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This paper considers the maximum likelihood estimation of panel data
models with interactive effects. Motivated by applications in economics and
other social sciences, a notable feature of the model is that the explanatory
variables are correlated with the unobserved effects. The usual within-group
estimator is inconsistent. Existing methods for consistent estimation are ei-
ther designed for panel data with short time periods or are less efficient. The
maximum likelihood estimator has desirable properties and is easy to im-
plement, as illustrated by the Monte Carlo simulations. This paper develops
the inferential theory for the maximum likelihood estimator, including con-
sistency, rate of convergence and the limiting distributions. We further ex-
tend the model to include time-invariant regressors and common regressors
(cross-section invariant). The regression coefficients for the time-invariant re-
gressors are time-varying, and the coefficients for the common regressors are
cross-sectionally varying.

1. Introduction. This paper studies the following panel data models with un-
observable interactive effects:

yit = αi + xitβ + λ′
ift + eit , i = 1, . . . ,N, t = 1,2, . . . , T ;

where yit is the dependent variable; xit = (xit1, . . . , xitK) is a row vector of ex-
planatory variables; αi is an intercept; the term λ′

ift +eit is unobservable and has a
factor structure, λi is an r ×1 vector of factor loadings, ft is a vector of factors and
eit is the idiosyncratic error. The interactive effects (λ′

ift ) generalize the usual ad-
ditive individual and time effects; for example, if λi ≡ 1, then αi +λ′

ift = αi +ft .
A key feature of the model is that the regressors xit are allowed to be correlated

with (αi, λi, ft ). This situation is commonly encountered in economics and other
social sciences, in which some of the regressors xit are decision variables that are
influenced by the unobserved individual heterogeneities. The practical relevance of
the model will be further discussed below. The objective of this paper is to obtain
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consistent and efficient estimation of β in the presence of correlations between the
regressors and the factor loadings and factors.

The usual pooled least squares estimator or even the within-group estimator
is inconsistent for β . One method to obtain a consistent estimator is to treat
(αi, λi, ft ) as parameters and estimate them jointly with β . The idea is “control-
ling through estimating” (controlling the effects by estimating them). This is the
approach used in [8, 23] and [30]. While there are some advantages, an undesir-
able consequence of this approach is the incidental parameters problem. There are
too many parameters being estimated, and the incidental parameters bias arises;
see [26]. In [1, 2] and [17] the authors consider the generalized method of mo-
ments (GMM) method. The GMM method is based on a nonlinear transformation
known as quasi-differencing that eliminates the factor errors. Quasi-differencing
increases the nonlinearity of the model especially with more than one factor. The
GMM method works well with a small T . When T is large, the number of mo-
ment equations will be large, and the so called many-moment bias arises. In [27],
the author considers an alternative method by augmenting the model with addi-
tional regressors ȳt and x̄t , which are the cross-sectional averages of yit and xit .
These averages provide an estimate for ft . The estimator of [27] becomes incon-
sistent when the factor loadings in the y equation are correlated with those in the
x equation, as shown in [32]. A further approach to controlling the correlation
between the regressors and factor errors is to use the Mundlak–Chamberlain pro-
jection ([24] and [15]). The latter method projects αi and λi onto the regressors
such that λi = c0 + c1xi1 + · · · + cT xiT + ηi , where cs (s = 0,1, . . . , T ) are pa-
rameters to be estimated, and ηi is the projection residual (a similar projection
is done for αi ). The projection residuals are uncorrelated with the regressors so
that a variety of approaches can be used to estimate the model. This framework is
designed for small T and is studied by [9].

In this paper we consider the pseudo-Gaussian maximum likelihood method
under large N and large T . The theory does not depend on normality. In view of
the importance of the MLE in the statistical literature, it is of both practical and
theoretical interest to examine the MLE in this context. We develop a rigorous
theory for the MLE. We show that there is no incidental parameters bias for β .

We allow time-invariant regressors such as education, race and gender in the
model. The corresponding regression coefficients are time-dependent. Similarly,
we allow common regressors, which do not vary across individuals, such as prices
and policy variables. The corresponding regression coefficients are individual-
dependent so that individuals respond differently to policy or price changes. In our
view, this is a sensible way to incorporate time-invariant and common regressors.
For example, wages associated with education and with gender are more likely
to change over time rather than remain constant. In our analysis, time invariant
regressors are treated as the components of λi that are observable, and common
regressors as the components of ft that are observable. This view fits naturally
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into the factor framework in which part of the factor loadings and factors are ob-
servable, and the maximum likelihood method imposes the corresponding loadings
and factors at their observed values.

