a lower bound if we swap the j and j − 1 between numerator and denom-
inator. [The term (j − 1) logρ that then results in the numerator is a nuisance for
j = 1; instead of (j − 1) logρ = logρj−1, we may use log 2 if j = 1, as the term
i = 1 does not contribute.]

Define Jα to be an integer such that

Jα =
⌊

logn

(logρ)(1 + 2α + 2p)

⌋

hence ρJα(1+2α+2p) ≤ n < ρ1+2α+2pρJα(1+2α+2p).

Under the polished tail condition,

∑
j>Jα

�j

n2ρj(1+2α)j logρ

(ρ(j−1)(1+2α+2p) + n)2

≤ L0�Jα

∑
j>Jα

n2ρ−j (1+2α+4p)j (logρ)ρ2(1+2α+2p)

� L0�Jαn
2ρ−Jα(1+2α+4p)Jα(logρ)ρ2(1+2α+2p)

≤ L0�JαnJα(logρ)ρ3(1+2α+2p)−Jα2p.

The constant in � is universal. [We have
∑

j>J jxj = xJ+1(J + 1)((1 − x)−1 −
(1 − x)−2/(J + 1)) for 0 < x < 1, and x = ρ−(1+2α+4p) ≤ ρ−1 ≤ 1/2.]

The Jα th term of the series on the left-hand side is

�Jα

n2ρJα(1+2α)Jα logρ

(ρ(Jα−1)(1+2α+2p) + n)2 ≥ (1/4)�JαnJαρ−Jα2p logρ.
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Up to a factor L0ρ
3(1+2α+2p) this has the same order of magnitude as the right-

hand side of the preceding display, whence

hn(α; θ) �
(
1 + L0ρ

3+6α+6p) 1

Nα logNα

Jα∑
j=1

�j

n2ρj(1+2α)j (logρ)

(ρ(j−1)(1+2α+2p) + n)2 .

Because ρj(1+2α+2p) + n ≤ 2n for j ≤ Jα , we also have

hn(α; θ) ≥ 1

Nα logNα

Jα∑
j=1

�jρ
(j−1)(1+2α) log(ρj−1 ∨ 2)

4

≥ 1

Nα logNα

ρ−(1+2α)

8

Jα∑
j=1

�jρ
j(1+2α)j (logρ ∧ 1).

(Note that log 2 ≈ 0.69 ≥ 1/2 and j − 1 ≥ j/2 for j ≥ 2.)
Now fix α1 ≤ α2. Then Jα2 ≤ Jα1 and ρ1+2α1 ≤ ρ1+2α2 and

hn(α1; θ)

hn(α2; θ)

� Nα2 logNα2

Nα1 logNα1

(1 + L0ρ
3+6α1+6p)(

∑Jα2
j=1 +∑Jα1

j=Jα2
)�jρ

j (1+2α1)j (logρ)

ρ−(1+2α2)
∑Jα2

j=1 �jρj(1+2α2)j (logρ ∧ 1)

� Nα2 logNα2

Nα1 logNα1

(
1 + L0ρ

3+6α1+6p)
ρ1+2α2

(
1 +

L0�Jα2

∑Jα1
j=Jα2

ρj(1+2α1)j

�Jα2
ρJα2 (1+2α2)Jα2

)

� Nα2 logNα2

Nα1 logNα1

(
1 + L0ρ

3+6α1+6p)
ρ1+2α2

(
1 + L0

ρJα1 (1+2α1)Jα1

ρJα2 (1+2α2)Jα2

)

≤ Nα2 logNα2

Nα1 logNα1

(
1 + L0ρ

3+6α1+6p)
ρ2+4α2

(
1 + L0

Jα1

Jα2

)

≤ Nα2

Nα1

1 + 2α1 + 2p

1 + 2α2 + 2p

(
1 + L0ρ

3+6α1+6p)
ρ2+4α2

(
1 + 2L0

1 + 2α2 + 2p

1 + 2α1 + 2p

)
.

[We use
∑J

j=I xj = xI (xJ−I+1 − 1)/(x − 1) ≤ xJ x/(x − 1) � xJ , for x =
ρ1+2α ≥ ρ.]

Since αn ≤ αn, there is nothing to prove in the trivial cases αn = A or αn = 0. In
the other cases it follows that hn(αn; θ0) ≥ 1/(16C8) and hn(αn; θ0) ≤ 8C8. Then
the left-hand side of the preceding display with α1 = αn and α2 = αn is bounded
from below by 1/(128C16). After taking the (1 + 2p)th power of both sides and
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rearranging the inequality we get(
28C16)1+2p(

1 + L0ρ
3+6A+6p)1+2p

ρ(2+4A)(1+2p)(1 + 2L0)
1+2p

� N1+2p
αn

/N
1+2p
αn

= N
−2αn
αn

/N
−2αn
αn

.

This concludes the proof of Theorem 5.1. �

We proceed to the proof of Theorem 3.6. Recall the definition of the posterior
distribution �α(· | X) in (2.4).

For notational convenience denote the mean of the posterior distribution (2.4)
by θ̂α and the radius rn,γ (α) defined by (3.1) by r(α). Furthermore, let

W(α) = θ̂α − Eθ0 θ̂α and B(α; θ0) = Eθ0 θ̂α − θ0(5.6)

be the centered posterior mean and the bias of the posterior mean, respectively.
The radius r(α) and the distribution of the variable W(α) under θ0 are free of θ0.
On the other hand, the bounds αn and αn do depend on θ0, but we shall omit this
from the notation. Because the radius of the credible set is defined to be infinite if
α̂n = 0, it is not a loss of generality to assume that αn > 0. For simplicity we take
A in (2.5) independent of n, but make the dependence of constants on A explicit,
so that the general case follows by inspection.

