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OPTIMAL CROSS-VALIDATION IN DENSITY ESTIMATION
WITH THE L2-LOSS1

BY ALAIN CELISSE

UMR 8524 CNRS–Université Lille 1

We analyze the performance of cross-validation (CV) in the density es-
timation framework with two purposes: (i) risk estimation and (ii) model se-
lection. The main focus is given to the so-called leave-p-out CV procedure
(Lpo), where p denotes the cardinality of the test set. Closed-form expres-
sions are settled for the Lpo estimator of the risk of projection estimators.
These expressions provide a great improvement upon V -fold cross-validation
in terms of variability and computational complexity.

From a theoretical point of view, closed-form expressions also enable to
study the Lpo performance in terms of risk estimation. The optimality of
leave-one-out (Loo), that is Lpo with p = 1, is proved among CV procedures
used for risk estimation. Two model selection frameworks are also consid-
ered: estimation, as opposed to identification. For estimation with finite sam-
ple size n, optimality is achieved for p large enough [with p/n = o(1)] to
balance the overfitting resulting from the structure of the model collection.
For identification, model selection consistency is settled for Lpo as long as
p/n is conveniently related to the rate of convergence of the best estima-
tor in the collection: (i) p/n → 1 as n → +∞ with a parametric rate, and
(ii) p/n = o(1) with some nonparametric estimators. These theoretical re-
sults are validated by simulation experiments.

1. Introduction. For estimating a target quantity denoted by s, let {Sm}m∈M
denote a collection of sets of candidate parameters indexed by M. From each Sm

called a model, an estimator ŝm of s is computed. The goal of model selection
is to design a criterion crit :M → R

+ such that minimizing crit(·) over M pro-
vides a final estimator ŝm̂ that is “optimal.” Among various strategies of model
selection, model selection via penalization has been introduced in the seminal pa-
pers by Akaike (1973), Mallows (1973), Schwarz (1978) on, respectively, AIC,
Cp and BIC criteria. However, since AIC and BIC are derived from asymptotic
arguments, their performances crucially depend on model collection and sample
size [see Baraud, Giraud and Huet (2009)].
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More recently, Birgé and Massart (1997, 2001, 2007) have developed a
nonasymptotic approach inspired from the pioneering work of Barron and Cover
(1991). It relies on concentration inequalities [Ledoux (2001), Talagrand (1996)]
and aims at deriving oracle inequalities such as

�(s, ŝm̂) ≤ C inf
m∈M

{
�(s, ŝm)

} + rn(1)

with probability larger than 1 − c/n2, where c > 0 is a constant, �(s, t) is a mea-
sure of the gap between parameters s and t , rn is a remainder term with respect
to infm �(s, ŝm), and C ≥ 1 denotes a constant independent of s. The closer C to 1
and the smaller rn, the better the model selection procedure. If C = Cn → 1 as
n → +∞, the model selection procedure is said asymptotically optimal (or effi-
cient) [see, e.g., Arlot and Celisse (2010)]. Note that other asymptotic optimality
properties have been studied in the literature. For instance, a model selection pro-
cedure satisfying

P[m̂ = m0] −→
n→+∞ 1,

where m0 denotes a fixed given model is said model selection consistent [see Shao
(1997) for a study of various model selection procedures in terms of model selec-
tion consistency].

In the density estimation framework, model selection with deterministic penal-
ties has been addressed: (i) for Kullback–Leibler divergence by Barron, Birgé and
Massart (1999), Castellan (1999, 2003), Yang and Barron (1998) and further stud-
ied in Birgé and Rozenholc (2006), and (ii) for quadratic risk and projection esti-
mators by Birgé and Massart (1997) and Barron, Birgé and Massart (1999).

The aforementioned approaches rely on some deterministic penalties such as
AIC or BIC. These penalties are derived in some specific settings [e.g., a Gaussian
noise is assumed by Birgé and Massart (2007)] and remain unjustified and even
sometimes misleading in more general settings.

Conversely, cross-validation (CV) is a resampling procedure based on a univer-
sal heuristics which makes it applicable in a wide range of settings. CV procedures
have been first studied in a regression context by Stone (1974, 1977) for the leave-
one-out (Loo) and Geisser (1974, 1975) for the V -fold cross-validation (VFCV),
and in the density estimation framework by Rudemo (1982), Stone (1984). Since
these procedures can be computationally demanding or even intractable, Bowman
(1984), Rudemo (1982) derived closed-form formulas for the Loo estimator of the
risk of histograms or kernel estimators. These results have been recently extended
to the leave-p-out cross-validation (Lpo) by Celisse and Robin (2008).

Although CV procedures are extensively used in practice, only few theoretical
results exist on their performances, most of them being of asymptotic nature. For
instance, in the regression framework, Burman (1989, 1990) proves Loo is asymp-
totically the best CV procedure in terms of risk estimation. Several papers are dedi-
cated to show the equivalence between some CV procedures and penalized criteria
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in terms of asymptotic optimality properties: (i) efficiency in Li (1987), Zhang
(1993), and (ii) model selection consistency in Shao (1997), Yang (2006, 2007).
Let us notice that in the parametric setting, Yang (2007) proved that efficiency and
model selection consistency are contradictory objectives that cannot be achieved
simultaneously. We refer interested readers to Shao (1997) for an extensive review
about asymptotic optimality properties in terms of efficiency and model selection
consistency of some penalized criteria as well as CV procedures.

As for nonasymptotic results in the density framework, Birgé and Massart
(1997) have settled an oracle inequality that relies on a conjecture and may be
applied to Loo. However, to the best of our knowledge, no such result has al-
ready been proved for Lpo in the density estimation framework. Recently, in the
regression setting, Arlot (2007) established oracle inequalities for V -fold penal-
ties, while Arlot and Celisse (2011) have carried out an extensive simulation study
in the change-point detection problem with heteroscedastic observations.

In the present paper, we derive closed-form expressions for the Lpo risk esti-
mator of the broad class of projection estimators (Section 2). Such closed-form
expressions considerably improve upon V -FCV in terms of (i) variability [Celisse
and Robin (2008)], and (ii) computational complexity (Section 2.3). A second im-
provement allowed by these formulas is the deep new understanding of the theo-
retical performance of CV in two respects: first for risk estimation (Section 2.4),
and second for model selection (Section 3). For instance, it is proved that Loo is
the best CV procedure for risk estimation (Theorem 2.1), while the story can be
different for model selection (Corollary 3.1 and Theorems 3.3 and 3.4).

In Section 3, two aspects of model selection via CV have been explored. The
estimation point of view is described in Section 3.1. It is shown that Lpo is optimal
as long as p/n = o(1) and p is large enough to balance the influence of the model
collection structure. This phenomenon is supported by simulation experiments de-
tailed in Section 3.1.4. Finally, Section 3.2 deals with the identification point of
view. CV is proved to be model selection consistent in various settings where the
choice of p is related to the convergence rate (parametric and nonparametric) of the
best estimator one tries to recover. Simulation results illustrate these different be-
haviors in Section 3.2.2. Finally, a discussion is provided in Section 4 to give some
guidelines toward a better understanding of CV procedures. The main proofs have
been postponed to the Appendix. For reasons owing to space constraints, more
technical ones are provided in the supplementary material [Celisse (2014)].

2. Cross-validation and risk estimation.

2.1. Statistical framework.

2.1.1. Notation. Throughout the paper, X1, . . . ,Xn ∈ [0,1] are independent
and identically distributed (i.i.d.) random variables drawn from a probability dis-
tribution P of density s ∈ L2([0,1]) with respect to Lebesgue’s measure on [0,1],
and X1,n = (X1, . . . ,Xn).
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Let S∗ denote the set of measurable functions on [0,1]. The distance between s

and any u ∈ S∗ is measured by the quadratic loss denoted by

� : (s, u) �→ �(s, u) := ‖s − u‖2 =
∫
[0,1]

[
s(t) − u(t)

]2
dt.

It is related to the contrast function

γ : (u, x) �→ γ (u;x) := ‖u‖2 − 2u(x) with �(s, u) = Pγ (u) − Pγ (s),(2)

where Pγ (u) = P(γ (u; ·)) and Pf := E[f (X1)] for every f ∈ S∗. The perfor-
mance of an estimator ŝ = ŝ(X1, . . . ,Xn) of s is assessed by the quadratic risk

Rn(̂s) := E
[
�(s, ŝ)

] = E
[‖s − ŝ‖2]

.

Estimating Pγ (u) is made through the empirical contrast defined by

Pnγ (u) := 1

n

n∑
i=1

γ (u;Xi) where Pn = 1/n

n∑
i=1

δXi
(3)

denotes the empirical measure and Pnf := 1/n
∑n

i=1 f (Xi) for every f ∈ S∗.
For a collection of models {Sm}m∈Mn indexed by a countable set Mn, the em-

pirical contrast minimizer is defined by

ŝm := Argmin
u∈Sm

Pnγ (u).(4)

It results a collection {̂sm}m∈Mn of estimators of s depending on the choice of mod-
els Sms. Instances of such models and estimators are described in Section 2.1.2.