While the theoretical analysis of MLE is demanding, the limiting distributions
of the MLE are simple and have intuitive interpretations. The computation is also
easy and can be implemented by adapting the ECM (expectation and constrained
maximization) of [22]. In addition, the maximum likelihood method allows re-
strictions to be imposed on λi or on ft to achieve more efficient estimation. These
restrictions can take the form of known values, being either zeros, or other fixed
values. Part of the rigorous analysis includes setting up the constrained maximiza-
tion as a Lagrange multiplier problem. This approach provides insight into which
kinds of restrictions provide efficiency gain and which kinds do not.

Panel data models with interactive effects have wide applicability in economics.
In macroeconomics, for example, yit can be the output growth rate for country i

in year t ; xit represents production inputs, and ft is a vector of common shocks
(technological progress, financial crises); the common shocks have heterogenous
impacts across countries through the different factor loadings λi ; eit represents the
country-specific unmeasured growth rates. In microeconomics, and especially in
earnings studies, yit is the wage rate for individual i for period t (or for cohort t),
xit is a vector of observable characteristics such as marital status and experience;
λi is a vector of unobservable individual traits such as ability, perseverance, mo-
tivation and dedication; the payoff to these individual traits is not constant over
time, but time varying through ft ; and eit is idiosyncratic variations in the wage
rates. In finance, yit is stock i’s return in period t , xit is a vector of observable
factors, ft is a vector of unobservable common factors (systematic risks) and λi is
the exposure to the risks; eit is the idiosyncratic returns. Factor error structures are
also used as a flexible trend modeling as in [20]. Most of panel data analysis as-
sumes cross-sectional independence; see, for example, [6, 13] and [18]. The factor
structure is also capable of capturing the cross-sectional dependence arising from
the common shocks ft . Further motivation can be found in [7, 28, 29].

Throughout the paper, the norm of a vector or matrix is that of Frobenius, that
is, ‖A‖ = [tr(A′A)]1/2 for matrix A; diag(A) is a column vector consisting of the
diagonal elements of A when A is matrix, but diag(A) represents a diagonal matrix
when A is a vector. In addition, we use v̇t to denote vt − 1

T

∑T
t=1 vt for any column

vector vt and Mwv to denote 1
T

∑T
t=1 ẇt v̇

′
t for any vectors wt and vt .

The rest of the paper is organized as follows. Section 2 introduces a common
shock model and the maximum likelihood estimation. Consistency, rate of conver-
gence and the limiting distributions of the MLE are established. Section 3 shows
that if some factors do not affect the y equation but only the x equation, more ef-
ficient estimation can be obtained. Section 4 extends the analysis to time-invariant
regressors and common regressors; the corresponding coefficients are time varying
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and cross-section varying, respectively. Computing algorithm is discussed in Sec-
tion 5, and simulations results are reported in Section 6. The last section concludes.
The theoretical proofs are provided in the supplementary document [11].

2. A common shock model. In the common-shock model, we assume that
both yit and xit are impacted by the common shocks ft so the model takes the
form

yit = αi + xit1β1 + xit2β2 + · · · + xitKβK + λ′
ift + eit ,

(2.1)
xitk = μik + γ ′

ikft + vitk

for k = 1,2, . . . ,K . In across-country output studies, for example, output yit and
inputs xit (labor and capital) are both affected by the common shocks.

The parameter of interest is β = (β1, . . . , βK)′. We also estimate αi, λi,μik

and γik (k = 1,2, . . . ,K). By treating the latter as parameters, we also allow ar-
bitrary correlations between (αi, λi) and (μik, γik). Although we also treat ft as
fixed parameters, there is no need to estimate the individual ft , but only the sam-
ple covariance of ft . This is an advantage of the maximum likelihood method,
which eliminates the incidental parameters problem in the time dimension. This
kind of the maximum likelihood method was used for pure factor models in [3, 4]
and [10]. By symmetry, we could also estimate individuals ft , but then we only
estimate the sample covariance of the factor loadings. The idea is that we do not
simultaneously estimate the factor loadings and the factors ft (which would be the
case for the principal components method). This reduces the number of parame-
ters considerably. If N is much smaller than T (N � T ), treating factor loadings
as parameters is preferable since there are fewer parameters.

Because of the correlation between the regressors and regression errors in the
y equation, the y and x equations form a simultaneous equation system; the MLE
jointly estimates the parameters in both equations. The joint estimation avoids the
Mundlak–Chamberlain projection and thus is applicable for large N and large T .