We prove below that there exist positive parameters C1,C2,C3 that depend on
C,A,p,L0, ρ only such that, for all θ0 ∈ �pt(L0),

inf
αn≤α≤αn

r(α) ≥ C1n
−αn/(1+2αn+2p),(5.7)

sup
αn≤α≤αn

∥∥B(α; θ0)
∥∥ ≤ C2n

−αn/(1+2αn+2p),(5.8)

inf
θ0∈�pt (L0)

Pθ0

(
sup

αn≤α≤αn

∥∥W(α)
∥∥ ≤ C3n

−αn/(1+2αn+2p)
)

→ 1.(5.9)

We have θ0 ∈ Ĉn(L) if and only if ‖θ̂α̂ − θ0‖ ≤ Lr(α̂), which is implied by
‖W(α̂)‖ ≤ Lr(α̂) − ‖B(α̂; θ0)‖, by the triangle inequality. Consequently, by (5.4)
of Theorem 5.1, to prove (3.5), it suffices to show that for L large enough

inf
θ0∈�pt (L0)

Pθ0

(
sup

αn≤α≤αn

∥∥W(α)
∥∥ ≤ L inf

αn≤α≤αn

r(α) − sup
αn≤α≤αn

∥∥B(α; θ0)
∥∥) → 1.

This results from the combination of (5.7), (5.8) and (5.9), for L such that C3 ≤
LC1 − C2.

We are left to prove (5.7), (5.8) and (5.9).

PROOF OF PROOF OF (5.7). The radius r(α) is determined by the requirement
that P(Un(α) < r2(α)) = 1 − γ , for the random variable Un(α) = ∑

i si,n,αZ2
i ,

where si,n,α = κ−2
i /(i1+2ακ−2

i +n) and (Zi) is an i.i.d. standard normal sequence.
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Because α �→ si,n,α is decreasing in α, the map α �→ r(α) is nonincreasing, and
hence the infimum in (5.7) is equal to r(αn). In view of (2.2) and Lemma 10.2, the
expected value and variance of Un(α) satisfy, for n ≥ e1+2α+2p ,

EUn(α) =
∞∑
i=1

si,n,α ≥ 1

C4

∞∑
i=1

i2p

i1+2α+2p + n

≥ 1

C4(31+2α+2p + 1)
n−2α/(1+2α+2p),

varUn(α) = 2
∞∑
i=1

s2
i,n,α ≤ 2C8

∞∑
i=1

i4p

(i1+2α+2p + n)2

≤ 10C8n−(1+4α)/(1+2α+2p).

We see that the standard deviation of Un(α) is negligible compared to its ex-
pected value. This implies that all quantiles of Un(α) are of the order EUn(α).
More precisely, by Chebyshev’s inequality we have that Pr(U < r2) = 1 − γ

implies that EU − (1 − γ )−1/2 sdU ≤ r2 ≤ EU + γ −1/2 sdU . For α ≤ A

the expectation EUn(α) is further bounded below by C1,1n
−2α/(1+2α+2p), for

C1,1 = C−4(31+2A+2p + 1)−1. Furthermore, sdUn(α) is bounded above by
C1,2,nn

−2α/(1+2α+2p), for C1,2,n = √
10C4n−(1/2)/(1+2A+2p) → 0. Hence, for

large enough n we have C1,1/2 ≥ (1 − γ )−1/2C1,2,n, whence (5.7) holds for C2
1 =

C1,1/2 and sufficiently large n. If A depends on n, then so does C1,1 = C1,1,n,
but since A ≤ √

logn/4 by assumption, we still have that C1,2,n 
 C1,1,n, and the
preceding argument continues to apply. �

PROOF OF (5.8). In view of the explicit expression for θ̂α and (2.2),

∥∥B(α; θ0)
∥∥2 =

∞∑
i=1

i2+4ακ−4
i θ2

0,i

(i1+2ακ−2
i + n)2

≤ C8
∞∑
i=1

i2+4α+4pθ2
0,i

(i1+2α+2p + n)2 .(5.10)

The first term of the sum is zero following from our assumption θ0,1 = 0. Since
the right-hand side of the preceding display is (termwise) increasing in α, the
supremum over α is taken at αn. Because the map x �→ x−1 logx is decreas-
ing for x ≥ e and takes equal values at x = 2 and x = 4, its minimum over
[2,N1+2α+4p] is taken at N1+2α+4p if N1+2α+4p ≥ 4. Therefore, for 2 ≤ i ≤ N

we have that i1+2α+4p ≤ N(1+2α+4p) log i/ logN if N ≥ 41/(1+2α+4p). Applied
with Nα = n1/(1+2α+2p), this shows that, for n ≥ 4(1+2α+2p)/(1+2α+4p),

∑
2≤i≤Nα

i2+4α+4pθ2
0,i

(i1+2α+2p + n)2 ≤ n−2α/(1+2α+2p)hn(α; θ0).
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This bounds the initial part of the series in the right-hand side of (5.10). For θ0 ∈
�pt(L0), the remaining part can be bounded above by

∑
i≥Nα

θ2
0,i ≤ L0

ρNα∑
i=Nα

θ2
0,i ≤ L0

(
ρ1+2α+2p + 1

)2
hn(α; θ0)N

−2α
α ,

as is seen by lower bounding the series hn(α; θ0) by the sum of its terms from Nα

to ρNα . Using the inequality hn(αn; θ0) ≤ 8C8, we can conclude that∥∥Bn(αn; θ0)
∥∥2 ≤ (

L02ρ2+4A+4p + 1
)
8C8n−2αn/(1+2αn+2p).

This concludes the proof of (5.8), with C2
2 = (L02ρ2+4A+4p + 1)8C8. �

PROOF OF (5.9). Under Pθ0 the variable Vn(α) = ‖W(α)‖2 is distributed as∑
ti,n,αZ2

i , where ti,n,α = nκ−2
i /(i1+2ακ−2

i + n)2 and Zi := √
n(Xi − Eθ0Xi)

are independent standard normal variables. This representation gives a coupling
over α and, hence, supαn≤α≤αn

‖W(α)‖2 is distributed as supαn≤α≤αn

∑
ti,n,αZ2

i =∑
ti,n,αn

Z2
i , since the coefficients ti,n,α are decreasing in α. By Lemma 10.2,

EVn(α) =
∞∑
i=1

ti,n,α ≤ C6
∞∑
i=1

ni2p

(i1+2α+2p + n)2

≤ C65n−2α/(1+2α+2p),
(5.11)

varVn(α) = 2
∞∑
i=1

t2
i,n,α ≤ 2C12

∞∑
i=1

n2i4p

(i1+2α+2p + n)4

≤ 10C12n−(1+4α)/(1+2α+2p).

