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We consider repeated measurement designs when a residual or carry-over
effect may be present in at most one later period. Since assuming an additive
model may be unrealistic for some applications and leads to biased estimation
of treatment effects, we consider a model with interactions between carry-
over and direct treatment effects. When the aim of the experiment is to study
the effects of a treatment used alone, we obtain universally optimal approxi-
mate designs. We also propose some efficient designs with a reduced number
of subjects.

1. Introduction. In repeated measurement designs or crossover designs, in-
terference is often observed between a direct treatment effect and the treatment
applied in the previous period. We denote by ξuv the effect of treatment u when
it is preceded by treatment v. There are several ways to model such effects. The
simplest one is to assume that there is no interference. In this case, ξuv = τu, the
direct treatment effect.

For a parsimonious interference model, we may assume that the direct and the
carry-over effects are additive. In this case, ξuv = τu + λv , where τu is the direct
effect of treatment u, and λv is the carry-over effect due to treatment v. In practice,
this model is often unrealistic.

Kempton, Ferris and David (2001) propose an interference model in which a
treatment which has a large direct effect will also have a large carry-over effect.
More precisely, they assume that the carry-over effect is proportional to the direct
effect. Bailey and Kunert (2006) obtain optimal designs under this model.

Afsarinejad and Hedayat (2002) propose another way to enrich the additive
models: they assume that the carry-over effect of a treatment depends on whether
that treatment is preceded by itself or not. In that case ξuv = τu + λv + χuv , where
χuv = 0 if u �= v and χuu represents the specific effect of treatment u preceded
by itself. For this model, optimal designs are obtained by Kunert and Stufken
(2002, 2008) when the parameters of interest are the direct treatment effects, and
by Druilhet and Tinsson (2009) when the parameters of interest are the total effects
τu + λu + χuu.
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The finest possible model, proposed by Sen and Mukerjee (1987), assumes full
interactions between carry-over and direct treatment effects, which means that no
constraints on ξuv are assumed. For a full interaction model, there is no natural way
to define a direct treatment effect. For example, Park et al. (2011) obtain efficient
designs when the parameters of interest are the standard least-squares means of
treatments, that is, t−1 ∑

v ξuv for 1 ≤ u ≤ t , where t is the number of treatments
to be compared. Under a full interaction model, the contrasts of the least-squares
means depend on all the other treatment effects through their interactions.

When the aim of the experiment is to select a single treatment which will be
used alone, that is, preceded by itself, the relevant effects to be considered are
total effects φu = ξuu for 1 ≤ u ≤ t , which correspond to the effect of a treatment
preceded by itself; see Bailey and Druilhet (2004) for a review of situations where
total effects have to be considered.

Kushner (1997) and Kunert and Martin (2000) propose a method for obtaining
optimal cross-over designs for direct treatment effects in the framework of ap-
proximate designs by using Schur-complement properties. The method has three
main steps: (i) expressing the information matrix of the whole design as a sum
of the information matrices for the sequences of treatments given to individual
subjects (Section 3.1); (ii) considering so-called symmetric designs, in which the
proportion of subjects given any sequence is invariant under the symmetric group
of all permutations of the treatments (Section 3.2); applying maximin procedures
to equivalence classes of sequences (Section 4).

A first generalisation of these techniques for more general effects is proposed
by Druilhet and Tinsson (2009). In this paper, we propose a higher level of gener-
alisation by using group theory to obtain optimal designs for total effects under the
full interaction interference model. We also propose efficient designs of reduced
sizes.

2. The designs and the model. We consider a design d with n subjects and k

periods. Let t be the number of treatments. For 1 ≤ i ≤ n and 1 ≤ j ≤ k, denote
by d(i, j) the treatment assigned to subject i in period j . We assume the following
full treatment × carry-over interaction model for the response yij :

yij = βi + ξd(i,j),d(i,j−1) + εij ,(1)

where βi is the effect of subject i, and ξuv is the effect of treatment u when pre-
ceded by treatment v. For the first period, we assume a specific carry-over effect
that can be represented by a fictitious treatment labelled 0: ξu0 represents the ef-
fect of treatment u with no treatment before. The residual errors εij are assumed
to be independent and identically distributed with expectation 0 and variance σ 2.
In most applications, a period effect is included in the model. It will be seen in
Section 3.3 that optimal designs found for model (1) are also optimal when period
effects are added.
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In vector notation, model (1) can be written

Y = Bβ + Xdξ + ε,

where Y is the nk-vector of responses with entries yij in lexicographic order, and
β is the n-vector of subject effects. The entries of the t (t +1)-vector ξ are denoted
by ξuv and sorted in lexicographic order. The matrices associated with these effects
are, respectively, given by B and Xd . Note that B = In ⊗ Ik , where In denotes the
identity matrix of order n, the symbol ⊗ denotes the Kronecker product, and Ik

is the k-dimensional vector of ones. Also, Xd is an nk × t (t + 1) matrix whose
entries are all 0 apart from a single 1 in each row. In particular, XdIt (t+1) = Ink .
We have E(ε) = 0 and Var(ε) = σ 2Ink .

We denote by φ the t-vector of total effects, which corresponds to the situation
where a treatment is preceded by itself. We have φu = ξuu, for u = 1, . . . , t . Denote
by K the t (t + 1) × t matrix with entries Kw

uv = 1 if u = v = w and 0 otherwise
for u,w = 1, . . . , t and v = 0, . . . , t , where w is the single index for the columns,
and uv is the double index for the rows, similar to the index for the vector ξuv . We
have

φ = K ′ξ.(2)

3. Information matrices for total effects.

3.1. Information matrix for ξ and φ. Put ωB = B(B ′B)−1B ′, which is the
projection matrix onto the column space of B , and ω⊥

B = Ink −ωB = In ⊗Qk with
Qk = ω⊥

Ik
= Ik − k−1Jk , where Jk = IkI

′
k . The information matrix Cd [ξ ] for the

vector ξ is given by [see, e.g., Kunert (1983)]

Cd [ξ ] = X′
dω⊥

BXd.