2.1.2. Projection estimators. Let �n be a set of countable indices and
{ϕλ}λ∈�n a family of vectors in L2([0,1]) such that for every m ∈ Mn, {ϕλ}λ∈�(m)

denotes an orthonormal family of L2([0,1]) with �(m) ⊂ �n. For every m ∈ Mn,
Sm denotes the linear space spanned by {ϕλ}λ∈�(m), Dm = dim(Sm), and sm is the
orthogonal projection of s onto Sm

sm := Argmin
u∈Sm

Pγ (u) = ∑
λ∈�(m)

Pϕλϕλ with Pϕλ = E
[
ϕλ(X)

]
.

DEFINITION 2.1. An estimator ŝ ∈ L2([0,1]) is a projection estimator if there
exists a family {ϕλ}λ∈� of orthonormal vectors of L2([0,1]) such that

ŝ = ∑
λ∈�

θλϕλ with θλ = 1

n

n∑
i=1

Hλ(Xi),

where {Hλ(·)}λ∈� depends on the family {ϕλ}λ∈�.
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It is straightforward to check that the empirical contrast minimizer over Sm =
Span(ϕλ, λ ∈ �(m)), defined by equation (4), is a projection estimator since

ŝm = ∑
λ∈�(m)

Pnϕλϕλ with Pnϕλ = 1

n

n∑
i=1

ϕλ(Xi).(5)

Here are a few examples of projection estimators [see DeVore and Lorentz (1993)]:

• Histograms: For every m ∈ Mn, let {Iλ}λ∈�(m) be a partition of [0,1] in Dm =
Card(�(m)) intervals. Set ϕλ = 1Iλ/

√|Iλ| for every λ ∈ �(m), with |Iλ| the
Lebesgue measure of Iλ, and 1Iλ(x) = 1 if x ∈ Iλ and 0 otherwise. Then

ŝm = ∑
λ∈�(m)

Pn1Iλ

1Iλ

|Iλ| .(6)

• Trigonometric polynomials: For every λ ∈ Z , let ϕλ : t �→ ϕλ(t) = e2πiλt . Then
for any finite �(m) ⊂ Z,

ŝm(t) = ∑
λ∈�(m)

Pnϕλe
2πiλt ∀t ∈ [0,1](7)

is a trigonometric polynomial.
• Wavelet basis: Let {ϕλ}λ∈�n be an orthonormal basis of L2([0,1]) made of com-

pact supported wavelets, where �n = {(j, k) | j ∈ N
∗ and 1 ≤ k ≤ 2j }. Then for

every subset �(m) of �n,

ŝm = ∑
λ∈�(m)

Pnϕλϕλ.(8)

Some of these estimators can take negative values. A possible solution is truncating
and normalizing the preliminary projection estimator

s̃m = ŝm1ŝm≥0

(∫
[0,1]

1ŝm≥0(t )̂sm(t) dt

)−1

.

However, the closed-form expressions provided in Section 2.3 are not available for
these truncated and normalized estimators.

2.2. Leave-p-out cross-validation. In the literature, several cross-validation
(CV) procedures have been successively introduced to overcome the defects of
already existing ones. Let us describe the main CV procedures with some empha-
sis to computational aspects.

2.2.1. Cross-validation. For 1 ≤ p ≤ n−1, let us define Ep = {e ⊂ {1, . . . , n},
Card(e) = p} and for e ∈ Ep , set Xe = {Xi, i ∈ e} (test set) and X(e) = {Xi, i ∈
{1, . . . , n} \ e} (training set). Let also P e

n := 1/p
∑

i∈e δXi
and P

(e)
n := 1/(n −

p)
∑

i∈(e) δXi
denote the empirical measures, respectively, defined from the test

set Xe and the training set X(e).
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Hold-out. Simple validation also called Hold-out was introduced in the early
1930s [Larson (1931)]. For every 1 ≤ p ≤ n − 1, it consists in randomly split-
ting observations into a training set X(e) of cardinality n − p and a test set Xe of
cardinality p. Random data splitting is only made once and introduces additional
variability. For every e ∈ Ep (randomly chosen), the hold-out estimator of Rn(̂s) is

R̂Ho,p(̂s) := P e
nγ

(̂
s
(
X(e))) = 1

p

∑
i∈e

γ
(̂
s
(
X(e));Xi

)
.(9)

Hold-out has been studied, for instance, by Bartlett, Boucheron and Lugosi (2002),
Blanchard and Massart (2006) in classification and by Lugosi and Nobel (1999),
Wegkamp (2003) in regression.

Leave-p-out. Unlike equation (9) where a single split e of the data is randomly
chosen, which introduces additional unwanted variability, leave-p-out (Lpo) con-
siders all the

(n
p

) = Card(Ep) splits. The Lpo estimator of Rn(̂s) is defined by

R̂p(̂s) =
(

n

p

)−1 ∑
e∈Ep

P e
nγ

(̂
s
(
X(e))).(10)

For instance, it has been studied by Shao (1993), Zhang (1993), and Arlot and
Celisse (2011) in the regression framework. With p = 1, Lpo reduces to the cel-
ebrated leave-one-out (Loo) cross-validation introduced by Mosteller and Tukey
(1968) and further studied by Stone (1974). Note that computing the Lpo estimator
requires a computational complexity of order

(n
p

)
times that of computing ŝ, which

becomes intractable as n grows.

V -fold cross-validation. To overcome the high computational burden of Lpo
[equation (10)], Geisser (1974, 1975) introduced the V -fold cross-validation (V -
FCV). Instead of considering all the

(n
p

)
possible splits, one (randomly or not)

chooses a partition of X1, . . . ,Xn into V subsets Xe1, . . . ,XeV of approximately
equal size p = n/V = Card(ei), i = 1, . . . , V . Every Xei , i = 1, . . . , V is succes-
sively used as a test set leading to the V -fold risk estimator of Rn(̂s)

R̂V -FCV(̂s) = 1

V

V∑
v=1

P ev
n γ

(̂
s
(
X(ev)

))
.(11)

V -FCV has been studied in the regression framework by Burman (1989, 1990)
who suggests a correction to remove its bias.

2.2.2. Lpo versus V -FCV. As explained in Section 2.2.1, the Lpo computa-
tional complexity is roughly

(n
p

)
times that of computing ŝ, which can be highly
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time-consuming. Several surrogates of Lpo have been proposed such as V -FCV
and the repeated learning-testing cross-validation [Breiman et al. (1984), Burman
(1989), Zhang (1993)]. Unlike Lpo (and even Loo when p = 1), V -FCV involves
only V such computations, which is less demanding as long as V  n. Note that
usual values for V are 3, 5, and 10 (except V = n where V -FCV and Loo coin-
cide).

However, V -FCV relies on a preliminary (possibly random) partitioning of
X1, . . . ,Xn into V subsets. This preliminary partitioning induces some additional
variability which could be misleading. For instance, Celisse and Robin (2008) have
theoretically quantified the amount of additional variability induced by V -FCV
with respect to Lpo.

2.3. Closed-form expressions for the Lpo risk estimator. Closed-form formu-
las for the Lpo estimator are proved in the present section, which makes Lpo fully
effective in practice and better than V -FCV. Such formulas also enable a more
accurate theoretical analysis of CV procedures both in terms of risk estimation
(Section 2.4) and model selection (Section 3).

With the notation introduced at the beginning of Section 2.2.1, let us consider
projection estimators ŝm defined by equation (5). Closed-form formulas for the
Lpo risk estimator are derived exploiting the “linearity” of projection estimators.
Sums over Ep (which cannot be computed in general) then reduce to binomial coef-
ficients. In the present section, proofs have been deferred to Appendix A [Supple-
mentary material Celisse (2014)]. Recalling the expression of the contrast γ (·; ·)
[equation (2)], one has to compute both quadratic and linear terms.

LEMMA 2.1. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection esti-
mator defined by equation (5) and set Xe = {Xi, i ∈ e} for every e ∈ Ep . Then for
every p ∈ {1, . . . , n − 1},

∑
e∈Ep

∥∥̂sm(
X(e))∥∥2 = 1

(n − p)2

∑
λ∈�(m)

[(
n − 1

p

) n∑
k=1

ϕ2
λ(Xk)

+
(

n − 2
p

) ∑
k �=�

ϕλ(Xk)ϕλ(X�)

]
,

∑
e∈Ep

∑
i∈e

ŝ
(
X(e))(Xi) = 1

n − p

∑
λ∈�(m)

(
n − 2
p − 1

)∑
i �=j

ϕλ(Xi)ϕλ(Xj ).