We assume the number of factors r is fixed and known. Determining the num-
ber of factors is discussed in Section 6, where a modified information criterion
proposed by [12] is used. Let xit = (xit1, xit2, . . . , xitK), γix = (γi1, γi2, . . . , γiK),
vitx = (vit1, vit2, . . . , vitK)′ and μix = (μi1,μi2, . . . ,μiK)′. The second equation
of (2.1) can be written in matrix form as

x′
it = μix + γ ′

ixft + vitx.

Further let �i = (λi, γix), zit = (yit , xit )
′, εit = (eit , v

′
itx)

′, μi = (αi,μ
′
ix)

′. Then
model (2.1) can be written as[

1 −β ′

0 IK

]
zit = μi + �′

ift + εit .
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Let B denote the coefficient matrix of zit in the preceding equation. Let
zt = (z′

1t , z
′
2t , . . . , z

′
Nt)

′, � = (�1,�2, . . . ,�N)′, εt = (ε′
1t , ε

′
2t , . . . , ε

′
Nt)

′ and μ =
(μ′

1,μ
′
2, . . . ,μ

′
N)′. Stacking the equations over i, we have

(IN ⊗ B)zt = μ + �ft + εt .(2.2)

To analyze this model, we make the following assumptions.

2.1. Assumptions.

ASSUMPTION A. The factor process ft is a sequence of constants. Let Mff =
T −1 ∑T

t=1 ḟt ḟ
′
t , where ḟt = ft − 1

T

∑T
t=1 ft . We assume that �Mff = limT →∞ Mff

is a strictly positive definite matrix.

REMARK 2.1. The nonrandomness assumption for ft is not crucial. In fact,
ft can be a sequence of random variables such that E(‖ft‖4) ≤ C < ∞ uniformly
in t , and ft is independent of εs for all s. The fixed ft assumption conforms with
the usual fixed effects assumption in panel data literature and, in certain sense, is
more general than random ft .

ASSUMPTION B. The idiosyncratic errors εit = (eit , v
′
itx)

′ are such that:

(B.1) The eit is independent and identically distributed over t and uncorrelated
over i with E(eit ) = 0 and E(e4

it ) ≤ ∞ for all i = 1, . . . ,N and t = 1, . . . , T . Let
	iie denote the variance of eit .

(B.2) vitx is also independent and identically distributed over t and uncor-
related over i with E(vitx) = 0 and E(‖vitx‖4) ≤ ∞ for all i = 1, . . . ,N and
t = 1, . . . , T . We use 	iix to denote the variance matrix of vitx .

(B.3) eit is independent of vjsx for all (i, j, t, s). Let 	ii denote the variance
matrix εit . So we have 	ii = diag(	iie,	iix), a block-diagonal matrix.

REMARK 2.2. Let 	εε denote the variance of εt = (ε′
1t , . . . , ε

′
Nt)

′. Due to the
uncorrelatedness of εit over i, we have 	εε = diag(	11,	22, . . . ,	NN), a block-
diagonal matrix. Assumption B is more general than the usual assumption in the
factor analysis. In a traditional factor model, the variances of the idiosyncratic er-
ror terms are assumed to be a diagonal matrix. In the present setting, the variance
of εt is a block-diagonal matrix. Even without explanatory variables, this general-
ization is of interest. The factor analysis literature has a long history to explore the
block-diagonal idiosyncratic variance, known as multiple battery factor analysis;
see [31]. The maximum likelihood estimation theory for high-dimensional factor
models with block diagonal covariance matrix has not been previously studied.
The asymptotic theory developed in this paper not only provides a way of analyz-
ing the coefficient β , but also a way of analyzing the factors and loadings in the
multiple battery factor models. This framework is of independent interest.
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ASSUMPTION C. There exists a C > 0 sufficiently large such that:

(C.1) ‖�j‖ ≤ C for all j = 1, . . . ,N ;
(C.2) C−1 ≤ τmin(	jj ) ≤ τmax(	jj ) ≤ C for all j = 1, . . . ,N , where

τmin(	jj ) and τmax(	jj ) denote the smallest and largest eigenvalues of the ma-
trix 	jj , respectively;

(C.3) there exists an r × r positive matrix Q such that

Q = lim
N→∞N−1�′	−1

εε �,

where � is defined earlier.

ASSUMPTION D. The variances 	ii for all i and Mff are estimated in a com-
pact set, that is, all the eigenvalues of 	̂ii and M̂ff are in an interval [C−1,C] for
a sufficiently large constant C.