Note that ω⊥
BXdIt (t+1) = ω⊥

B Ink = 0, and so

Cd [ξ ]It (t+1) = 0.(3)

Denote by Xdi the k × t (t + 1) design matrix for subject i and by Cdi[ξ ] =
X′

diQkXdi the information matrix corresponding to subject i alone. We have X′
d =

(X′
d1, . . . ,X

′
dn) and

Cd [ξ ] =
n∑

i=1

Cdi[ξ ] =
n∑

i=1

X′
diQkXdi.

Note that Xdi and therefore Cdi[ξ ] depend only on the sequence of treatments
applied to subject i. Denote by S the set of all sequences of k treatments. For a
design d and a sequence s ∈ S , denote by πd(s) the proportion of subjects that
receive s, and denote by Xs and Cs[ξ ] the associated matrices. We have

Cd [ξ ] = n
∑
s∈S

πd(s)Cs[ξ ] = n
∑
s∈S

πd(s)X′
sQkXs.(4)
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The information matrix for the parameter of interest φ = K ′ξ may be obtained
from Cd [ξ ] by the extremal representation [see Gaffke (1987) or Pukelsheim
(1993)]

Cd [φ] = Cd

[
K ′ξ

] = min
L∈LK

L′Cd [ξ ]L,(5)

where LK = {L ∈ R
t (t+1)×t | L′K = It } and the minimum is taken relative to the

Loewner ordering. The minimum in (5) exists and is unique for a given design d .
Put Ed = {L ∈ LK | L′Cd [ξ ]L = Cd [φ]}.

In the sequel, the entries of L, or, more generally, of any matrix of size t (t +
1) × t , will be denoted by Lw

uv , for u,w = 1, . . . , t , and v = 0, . . . , t , where w is
the column index and uv is the double index for the rows, similar to the vector ξ or
the matrix K . The t × t matrix L′K has entries (L′K)uv = Lu

vv , for u, v = 1, . . . , t .

LEMMA 1. For any design d , the row and column sums of Cd [φ] are zero.

PROOF. Since Cd [φ] is symmetric, we have to prove that I′tCd [φ]It = 0. Con-
sider the t (t + 1) × t matrix L such that Lu

vw is equal to 1 if u = v and 0 other-
wise. The matrix L satisfies LIt = It (t+1) and the constraint L′K = It . It follows
from (5) and (3) that 0 ≤ I

′
tCd [φ]It ≤ I

′
tL

′Cd [ξ ]LIt = I
′
t (t+1)Cd [ξ ]It (t+1) = 0. �

For a design d , denote by L∗ a matrix in Ed . Since, for any given L, L′Cd [ξ ]L
is linear in Cd [ξ ], we have by (4),

Cd [φ] = L∗′Cd [ξ ]L∗ = n
∑
s∈S

πd(s)L∗′Cs[ξ ]L∗.(6)

This linearisation is the basis of Kushner’s methods.

3.2. Approximate designs and symmetric designs. An exact design is charac-
terised, up to a subject permutation, by the proportions of sequences that appear
in it. These proportions are multiples of n−1. If we allow the proportions to vary
continuously in [0,1] with the only restriction that the sum must be equal to 1, we
obtain an approximate design. By definition, the information matrices of ξ and φ

for an approximate designs are given by (4) and (5) as for an exact design. The
second idea of Kushner’s method is to find a universally optimal design in the set
of approximate designs using the linearised expression (6). If the optimal approx-
imate design is not an exact design, one can calculate a sharp lower bound for
efficiency factors of competing exact designs.

We now recall the concepts of permuted sequence, symmetric design, and sym-
metrised design as introduced by Kushner (1997). Let σ be a permutation of the
treatment labels {1, . . . , t} and s a sequence of treatments. The permuted sequence
sσ is obtained from s by permuting the treatment labels according to σ . Similarly,
the design dσ is the design obtained from the design d by permuting the treatment
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labels according to σ . A design d is said to be a symmetric design if, for any se-
quence s and any permutation σ , πd(sσ ) = πd(s). For such a design, d and dσ

are identical up to a subject permutation, which may be written d = dσ . From a
design d , we define the symmetrised design d̄ by

πd̄(s) = 1

t !
∑
σ∈St

πd(sσ ) ∀s ∈ S,(7)

where St is the set of all permutations of {1, . . . , t}. It is easy to see that the sym-
metrised design d̄ is a symmetric design.

To a permutation σ of treatment labels, we may associate a permutation σ ∗
of the carry-over effect labels {0,1, . . . , t} where σ ∗(0) = 0 and σ ∗(u) = σ(u)

for u = 1, . . . , t . We also associate a permutation σ̃ of {1, . . . , t} × {0, . . . , t} de-
fined by σ̃ (u, v) = (σ (u), σ ∗(v)). We denote by Pσ , Pσ ∗ , and Pσ̃ = Pσ ⊗ Pσ ∗ the
corresponding permutation matrices: for example, Pσ (u, v) = 1 if σ(u) = v and
Pσ (u, v) = 0 otherwise.

For L ∈ LK , put Lσ = P ′̃
σLPσ . It can be checked that P ′̃

σKPσ = K ; see also
the definition of the matrix L(1) after Lemma 4.