Lemma 2.1 enables to derive closed-form formulas for the Lpo risk estimator,
which makes Lpo procedure fully efficient in practice.
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PROPOSITION 2.1. For every m ∈Mn, let ŝm = ŝm(X1,n) denote a projection
estimator defined by equation (5). Then for every p ∈ {1, . . . , n − 1},

R̂p(m) = R̂p(̂sm)
(12)

= 1

n(n − p)

∑
λ∈�(m)

[
n∑

j=1

ϕ2
λ(Xj ) − n − p + 1

n − 1

∑
j �=k

ϕλ(Xj )ϕλ(Xk)

]
.

Proposition 2.1 enjoys a great interest. First it applies to the broad family of
projection estimators. Second, it allows one to reduce the computation time from
an exponential to a linear complexity since computing (12) is of order O(n). Note
that in the more specific setting of histograms and kernel estimators, such closed-
form formulas have been derived by Celisse and Robin (2008).

Let us now specify the Lpo estimator expressions for the three examples of
projection estimators given in Section 2.1.2.

COROLLARY 2.1 (Histograms). For ŝm given by equation (6) and for p ∈
{1, . . . , n − 1},

R̂p(m) = 1

(n − 1)(n − p)

Dm∑
λ=1

1

|Iλ|
[
(2n − p)

nλ

n
− n(n − p + 1)

(
nλ

n

)2]
,

where nλ = Card({i|Xi ∈ Iλ}).

COROLLARY 2.2 (Trigonometric polynomials). For every k ∈ N, let ϕλ de-
note either t �→ cos(2πkt), if λ = 2k or t �→ sin(2πkt), if λ = 2k + 1. Let us fur-
ther assume �(m) = {0, . . . ,2K} for K ∈ N

∗. Then for every p ∈ {1, . . . , n − 1},

R̂p(m) = α(n,p) − β(n,p)

K∑
k=0

[{
n∑

j=1

cos(2πkXj )

}2

+
{

n∑
j=1

sin(2πkXj )

}2]
,

where α(n,p) = (p − 2)(K + 1)[(n − 1)(n − p)]−1 and β(n,p) = (n − p +
1)[n(n − 1)(n − p)]−1.

COROLLARY 2.3 (Haar basis). Let us define ϕ(·) = 1[0,1](·) and ϕj,k(·) =
2j/2ϕ(2j ·−k), where j ∈ N and 0 ≤ k ≤ 2j − 1, and assume �(m) ⊂ {(j, k) | j ∈
N,0 ≤ k ≤ 2j − 1} for every m ∈ Mn. Then,

R̂p(m) = 1

(n − 1)(n − p)

∑
(j,k)∈�(m)

2j

[
(2n − p)

nj,k

n
− n(n − p + 1)

(
nj,k

n

)2]
,

where nj,k = Card({i | Xi ∈ [k/2j , (k + 1)/2j ]}).
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2.4. Risk estimation: Leave-one-out optimality. From the general
formula (12), one derives closed-form expressions for the expectation and vari-
ance of the Lpo risk. These expressions allow to analyze the theoretical behavior
of CV in terms of risk estimation and model selection (see Section 3). In the present
section, we prove the optimality of Loo for estimating the risk of any projection
estimator (Theorem 2.1).

PROPOSITION 2.2. For every m ∈ Mn, let ŝm = ŝm(X1,n) denote a projection
estimator defined by equation (5). Then for every 1 ≤ p ≤ n − 1,

E
[
R̂p(m)

] = 1

n − p

∑
λ∈�(m)

[
Eϕ2

λ(X) − (
Eϕλ(X)

)2] − ∑
λ∈�(m)

(
Eϕλ(X)

)2

and

Var
[
R̂p(m)

] = 1

(n − 1)2

[
an + bn

(n − p)
+ cn

(n − p)2

]
,(13)

where an = Var[∑λ∈�(m)(n(Pnϕλ)
2 − Pnϕ

2
λ)], cn = Var[n∑

λ∈�(m)(Pnϕ
2
λ −

(Pnϕλ)
2)], and bn = −2 Cov[∑λ∈�(m)(n(Pnϕλ)

2 − Pnϕ
2
λ),

∑
λ∈�(m) n(Pnϕ

2
λ −

(Pnϕλ)
2)].

The proof is a straightforward application of Proposition 2.1 and has been
omitted. Note that the above quantities do exist as long as P |ϕλ|3 < +∞ for
any λ ∈ �(m), which holds true if s is bounded for instance and

∫ |ϕλ|3 < +∞
(ϕλ continuous and compact supported, e.g.). In (13), an, bn and cn do not depend
on p. Then knowing the behavior of the variance with respect to p only depends
on the magnitude of an, bn and cn, which is clarified by Corollary 2.5.

Let us first focus on the bias B[R̂p(m)] := ER̂p(m)−E[‖̂sm‖2 − 2
∫
[0,1] sŝm] of

the Lpo estimator.

COROLLARY 2.4 (Bias). For every m ∈Mn, let ŝm = ŝm(X1,n) denote a pro-
jection estimator defined by equation (5). Then for every m ∈ Mn and 1 ≤ p ≤
n − 1,

B
[
R̂p(m)

] = p

n(n − p)

∑
λ∈�(m)

Var
[
ϕλ(X1)

] ≥ 0.

The bias is nonnegative and increases with p, which means Loo (p = 1) has
the smallest bias among CV procedures. If p = pn satisfies pn/n −→

n→+∞q ∈ [0,1),

then B[R̂p(m)] −→
n→+∞ 0, and Loo is asymptotically unbiased.

Let us now describe the behavior of the variance with respect to p.
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COROLLARY 2.5 (Variance). With the same notation as Proposition 2.2, for
every m ∈ Mn and 1 ≤ p ≤ n − 1,

Var
[
R̂p(m)

] = n

(n − 1)2

[
A + B

n − p
+ C

(n − p)2 + O

(
1

n

)]
,

where the big O(·) does not depend on p, but depends on Sm and P , and

A = 4 Cov
[∑

λ

ϕλ(X1)ϕλ(X2),
∑
λ

ϕλ(X1)ϕλ(X3)

]
≥ 0,

B = 8 Cov
[∑

λ

ϕλ(X1)ϕλ(X2),
∑
λ

ϕλ(X1)ϕλ(X3)

]

− 4 Cov
[∑

λ

ϕ2
λ(X1),

∑
λ

ϕλ(X1)ϕλ(X3)

]
,

C = 4 Cov
[∑

λ

ϕλ(X1)ϕλ(X2),
∑
λ

ϕλ(X1)ϕλ(X3)

]

− 4 Cov
[∑

λ

ϕ2
λ(X1),

∑
λ

ϕλ(X1)ϕλ(X3)

]
+ Var

[∑
λ

ϕ2
λ(X1)

]
≥ 0.

In the more specific case of histogram and kernel density estimators, Celisse
and Robin (2008) derived a similar (nonasymptotic) result for the variance.

The monotonicity of the variance with respect to p depends on the sign of B

since x �→ f (x) = Ax2 + Bx + C has for derivative x �→ f ′(x) = 2Ax + B and
A ≥ 0. However, in full generality, the sign of B is unknown. The following propo-
sition relates the monotonicity of p �→ Var[R̂p(m)] to this sign.

PROPOSITION 2.3. Let us define p0,n = Argmin1≤p≤n−1 Var[R̂p(m)] in
equation (13). Then,

p0,n = n +
(

1 − Cov[∑λ ϕ2
λ(X1),

∑
λ ϕλ(X1)ϕλ(X3)]

2 Cov[∑λ ϕλ(X1)ϕλ(X2),
∑

λ ϕλ(X1)ϕλ(X3)]
)(

1 + o(1)
)
,

where the little o(·) only depends on Sm and P . Furthermore, if

2 Cov
[∑

λ

ϕλ(X1)ϕλ(X2),
∑
λ

ϕλ(X1)ϕλ(X3)

]
(14)

≥ Cov
[∑

λ

ϕ2
λ(X1),

∑
λ

ϕλ(X1)ϕλ(X3)

]
,

p ∈ {1, . . . , n − 1} �→ Var[R̂p(m)] is increasing. Otherwise, p �→ Var[R̂p(m)] is
decreasing on [1,p0,n] and increasing on [p0,n, n − 1].
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Equation (14) is related to the sign of B (Corollary 2.5) and to the minimum lo-
cation value p0,n. If it holds true, then p0,n /∈ {2, . . . , n− 1}, which means Loo has
the smallest variance among CV procedures. In particular, let us notice (14) holds
true with any density estimated by regular histograms since

∑
λ ϕ2

λ(X1) is then a
constant and the covariance in the left-hand side is a variance by independence
of X1,X2, and X3. On the contrary, (14) is not fulfilled when using histograms
based on a partition such that P[X ∈ Iλ] = C < 1/2 for every λ, where C denotes
a constant.

We are now in position to provide the main result of this section, which de-
scribes the behavior of R̂p as a risk estimator in terms of mean-square error (MSE).