Again, the standard deviation of Vn(α) is of smaller order than the mean. By rea-
soning as for the proof of (5.7), we obtain (5.9) with the constant

√
6C6, but with

the rate n−α/(1+2α+2p) evaluated at αn rather than αn. Although the last one is
smaller, it follows by (5.5) that the square rates are equivalent up to multiplication
by K3,n (which is fixed if A is fixed). Thus, (5.9) holds with C2

3 = 6C6K3,n. �

REMARK 5.2. In the proof of (5.8) we used the assumption that the first co-
ordinate θ0,1 of the true parameter is zero. As hn(α; θ0) does not depend on this
coefficient, it would otherwise be impossible to use this function in a bound on the
square bias and thus relate the bias to α̂n.

6. Proofs for hyperrectangles. In this section we collect proofs for the re-
sults in Section 3.1. Throughout the section we set Nα = n1/(1+2α+2p) and use the
abbreviations of the preceding section.
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6.1. Proof of Theorem 3.9. By (5.4) the infimum in (3.6) is bounded from
below by

inf
θ0∈�

β
ss(M)

Pθ0

(
sup

αn≤α≤αn

r(α) ≤ K inf
α∈[0,A]Eθ0‖θ̂α − θ0‖2

)
− o(1).

Here the probability is superfluous because r(α), αn and αn are deterministic. We
separately bound the supremum and infimum inside the probability (above and
below) by a multiple of M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p).

As was argued in the proof of (5.7), the radius r(α) is nonincreasing in α and,
hence, its supremum is r(αn). Also, similarly as in the proof of (5.7), but now
using the upper bound

EUn(α) ≤ C4
∞∑
i=1

i2p

i1+2α+2p + n
≤ C4(3 + 2/α)n−2α/(1+2α+2p),

by Lemma 10.2, we find that

sup
α∈[αn,αn]

r(α)2 ≤ C4(3 + 2/αn)n
−2αn/(1+2αn+2p).(6.1)

The sequence αn tends to β , uniformly in θ0 ∈ �β(M) by (6.9) (below), whence
(3 + 2/αn) ≤ (4 + 2/β). A second application of (6.9), also involving the precise
definition of the constant K1, shows that the preceding display is bounded above
by a multiple of M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p).

With the notation as in (5.6), the minimal mean square error in the right-hand
side of the probability is equal to

inf
α∈[0,A]Eθ0‖θ̂n,α − θ0‖2 = inf

α∈[0,A]
[∥∥B(α; θ0)

∥∥2 + Eθ0

∥∥W(α)
∥∥2]

.(6.2)

The square bias and variance terms in this expression are given in (5.10) and (5.11).
By (2.2) the square bias is bounded below by

1

C8

∞∑
i=1

i2+4α+4pθ2
0,i

(i1+2α+2p + n)2 ≥ 1

4C8

ρNα∑
i=Nα

θ2
0,i ≥ εM

4C8 N−2β
α ,(6.3)

for θ0 ∈ �
β
ss(M). By Lemma 10.2 the variance term Eθ0‖W(α)‖2 in (6.2) is

bounded from below by

1

C6

∞∑
i=1

ni2p

(i1+2α+2p + n)2 ≥ 1

C6

(
31+2A+2p + 1

)−2
N−2α

α .(6.4)

The square bias is increasing in α, whereas the variance is decreasing; the same is
true for their lower bounds as given. It follows that their sum is bounded below by
the height at which the two curves intersect. This intersection occurs for α solving

εM

4C2 N−2β
α = (

31+2A+2p + 1
)−2

N−2α
α .(6.5)
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Write the solution as α = β −K/ logn, in terms of some parameter K (which may
depend on n as does the solution). By elementary algebra, we get that

N−2α
α ≡ n−2α/(1+2α+2p)

= n−2β/(1+2β+2p)(e2K/(1+2β−2K/ log n+2p))(1+2p)/(1+2β+2p)
,

(6.6)
N−2β

α ≡ n−2β/(1+2α+2p)

= n−2β/(1+2β+2p)(e2K/(1+2β−2K/ log n+2p))−2β/(1+2β+2p)
.

Dividing the first by the second, we see from (6.5) that K is the solution to

e2K/(1+2β−2K/ log n+2p) = (
31+2A+2p + 1

)2 εM

4C2 .(6.7)

Furthermore, (6.6) shows that the value of the right-hand side of (6.2) at the cor-
responding α = β − K/ logn is equal to a constant times M(1+2p)/(1+2β+2p) ×
n−2β/(1+2β+2p), where the constant multiplier depends only on β, ε and A.

6.2. Proof of Proposition 3.10. In view of (6.2), (5.10) and (5.11) and (2.2),

inf
α∈[0,A]Eθ0‖θ̂n,α − θ0‖2 ≤ C8

∞∑
i=1

i2+4α+4pθ2
0,i

(i1+2α+2p + n)2 + C6
∞∑
i=1

ni2p

(i1+2α+2p + n)2 .

By Lemma 10.2 and the definition of the hyperrectangle �β(M), one can see that
the right-hand side of the preceding display for α ≤ β is bounded from above by

5C8MN−2β
α + 5C6N−2α

α .(6.8)

Then choosing α = β − K/ logn with constant K satisfying

e2K/(1+2β−2K/ log n+2p) = M,

we get from (6.6) that (6.8) is bounded above by the constant times

M(1+2p)/(1+2β+2p)n−2β/(1+2β+2p).