LEMMA 2. For any design d and any permutation σ in St , we have:

Cdσ [ξ ] = Pσ̃Cd [ξ ]P ′̃
σ ;(8)

Cdσ [φ] = PσCd [φ]P ′
σ ;(9)

Cd̄ [ξ ] = 1

t !
∑
σ∈St

Pσ̃Cd [ξ ]P ′̃
σ ;(10)

Cd̄ [φ] ≥ 1

t !
∑
σ∈St

PσCd [φ]P ′
σ w.r.t. the Loewner ordering;(11)

and L ∈ Ed if and only if Lσ ∈ Edσ .

PROOF. By definition of Pσ̃ , Xdσ = XdP ′̃
σ , and so Cdσ [ξ ] = X′

dσ
ω⊥

BXdσ =
Pσ̃X′

dω⊥
BXdP ′̃

σ = Pσ̃Cd [ξ ]P ′̃
σ , which corresponds to (8). If L ∈ LK , then

L′Cdσ [ξ ]L = L′Pσ̃Cd [ξ ]P ′̃
σL = PσL′

σCd [ξ ]LσP ′
σ . Now L′

σK = P ′
σL′Pσ̃P ′̃

σ ×
KPσ = P ′

σL′KPσ . If L ∈ LK , then L′K = It , so L′
σK = It and Lσ ∈ LK . The

same argument with σ−1 shows that if Lσ ∈ LK then L ∈ LK . The Loewner or-
dering is unchanged by permutations, so

Cdσ [φ] = min
L∈LK

(
L′Cdσ [ξ ]L) = Pσ

(
min

Lσ ∈LK

L′
σCd [ξ ]Lσ

)
P ′

σ = PσCd [φ]P ′
σ ,

and (9) is established. Moreover, L ∈ Ed if and only if Lσ ∈ Edσ . Formula (10)
follows directly from (8) and (7). Formula (11) follows from (10) and the concavity
of the minimum representation (5). �
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We recall that a t × t matrix C is completely symmetric if C = aIt + bJt for
some scalars a and b or, equivalently, if PσCP ′

σ = C for every permutation σ

in St .

LEMMA 3. If d is a symmetric design, then Cd [φ] is completely symmetric.

PROOF. Since d is symmetric, dσ = d . By (9), Cd [φ] = Cdσ [φ] = PσCd [φ]P ′
σ

for any permutation σ in St . Therefore Cd [φ] is completely symmetric. �

The key point to obtain an optimal design is to identify the structure of the
t (t + 1) × t matrix L∗ defined in (6), whose entries are denoted by L∗w

uv .

LEMMA 4. If d is a symmetric design, then the matrix L∗ in (6) can be chosen
so that it satisfies

L∗
σ = L∗ ∀σ ∈ St ,(12)

or, equivalently,

L
∗σ(w)
σ(u)σ ∗(v) = L∗w

uv ∀σ ∈ St .(13)

PROOF. If σ ∈ St , then dσ = d , so Edσ = Ed , and Lemma 2 shows that Lσ ∈
Ed . Put L∗ = (

∑
σ∈St

Lσ )/t !, which satisfies (12). Since Ed is closed under taking
averages [see Druilhet and Tinsson (2009), proof of Lemma A1], L∗ also belongs
to Ed . �

A consequence of (13) is that the entries L∗w
uv are constant for (u, v,w)

belonging to the same orbit of the permutation group {(σ̃ , σ )}σ∈St acting on
{1, . . . , t} × {0, . . . , t} × {1, . . . , t}. There are seven distinct orbits:

• O1 = {(u,u,u) | u = 1, . . . , t},
• O2 = {(u, v,u) | u, v = 1, . . . , t, u �= v},
• O3 = {(u, v, v) | u, v = 1, . . . , t, u �= v},
• O4 = {(u, v,w) | u, v,w = 1, . . . , t, u �= v �= w �= u},
• O5 = {(u,0, u) | u = 1, . . . , t},
• O6 = {(u,0,w) | u,w = 1, . . . , t, u �= w},
• O7 = {(u,u,w) | u,w = 1, . . . , t, u �= w}.
For q = 1, . . . ,7, denote by L(q) the t (t + 1) × t matrix with entries Lw

(q)uv = 1 if
(u, v,w) belongs to the orbit Oq and 0 otherwise. Note that L(1) = K .

By construction of L(q), we have

P ′̃
σL(q)Pσ = L(q) ∀σ ∈ St and q = 1, . . . ,7.(14)
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PROPOSITION 5. For a symmetric design d , the matrix L∗ in Lemma 4 may
be written as

L∗ = Lγ = L(1) +
6∑

q=2

γqL(q),(15)

where γ = (γ2, . . . , γ7) is a vector of scalars.

PROOF. Since L∗ satisfies (12), it is a linear combination of the matrices L(q):
L∗ = ∑7

q=1 γqL(q). It can be checked that L′
(1)K = K ′K = It , L′

(7)K = Jt − It

and L′
(q)K = 0 for q = 2, . . . ,6. Consequently, the constraint L∗′K = It may be

written γ1 = 1 and γ7 = 0. �

3.3. The model with period effects. We consider here the same model as in
Section 2 with the addition of a period effect. The response for subject i in period
j is given by

yij = αj + βi + ξd(i,j),d(i,j−1) + εij ,(16)

where αj is the effect of period j . In vector notation, we have

Y = Aα + Bβ + Xdξ + ε,

with A = In ⊗ Ik , where α is the k-vector of period effects. Denote θ ′ = (ξ ′, α′).
If d is an exact design, the information matrix for θ is given by

C̃d [θ ] =
(

Cd [ξ ] Cd12

Cd21 Cd22

)
=

(
X′

dω⊥
BXd X′

dω⊥
BA

A′ω⊥
BXd A′ω⊥

BA

)
,

where Cd [ξ ] is the information matrix for ξ obtained in the model without period
effects and Cd22 = nQk .