THEOREM 2.1. For every m ∈ Mn, let us define the MSE of ŝm by
MSE(m;p) = (B[R̂p(m)])2 + Var[R̂p(m)], for every p ∈ {1, . . . , n − 1}.

1. If (14) holds true, then for every m ∈ Mn, p �→ MSE(m;p) is minimum for
p = 1.

2. Otherwise, for every p = pn ∈ {1, . . . , n−1} such that lim supn→+∞ pn/n <

1, then

MSE(m;p) = A

n
+ O

(
1

n2

)
as n → +∞,

where A is given in Corollary 2.5 and the big O(·) depends on Sm and P .

If (14) holds true, Loo is the best CV procedure in terms of MSE when es-
timating the risk of an estimator. Otherwise as long as lim supn→+∞ pn/n < 1,
choosing a value of p �= 1 is useless since any value in {1, . . . , n − 1} asymptoti-
cally leads to the same performance in terms of MSE. Therefore, since Loo has the
smallest bias (Corollary 2.4), Loo is optimal among CV procedures for estimating
the risk of an estimator. This result confirms what has been previously stated by
Burman (1989) in the regression framework.

3. Optimal cross-validation for model selection. From Section 2.4, Loo is
proved to be the best CV procedures in the context of risk estimation. How-
ever, the best procedure for risk estimation is not necessarily the best one for
model selection. Although the empirical risk Pnγ (̂sm) (4) is a reliable estimator
of E[Pnγ (̂sm)], using empirical risk minimization to choose one m̂ ∈ Mn (with-
out penalizing) would systematically lead to overfitting. The purpose of the present
section is to study the performance of CV for model selection with respect to the
cardinality p of the test set.

3.1. Optimal cross-validation for estimation. The performance of CV with re-
spect to p is first characterized through a sharp oracle inequality (Theorem 3.1).
A leading constant converging to 1 as n → +∞ is achieved for some values of p,
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highlighting the asymptotic optimality of corresponding CV procedures. From a
theoretical point of view, Corollary 3.1 explores the link between (a proxy to)
the optimal p and influential quantities related to the difficulty of the estimation
problem for finite sample size. These results are further validated by simulation
experiments (Section 3.1.4).

3.1.1. Estimation point of view. With the notation of Section 2.1, let us con-
sider a family of projection estimators {̂sm}m∈Mn , where Mn denotes an (at most
countable) index set allowed to depend on n. The best possible model, called the
oracle model, is denoted by Sm∗ , where

m∗ := Argmin
m∈Mn

P γ (̂sm) − Pγ (s) = Argmin
m∈Mn

‖s − ŝm‖2

= Argmin
m∈Mn

P γ (̂sm).

Since Pγ (̂sm) has to be estimated, one uses CV (Lpo) to choose a candidate model
for every 1 ≤ p ≤ n − 1,

m̂(p) := Argmin
m∈Mn

R̂p(m),(15)

and the final candidate model is denoted by Sm̂(p). The purpose is now to infer
the properties of ŝm̂(p) with respect to p ∈ {1, . . . , n − 1} in terms of an oracle
inequality such as (1).

3.1.2. Main oracle inequality. Let us introduce some notation and detail the
main assumptions used along the following sections.

Square-integrable density.

s ∈ L2([0,1]).(SqI)

Unlike Castellan (2003), for instance, it is not assumed that s ≥ ρ for a constant
ρ > 0.

Polynomial collection. There exists aM ≥ 0 such that

Card(Mn) ≤ naM .(Pol)

In particular, this holds true if there exists α ≥ 0 such that Card({m ∈ Mn,Dm =
D}) ≤ Dα , for every 1 ≤ D ≤ n.

Model regularity.

∃ > 0, sup
m∈Mn

‖φm‖∞
Dm

≤  with φm = ∑
λ∈�(m)

ϕ2
λ.(RegD)

It relates the regularity of the orthonormal basis (measured in terms of sup-norm)
to the dimension of the model. For instance, using (6), (RegD) requires |Iλ| ≥
(Dm)−1 for every λ ∈ �(m). The length of intervals Iλ cannot be too different
from one another to some extent.
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Maximal dimension.

∃� > 0, sup
m∈Mn

Dm ≤ �
n

(logn)2 .(Dmax)

In the sequel, � = 1 is always considered to simplify expressions. Note that proofs
and conclusions remain unchanged with this particular choice.

Estimation error and dimension.

∃ξ > 0, inf
m∈Mn

√
nE(‖sm − ŝm‖)√

Dm

≥ √
ξ .(LoEx)

This assumption makes the estimation error E(‖sm − ŝm‖2) and Dm comparable.
For instance, Lemma B.3 [supplementary material Celisse (2014)] proves (LoEx)
is fulfilled with Hölder densities estimated by regular histograms defined by (6)
such that |{x ∈ [0,1] | s(x) ≥ η}| ≥ � for some η ∈ (0,1), where 0 < � < 1 satisfies

� >
(

inf
m∈Mn

Dm

)−1
.

Note the latter inequality amounts to exclude too small models for which the sup-
port of s is included in one single interval Iλ.

Richness of the collection. There exist m0 ∈ Mn and crich ≥ 1 such that,√
n ≤ Dm0 ≤ crich

√
n.(Rich)

This requirement is rather mild since one can add such a model in our collection.

Approximation property. There exist c�, cu > 0 and � > u > 0 such that, for every
m ∈ Mn,

c�D
−�
m ≤ ‖s − sm‖2 ≤ cuD

−u
m .(Bias)

This assumption quantifies the bias (approximation error) incurred by model Sm

in estimating s. It therefore relies on a smoothness assumption on s. Such an
upper bound is classical for α-Hölderian functions with α ∈ (0,1] and regular
histograms (6), for instance. Note that Stone (1985) uses the same assumption
(lower bound), which is the finite sample counterpart of the classical assumption
‖s − sm‖ > 0 for every m ∈ Mn usually made to prove asymptotic optimality for
a model selection procedure [see Birgé and Massart (2007)].

Rate of convergence for the oracle model.

nR∗
n(logn)−2 −→

n→∞+∞ with R∗
n = inf

m∈Mn

Rn(̂sm).(OrSp)

The risk of the oracle model R∗
n does not decrease to 0 faster than (logn)2/n.

In particular, this holds true for densities in H(L,α) with L > 0 and α ∈ (0,1]
estimated by regular histograms [see Section B.5 in Celisse (2014)].

The performance of the Lpo estimator with respect to p is described by the
following oracle inequality from which the CV optimality is deduced for some
values of p. The proof is given in Appendix A.1.
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THEOREM 3.1 (Optimal CV). Let s denote a density on [0,1] such that (SqI)
holds true, set {Sm}m∈Mn a collection of models defined in Section 2.1.2, and as-
sume (Pol), (RegD), (Dmax), (Rich), (LoEx), (Bias) and (OrSp). Let m̂ = m̂(p)

denote the model minimizing R̂p(m) over Mn for every p ∈ {1, . . . , n − 1}. Then
there exist a sequence (δn)N such that δn → 0, and nδn → +∞ as n → +∞, and
an event �̃ with P(�̃) ≥ 1 − 6/n2 on which, for large enough values of n,

‖s − ŝm̂(p)‖2 ≤ Cn(p) inf
m∈Mn

{‖s − ŝm‖2}
with Cn(p) = T +

B ∨ T +
V

T −
B ∧ T −

V

≥ 1,

where

T −
B = 1 − δnK(n,p),

T −
V = 1

1 − p/n
(1 − δn)[1 − 4δn] − 2δnK(n,p)[3 − 4δn],

T +
B = 1 + δnK(n,p),

T +
V = 1

1 − p/n
(1 + δn)[1 + 4δn] + 2δnK(n,p)[3 + 4δn],

and K(n,p) = 1 + 2
n−1 + p

n−p
1

n−1 .

If p/n → 0 then Cn(p) → 1 as n → +∞, which leads to efficient (asymptoti-
cally optimal) model selection procedures. In particular, this holds true for p = 1
that is, Loo is asymptotically optimal since

‖s − ŝm̂(1)‖2

infm∈Mn{‖s − ŝm‖2}
a.s.−→

n→+∞ 1.

From the proof, it also arises that the slowly decreasing sequence δn is related
to the model collection structure. An increase of Mn makes the model selection
problem more difficult and δn larger.

While asymptotic optimality is deduced from Theorem 3.1 for any CV proce-
dure as long as p = o(n), it is also desirable to analyze the performance of CV
as p depends on the finite sample size. From a theoretical point of view, this will
provide the rate at which p/n has to decrease to 0 to reach efficiency. Based on Fig-
ure 1 [panel (c)] where Cn(p) appears as a reliable proxy to the optimal Cor,n(p)

[given by equation (19)], we suggest to optimize Cn(p) with respect to p to get
a surrogate optimal p depending on influential parameters such as n and δn. This
strategy has been validated by simulation experiments of Section 3.1.4. The fol-
lowing Corollary 3.1 proves the best (surrogate) p/n slowly decreases to 0.