2.2. Identification restrictions. It is a well-known result in factor analysis that
the factors and loadings can only be identified up to a rotation; see, for example,
[5, 21]. The models considered in this paper can be viewed as extensions of the
factor models. As such they inherit the same identification problem. We show that
identification conditions can be imposed on the factors and loadings without loss
of generality. To see this, model (2.2) can be rewritten as

(IN ⊗ B)zt = (μ + �f̄ ) + [
�M

1/2
ff R

][
R′M−1/2

ff (ft − f̄ )
] + εt ,(2.3)

where R is an orthogonal matrix, which we choose to be the matrix consisting of
the eigenvectors of M

1/2
ff �′	−1

εε �M
1/2
ff associated with the eigenvalues arranged

in descending order. Treating μ + �f̄ as the new μ�, �M
1/2
ff R as the new �� and

R′M−1/2
ff (ft − f̄ ) as the new f �

t , we have

(IN ⊗ B)zt = μ� + ��f �
t + εt

with 1
T

∑T
t=1 f �

t = 0, 1
T

∑T
t=1 f �

t f �′
t = Ir and 1

N
��′	−1

εε �� being a diagonal ma-
trix. Thus we impose the following restrictions for model (2.2), which we refer to
as IB (identification restrictions for Basic models).

(IB1) Mff = Ir ;
(IB2) 1

N
�′	−1

εε � = D, where D is a diagonal matrix with its diagonal elements
distinct and arranged in descending order;

(IB3) f̄ = 1
T

∑T
t=1 ft = 0.

2.3. Estimation. The objective function considered in this section is

lnL(θ) = − 1

2N
ln |	zz| − 1

2N
tr
[
(IN ⊗ B)Mzz

(
IN ⊗ B ′)	−1

zz

]
,(2.4)
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where 	zz = �Mff �′ +	εε and Mzz = 1
T

∑T
t=1 żt ż

′
t . The latter is the data matrix.

The parameters are θ = (β,�,Mff ,	εε). The MLE is defined as

θ̂ = argmax
θ∈

lnL(θ),

where the parameter space  is defined to be a closed and bounded subset contain-
ing the true parameter θ∗ as an interior point; 	εε and Mff are positive definite
matrices, as in Assumption D. The boundedness of  implies that the elements
of β and � are bounded. This is for theoretical purpose and is usually assumed
for nonconvex optimizations, as in [19] and [25]. In actual computation with the
EM algorithm, we do not find the need to impose an upper or lower bound for
the parameter values. The likelihood function involves simple functions and are
continuous on  (in fact differentiable), so the MLE θ̂ exists because a continuous
function achieves its extreme value on a closed and bounded subset.

Note that the determinant of IN ⊗ B is 1, so the Jacobian term does not depend
on B . If εt and ft are independent and normally distributed, the likelihood function
for the observed data has the form of (2.4). Here recall that ft are fixed constants,
and εt are not necessarily normal; (2.4) is a pseudo-likelihood function.

For further analysis, we partition the matrix 	zz and Mzz as

	zz =

⎛⎜⎜⎜⎜⎜⎝
	11

zz 	12
zz · · · 	1N

zz

	21
zz 	22

zz · · · 	2N
zz

...
...

. . .
...

	N1
zz 	N2

zz · · · 	NN
zz

⎞⎟⎟⎟⎟⎟⎠ , Mzz =

⎛⎜⎜⎜⎜⎜⎝
M11

zz M12
zz · · · M1N

zz

M21
zz M22

zz · · · M2N
zz

...
...

. . .
...

MN1
zz MN2

zz · · · MNN
zz

⎞⎟⎟⎟⎟⎟⎠ ,

where for any (i, j), 	
ij
zz and M

ij
zz are both (K + 1) × (K + 1) matrices.

Let β̂, �̂ and 	̂εε denote the MLE. The first order condition for β satisfies

1

NT

N∑
i=1

T∑
t=1

	̂−1
iie

{
(ẏit − ẋit β̂) − λ̂′

iĜ

N∑
j=1

�̂j 	̂
−1
jj

[
ẏj t − ẋj t β̂

ẋ′
j t

]}
ẋit = 0,(2.5)

where Ĝ = (M̂−1
ff + �̂′	̂−1

εε �̂)−1. The first order condition for �j satisfies

N∑
i=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

) = 0.(2.6)

Post-multiplying 	̂−1
jj �̂′

j on both sides of (2.6) and then taking summation over j ,
we have

N∑
i=1

N∑
j=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
	̂−1

jj �̂′
j = 0.(2.7)
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The first order condition for 	ii satisfies

B̂Mii
zzB̂

′ − 	̂ii
zz = W,(2.8)

where W is a (K +1)×(K +1) matrix such that its upper-left 1×1 and lower-right
K × K submatrices are both zero, but the remaining elements are undetermined.
The undetermined elements correspond to the zero elements of 	ii . These first
order conditions are needed for the asymptotic representation of the MLE.