6.3. Proof of Lemma 3.11. We show that

inf
θ0∈�β(M)

αn(θ0) ≥ β − K1/ logn,(6.9)

sup
θ0∈�

β
ss(M,ε)

αn(θ0) ≤ β + K2/ logn(6.10)

hold for logn ≥ (4K1) ∨ (logN0)
2 ∨ 4(1 + 2p) and constants K1,K2 satisfying

e2K1/(1+2β−2K1/ logn+2p) = 288Me2A+3C8,(6.11)

εMe2K2/(1+2A+2p) = (
ρ1+2A+2p + 1

)28C8.(6.12)
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PROOF OF (6.9). If θ0 ∈ �β(M), then hn(α; θ0) is bounded above by

M

Nα logNα

∞∑
i=1

n2i2α−2β(log i)

(i1+2α+2p + n)2 ≤ M9e2A+3

Nα logNα

∫ Nα

1
x2α−2β logx dx,(6.13)

by Lemma 10.3 with l = 2, m = 1, s = 2α − 2β and, hence, c = lr − s − 1 =
1+2α +2β +4p ≥ 1, for n ≥ e4+8α+8p . Because the integrand is increasing in α,
we find that

sup
α≤β−K/ logn

hn(α; θ0) ≤ M9e2A+3 sup
α≤β−K/ logn

N−1
α

∫ Nα

1
x−2K/ logn dx

≤ M9e2A+3 sup
α≤β−K/ logn

N
−2K/ logn
α

1 − 2K/ logn

≤ M18e2A+3e−2K/(1+2β−2K/ log n+2p),

for 2K/ logn ≤ 1/2. By its definition, αn ≥ β − K/ logn if the left-hand side of
the preceding display is bounded above by 1/(16C8). This is true for K ≥ K1 as
given in (6.11). �

PROOF OF (6.10). By Lemma 6.1 (below), for θ0 ∈ �
β
ss(M, ε) and n ≥

N
1+2A+2p
0 ,

inf
β+K/ logn≤α≤A

hn(α; θ0)

≥ inf
β+K/ logn≤α≤A

εM

(ρ1+2α+2p + 1)2 n(2α−2β)/(1+2α+2p)

≥ εM

(ρ1+2A+2p + 1)2 e2K/(1+2A+2p).

By its definition αn ≤ β + K/ logn if the right-hand side is greater than 8C8. This
happens for large enough K ≥ K2 as indicated. �

LEMMA 6.1. For θ0 ∈ �
β
ss(M, ε) and n ≥ N

1+2α+2p
0 ∨ e4,

hn(α; θ0) ≥ n(2α−2β)/(1+2α+2p) εM

(ρ1+2α+2p + 1)2 .

PROOF. The function hn(α; θ0) is always bounded below by

1

Nα logNα

∑
Nα≤i≤ρNα

n2i1+2α(log i)θ2
0,i

(i1+2α+2p + n)2 ≥ N2α
α

(ρ1+2α+2p + 1)2

∑
Nα≤i≤ρNα

θ2
0,i .

For θ0 ∈ �
β
ss(M, ε) we can apply the definition of self-similarity to bound the sum

on the far right below by εMN
−2β
α , for Nα ≥ N0. �
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6.4. Proof of Proposition 3.8. The proposition is an immediate consequence
of (6.1), (6.6) and (6.9).

7. Proof of Theorem 3.13. It follows from the proof of Lemma 2.1 of Knapik
et al. (2012) that, for θ0 ∈ Sβ(M),

hn(α; θ0) ≤ Mn−(1∧2(β−α))/(1+2α+2p).

The right-hand side is strictly smaller than 1/(16C8) for α ≤ β − 2K/ logn with
K satisfying

e2K/(1+2β−2K/ log n+2p) = 16C8M.

By the definition of αn, we conclude that αn ≥ β −K/ logn. The theorem follows
by combining this with (6.1).

8. Proof of Theorem 3.14.

PROOF OF (3.9). For α ≤ √
logn/(3

√
logN0) and

√
logn ≥ (3

√
logN0)(1 +

2p), we have that

Nα ≥ elogn/(1+2
√

logn/(3
√

logN0)+2p) ≥ e
√

logN0
√

logn.

Since also N2α
0 ≤ e(2/3)

√
logN0

√
logn, the function hn(α; θ0) is bounded above by,

for θ0 ∈ C00(N0,M),

(logN0)N
2+2α
0 M/(Nα logNα) ≤ (logN0)N

2
0 Me−(1/3)

√
logN0

√
logn.

Since this tends to zero, it will be smaller than 1/(16C8), for large enough n,
whence αn ≥ √

logn/(3
√

logN0), by its definition. Assertion (3.9) follows by
substituting this into (6.1). �

PROOF OF (3.10). As before, we give an upper bound for hn(α; θ0) by split-
ting the sum in its definition into two parts. The sum over the indices i > Nα is
bounded by

1

Nα logNα

n2
∑

i>Nα

i−1−2α−4p(log i)θ2
0,i .

Since the function f (x) = x−1−2α−4p logx is monotonely decreasing for
x ≥ e1/(1+2α+4p), we have N−1

α i−1−2α−4p(log i) ≤ N
−2−2α−4p
α (logNα) =

n2N2α
α logNα , for i > Nα . Hence, the right-hand side is bounded by a multiple

of

N2α
α

∞∑
i>Nα

θ2
0,i ≤ ne−cNd

α

∞∑
i>Nα

ecNd
α θ2

0,i ≤ ne−cNd
α M.
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The sum over the indices i ≤ n1/(1+2α+2p) is bounded by

N−1
α

∑
i≤Nα

i1+2αθ2
0,i ≤ N−1

α e(1+2α)/d log(1+2α)/(cd)M,

since the maximum on (0,∞) of the function x �→ x1+2α exp(−cxd) equals
((1 + 2α)/(cd))(1+2α)/d . Combining the two bounds, we find that for α ≤√

logn/ log logn and sufficiently large n the function hn(α; θ0) is bounded from
above by a multiple of

Mn exp
(−ce(d/3)

√
logn log logn) + M exp

(
3
√

logn

2d
−

√
logn log logn

3

)
.