COROLLARY 3.1 (Optimizing upper bound). With the notation and assump-
tions of Theorem 3.1, the constant Cn(p) is minimized over p ∈ {1, . . . , n − 1}
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FIG. 1. Panels (a) and (b): p/n �→ Cor,n(p) (plain red line) is plotted for � = 1 [see (Dmax)] and
different values of n: (a) n = 100, and (b) n = 1000. p/n �→ C+

oracle,n(p) (blue dashed line) and

p/n �→ C−
oracle,n(p) (black dot-dashed line) have been plotted on the same graph as well [see (20)].

Panel (c): n �→ Cor,n(p0) (plain blue line) and n �→ Cn(p∗) (black dot-dashed line) are displayed.
N = 1000 samples have been drawn from the mixture of Beta distributions (18).

for

0 <
p∗

n

n
= 1 − 1 − 5δn + 4δ2

n − (2/(n − 1))(3δn − 4δ2
n) + δn/(n − 1)

1 + 2(1 + 1/(n − 1))(3δn − 4δ2
n) − δn(1 + 1/(n − 1))

< 1.

Furthermore, the optimal ratio p∗/n is slowly decreasing to 0 as n tends to +∞
p∗

n ∼+∞ 10nδn −→
n→+∞+∞.(16)

The proof has ben deferred to Appendix A.1. Corollary 3.1 describes the rate
(up to constant) at which p = p∗

n has to grow with n to achieve finite-sample
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FIG. 2. For (a) and (b), p/n �→ Cor,n(p) (plain red line) is plotted for n = 2000 and differ-
ent values of � [see (Dmax)]: (a) � = 1, (b) � = 2. p/n �→ C+

oracle,n(p) (blue dashed line) and

p/n �→ C−
oracle,n(p) (black dot-dashed line) have been plotted on the same graph as well [see (20)].

N = 1000 samples have been drawn from the mixture of Beta distributions (18). For (c), n �→ p0/n

(blue plain line) and n �→ C/(logn) (black dot-dashed line) are displayed, where p0 denotes the
minimizer of Cor,n(p) as a function of p and C is a constant.

optimality. In particular p∗
n/n in (16) is related to δn which is strongly connected to

the structure of the model collection as explained following Theorem 3.1. A more
complex collection leads to a larger δn and then to a larger optimal p∗

n. In other
words, p must be chosen large enough to balance the overfitting induced by the
structure of the model collection. This phenomenon is observed in practice in the
simulation experiments of Section 3.1.4 (Figure 2).

3.1.3. Adaptivity in the minimax sense. Adaptivity in the minimax sense is a
desirable property for model selection procedures. It means the considered proce-
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dure automatically adapts to the unknown smoothness of the target function s to
estimate [see Barron, Birgé and Massart (1999) for an extensive presentation].

Several adaptivity in the minimax sense results are provided in the present sec-
tion. Deriving such results from oracle inequalities (1) is somewhat classical. Here,
the novelty is first that CV enjoys such a desirable property as a model selection
procedure, second that the leading constant Cn(p) in Theorem 3.1 when converg-
ing to 1 as n tends to +∞ provides accurate results.

Let us start providing a general theorem from which any adaptivity result will
be immediate corollary. The proof is given in Appendix A.1.

THEOREM 3.2. Let s denote a density on [0,1] such that (SqI) holds true,
set {Sm}m∈Mn a collection of models defined in Section 2.1.2, and assume (Pol),
(RegD), (Dmax), (Rich), (LoEx), (Bias), and (OrSp). Let m̂ = m̂(p) denote the
model minimizing R̂p(m) over Mn for every p ∈ {1, . . . , n − 1}. Then for every
1 ≤ p ≤ n − 1,

E
[‖s − ŝm̂(p)‖2]

(17)

≤ Cn(p)E
[

inf
m∈Mn

‖s − ŝm‖2
]
+ (

 + ‖s‖2) 12

n(logn)2 + 6cu

n2 ,

where Cn(p) = T +
B ∨T +

V

T −
B ∧T −

V

, with

T −
B = 1 − δnK(n,p),

T −
V = 1

1 − p/n
(1 − δn)[1 − 4δn] − 2δnK(n,p)[3 − 4δn],

T +
B = 1 + δnK(n,p),

T +
V = 1

1 − p/n
(1 + δn)[1 + 4δn] + 2δnK(n,p)[3 + 4δn],

and K(n,p) = 1 + 2
n−1 + p

n−p
1

n−1 .

The last two terms in the right-hand side of (17) are remainder terms by As-
sumptions (RegD), (Dmax), and (Bias).

Applying Theorem 3.2 to the collection of regular histograms defined by (6),
the following corollary settles an adaptivity property with respect to Hölder balls
[see DeVore and Lorentz (1993)].

COROLLARY 3.2. Let us consider the model collection of Section 2.1.2 made
of piecewise constant functions and the associated histograms defined by (6) such
that, for every m ∈ Mn and λ ∈ �(m), |Iλ| = D−1

m (regular histograms). Let us
also assume (Dmax) and (LoEx) hold true.
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If the target density s belongs to the Hölder ball H(L,α) for some L > 0 and
α ∈ (0,1], then there exist constants 0 < K−

α ≤ K+
α such that for every p = o(n),

K−
α L2/(2α+1)n−2α/(2α+1)

≤ sup
s∈H(L,α)

E
[‖s − ŝm̂(p)‖2]

≤ (
1 + o(1)

)
K+

α L2/(2α+1)n−2α/(2α+1) + O

(
1

n(logn)2

)
,

K−
α and K+

α only depend on α (not on n or s).
Furthermore, since this property holds for every L > 0 and α ∈ (0,1], then

{̂sm̂(p)}n∈N∗ is adaptive in the minimax sense with respect to {H(L,α)}L>0,α∈(0,1]
for every p = o(n).

The proof has been deferred to Section B.5 in Celisse (2014). The upper bound
is tight since the rate n−2α/(2α+1) and the dependence on the radius L2/(2α+1)

are the same as in the lower bound, which has been stated by Ibragimov and
Has’minskiı̆ (1981). The main contribution of this result is to prove p = o(n) leads
to adaptivity. Note that similar results can also be proved for Besov balls Bα∞,2(L),
with α,L > 0, for instance [see DeVore and Lorentz (1993)], by using an appro-
priate collection of models such as trigonometric polynomials defined by (7).

3.1.4. Simulation experiments. Results of simulation experiments are pro-
vided to check the conclusions drawn (from theory) in Section 3.1.2. A mixture
of Beta distributions

∀x ∈ [0,1] s(x) = β(3,7;x) + β(10,5;x)

2
(18)

has been used to generate samples of size n = 100,500,1000,2000,3000,4000,

5000,10,000,20,000. Note that (18) defines a Hölder density on [0,1]. For each n,
every p ∈ {1, . . . , n − 1} have been considered and (Dmax) is fulfilled with � = 1
(Figure 1) and � = 2 (Figure 2).

The model collection we used is made of piecewise constant functions de-
scribed in Section 2.1.2 leading to regular histogram estimators defined by (6).
Only regular histograms with dimension Dm ≥ 2 are used so that (LoEx) holds
true (Lemma B.3). For every 1 ≤ p ≤ n − 1, m̂(p) is defined by (15).

Let us also introduce

Cor,n(p) := E

[ ‖s − ŝm̂(p)‖2

infm∈Mn{‖s − ŝm‖2}
]

and p0 := Argmin
1≤p≤n−1

Cor,n(p),(19)

which measures the average performance of ŝm̂(p) with respect to that of ŝm∗ (or-
acle estimator). The closer Cor,n(p) to 1, the better ŝm̂(p). Minimizing Cor,n(p) as
a function of p for various values of n enables to check whether the conclusions
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drawn from minimizing Cn(p) with respect to p (Theorem 3.1 and Corollary 3.1)
hold true or not, that is whether Cn(p) is an accurate approximation to Cor,n(p).
For each curve p �→ Cor,n(p), a confidence band has been displayed. It is delimited
by p �→ C−

or,n(p) and p �→ C+
or,n(p), respectively, defined by

C−
or,n(p) = Cor,n(p) − σ̂√

N
and C+

or,n(p) = Cor,n(p) + σ̂√
N

,(20)

where σ̂ denotes the empirical standard deviation.
First, from panels (a) and (b) of Figure 1, Cor,n(p) (plain red lines) decreases

pointwise as n grows. This is confirmed by panel (c) of Figure 1 at the particular
value p = p0 as n grows. This is in accordance with Theorem 3.1 and Cn(p) →
0 as n increases. Second, the optimization strategy at the basis of Corollary 3.1
is empirically validated by panel (c) of Figure 1 where Cor,n(p0) and its proxy
Cn(p0) remain very close to each other. Furthermore, the optimal rate derived
in Corollary 3.1 is supported up to constant by simulation results displayed in
panel (c) of Figure 2 where p0/n is almost equal to the predicted δn ≈ C/(logn)

(C > 0) from the proof of Theorem 3.1.
The conclusion of Corollary 3.1 about the dependence of the optimal p0 on the

complexity of the model collection (through δn) is also illustrated by panels (a)
and (b) in Figure 2 where � (Dmax), respectively, equals 1 and 2. As � grows the
model collection becomes more complex, leading to a worse performance and a
larger p0 in panel (b). The need for a larger p0 is all the more strong as the curve
in panel (b) is less flat than in panel (a), indicating the problem becomes more
difficult as � increases and any misspecification of p0 leads to a stronger loss in
accuracy. One concludes the more complex the model collection, the larger the
optimal p.