2.4. Asymptotic properties of the MLE. Theorem 2.1 states the convergence
rates of the MLE. The consistency is implied by the theorem.

THEOREM 2.1 (Convergence rate). Let θ̂ = (β̂, �̂, 	̂εε) be the solution by
maximizing (2.4). Under Assumptions A–D and the identification conditions IB,
we have

β̂ − β = Op

(
N−1/2T −1/2) + Op

(
T −1),

1

N

N∑
i=1

∥∥	̂−1
ii

∥∥ · ‖�̂i − �i‖2 = Op

(
T −1), 1

N

N∑
i=1

‖	̂ii − 	ii‖2 = Op

(
T −1).

REMARK 2.3. Bai [8] considers an iterated principal components estimator
for model (2.1). His derivation shows that, in the presence of heteroscedasticities
over the cross section, the PC estimator for β has a bias of order Op(N−1). As
a comparison, Theorem 2.1 shows that the MLE is robust to the heteroscedas-
ticities over the cross section. So if N is fixed, the estimator in [8] is in-
consistent unless there is no heteroskedasticity, but the estimator here is still
consistent.

Let M(X) denote the project matrix onto the space orthogonal to X, that is,
M(X) = I −X(X′

X)−1
X

′. We have

THEOREM 2.2 (Asymptotic representation). Under the assumptions of Theo-
rem 2.1, we have

β̂ − β = �−1 1

NT

N∑
i=1

T∑
t=1

	−1
iie eit vitx

+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where � is a K ×K matrix whose (p, q) element �pq = 1
N

∑N
i=1 	−1

iie 	
(p,q)
iix with

	
(p,q)
iix being the (p, q) element of matrix 	iix .
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REMARK 2.4. In Appendix A.3 of the supplement [11], we show that the
asymptotic expression of β̂ − β can be alternatively expressed as

β̂ − β =

⎛⎜⎜⎝
tr
[
M̈X1M(�F)X′

1

] · · · tr
[
M̈X1M(�F)X′

K

]
...

...
...

tr
[
M̈XKM(�F)X′

1

] · · · tr
[
M̈XKM(�F)X′

K

]
⎞⎟⎟⎠

−1

(2.9) ×

⎛⎜⎜⎝
tr
[
M̈X1M(�F)e′]

...

tr
[
M̈XKM(�F)e′]

⎞⎟⎟⎠
+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where Xk = (xitk) is N × T (the data matrix for the kth regressor, k =
1,2, . . . ,K); e = (eit ) is N × T ; M̈ = 	

−1/2
ee M(	

−1/2
ee �)	

−1/2
ee with 	ee =

diag{	11e,	22e, . . . ,	NNe} and � = (λ1, λ2, . . . , λN)′; F = (f1, f2, . . . , fT )′;
�F = (1T ,F) where 1T is a T × 1 vector with all 1’s.

REMARK 2.5. Theorem 2.2 shows that the asymptotic expression of β̂ − β

only involves variations in eit and vitx . Intuitively, this is due to the fact that the
error terms of the y equation share the same factors with the explanatory variables.
The variations from the common factor part of xitk (i.e., γ ′

ikft ) do not provide
information for β since this part of information is offset by the common factor
part of the error terms (i.e., λ′

ift ) in the y equation.

COROLLARY 2.1 (Limiting distribution). Under the assumptions of Theo-
rem 2.2, if

√
N/T → 0, we have

√
NT (β̂ − β)

d→ N
(
0,��−1),

where �� = limN,T →∞ �, and �� is also the limit of

�� = plim
N,T →∞

1

NT

⎛⎜⎜⎝
tr
[
M̈X1M(�F)X′

1

] · · · tr
[
M̈X1M(�F)X′

K

]
...

...
...

tr
[
M̈XKM(�F)X′

1

] · · · tr
[
M̈XKM(�F)X′

K

]
⎞⎟⎟⎠ .

REMARK 2.6. Matrix �� can be consistently estimated by

1

NT

⎛⎜⎜⎝
tr
[̂̈
MX1M(�̂F)X′

1

] · · · tr
[̂̈
MX1M(�̂F)X′

K

]
...