The t-vector φ of total effects defined by (2) may also be seen as a subsystem
of the parameter θ , because φ = K̃ ′θ with K̃ ′ = (K ′,0t×k). The information ma-
trix C̃d [φ] for φ under model (16) may be obtained from C̃d [θ ] by the extremal
representation

C̃d [φ] = min
L̃∈LK̃

L̃′Cd [θ ]L̃,

where LK̃ = {L̃ ∈ R
(t (t+1)+k)×t | L̃′K̃ = It }. Partitioning L̃′ as (L′ | N ′) with L

and N of sizes t (t + 1) × t and k × t , we have

C̃d [φ] = min
(L′|N ′)′∈LK̃

(
L′Cd [ξ ]L + L′Cd12N + N ′Cd21L + N ′Cd22N

)
.(17)

Note that (L′ | N ′)′ ∈ LK̃ is equivalent to L ∈ LK for L and N with suitable di-
mensions. Choosing N = 0 in (17), we have C̃d [φ] ≤ Cd [φ] with respect to the
Loewner ordering, where Cd [φ] is the information matrix for φ under the model



CROSS-OVER DESIGNS 2289

without period effects, as defined in (5). Therefore 0 ≤ I
′
t C̃d [φ]It ≤ I

′
tCd [φ]It = 0.

Hence the row and column sums of C̃d [φ] are all zero, and so QtC̃d [φ]Qt =
C̃d [φ].

For σ ∈ St , define the permutation σ̄ for the entries of θ such that the entries
of ξ are permuted according to σ̃ and those of α remain unchanged. The associ-
ated permutation matrix Pσ̄ is the block diagonal matrix with diagonal blocks Pσ̃

and Ik . For L̃ in LK̃ , put L̃σ = P ′̄
σ L̃Pσ . If L̃′ = (L′ | N ′), then L̃′

σ = (L′
σ | N ′

σ ),
where Nσ = NPσ .

LEMMA 6. For any design d and any permutation σ of treatment labels, we
have

Cdσ 12 = Pσ̃Cd12;(18)

C̃dσ [φ] = Pσ C̃d [φ]P ′
σ .(19)

PROOF. Equation (18) follows from the fact that Xdσ = XdP ′̃
σ . The proof

of (19) is similar to the proof of (9), replacing ξ , L, LK , and K by θ , L̃, LK̃ ,
and K̃ , respectively. �

An exact design is said to be strongly balanced on the periods if it satisfies the
following conditions:

(i) for the first period, each treatment appears equally often;
(ii) for any given period, except the first one, each treatment appears preceded

by itself equally often;
(iii) for any given period, except the first one, the number of times a treatment,

say u, is preceded by another treatment v does not depend on u or v.

Note that a symmetric exact design is strongly balanced on the periods.

LEMMA 7. If a design d is strongly balanced on the periods and σ ∈ St , then
P ′̃

σX′
dA = X′

dA.

PROOF. The (uv, j)-entry of X′
dA is equal to the number of times that treat-

ment u occurs in period j preceded by treatment v. Strong balance implies that
there is a single value for v = 0, another single value for v = u, and another single
value for v /∈ {0, u}. Permutation of the treatments does not change this. �

Given a design d , let Gd be the subgroup of St consisting of those permutations
σ satisfying dσ = d (up to a subject permutation). Note that a symmetric design
may be characterised by Gd = St . The subgroup Gd is said to be transitive on
{1, . . . , t}, if, given u, v in {1, . . . , t}, there is some σ in Gd with σ(u) = v. The
subgroup Gd is doubly transitive if, given u1, u2, v1, v2 with u1 �= u2 and v1 �= v2
there is some σ in Gd with σ(u1) = v1 and σ(u2) = v2.
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PROPOSITION 8. If d is an exact design with strong balance on the periods
and with transitive group Gd , then the information matrix for φ is the same under
models (1) and (16), that is,

C̃d [φ] = Cd [φ].
In particular, this is true if d is a symmetric design.

PROOF. The method of proof of Lemma 4 shows that the matrix L̃ used for
minimising may be chosen to satisfy P ′̄

σ L̃Pσ = L̃ for all σ in Gd . This means that
L = Lσ and N = Nσ = NPσ for all σ in Gd . If NPσ = N for all σ in Gd , and Gd

is transitive, then every row of N is a multiple of I′t .
We have Cd12 = X′

dω⊥
BA = X′

dAQk . Lemma 7 shows that if L = Lσ then
L′Cd12 = L′

σX′
dAQk = L′

σP ′̃
σX′

dAQk = P ′
σL′Cd12. If Gd is transitive, then ev-

ery column of L′Cd12 is a multiple of It .
Therefore, the expression in (17) is equal to L′Cd [ξ ]L + c(L,N)Jt for some

scalar c(L,N). Hence

C̃d [φ] = QtC̃d [φ]Qt = Qt

(
min

(L′|N ′)′∈LK̃

L′Cd [ξ ]L + c(L,N)Jt

)
Qt

= min
(L′|N ′)′∈LK̃

(
QtL

′Cd [ξ ]LQt

)

= Qt

(
min

L∈LK

L′Cd [ξ ]L
)
Qt

= QtCd [φ]Qt = Cd [φ]. �

For any design d whose Gd is doubly transitive, Cd [φ] is completely symmet-
ric (replace St by Gd in the proof of Lemma 3). Double transitivity implies strong
balance on the periods, so then C̃d [φ] is also completely symmetric, by Proposi-
tion 8. In Section 5.6 we give some examples that show that strong balance on the
periods is not sufficient for C̃d [φ] to be completely symmetric.