Note that this conclusion does not apply to Loo (p = 1) [see (16)], suggesting
Loo may be suboptimal for finite sample size. This is supported by Figure 1 [pan-
els (a) and (b)] and Figure 2 [panels (a) and (b)] where the minimum of each curve
is not reached at p = 1.

3.2. Optimal cross-validation for identification. With the notation of Sec-
tion 2.1, {̂sm}m∈Mn denotes a collection of projection estimators (Section 2.1.2)
which is allowed to depend on n. The purpose is now to recover the best model
denoted by Sm̄ and defined by

m̄ := Argmin
m∈Mn

E
[‖s − ŝm‖2]

,(21)

where m̄ is a deterministic quantity unlike m∗ from Section 3.1. Since this goal
cannot be reached if other models can perform as well as Sm̄ (even asymptotically),
one also requires there exist μ > 0 and n0 ∈ N

∗ such that for every integer n > n0,

(1 + μ)E
[‖s − ŝm̄‖2] ≤ inf

m∈Mn\{m̄}E
[‖s − ŝm‖2]

.(BeMo)
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A similar assumption (in probability rather than in expectation) has been made by
Yang (2007). Let us further assume the collection {Sm}m∈Mn can be split into:

• parametric models indexed by Mn,P for which there exist constants π, τ > 0
(independent of n) such that

sup
m∈Mn,P

{
nE

[‖sm − ŝm‖2]} ≤ π and inf
m∈Mn,P ,s /∈Sm

{‖s − sm‖2} ≥ τ.(22)

• nonparametric models indexed by Mn,NP such that

n(logn)−2 inf
m∈Mn,NP

E
[‖sm − ŝm‖2] −→

n→+∞+∞.(23)

Then

{Sm}m∈Mn = {Sm}m∈Mn,P
∪ {Sm}m∈Mn,NP

.(P-NP)

Parametric models are models with convergence rate of order 1/n. Since E[‖s −
ŝm‖2] ≈ ‖s − sm‖2 +C ·Dm/n, allowing Dm to depend on n makes the rate of the
corresponding model slower than 1/n (nonparametric model). Consistently with
this remark, (22) requires the largest dimension over parametric models is bounded
by a constant independent of n, and that the bias of parametric models such that
s /∈ Sm cannot decrease with n toward 0. Otherwise, such a model would be non-
parametric. Conversely, (23) only requires that the dimension of nonparametric
models must be larger than (logn)2. In particular, this does not prevent nonpara-
metric models from containing s or having their bias decreasing to 0 as n grows.

3.2.1. Main results. Depending on whether s belongs or not to
⋃

m∈Mn
Sm,

the two following results prove model selection consistency for CV. Their main
contribution is to relate the cardinality p of the test set to the rate of convergence
of ŝm̄ and the model collection complexity. Note that, in addition, the model con-
sistency property is settled with a collection of models allowed to grow with n,
which contrasts with earlier results [see, e.g., Yang (2007)].

Let us start with the setting where s belongs to
⋃

m∈Mn
Sm, which implies the

best estimator ŝm̄ achieves the parametric rate 1/n.

THEOREM 3.3 (Model consistency with s ∈ ⋃
m Sm). Let

⋃
m∈Mn

Sm denote
a collection of models satisfying (Pol) and (P-NP), m̄ ∈Mn given by (21) be such
that (BeMo) holds true, and assume (SqI), (RegD), (Dmax), and (LoEx). For every
1 ≤ p ≤ n − 1, let us also define m̂ = m̂(p) = Argminm∈Mn

R̂p(m). If the target
s ∈ ⋃

m∈Mn
Sm, then every 1 ≤ p = pn ≤ n − 1 such that

log(n)

(
1 − p

n

)
−→

n→+∞ 0 and n

(
1 − p

n

)
−→

n→+∞+∞,(24)

leads to

P[m̂ = m̄] −→
n→+∞ 1.
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The proof has been deferred to Appendix B.1. When s belongs to
⋃

m∈Mn
Sm,

the best estimator ŝm̄ in a polynomial collection can be recovered by CV provided
p/n converges to 1 as n tends to +∞. The proof establishes this rate (i) cannot
exceed 1/n to allow distinguishing between parametric estimators (with conver-
gence rate of order 1/n), and (ii) has to be faster than (logn)−1 to allow dealing
with the polynomial complexity of the model collection. For instance, a finite col-
lection would lead to replace the (logn)−1 rate by a slower one determined by the
control level of P[m̂ = m̄]. In the regression setting, [Yang (2007)] already proved
requiring p/n → 1 enables to recover the best parametric estimator among para-
metric ones (see Corollary 1), while this requirement is no longer necessary when
comparing parametric and nonparametric estimators. Our result is consistent with
Yang’s one, although our setting is somewhat different since we compare the best
parametric estimator with both parametric and nonparametric ones in the same
time.

Conversely, when s does not belong to
⋃

m Sm, every parametric model is biased
according to (22) and ŝm̄ reaches a nonparametric rate, that is nRn(m̄) → +∞ as
n tends to +∞.

THEOREM 3.4 (Model consistency with s /∈ ⋃
m Sm). Let

⋃
m∈Mn

Sm denote
a collection of models satisfying (Pol) and (P-NP), m̄ ∈Mn given by (21) be such
that (BeMo) holds true, and assume (SqI), (RegD), (Dmax) and (LoEx). For every
1 ≤ p ≤ n− 1, let us also define m̂ = m̂(p) = Argminm∈Mn

R̂p(m). Let us assume
the target s /∈ ⋃

m∈Mn
Sm and Rn(m̄) → 0 as n tends to +∞.

1. If for large enough values of n Dm̄ ≤ (logn)4, then every 1 ≤ p = pn ≤ n−1
such that

log(n)

(
1 − p

n

)
−→

n→+∞ 0 and nE
[‖sm̄ − ŝm̄‖2] = o(n − p)(25)

leads to

P[m̂ = m̄] −→
n→+∞ 1.

(i) If for large enough values of n Dm̄ > (logn)4, then every 1 ≤ p = pn ≤
n − 1 such that

(logn)5

nE[‖sm̄ − ŝm̄‖2] = o

(
p/n

1 − p/n

)
and

(26)
p/n

1 − p/n
= o

(
1 ∨ ‖s − sm̄‖2

E[‖sm̄ − ŝm̄‖2]
)

leads to

P[m̂ = m̄] −→
n→+∞ 1.
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The proof is similar to that of Theorem 3.3 and has been postponed to Sec-
tion C.1 [supplementary material Celisse (2014)]. The constraints on p strongly
depend on the rate of convergence of ŝm̄ (nonparametric here). When Sm̄ is a small
nonparametric model (Dm̄ ≤ (logn)4), (25) is very similar to (24) in the para-
metric setting. In particular, nE[‖sm̄ − ŝm̄‖2] → +∞ as n tends to +∞ implies
n(1 − p/n) → +∞ as well. For large nonparametric models (Dm̄ > (logn)4), the
constraints on p are related to the ratio ‖s − sm̄‖2/E[‖sm̄ − ŝm̄‖2]. For instance,
when estimating s ∈ H(L,α) by regular histograms, this ratio remains bounded
while nE[‖sm̄ − ŝm̄‖2] grows polynomially in n. Then p/n has to converge to 0 as
n increases, but not too fast. In particular, Loo (p = 1) is suboptimal in that setting
[see Figure 4 panel (b)]. Note that Theorem 3.4 has the same flavor as Corollary 1
in [Yang (2007)], except the density estimation setting allows to relate p to the
features of the best estimator more closely.

3.2.2. Simulation experiments. Simulation experiments have been performed
in the settings of Theorems 3.3 and 3.4, respectively, when s belongs to (resp.,
does not belong to) the model collection. We used a polynomial model collection
made of regular piecewise constant functions described in Section 2.1.2 for which
Assumptions (P-NP) and (BeMo) are fulfilled with μ = 5.10−1. In each setting,
N = 1000 samples have been drawn. Results are given in Figures 3 and 4 where
P[m̂ = m̄] is displayed with respect to the ratio p/n. Let us also mention that
Lemma B.3 in the supplement Celisse (2014) clearly shows (LoEx) holds true for
all densities defined in the following as long as Dm ≥ 2 for every model in the
collection.