Since this tends to zero, the inequality hn(α; θ0) < 1/(16C8) holds for large
enough n (depending on p,C, c, d and M), whence αn ≥ √

logn/ log logn. Com-
bining with (6.1), this proves (3.10). �

9. Proof of Theorem 3.1. From the proof of Theorem 5.1 it can be seen that
the lower bound in (5.4) is valid also for non self-similar θ0:

inf
θ0∈�2

Pr
(
αn(θ0) ≤ α̂n

) → 1.

In terms of the notation (5.6), we have that θ0 ∈ Ĉn(L) if and only if ‖θ̂α̂ − θ0‖ ≤
Lr(α̂), which implies that ‖B(α̂; θ0)‖ ≤ Lr(α̂) + ‖W(α̂)‖. Combined with the
preceding display, it follows that Pθ0(θ0 ∈ Ĉn(L)) is bounded above by

Pθ0

(
inf

α≥αn(θ0)

∥∥B(α, θ0)
∥∥ ≤ L sup

α≥αn(θ0)

r(α) + sup
α≥αn(θ0)

∥∥W(α)
∥∥) + o(1).(9.1)

The proofs of (5.9) and (6.1) show also that

sup
θ0∈�β(M)

sup
α≥αn(θ0)

r(α) ≤ Cβn−αn(θ0)/(1+2αn(θ0)+2p),(9.2)

inf
θ0∈�β(M)

P
(

sup
α≥αn(θ0)

∥∥W(α)
∥∥ ≤ C3n

−αn(θ0)/(1+2αn(θ0)+2p)
)

→ 1.(9.3)

We show below that αnj
(θ0) ≥ αj , for the parameter θ0 given in the theorem and

αj the solution of

ρ
(1+2β+2p)/4
j = n

αj−β

j .

Since ρj → ∞, it is clear that αj > β . Furthermore, from the assumption that
nj ≥ (2ρ2

j )1+2β+2pnj−1, where nj−1 ≥ 1, it can be seen that αj < β + 1/2. By
combining this with (9.2) and (9.3), we see that the latter implies that the expres-
sion to the right-hand side of the inequality in (9.1) at n = nj is bounded above by
a constant times

Ln
−αj /(1+2αj+2p)

j = Ln
−(1+2p)(αj−β)/((1+2β+2p)(1+2αj+2p))

j n
−β/(1+2β+2p)
j


 Lρ
−(1+2p)/(4(2+2β+2p))
j n

−β/(1+2β+2p)
j .
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Since α �→ ‖B(α; θ0)‖ is increasing, the infimum on the left-hand side of the in-
equality is bounded from below by ‖B(αj ; θ0)‖. Now, in view of (5.10), with

Nj = n
1/(1+2β+2p)
j (and an abuse of notation, as Nα was used with a different

meaning before),

∥∥B(α; θ0)
∥∥2 ≥ 1

C8

∑
Nj≤i<2Nj

i2+4α+4pθ2
0,i

(i1+2α+2p + nj )2 ≥ 1

4C8

∑
Nj≤i<2Nj

θ2
0,i ,

for α ≥ β , since nj ≤ i1+2α+2p for i ≥ Nj . Using the definition of θ0, we see that
this is lower bounded by a multiple of

MNjn
−(1+2β)/(1+2β+2p)
j = Mn

−2β/(1+2β+2p)
j .

Thus, we deduce that the expression to the left of the inequality sign in (9.1) is of
larger order than the expression to the right, whence the probability tends to zero
along the subsequence nj .

Finally, we prove the claim that αnj
(θ0) ≥ αj , by showing that hnj

(α; θ0) <

1/(16C8) for all α < αj . We consider the cases α ≤ β and α ∈ (β,αj ) separately.
For α ≤ β we have, by Lemma 10.4,

hn(α, θ0) ≤ 1

Nα logNα

(
Nα∑
i=1

M log i + n2
∑

i≥Nα

Mi−2−2α−4p−2β log i

)
� M.

Thus, hn(α, θ0) is smaller than 1/(16C8) for sufficiently small M . For β < α < αj

we have that hnj
(α; θ0) ≤ A1 + A2 + A3 for

A1 = 1 + 2α + 2p

n
1/(1+2α+2p)
j lognj

∑
i≤ρ−1

j Nj

Mi2α−2β log i,

A2 = 1 + 2α + 2p

n
1/(1+2α+2p)
j lognj

∑
Nj≤i<2Nj

n2
j i

1+2α(log i)N
−1−2β
j M

(i1+2α+2p + nj )2 ,

A3 = 1 + 2α + 2p

n
1/(1+2α+2p)
j lognj

∑
i≥ρjNj

Mn2
j i

−2−2α−4p−2β(log i).

The first term satisfies

A1 � Mρ
−(1+2α−2β)
j n

(1+2α−2β)/(1+2β+2p)−1/(1+2α+2p)
j

≤ Mρ−1
j n

2(α−β)(2+2α+2p)/((1+2β+2p)(1+2α+2p))
j .

The right-hand side is increasing in α, and hence is maximal over (β,αj ] at αj . At
this value it tends to zero in view of the definition of αj . By Lemma 10.4,

A3 � Mρ
−(1+2α+4p+2β)
j n

2−1/(1+2α+2p)
j N

−1−2α−4p−2β
j

≤ Mρ−1
j n

2(β−α)(2α+2p)/((1+2β+2p)(1+2α+2p))
j .
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This tends (easily) to zero for α > β .
The term i1+2α+2p + nj in the denominator of the sum in A2 can be bounded

below both by i1+2α+2p and by nj , and there are at most Nj terms in the sum.
This shows that

A2 �
n

−1/(1+2α+2p)
j

lognj

Nj

( n2
j

N
1+2α+4p
j

∧ (2Nj)
1+2α

)
log(2Nj)N

−1−2β
j M

� M
(
n

(1+2β−2α)/(1+2β+2p)−1/(1+2α+2p)
j

∧ n
(1+2α−2β)/(1+2β+2p)−1/(1+2α+2p)
j

)
.