The results obtained in this section also hold for approximate designs. Since the
restriction of A to a single sequence is equal to Ik , for an exact designs d we have

C̃d [θ ] = n
∑
s∈S

πd(s)

(
X′

sQkXs X′
sQk

QkXs Qk

)
.

This expression can also be used for approximate designs. Moreover, in the defi-
nition of a design being strongly balanced on the periods “equally often” may be
replaced by “in the same proportions” and “number of times” by “proportion of
times.” Then the proofs of Lemma 7 and Proposition 8 can be easily adapted to
approximate designs by replacing A′Xd by n

∑
s πd(s)Xs , replacing X′

dω⊥
BA by∑

s πd(s)XsQk , and so on.
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4. Universally optimal approximate designs. From Kiefer (1975), a design
d∗ for which the information matrix Cd∗[φ] is completely symmetric and that max-
imises the trace of Cd [φ] over all the designs d for t treatments using n subjects
for k periods is universally optimal.

4.1. Condition for optimal designs. The following proposition shows that a
universally optimal approximate design may be sought among symmetric designs.

PROPOSITION 9. A symmetric design for which the trace of the information
matrix is maximal among the class of symmetric designs is universally optimal
among all possible approximate designs.

PROOF. For any design d , taking the trace in (11), we have tr(Cd̄ [φ]) ≥
tr(Cd [φ]). Since, by Lemma 3, Cd̄ [φ] is completely symmetric, d̄ is always better
than d with respect to universal optimality. If d∗ maximises the trace among the set
of symmetric designs, then for any design d , tr(Cd∗[φ]) ≥ tr(Cd̄ [φ]) ≥ tr(Cd [φ]).
Since Cd∗[φ] is completely symmetric and maximises the trace, d∗ is universally
optimal. �

For any sequence s, and 1 ≤ p,q ≤ 7, put cspq = tr(L′
(p)Cs[ξ ]L(q)). Then com-

bining (6), (5), and (15), we have for a symmetric design,

tr
(
Cd [φ]) = min

γ2,...,γ6

∑
s∈S

nπd(s)

6∑
p=1

6∑
q=1

γpγqcspq with γ1 = 1.

LEMMA 10. For a sequence s and a permutation σ on the treatment labels,
we have

csσ pq = cspq.

PROOF.

csσ pq = tr
(
P ′

σL′
(p)Csσ [ξ ]L(q)Pσ

)
since tr(AB) = tr(BA),

= tr
(
P ′

σL′
(p)Pσ̃Cs[ξ ]P ′̃

σL(q)Pσ

)
by (8),

= tr
(
L′

(p)Cs[ξ ]L(q)

) = cspq by (14). �

Two sequences are said to be equivalent if one can be obtained from the other
one by some permutation of treatment labels. We denote by C the set of all possible
equivalence classes. From Lemma 10, cspq depends only on the equivalence class
� to which s belongs, and will be therefore denoted c�pq . To each equivalence



2292 R. A. BAILEY AND P. DRUILHET

class �, we may also associate the nonnegative convex quadratic polynomial with
five variables γ = (γ2, . . . , γ6),

h�(γ ) =
6∑

p=1

6∑
q=1

γpγqc�pq where γ1 = 1.

For a symmetric design, we may write π� for the proportion of sequences which
are in the equivalence class �. Then

tr
(
Cd [φ]) = min

γ

∑
�∈C

nπ�h�(γ ).

Therefore, we have the following proposition:

PROPOSITION 11. An approximate symmetric design d∗ with proportions
{π∗

� }�∈C that achieves

max{π�}�∈C
min

γ

∑
�∈C

π�h�(γ )(20)

is universally optimal for φ among all possible designs.

4.2. Determination of optimal proportions. Each equivalence class of se-
quences is defined by a partition of the set {1,3, . . . , k} into at most t parts. If
t ≥ k, the number of such partitions is the Bell number Bk , which grows with k

more than exponentially [Cameron (1994), Chapter 3]. Thus it is not realistic to
solve the maximin problem in (20) by hand.

It seems intuitive that sequences in an optimal symmetric design should satisfy
two contradictory conditions: for accurate estimation of total effects, each treat-
ment should be preceded by itself a large number of times; while, for efficiency
in allowing for subjects, the replications within each sequence should be as equal
as possible. As a compromise, this suggests sequences in which all occurrences of
each treatment are in a run of consecutive periods. Indeed, in our numerical results
in Section 5, all seqeuences in the optimal designs have this form. Each equiva-
lence class of such sequences is defined by a so-called composition of k. However,
the number of compositions of k is 2k−1 [Cameron (1994), Chapter 4], so, even if
we restrict ourselves to such sequences, a hand search is still not realistic.

We propose now the following method derived from Kushner (1997). Consider

h∗(γ ) = max
�∈C h�(γ ).

We use the following procedure.

Step 1. Find γ ∗ that minimises the function h∗(γ ), and denote h∗ = h∗(γ ∗) the
minimum.

Step 2. Select the classes � of sequences such that h�(γ
∗) = h∗, and denote C∗

this set.
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Step 3. Solve in {π� | � ∈ C∗} the linear system,
∑

�∈C∗ π�
dh�

dγ
(γ ∗) = 0, for 0 <

π� < 1 and
∑

�∈C π� = 1; denote π∗ = {π∗
� | � ∈ C∗} the solution (not necessarily

unique).
Step 4. Give the symmetric designs such that π� = π∗

� for � ∈ C∗ and π� = 0
otherwise; these designs are universally optimal.