When s belongs to the model collection (Figure 3), the following densities have
been used:

FIG. 3. p/n �→ P[m̂ = m̄] for density s1 [panel (a)] and s2 [panel (b)]. N = 1000 samples have
been drawn.
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FIG. 4. p/n �→ P[m̂ = m̄] for density s3 [panel (a)] and s4 [panel (b)]. N = 1000 samples have
been drawn.

1. s1(t) = 6
81[0,1/2](t) + 10

8 1[1/2,1](t), t ∈ [0,1] [panel (a)],
2. s2(t) = 135

1121[0,1/3](t)+ 135
56 1[1/3,1/2](t)+ 1

41[1/2,5/7](t)+ 1
21[5/7,1](t), t ∈ [0,1]

[panel (b)].

As predicted by Theorem 3.3, CV reaches model selection consistency for recov-
ering the best parametric estimator ŝm̄ on condition p/n increases to 1 as n grows
to +∞. Comparing (a) and (b), the convergence rate is slower in (b). Unlike (a)
where m̄ remains almost unchanged as n increases, the best parametric estima-
tor in (b) changes with n as allowed by (21). Therefore, the slower convergence
rate in (b) results from the higher dimension of the space of piecewise constant
functions s2 belongs to.

When s does not belong to the model collection (Figure 4), densities with dif-
ferent smoothness assumptions have been considered:

1. s3(x) = β(10,7;x), for every t ∈ [0,1] [panel (a)],
2. s4(x) = 6

5x1/5, for every t ∈ [0,1] [panel (b)].

The converse situation arises since CV reaches model selection consistency as long
as p/n decreases to 0 as n tends to +∞. Consistently with Theorem 3.4, this rate
strongly depends on the risk of the best estimator, that is on the smoothness of the
target. While model selection consistency is illustrated by both panels (a) and (b),
it is faster for the smoothest density s3 than for s4. In Figure 4 panel (b), the highest
probability is achieved for p/n ≈ 0.18 with n = 6000.

4. Discussion. From the present analysis of CV procedures in the density es-
timation framework, we were able to prove the optimality of leave-one-out cross-
validation for risk estimation, which is consistent with earlier results in the regres-
sion setting Burman (1989).
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However, when CV is used as model selection procedure, the optimal p strongly
depends on the structure of the model collection and on our goal (estimation or
identification).

Estimation. When the best model has dimension growing with n [faster than
(logn)a for some a > 0] and the model collection has a polynomial complexity
(Pol), Theorem 3.1 proves any p such that p/n → 0 leads to an asymptotically
optimal model selection procedure. This is consistent with the asymptotic equiv-
alence between Lpo (as long as p/n → 0) and Mallows’ Cp previously settled in
the regression setting [Shao (1997)].

From a nonasymptotic point of view, Corollary 3.1 suggests choosing p > 1
(for finite sample) could balance the overfitting phenomenon arising from se-
lecting a model from a large collection. This overfitting phenomenon is already
well known with penalized criteria such as Mallow’s ones, inducing the need for
heavier constants in front of the penalty Arlot and Massart (2009). Therefore, in-
creasing p amounts to penalize more strongly complex models (with large dimen-
sion).

Identification. As settled by Yang (2007) for regression, Section 3.2 highlights
the optimal p depends on the rate of convergence of the estimator one tries to
recover (and on the structure of the model collection).

When the target estimator has a parametric rate with a polynomial collection,
Theorem 3.3 proves p/n → 1 leads to model selection consistency. This fact has
been already noticed by Shao (1993) in the regression setting who proved leave-
one-out is not model selection consistent. Remembering the asymptotic equiva-
lence between Lpo and BIC-like criteria [Shao (1997)] established with the lin-
ear regression model, this confirms the somewhat paradoxical requirement [Yang
(2006)] to devote most of available data (p > n/2) to the test set when trying to
recover a parametric estimator.

Drawing such a simple conclusion is harder when the best estimator has a non-
parametric rate as detailed by Theorem 3.4. If the best estimator has a rate close
to parametric, then p/n → 1 provides model selection consistency. Conversely, if
the rate is slower (e.g., polynomial of order n−a , for some a > 0), then requiring
p/n → 0 enables to recover the target estimator. Relating that way the optimal
p to the rate of convergence of the best estimator has been already done in the
regression context by [Yang (2007), see Corollary 1].

Note that when the best estimator is nonparametric (e.g., with polynomial rate),
Theorem 3.1 and Theorem 3.4 imply p/n → 0 leads to both efficiency and, re-
spectively, model selection consistency. However, there is no contradiction with
the earlier paper by Yang (2005) where it was proved no model selection criterion
can share both efficiency and model selection consistency in a parametric setting.
For instance, Li (1987) has established model selection consistency for leave-one-
out with nonparametric estimators in regression.
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APPENDIX A: ESTIMATION POINT OF VIEW

A.1. Main proofs.

PROOF OF THEOREM 3.1. First, let us use Proposition A.2 from Celisse
(2014) applied with m,m′ ∈Mn such that R̂p(m′) ≤ R̂p(m). Then it comes

n

n − p
E

[
Z2

m′
] + ‖s − sm′‖2 − K(n,p)

[
Z2

m′ −E
[
Z2

m′
]]

≤ n

n − p
E

[
Z2

m

] + ‖s − sm‖2 − K(n,p)
[
Z2

m −E
[
Z2

m

]]
− 2K(n,p)νn(sm′ − sm) + 1

n

(
K(n,p) + n

n − p

)
νn(φm′ − φm),

where K(n,p) = 1 + 2
n−1 + p

n−p
1

n−1 .
Then, combining Propositions B.4 and B.5 from Celisse (2014) to control the

remainder terms, there exist a sequence (δn)N with δn → 0 and nδn → +∞ as
n → +∞ and an event � = �rem,1 ∩ �rem,2 of probability 1 − 4/n2 on which

n

n − p
E

[
Z2

m′
] + ‖s − sm′‖2 − K(n,p)

[
Z2

m′ −E
[
Z2

m′
]]

≤ n

n − p
E

[
Z2

m

] + ‖s − sm‖2 − K(n,p)
[
Z2

m −E
[
Z2

m

]]
+ δnK(n,p)

(‖s − sm′‖2 +E
[
Z2

m′
] + ‖s − sm‖2 +E

[
Z2

m

])
+ δn

(
K(n,p) + n

n − p

)[
E

[
Z2

m′
] +E

[
Z2

m

]]
.

In the following, δn always denotes such a sequence even if the precise expression
of δn can differ from line to line.

Let us now use concentration results stated in Corollaries B.1 and B.2 from
Celisse (2014) on the events �left and �right. The important point in this proof is
given by Lemmas B.1 and B [Celisse (2014)], where it is proved that on the event
� = �left ∩�right ∩�rem,1 ∩�rem,1, min{Dm∗,Dm̂(p)} ≥ (logn)4 for large enough
values of n. Therefore, one can apply Lemma B.6 and Corollaries B.1 and B.2 from
Celisse (2014) with Lm = 0 = rn(m) to get

Z2
m′

[(
n

n − p
(1 − δn) − 2δnK(n,p)

)
(1 − 4δn) − 4K(n,p)δn

]
+ [

1 − δnK(n,p)
]‖s − sm′‖2

≤ Z2
m

[(
n

n − p
(1 + δn) + 2δnK(n,p)

)
(1 + 4δn) + 4K(n,p)δn

]
+ [

1 + δnK(n,p)
]‖s − sm‖2.
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Choosing m′ = m̂, it comes

T −
V Z2

m̂ + T −
B ‖s − sm̂‖2 ≤ T +

V Z2
m + T +

B ‖s − sm‖2,

where

T −
B = 1 − δnK(n,p),

T −
V = n

n − p
(1 − δn)[1 − 4δn] − 2K(n,p)

[
3δn − 4δ2

n

]
,

T +
B = 1 + δnK(n,p),

T +
V = n

n − p
(1 + δn)[1 + 4δn] + 2K(n,p)

[
3δn + 4δ2

n

]
.

Finally on the event �, the following oracle inequality holds true for every p ∈
{1, n − 1}:

‖s − ŝm̂(p)‖2 ≤ Cn(p) inf
m∈Mn

{‖s − ŝm‖2}
with Cn(p) = T +

B ∨ T +
V

T −
B ∧ T −

V

.