The exponents of nj in both terms in the minimum are equal to 0 at α = β . For
α ≥ β the first exponent is negative, whereas the second exponent is increasing in
α and hence negative for α < β . It follows that A2 � M .

Putting things together, we see that lim supj→∞ supα≤αj
hnj

(α; θ0) can be made
arbitrarily small by choosing M sufficiently small.

10. Technical lemmas. The following two lemmas are Lemma 8.3 and an
extension of Lemma 8.2 of Knapik et al. (2012).

LEMMA 10.1. For any p ≥ 0, r ∈ (1, (logn)/(2 log(3e/2))], and g > 0,

∞∑
i=1

ng log i

(ir + n)g
≥ 1

3 · 2g
n1/r (logn/r).

LEMMA 10.2. For any l,m, r, s ≥ 0 with c := lr − s − 1 > 0 and n ≥
e(2mr/c)∨r ,

(
3r + 1

)−l
(logn/r)mn−c/r ≤

∞∑
i=1

is(log i)m

(ir + n)l
≤ (

3 + 2c−1)(logn/r)mn−c/r .

The series in the preceding lemma changes in character as s decreases to −1,
with the transition starting at −1 + O(1/ logn). This situation plays a role in the
proof of the key result (5.5) and is handled by the following lemma.

LEMMA 10.3. For any l,m, r ≥ 0 and s ∈ R with c := lr − s − 1 > 0 and
n ≥ e(2mr/c)∨(4r),

∞∑
i=2

is(log i)m

(ir + n)l
≤ e|s|+m+23

(
1 + 2c−1)n−l

∫ n1/r

1
xs(logx)m dx.
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PROOF. For N = n1/r the series is bounded above by I + II, for

I = n−l
∑
i≤N

is(log i)m, II = ∑
i>N

is−rl(log i)m.

We treat the two terms separately.
Because the function f :x �→ xs(logx)m is monotone or unimodal on [2,N],

the sum I is bounded by 2f (μ) + ∫ N
2 f (x) dx, for μ the point of maximum.

As the derivative of logf is bounded above by |s| + m, it follows that f (x) ≥
e−|s|−mf (μ) in an interval of length 1 around the point of maximum, and hence
f (μ) is bounded by e|s|+m times the integral.

By Lemma 10.4, with k = rl − s − 1 = c, the term II is bounded above by
(1 + 2c−1)(logN)mN−c, for N ≥ e2m/c. This is bounded by the right-hand side of
the lemma if

(logN)mNs+1 ≤ (
1 + |s|)em+2

∫ N

1
xs(logx)m dx.

For |s + 1| ≤ 1/ logN , we have Ns+1 ≤ e and xs/x−1 ≥ e−1 for x ∈ [1,N].
The former bounds the left-hand side by (logN)me, while the latter gives that
the integral on the right is bounded below by e−1 ∫ N

1 x−1(logx)m dx = e−1(m +
1)−1(logN)m+1, whence the display is valid. For s + 1 ≥ 1/ logN , we bound
the integral below by the integral of the same function over [√N,N], which
is bounded below by (log

√
N)m(Ns+1 − N(s+1)/2)/(s + 1) ≥ (log

√
N)mNs+1/

(4(s + 1)), as (3/4)Ns+1 ≥ N(s+1)/2 if s + 1 ≥ 1/ logN . As also (1 + |s|)/(1 +
s) ≥ 1, this proves the display. For s + 1 ≤ −1/ logN , we similarly bound the in-
tegral below by (log

√
N)m(N(s+1)/2 − Ns+1)/|s + 1| ≥ (log

√
N)mNs+1/(4|s +

1|). �

LEMMA 10.4. For k > 0, m ≥ 0 and N ≥ e2m/k ,∑
i>N

i−1−k(log i)m ≤ (1/N + 2/k)(logN)mN−k.

PROOF. Because the function x �→ x−1 logx is decreasing for x ≥ e, we have
i−k/2(log i)m ≤ N−k/2(logN)m for ik/(2m) > Nk/(2m) ≥ e if m > 0. If m = 0, this
inequality is true for every i > N ≥ 1. Consequently, the sum in the lemma is
bounded above by N−k/2(logN)m

∑
i>N i−1−k/2. The last sum is bounded above

by N−1−k/2 + ∫ ∞
N x−1−k/2 dx = (1/N + 2/k)N−k/2. �

11. Concluding remarks. A full Bayesian approach, with a hyperprior on α,
is an alternative to the empirical Bayesian approach employed here. As the full
posterior distribution is a mixture of Gaussians with different means, there are
multiple reasonable definitions for a credible set. Based on our earlier work on
rates of contraction [Knapik et al. (2012)], we believe that their coverage will be
similar to the empirical Bayes sets considered in the present paper.
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Rather than balls, one may, in both approaches, consider sets of different shapes,
for instance, bands if the parameter can be identified with a function. It has already
been noted in the literature that rates of contraction of functionals, such as a func-
tion at a point, are suboptimal unless the prior is made dependent on the functional.
Preliminary work suggests that adaptation complicates this situation further, except
perhaps when the parameters are self-similar.

The question of whether a restriction to polished tail or self-similar sequences
is reasonable from a practical point of view is open to discussion. From the theory
and the examples in this paper it is clear that a naive or automated (e.g., adaptive)
approach will go wrong in certain situations. This appears to be a fundamental
weakness of statistical uncertainty quantification: honest uncertainty quantification
is always conditional on a set of assumptions. To assume that the true sequence is
of a polished tail type is reasonable, but it is not obvious how one would commu-
nicate this assumption to a data analyst.