...
...

tr
[̂̈
MXKM(�̂F)X′

1

] · · · tr
[̂̈
MXKM(�̂F)X′

K

]
⎞⎟⎟⎠ ,
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where Xk is the N × T data matrix for the kth regressor,̂̈
M = 	̂−1

ee − 	̂−1
ee �̂

(
�̂′	̂−1

ee �̂
)−1

�̂′	̂−1
ee ;(2.10)

�̂F= (1T , F̂) with F̂ = (f̂1, f̂2, . . . , f̂T )′ and

f̂t =
(

N∑
i=1

�̂i	̂
−1
ii �̂′

i

)−1( N∑
i=1

�̂i	̂
−1
ii B̂żit

)
.(2.11)

Here �̂, �̂, 	̂ii, 	̂ee and B̂ are the maximum likelihood estimators.

3. Common shock models with zero restrictions. The basic model in Sec-
tion 2 assumes that the explanatory variables xit share the same factors with yit .
This section relaxes this assumption. We assume that the regressors are impacted
by additional factors that do not affect the y equation. An alternative view is that
some factor loadings in the y equation are restricted to be zero. Consider the fol-
lowing model:

yit = αi + xit1β1 + xit2β2 + · · · + xitKβK + ψ ′
igt + eit ,

(3.1)
xitk = μik + γ

g′
ik gt + γ h′

ik ht + vitk

for k = 1,2, . . . ,K , where gt is an r1 × 1 vector representing the shocks affecting
both yit and xit , and ht is an r2 × 1 vector representing the shocks affecting xit

only. Let λi = (ψ ′
i ,0′

r2×1)
′, γik = (γ

g′
ik , γ h′

ik )′ and ft = (g′
t , h

′
t )

′, the above model
can be written as

yit = αi + xit1β1 + xit2β2 + · · · + xitKβK + λ′
ift + eit ,

xitk = μik + γ ′
ikft + vitk,

which is the same as model (2.1) except that r2 elements of λi are restricted to be
zeros. For further analysis, we introduce some notation. We define

�
g
i = (

ψi, γ
g
i1, . . . , γ

g
iK

)
, �h

i = (
0r2×1, γ

h
i1, . . . , γ

h
iK

)
,

�g = (
�

g
1 ,�

g
2 , . . . ,�

g
N

)′
, �h = (

�h
1 ,�h

2 , . . . ,�h
N

)′
.

We also define G and H similarly as F, that is, G = (g1, g2, . . . , gT )′, H =
(h1, h2, . . . , hT )′. This implies that F = (G,H). The presence of zero restrictions
in (3.1) requires different identification conditions.

3.1. Identification conditions. Zero loading restrictions alleviate rotational in-
determinacy. Instead of r2 = (r1 + r2)

2 restrictions, we only need to impose
r2

1 +r1r2 +r2
2 restrictions. These restrictions are referred to as IZ restrictions (Iden-

tification conditions with Zero restrictions). They are:

(IZ1) Mff = Ir ;
(IZ2) 1

N
�g′	−1

εε �g = D1 and 1
N

�h′	−1
εε �h = D2, where D1 and D2 are both

diagonal matrices with distinct diagonal elements in descending order;
(IZ3) 1′

T G= 0 and 1′
T H= 0.
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In addition, we need an additional assumption for our analysis.

ASSUMPTION E. � = (ψ ′
1,ψ

′
2, . . . ,ψ

′
N)′ is of full column rank.

Identification conditions IZ are less stringent than IB of the previous section.
Assumption E says that the factors gt are pervasive for the y equation. In Ap-
pendix B of the supplement [11], we explain why r2

1 + r1r2 + r2
2 restrictions are

sufficient.

3.2. Estimation. The likelihood function is now maximized under three sets
of restrictions, that is, 1

N
�g′	−1

εε �g = D1, 1
N

�h′	−1
εε �h = D2 and � = 0 where �

denotes the zero factor loading matrix in the y equation. The likelihood function
with the Lagrange multipliers is

lnL = − 1

2N
ln |	zz| − 1

2N
tr
[
(IN ⊗ B)Mzz

(
IN ⊗ B ′)	−1

zz

]
+ tr

[
ϒ1

(
1

N
�g′	−1

εε �g − D1

)]
+ tr

[
ϒ2

(
1

N
�h′	−1

εε �h − D2

)]
+ tr

[
ϒ ′

3�
]
,

where 	zz = ��′ + 	εε; ϒ1 is r1 × r1 and ϒ2 is r2 × r2, both are symmetric
Lagrange multipliers matrices with zero diagonal elements; ϒ3 is a Lagrange mul-
tiplier matrix of dimension r2 × N .

Let U = 	̂−1
zz [(IN ⊗ B̂)Mzz(IN ⊗ B̂ ′) − 	̂zz]	̂−1

zz . Notice U is a symmetric
matrix. The first order condition on �̂g gives

1

N
�̂g′

U+ ϒ1
1

N
�̂g′	̂−1

εε = 0.