Moreover, on the event �, Lemmas B.1 and B.2 [Celisse (2014)] show
min{Dm∗,Dm̂(p)} ≥ (logn)4. Then, it is enough to apply Propositions B.1 and B.2
from Celisse (2014) to models satisfying this constraint, which leads to the new
event �̃ [where models with dimension smaller than (logn)4 have been omitted]
of probability at least 1 − 6/n2. �

PROOF OF COROLLARY 3.1. Let us recall the expression of the leading con-
stant

Cn(p) = T +
B ∨ T +

V

T −
B ∧ T −

V

,

with

T −
B = 1 − δnK(n,p),

T −
V = 1

1 − p/n
(1 − δn)[1 − 4δn] − 2δnK(n,p)[3 − 4δn],

T +
B = 1 + δnK(n,p),

T +
V = 1

1 − p/n
(1 + δn)[1 + 4δn] + 2δnK(n,p)[3 + 4δn],

and K(n,p) = 1 + 2
n−1 + p

n−p
1

n−1 .
First, as long as n is large enough, simple calculations when p = 1 show

T −
V (1) ≤ T −

B (1). Noticing moreover that T +
V (p) ≥ T +

B (p) for every p, it comes
for p close to 1

Cn(p) = T +
V

T −
V

= (1 + δn)[1 + 4δn] + 2(1 − p/n)δnK(n,p)[3 + 4δn]
(1 − δn)[1 − 4δn] − 2(1 − p/n)δnK(n,p)[3 − 4δn] .
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It is then easy to show that p �→ Cn(p) is decreasing on {1, . . . , p∗}, where p∗
denotes the value of p such that T −

V (p) = T −
B (p). Hence,

p∗
n

n
= 1 − 1 − 5δn + 4δ2

n − (2/(n − 1))(3δn − 4δ2
n) + δn/(n − 1)

1 + 2(1 + 1/(n − 1))(3δn − 4δ2
n) − δn(1 + 1/(n − 1))

.

It results that for every p ≥ p∗

Cn(p) = T +
V

T −
B

,

which is increasing with respect to p.
In the same way, it is easy to check that p∗

n/(10nδn) −→
n→+∞ 1, which enables us

to conclude the proof. �

PROOF OF THEOREM 3.2. Introducing the event �̃ of Theorem 3.1, we get

E
[‖s − ŝm̂(p)‖2] = E

[‖s − ŝm̂(p)‖21�̃

] +E
[‖s − ŝm̂(p)‖21�̃c

]
.

Then Theorem 3.1 applied to the first expectation in the right-hand side leads to

E
[‖s − ŝm̂(p)‖2] ≤ Cn(p)E

[
inf

m∈Mn

‖s − ŝm‖2
]
+E

[‖s − ŝm̂(p)‖21�̃c

]
.

Applying (Bias), one gets

E
[‖s − sm̂(p)‖21�̃c

] ≤ E

[
cu

Du
m̂(p)

1�̃c

]
≤ cuP

(
�̃c) ≤ 6cu

n2 ,

while (RegD) and (Dmax) provide

E
[‖sm̂(p) − ŝm̂(p)‖21�̃c

]
= E

[ ∑
λ∈�(m̂(p))

(Pnϕλ − Pϕλ)
21�̃c

]

≤ 2E
[ ∑
λ∈�(m̂(p))

(Pnϕλ)
21�̃c

]
+ 2E

[ ∑
λ∈�(m̂(p))

(Pϕλ)
21�̃c

]

≤ 2E

[ ∑
λ∈�(m̂(p))

1

n2

n∑
i,j=1

ϕλ(Xi)ϕλ(Xj )1�̃c

]
+ 2‖s‖2

E[Dm̂(p)1�̃c ]

≤ 2
(
 + ‖s‖2) n

(logn)2P
(
�̃c) ≤ (

 + ‖s‖2) 12

n(logn)2 . �
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APPENDIX B: IDENTIFICATION POINT OF VIEW

B.1. Proof of Theorem 3.3. The general purpose is to prove there exist an
event �n with P(�n) → 1 as n tends to +∞ and a positive integer N such that
on �n, for every n ≥ N , every m �= m̄ satisfies

R̂p(m̄) − R̂p(m) ≤ −un(m)
(
1 + o(1)

)
,(27)

where un(m) > 0 denotes a real number for every n and m, and o(1) does not
depend on m. In particular, this implies

P(m̂ = m̄) = P
(∀m �= m̄, R̂p(m̄) − R̂p(m) < 0

) −→
n→+∞ 1,(28)

which would complete the proof.
Let us consider the event �left ∩ �right in Proposition C.2 from Celisse (2014)

with β1 = β2 = 1/n2, and the events �rem,1 [Proposition B.4 from Celisse (2014)]
and �rem,3 (Proposition C.1 [Celisse (2014)]). Then with �n = �left ∩ �right ∩
�rem,1 ∩ �rem,3 and P[�c

n] ≤ 8/n2, showing (28) amounts to prove

P
(
�n ∩ {∀m �= m̄, R̂p(m̄) − R̂p(m) < 0

}) −→
n→+∞ 1.

Let us now focus on the event �n. The two main steps correspond to distin-
guishing between parametric and nonparametric models Sm [see (P-NP)]. For
every m, let us define B(m) = ‖s − sm‖2 and V (m) = E[‖sm − ŝm‖2], where
sm = Argmint∈Sm

‖s − t‖2. From line to line, the value of δn may change, but it
always denotes a sequence decreasing to 0 and such that nδn → +∞ as n grows.

If ŝm has a parametric rate.

• If s ∈ Sm:
Let us first notice sm = s = sm̄, which implies Rn(m) = V (m) and Rn(m̄) =

V (m̄). Then Proposition A.2 from Celisse (2014), and Propositions B.4 and C.2
from Celisse (2014) lead to∣∣∣∣[R̂p(m̄) − R̂p(m)

] − n

n − p

[
Rn(m̄) − Rn(m)

]∣∣∣∣
≤

(
36L2

n + 3δn + δn

n

n − p

)[
Rn(m) + Rn(m̄)

]
= o

(
n

n − p

)[
Rn(m) + Rn(m̄)

]
,

by requiring L2
n = o((1−p/n)−1), which provides (27) by use of (BeMo). Note

that in the previous inequality, rn(m̄) and rn(m) [from Proposition C.2 from
Celisse (2014)] have been omitted since they are negligible with respect to the
other terms.



OPTIMAL CROSS-VALIDATION 1907

• If s /∈ Sm:
Similarly, Proposition A.2, Proposition B.4, and Propositions C.1 and C.2

from Celisse (2014) lead to∣∣∣∣[R̂p(m̄) − R̂p(m)
] − [

B(m̄) − B(m)
] − n

n − p

[
V (m̄) − V (m)

]∣∣∣∣
≤ 6δn

[
B(m̄) + B(m)

]
+

(
36L2

n + 3δn



ξ
+ δn

(
3 + n

n − p

))[
V (m) + V (m̄)

]
+ 3δn‖s‖

√


ξ

√
V (m̄) + V (m) + rn(m̄).

With s ∈ ⋃
m′ Sm′ and s /∈ Sm, it comes B(m̄) = 0 and B(m) ≥ τ > 0 by (P-NP).

Since both ŝm and ŝm̄ have parametric rates, requiring n(1 − p/n) → +∞ as n

grows implies (27), that is,[
R̂p(m̄) − R̂p(m)

] ≤ −B(m)
(
1 + o(1)

)
.

If ŝm has a nonparametric rate.

• If s ∈ Sm:
Proposition A.2 from Celisse (2014), sm = s = sm̄, and Propositions C.1

and C.2 from Celisse (2014) combined with L2
n = o(n/(n − p)) provide∣∣∣∣[R̂p(m̄) − R̂p(m)

] − n

n − p

[
V (m̄) − V (m)

]∣∣∣∣
≤ o

(
n

n − p

)
V (m) + o

(
n

n − p

)
V (m̄),

where o(n/(n − p)) does not depend on m. Since Sm is nonparametric, (P-NP)
gives

V (m̄)

V (m)
≤ π

(logn)2

(
n/(logn)2 inf

m
V (m)

)−1 −→
n→+∞ 0,

which implies (27) with

(n − p)
[
R̂p(m̄) − R̂p(m)

] ≤ −nV (m)
(
1 + o(1)

)
.

• If s /∈ Sm:
Both L2

n = o(n/(n − p)) and the same argument as above lead to∣∣∣∣[R̂p(m̄) − R̂p(m)
] + B(m) + n

n − p
V (m)

[
1 + o(1)

]∣∣∣∣
≤ V (m)o

(
n

n − p

)
+ B(m)o(1).
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Then (27) holds true with[
R̂p(m̄) − R̂p(m)

] ≤ −B(m)
(
1 + o(1)

) − n

n − p
V (m)

(
1 + o(1)

)
.

Then there exists an integer N such that for n ≥ N , on the event �n, (27) holds
true for every m ∈Mn, which completes the proof.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal cross-validation in density estimation with the
L2-loss”: Technical proofs and details (DOI: 10.1214/14-AOS1240SUPP; .pdf).
Owing to space constraints, we have moved technical proofs to a supplementary
document [Celisse (2014)].
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