APPENDIX: PROOF OF (5.4) IN THEOREM 5.1

With the help of the dominated convergence theorem one can see that the ran-
dom function �n is differentiable and the derivative is given by

Mn(α) =
∞∑
i=1

n log i

i1+2ακ−2
i + n

−
∞∑
i=1

n2i1+2ακ−2
i log i

(i1+2ακ−2
i + n)2

X2
i .(A.1)

The proof of (5.4) consists of the following steps:

(i) In Section A.1 we show that with probability tending to one, uniformly over
θ0 ∈ �2, the function Mn is strictly positive on the interval (0, αn).

(ii) In Section A.2 we show that on the interval [αn,A) the process Mn is
strictly negative with probability tending to one, uniformly over θ0 ∈ �pt(L0).

Steps (i) and (ii) show that Mn has no local maximum on the respective interval.

A.1. The process Mn on (0,αn]. We can assume αn > 0, which leads to the
inequality hn(α; θ0) ≤ (16C8)−1 for every α ∈ (0, αn]. For the proof of (i) above
it is sufficient to show that the following hold:

lim inf
n→∞ inf

θ0∈�2
inf

α∈(0,αn]Eθ0

Mn(α)(1 + 2α + 2p)

n1/(1+2α+2p) logn
>

1

48C4 ,(A.2)

sup
θ0∈�2

Eθ0 sup
α∈(0,αn]

|Mn(α) −E0Mn(α)|(1 + 2α + 2p)

n1/(1+2α+2p) logn
→ 0.(A.3)

The expectation in (A.2) is equal to

1 + 2α + 2p

n1/(1+2α+2p) logn

( ∞∑
i=1

n2 log i

(i1+2ακ−2
i + n)2

−
∞∑
i=1

n2i1+2α(log i)θ2
0,i

(i1+2ακ−2
i + n)2

)

≥ 1 + 2α + 2p

C4n1/(1+2α+2p) logn

∞∑
i=1

n2 log i

(i1+2α+2p + n)2 − C4hn(α; θ0).
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By Lemma 10.1 [with g = 2, r = 1 + 2α + 2p and logn ≥ (8 log(3e/2))2 ∨ 4(1 +
2p) log(3e/2)], the first term of the preceding display is bounded from below by
1/(12C4) for all α ∈ (0, αn) ⊂ (0,

√
logn/4). Inequality (A.2) follows, as the sec-

ond term is bounded above by C4/(16C8), by the definition of αn.
To verify (A.3), it (certainly) suffices by Corollary 2.2.5 in van der Vaart and

Wellner (1996) applied with ψ(x) = x2 to show that for any positive α ≤ αn ≤ A

varθ0

Mn(α)(1 + 2α + 2p)

n1/(1+2α+2p) logn
≤ K1e

−(3/2)
√

logn,(A.4)

∫ diamn

0

√
N

(
ε, (0, αn], dn

)
dε ≤ K2e

−(9/8)
√

logn(logn),(A.5)

where dn is the semimetric defined by

d2
n(α1, α2) = varθ0

(
Mn(α1)(1 + 2α1 + 2p)

n1/(1+2α1+2p) logn
− Mn(α2)(1 + 2α2 + 2p)

n1/(1+2α2+2p) logn

)
,

diamn is the diameter of (0, αn] relative to dn, N(ε,B,dn) is the minimal number
of dn-balls of radius ε needed to cover the set B , and the constants K1 and K2 do
not depend on the choice of θ0 ∈ �2.

By Lemma 5.2 of Knapik et al. (2012), the variance in (A.4) is bounded above
by a multiple of, for any α ∈ (0, αn) ⊂ (0,

√
logn/4),

n−1/(1+2α+2p)(1 + hn(α; θ0)
) ≤ n−1/(1+2

√
logn/4+2p)(1 + (

16C8)−1)
≤ (

1 + (
16C8)−1)

e−(3/2)
√

logn,

for logn ≥ (6(1 + 2p))2. Combination with the triangle inequality shows that the
dn-diameter of the set (0, αn) is bounded by a constant times e−(3/4)

√
logn. To

verify (A.5), we apply Lemma 5.3 of Knapik et al. (2012) according to which, for
any 0 < α1 < α2 < ∞,

varθ0

(
(1 + 2α1 + 2p)Mn(α1)

n1/(1+2α1+2p) logn
− (1 + 2α2 + 2p)Mn(α2)

n1/(1+2α2+2p) logn

)

� (α1 − α2)
2(logn)2 sup

α∈[α1,α2]
n−1/(1+2α+2p)(1 + hn(α; θ0)

)
.

We see that for α1, α2 ∈ (0, αn] the metric dn(α1, α2) is bounded above by a con-
stant times (logn)e−(3/4)

√
logn|α1 − α2|. Therefore, the coverage number of the

interval (0, αn) is bounded above by a constant times (e−(3/4)
√

logn(logn)3/2)/ε,
which leads to the inequality∫ diamn

0

√
N

(
ε, (0, αn], dn

)
dε � e−(9/8)

√
logn(logn)3/4,

where the multiplicative constant does not depend on the choice of θ0.
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A.2. The process Mn on (αn,A]. To prove that �n is strictly decreasing on
(αn,A], it is sufficient to verify the following:

lim sup
n→∞

sup
θ0∈�pt (L0)

sup
α∈(αn,A]

Eθ0

Mn(α)(1 + 2α + 2p)

n1/(1+2α+2p)hn(α; θ0) logn
< − 3

8C4 ,(A.6)

sup
θ0∈�pt (L0)

Eθ0 sup
α∈(αn,A]

|Mn(α) − Eθ0Mn(α)|(1 + 2α + 2p)

n1/(1+2α+2p)hn(α; θ0) logn
→ 0.(A.7)

We shall verify this under the assumption that αn < A, using that in this case
hn(α; θ0) ≥ 8C8, for all α ∈ [αn,A], by the definition of αn.

In view of (2.2), the expectation in (A.6) is bounded above by

(1 + 2α + 2p)C4

n1/(1+2α+2p)8C8 logn

∞∑
i=1

n2 log i

(i1+2α+2p + n)2 − C−4.