Post-multiplying �̂g yields

1

N
�̂g′

U�̂g + ϒ1
1

N
�̂g′	̂−1

εε �̂g = 0.

Since 1
N

�̂g′
U�̂g is a symmetric matrix, the above equation implies that

ϒ1
1
N

�̂g′	̂−1
εε �̂g is also symmetric. But 1

N
�̂g′	̂−1

εε �̂g is a diagonal matrix. So the
(i, j)th element of ϒ1

1
N

�̂g′	̂−1
εε �̂g is ϒ1,ij d1j , where ϒ1,ij is the (i, j)th element

of ϒ1 and d1j is the j th diagonal element of D̂1. Given ϒ1
1
N

�̂g′	̂−1
εε �̂g is sym-

metric, we have ϒ1,ij d1j = ϒ1,j id1i for all i �= j . However, ϒ1 is also symmetric,
so ϒ1,ij = ϒ1,j i . This gives ϒ1,ij (d1j − d1i ) = 0. Since d1j �= d1i by IZ2, we have
ϒ1,ij = 0 for all i �= j . This implies ϒ1 = 0 since the diagonal elements of ϒ1 are
all zeros.

Let �h
x = (γ h

1x, γ
h
2x, . . . , γ

h
Nx)

′ with γ h
ix = (γ h

i1, γ
h
i2, . . . , γ

h
iK), and 	xx =

diag{	11x,	22x, . . . ,	NNx}, a block diagonal matrix of NK × NK dimension.



PANEL DATA MODELS WITH INTERACTIVE EFFECTS 153

We partition the matrix U and define the matrix �U as

U=

⎛⎜⎜⎜⎜⎝
U11 U12 · · · U1N

U21 U22 · · · U2N

...
...

. . .
...

UN1 UN2 · · · UNN

⎞⎟⎟⎟⎟⎠ , �U=

⎛⎜⎜⎜⎜⎝
�U11 �U12 · · · �U1N

�U21 �U22 · · · �U2N

...
...

. . .
...

�UN1 �UN2 · · · �UNN

⎞⎟⎟⎟⎟⎠ ,

where Uij is a (K + 1) × (K + 1) matrix, and �Uij is the lower-right K × K block
of Uij . Notice �U is also a symmetric matrix. Then the first order condition on �h

x

gives

1

N
�̂h′

x
�U+ ϒ2

1

N
�̂h′

x 	̂−1
xx = 0.

Post-multiplying �̂h
x yields

1

N
�̂h′

x
�U�̂h

x + ϒ2
1

N
�̂h′

x 	̂−1
xx �̂h

x = 0.

Notice 1
N

�̂h′
x 	̂−1

xx �̂h
x = 1

N
�̂h′	̂−1

εε �̂h = D̂2. By the similar arguments in deriving
ϒ1 = 0, we have ϒ2 = 0. The interpretation for the zero Lagrange multipliers is
that these constraints do not affect the optimal value of the likelihood function nor
the efficiency of β̂ . In contrast, we cannot show ϒ3 to be zero. Thus the restric-
tion � = 0 affects the optimal value of the likelihood function and the efficiency
of β̂ . In Section 2, we did not use the Lagrange multiplier approach to analyze
the identification restrictions. Had this been done, we would have obtained zero
valued Lagrange multipliers. This is another view of why these restrictions do not
affect the limiting distribution of β̂ . But these restrictions are needed to remove
the rotational indeterminacy.

Now the likelihood function is simplified as

lnL = − 1

2N
ln |	zz| − 1

2N
tr
[
(IN ⊗ B)Mzz

(
IN ⊗ B ′)	−1

zz

] + tr
[
ϒ ′

3�
]
.(3.2)

The first order condition on � is

�̂′	̂−1
zz

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

zz = W ′,(3.3)

where W is a matrix having the same dimension as �, whose element is zero if the
counterpart of � is not specified to be zero, otherwise undetermined (containing
the Lagrange multipliers). Post-multiplying �̂ gives

�̂′	̂−1
zz

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

zz �̂ = W ′�̂.

By the special structure of W and �̂, it is easy to verify that W ′�̂ has the form[
0r1×r1 0r1×r2

× 0r2×r2

]
.