Step 1 is the most challenging. However, since h∗(γ ) is a convex function, any
standard optimisation algorithm gives accurate values for γ ∗ and h∗ in a short time,
even if the number of possible classes is large. When supported by the software,
we used an exact optimisation algorithm to obtain the values of γ ∗.

For step 2, the optimal sequences are part of the information found in step 1.
Since C∗ is usually rather small, step 3 simply involves inverting a small square
matrix whose entries have been found in step 1. Step 4 then reports the results.

5. Examples of optimal and efficient designs. For some values of k and t ,
we give optimal approximate designs for φ. For each given k, the first table gives
the optimal proportions, and the second table gives the efficiency factor for a sym-
metric design generated by a single sequence.

Consider a real-valued criterion ψ(Cd [φ]) which is concave, nondecreasing in
Cd [φ] with respect to the Loewner ordering, and invariant under simultaneous
permutations of rows and columns. From Kiefer (1975), there is an approximate
design d∗ which maximises ψ(Cd [φ]) over the set of approximate designs with
the same values of k and t . The efficiency factor of a design d for criterion ψ can
therefore be defined by

eff ψ(d) = ψ(Cd [φ])
ψ(Cd∗[φ]) .

For ψ(C) = tr(C), we simply write

eff (d) = tr(Cd [φ])
tr(Cd∗[φ]) .(21)

When Cd [φ] is completely symmetric, eff (d) is also the efficiency factor for the
well-known D-, A- and E-criteria; see Shah and Sinha (1989) or Druilhet (2004).

In our tables, we write 0+ or 1− when a value is within 0.005 of 0, 1, respec-
tively. For some values of k and t the optimal proportions have been calculated
with formal calculus when tractable; all others have been obtained by numerical
optimisation.

The values h∗ displayed correspond to those defined in Section 4.2 for an opti-
mal design. The information matrix for a symmetric optimal approximate design
with n subjects is therefore

Cd [φ] = nh∗

t − 1
Qt.
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5.1. 3 periods. Optimal proportions for some values of t :

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prop. [ 1 1 2 ] 1
2

5
13

1
3

7
23

2
7

3
11

5
19

11
43

1
4

13
53

7
29

5
21

4
17

17
73

3
13

Prop. [ 1 2 2 ] 1
2

8
13

2
3

16
23

5
7

8
11

14
19

32
43

3
4

40
53

22
29

16
21

13
17

56
73

10
13

h∗ 1
3

16
39

4
9

32
69

10
21

16
33

28
57

64
129

1
2

80
159

44
87

32
63

26
51

112
219

20
39

Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Eff. [ 1 1 2 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Eff. [ 1 2 2 ] 0 0.61 0.75 0.81 0.84 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91

Example of universally optimal design for t = 4:

⎛
⎝1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4

2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 2 3 4 1 3 4 1 2 4 1 2 3

⎞
⎠

5.2. 4 periods. The optimal approximate designs are generated by the single
sequence [1 1 2 2] for 2 ≤ t ≤ 30. It is conjectured that this is true for any value
of t .

5.3. 5 periods. Optimal proportions for some values of t :

t 2 3 4 5 6 7 8 9 10 15 20 30

Prop. [ 1 1 2 2 2 ] 1
2

7
9

17
19

47
49 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97

Prop. [ 1 1 1 2 2 ] 1
2

2
9

2
19

2
49 0 0 0 0 0 0 0 0

Prop. [ 1 1 2 3 3 ] 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03

h∗ 7
5

68
45

148
95

388
245 1.60 1.61 1.62 1.63 1.63 1.64 1.65 1.66

Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 10 15 20 30

Eff. [ 1 1 2 2 2 ] 0.95 0.99 0.998 1− 1− 1− 1− 1− 1− 1− 1− 1−
Eff. [ 1 1 1 2 2 ] 0.95 0.91 0.89 0.88 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.85
Eff. [ 1 1 2 3 3 ] – 0.77 0.82 0.84 0.85 0.86 0.86 0.86 0.86 0.87 0.88 0.88
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Example of universally optimal symmetric design for t = 3:

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3 3 3 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3
2 2 2 2 2 2 2 3 3 3 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3
2 2 2 2 2 2 2 3 3 3 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 1 1 3 3 1 1 2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 1 1 3 3 1 1 2 2

⎞
⎟⎟⎟⎟⎟⎠

5.4. 6 periods. Optimal proportions for some values of t :

t 2 3 4 5 6 7 8 9 10 15 20 30

Prop. [ 1 1 1 2 2 2 ] 1 0.81 0.66 0.55 0.48 0.42 0.38 0.35 0.32 0.23 0.19 0.15
Prop. [ 1 1 2 2 3 3 ] 0 0.19 0.34 0.45 0.52 0.58 0.62 0.65 0.68 0.77 0.81 0.85
h∗ 2 2.11 2.16 2.19 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28

Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 10 15 20 30

Eff. [ 1 1 1 2 2 2 ] 1 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.96
Eff. [ 1 1 2 2 3 3 ] – 0.95 0.97 0.98 0.99 0.99 0.99 0.99 1− 1− 1− 1−

5.5. 7 periods. Optimal proportions for some values of t :

t 3 4 5 6 7 ≤ t ≤ 30

Prop. [ 1 1 1 2 2 2 2 ] 0.57 0.19 0 0 0
Prop. [ 1 1 1 2 2 3 3 ] 0 0 0.09 0+ 0
Prop. [ 1 1 2 2 3 3 3 ] 0.43 0.81 0.91 1− 1
h∗ 2.60 2.70 2.76 2.80 2.82

Efficiency of symmetric designs generated by a single sequence:

t 3 4 5 6 7

Eff. [ 1 1 1 2 2 2 2 ] 0.98 0.96 0.95 0.94 0.94
Eff. [ 1 1 1 2 2 3 3 ] 0.98 0.99 0.98 0.98 0.98
Eff. [ 1 1 2 2 3 3 3 ] 0.98 1− 1− 1− 1
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5.6. Efficient designs with t (t − 1) subjects. For k = 6 or k = 7, we saw that
efficient symmetric designs may be obtained from single sequences having three
treatments by permuting all the treatment labels. Such designs require t (t − 1)(t −
2) subjects, which may be too large. We can construct efficient designs that are
strongly balanced on the periods, are generated by a single sequence, and require
only t (t − 1) subjects, as follows.