Inequality (A.6) follows by an application of Lemma 10.2 (with s = 0, r = 1 +
2α + 2p, l = 2, m = 1, and hence c = 1 + 4α + 4p ≥ 1).

To verify (A.7), it suffices, by Corollary 2.2.5 in van der Vaart and Wellner
(1996) applied with ψ(x) = x2, to show that

varθ0

(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p)hn(α; θ0) logn
≤ K1e

−(3/2)
√

logn,

(A.8) ∫ diamn

0

√
N

(
ε, [αn,A], dn

)
dε ≤ K2(logn)5/4L

1/2
0 e−(7/8)

√
logn,

where this time dn is the semimetric defined by

d2
n(α1, α2)

= varθ0

(
Mn(α1)(1 + 2α1 + 2p)

n1/(1+2α1+2p)hn(α1; θ0) logn
− Mn(α2)(1 + 2α2 + 2p)

n1/(1+2α2+2p)hn(α2; θ0) logn

)
,

and the constants K1 and K2 do not depend on θ0 ∈ �pt(L0).
By Lemma 5.2 of Knapik et al. (2012), the variance (A.8) is bounded above by

a multiple of

n−1/(1+2α+2p)(1 + hn(α; θ0)
)
/hn(α; θ0)

2 � e−(3/2)
√

logn,

for α ∈ [αn,A], since hn(α; θ0) ≥ 8C8 and A ≤ √
logn/4. Combination with the

triangle inequality shows that the dn-diameter of the set [αn,A) is of the square
root of this order.

By Lemma A.1 below, the present metric dn is bounded above similarly to
the metric dn in Section A.1. The entropy number of the interval (0, αn) ⊂
(0,

√
logn) is bounded above by L0(logn)5/2e−(1/4)

√
logn. Therefore, the corre-

sponding entropy integral can also be bounded in a similar way by a multiple of
L

1/2
0 (logn)5/4e−(7/8)

√
logn.
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LEMMA A.1. For any θ0 ∈ �pt(L0), and any 0 < αn ≤ α1 < α2 ≤ A,

varθ0

[
Mn(α1)(1 + 2α1 + 2p)

n1/(1+2α1+2p)hn(α1; θ0)
− Mn(α2)(1 + 2α2 + 2p)

n1/(1+2α2+2p)hn(α2; θ0)

]

≤ KL2
0
|α1 − α2|2(logn)4

e(1/2)
√

logn
,

where the constant K does not depend on θ0 ∈ �pt(L0).

PROOF. The left-hand side of the lemma can be written n4 ∑∞
i=1(fi(α1) −

fi(α2))
2 varθ0 X2

i , for

fi(α) = (1 + 2α + 2p)

n1/(1+2α+2p)

i1+2ακ−2
i log i

(i1+2ακ−2
i + n)2hn(α; θ0)

.(A.9)

The absolute value of the derivative f ′
i (α) is equal to

fi(α)

∣∣∣∣ 2

1 + 2α + 2p
+ 2 logn

(1 + 2α + 2p)2

+ 2 log i − 4
(log i)i1+2ακ−2

i

i1+2ακ−2
i + n

− h′
n(α; θ0)

hn(α; θ0)

∣∣∣∣
� L0ρ

1+2αfi(α)(log i + logn),

by Lemma A.2. Writing the difference fi(α1) − fi(α2) as the integral of fi(α),
applying the Cauchy–Schwarz inequality to its square, interchanging the sum and
integral, and substituting varθ0 X2

i = 2/n2 + 4κ2
i θ2

0,i/n, we can bound the variance
in the lemma by a multiple of

(α1 − α2)
2n4L2

0ρ
2+4α2 sup

α∈[α1,α2]

∞∑
i=1

fi(α)2(log i + logn)2
(

2

n2 + 4κ2
i θ2

0,i

n

)
.

The series splits in two terms by the last plus sign on the right. Using Lemma 10.2
with s = 2 + 4α + 4p, l = 4, r = 1 + 2α + 2p and m = 4 or m = 2 on the first
part, and the inequality nir(r log i)m/(ir + n)2 ≤ (logn)m for n ≥ e4, with r =
1+ 2α + 2p and m = 3 and m = 1 on the second part, we can bound the preceding
display by a multiple of

(logn)4L2
0ρ

2+4α2 sup
α∈[α1,α2]

n−1/(1+2α+2p)(1 + hn(α; θ0)
)
/hn(α; θ0)

2.

We complete the proof by using that hn(α; θ0) ≥ 8C8 for
√

logn/(4
√

logρ) ≥
A ≥ α ≥ α1 ≥ αn. �

LEMMA A.2. For θ0 ∈ �pt(L0), n ≥ e(log(N0ρ)/3)2
and α ≤ √

logn/4,

h′
n(α; θ0) ≤ 48ρ1+2αL0(logn)hn(α; θ0).
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PROOF. The derivative hn(α; θ0) can be computed to be

2(1 + logN)hn(α; θ0)

1 + 2α + 2p
+ 1

N logN

∞∑
i=1

2n2(log i)2(n − i1+2α+2p)i1+2αθ2
0,i

(i1+2α+2p + n)3 .

The series in the second term becomes bigger if we bound (n − i1+2α+2p)/

(i1+2α+2p + n) by 1. Next, the series can be split in the terms with i ≤ N and
i > N . In the first one factor log i can be bounded by logN , and hence this part is
bounded above by (logN)hn(α; θ0). For θ0 ∈ �pt(L0) the second part is bounded
above by

2n2

N logN

∑
i>N

(log i)2i−1−2α−4pθ2
0,i ≤ 6n2N−2−2α−4p(logN)

∑
i>N

θ2
0,i

≤ 6L0(logN)ρ1+2α
∑

N/ρ≤i<N

i1+2αθ2
0,i

≤ 48L0ρ
1+2α(logn)hn(α, θ0),

in view of Lemma 10.4 with m = 2 and k = 1 + 2α + 4p ≥ 1, for n ≥ 4 and
N ≥ e3

√
logn ≥ ρN0. �
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