Step 1. We start from a balanced incomplete-block design with block-size 3 and t

treatments such that for any two different periods j1 and j2 and any two
different treatments u and v, there exists exactly one subject that receives
treatment u in period j1 and treatment v in period j2. [This is called an
orthogonal array of type I and strength two; see Rao (1961).]

• If t is odd, use all the triplets [u,u + v,u + 2v] modulo t , for u =
0, . . . , t − 1 and v = 1, . . . , t − 1.

• If t is even, use the preceding construction for t − 1 and replace each
triplet of the form [u,u+ 1, u+ 2] by the three sequences [t, u+ 1, u+
2], [u, t, u + 2] and [u,u + 1, t].

Step 2. Then we construct a design with k periods by replicating the three treat-
ments in each triplet in such a way that we obtain a sequence in the same
equivalence class as the one that generates the efficient design.

For example, take k = 7 and t = 5 with generating sequence [1 1 2 2 3 3 3].
The starting design with three periods is

⎛
⎝1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 2 3 4
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3

⎞
⎠ .

The resulting design with seven periods generated by [1 1 2 2 3 3 3] is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 2 3 4
2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 2 3 4
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following table displays the A-, D-, E-efficiency factors for designs with 6
periods and t (t − 1) subjects generated by the sequence [1 1 2 2 3 3] using the
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method described above. The efficiency factors are given relative to universally
optimal approximate designs.

t 4 5 6 7 8 9 10

A-efficiency 0.951 0.977 0.973 0.978 0.974 0.970 0.968
D-efficiency 0.951 0.977 0.973 0.978 0.974 0.970 0.968
E-efficiency 0.951 0.977 0.951 0.978 0.950 0.950 0.949

We may note that this method is interesting only for t = 7 or t = 8. For the other
values of t , the symmetric design with t (t − 1) subjects generated by the sequence
[1 1 1 2 2 2] is more efficient.

The following table displays the A-, D-, E-efficiency factors for designs with 7
periods and t (t − 1) subjects generated by the sequence [1 1 2 2 3 3 3] using the
method described above.

t 4 5 6 7 8 9 10

A-efficiency 0.974 0.990 0.982 0.983 0.978 0.973 0.971
D-efficiency 0.974 0.990 0.982 0.983 0.978 0.973 0.971
E-efficiency 0.974 0.990 0.961 0.983 0.955 0.954 0.954

For t = 4,5,7, the information matrices are completely symmetric. For t ≥
4 and when the number of subjects is t (t − 1), these designs are preferable to
symmetric designs generated by the sequence [1 1 1 2 2 2 2].

If t = 4 or t is an odd prime, this method always gives a design d for which
Gd is doubly transitive, and so C̃d [φ] is completely symmetric. If t is any prime
power, there is a second method which gives a design d in t (t − 1) periods for
which Gd is completely symmetric.

Step 1. Identify the treatments with the elements of the finite field GF(t) of
order t .

Step 2. Form any triplet [x, y, z] of distinct treatments.
Step 3. Use this to produce all triplets of the form [ax + b, ay + b, az + b] for

which a and b are in GF(t) and a �= 0.
Step 4. Use these triplets to construct a design from the desired sequence just

as in the previous method.

For example, when t = 8, one correspondence between {1, . . . ,8} and GF(8)

gives the following starting design with three periods:⎛
⎝8 7 1 3 2 6 4 5 8 1 2 4 3 7 5 6 8 2 3 5 4 1 6 7 8 3 4 6 5 2 7 1

7 8 3 1 6 2 5 4 1 8 4 2 7 3 6 5 2 8 5 3 1 4 7 6 3 8 6 4 2 5 1 7
1 3 8 7 4 5 2 6 2 4 8 1 5 6 3 7 3 5 8 2 6 7 4 1 4 6 8 3 7 1 5 2

8 4 5 7 6 3 1 2 8 5 6 1 7 4 2 3 8 6 7 2 1 5 3 4
4 8 7 5 3 6 2 1 5 8 1 6 4 7 3 2 6 8 2 7 5 1 4 3
5 7 8 4 1 2 6 3 6 1 8 5 2 3 7 4 7 2 8 6 3 4 1 5

⎞
⎠ .
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The design obtained from this starting design and the generating sequence
[1 1 2 2 3 3], respectively, [1 1 2 2 3 3 3], has efficiency factor equal to 0.977,
respectively, to 0.981.

For t = 9, we obtain the following starting design:⎛
⎝1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 4 4 7 7 2 2 5 5 8 8 3 3 6 6 9 9

2 3 1 3 1 2 5 6 4 6 4 5 8 9 7 9 7 8 4 7 1 7 1 4 5 8 2 8 2 5 6 9 3 9 3 6
3 2 3 1 2 1 6 5 6 4 5 4 9 8 9 7 8 7 7 4 7 1 4 1 8 5 8 2 5 2 9 6 9 3 6 3

1 1 5 5 9 9 2 2 6 6 7 7 3 3 4 4 8 8 1 1 6 6 8 8 2 2 4 4 9 9 3 3 5 5 7 7
5 9 1 9 1 5 6 7 2 7 2 6 4 8 3 8 3 4 6 8 1 8 1 6 4 9 2 9 2 4 5 7 3 7 3 5
9 5 9 1 5 1 7 6 7 2 6 2 8 4 8 3 4 3 8 6 8 1 6 1 9 4 9 2 4 2 7 5 7 3 5 3

⎞
⎠ .

The design obtained from this starting design and the generating sequence
[1 1 2 2 3 3], respectively, [1 1 2 2 3 3 3], has efficiency factor equal to 0.950,
respectively, to 0.954.

5.7. Comments. Here we briefly discuss the performances of the optimal de-
signs obtained in this paper when the true statistical model is simpler than the full
interaction model.

Under the assumption that the true model is the self and mixed model proposed
by Afsarinejad and Hedayat (2002), Druilhet and Tinsson (2014) obtained optimal
approximate designs for the estimation of total effects. So, we can compute the
efficiency factors of our designs as defined in (21) for several values of k and for
all t with 2 ≤ t ≤ 30. For k = 3, our designs have efficiency factors greater than
0.67. For k = 4, the optimal designs are the same under both models. For k = 5,
our designs have efficiency factors greater than 0.98. For k = 6, our designs have
efficiency factors greater than 0.97.

We cannot make the analogous comparison under the assumption that the ad-
ditive model is the true one, because in this case there are no optimal designs for
total effects available in the literature [Bailey and Druilhet (2004), considered only
circular designs].

We now compare our designs to complete-block neighbour-balanced designs
(CBNBDs) such as the column-complete latin squares widely used in practice.

Under the self and mixed model, CBNBDs give nonestimable total effects
but are optimal for the estimation of direct treatment effects Kunert and Stufken
(2002). The efficiency factors of our designs for the direct treatment effects are
0.39 for k = t = 3; 0.33 for k = t = 4; 0.25 for k = t = 5; 0.33 for k = t = 6; and
0.36 for k = t = 7.

Under the additive model, the efficiency factors of our designs for the estimation
of total effects relative to CBNBDs are 1.15 for k = t = 3; 1.31 for k = t = 4; 1.24
for k = t = 5; 1.33 for k = t = 6; and 1.38 for k = t = 7. For the estimation
of direct effects, CBNBDs are optimal [Kunert (1984), Kushner (1997)], and the
efficiency factors of our designs are 0.82 for k = t = 3; 0.67 for k = t = 4; 0.52
for k = t = 5; 0.59 for k = t = 6 and 0.61 for k = t = 7.
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286.
SEN, M. and MUKERJEE, R. (1987). Optimal repeated measurements designs under interaction.

J. Statist. Plann. Inference 17 81–91. MR0908987

http://www.ams.org/mathscinet-getitem?mr=1927725
http://www.ams.org/mathscinet-getitem?mr=2089136
http://www.ams.org/mathscinet-getitem?mr=2261446
http://www.ams.org/mathscinet-getitem?mr=1311922
http://www.ams.org/mathscinet-getitem?mr=2077856
http://www.ams.org/mathscinet-getitem?mr=2538765
http://www.ams.org/mathscinet-getitem?mr=0902238
http://www.ams.org/mathscinet-getitem?mr=1844839
http://www.ams.org/mathscinet-getitem?mr=0395079
http://www.ams.org/mathscinet-getitem?mr=0684882
http://www.ams.org/mathscinet-getitem?mr=0751288
http://www.ams.org/mathscinet-getitem?mr=1835039
http://www.ams.org/mathscinet-getitem?mr=1941418
http://www.ams.org/mathscinet-getitem?mr=2504210
http://www.ams.org/mathscinet-getitem?mr=1604457
http://www.ams.org/mathscinet-getitem?mr=2732954
http://www.ams.org/mathscinet-getitem?mr=1211416
http://www.ams.org/mathscinet-getitem?mr=0908987


2300 R. A. BAILEY AND P. DRUILHET

SHAH, K. R. and SINHA, B. K. (1989). Theory of Optimal Designs. Lecture Notes in Statistics 54.
Springer, New York. MR1016151

SCHOOL OF MATHEMATICAL SCIENCES

QUEEN MARY UNIVERSITY OF LONDON

MILE END ROAD, LONDON E1 4NS
UNITED KINGDOM

AND

SCHOOL OF MATHEMATICS AND STATISTICS

UNIVERSITY OF ST ANDREWS

ST ANDREWS, FIFE, KY16 9SS
UNITED KINGDOM

E-MAIL: rab24@st-andrews.ac.uk

LABORATOIRE DE MATHÉMATIQUES

UMR CNRS 6620
CLERMONT UNIVERSITÉ

AND

UNIVERSITÉ BLAISE PASCAL

63177 AUBIERE CEDEX

FRANCE

E-MAIL: pierre.druilhet@univ-bpclermont.fr

http://www.ams.org/mathscinet-getitem?mr=1016151
mailto:rab24@st-andrews.ac.uk
mailto:pierre.druilhet@univ-bpclermont.fr

	Introduction
	The designs and the model
	Information matrices for total effects
	Information matrix for xi and phi
	Approximate designs and symmetric designs
	The model with period effects

	Universally optimal approximate designs
	Condition for optimal designs
	Determination of optimal proportions

	Examples of optimal and efﬁcient designs
	3 periods
	4 periods
	5 periods
	6 periods
	7 periods
	Efﬁcient designs with t(t-1) subjects
	Comments

	Acknowledgements
	References
	Author's Addresses