However, the left-hand side of the preceding equation is a symmetric matrix, and
so is the right-hand side. It follows that the subblock “×” is zero, that is, W ′�̂ = 0.
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Thus, �̂′	̂−1
zz [(IN ⊗ B̂)Mzz(IN ⊗ B̂ ′) − 	̂zz]	̂−1

zz �̂ = 0. (This equation would be
the first order condition for Mff if it were unknown.) This equality can be simpli-
fied as

�̂′	̂−1
εε

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

εε �̂ = 0(3.4)

because �̂′	̂−1
zz = Ĝ�̂′	̂−1

εε with Ĝ = (I + �̂′	̂−1
εε �̂)−1. Next, we partition the

matrix Ĝ = (I + �̂′	̂−1
εε �̂)−1 and Ĥ = (�̂′	̂−1

εε �̂)−1 as follows:

Ĝ =
[
Ĝ1

Ĝ2

]
=

[
Ĝ11 Ĝ12

Ĝ21 Ĝ22

]
, Ĥ =

[
Ĥ1

Ĥ2

]
=

[
Ĥ11 Ĥ12

Ĥ21 Ĥ22

]
,

where Ĝ11, Ĥ11 are r1 × r1, while Ĝ22, Ĥ22 are r2 × r2.
Notice 	̂−1

zz = 	̂−1
εε − 	̂−1

εε �̂Ĝ�̂′	̂−1
εε and �̂′	̂−1

zz = Ĝ�̂′	̂−1
εε . Substitute these

results into (3.3), and use (3.4). The first order condition for ψi can be simplified
as

Ĝ1

N∑
i=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
	̂−1

jj I 1
K+1 = 0,(3.5)

where I 1
K+1 is the first column of the identity matrix of dimension K + 1.

Similarly, the first order condition for γjx = (γj1, γj2, . . . , γjK) is

N∑
i=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
	̂−1

jj I−
K+1 = 0,(3.6)

where I−
K+1 is a (K + 1) × K matrix, obtained by deleting the first column of the

identity matrix of dimension K + 1.
The first order condition for 	jj is

B̂Mjj
zz B̂ ′ − 	̂jj

zz − �̂′
j Ĝ

N∑
i=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
(3.7)

−
N∑

i=1

(
B̂Mji

zz B̂
′ − 	̂ji

zz

)
	̂−1

ii �̂′
iĜ�̂j = W,

where W is defined following (2.8).
The first order condition for β is

1

NT

N∑
i=1

T∑
t=1

	̂−1
iie

{
(ẏit − ẋit β̂) − λ̂′

iĜ

N∑
j=1

�̂j 	̂
−1
jj

[
ẏj t − ẋj t β̂

ẋ′
j t

]}
ẋit = 0,(3.8)

which is the same as in Section 2.
We need an additional identity to study the properties of the MLE. Recall that,

by the special structures of W and �̂, the three submatrices of W ′�̂ can be di-
rectly derived to be zeros. The remaining submatrix is also zero, as shown earlier.
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However, this submatrix being zero yields the following equation (the detailed
derivation is delivered in Appendix F):

1

N
Ĝ2

N∑
i=1

N∑
j=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
	̂−1

jj I 1
K+1ψ̂

′
j = 0.(3.9)

These identities are used to derive the asymptotic representations.

3.3. Asymptotic properties of the MLE. The results on consistency and the rate
of convergence are similar to those in the previous section, which are presented in
Appendixes B.1 and B.2. For simplicity, we only state the asymptotic representa-
tion for the MLE here.

PROPOSITION 3.1 (Asymptotic representation). Under Assumptions A–E and
the identification restriction IZ, we have

P0(β̂ − β) = 1

NT

N∑
i=1

T∑
t=1

	−1
iie eit vitx + 1

NT

N∑
i=1

T∑
t=1

	−1
iie γ h′

ix ht eit

− 1

NT

N∑
i=1

T∑
t=1

	−1
iie ψ ′

i�
−1
ψψ

(
1

N

N∑
j=1

ψj	
−1
jjeγ

h′
jx

)
hteit

+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where P0 is a K × K symmetric matrix with its (p, q) element equal to
1
N

tr(�h′
p M̈�h

q ) + 1
N

∑N
i=1 	−1

iie 	
(p,q)
iix ; �h

p = [γ h
1p, γ h

2p, . . . , γ h
Np]′; γ h

jx = [γ h
j1, . . . ,

γ h
jK ]; �ψψ = 1

N

∑N
i=1 ψi	

−1
iie ψ ′

i and M̈ = 	
−1/2
ee M(	

−1/2
ee �)	

−1/2
ee .

Proposition 3.1 is derived under the identification conditions IZ. In Ap-
pendix B.3 of the supplement [11], we show that for any set of factors and
factor loadings (ψi, γik, gt , ht ), it can always be transformed into a new set
(ψ�

i , γ �
ik, g

�
t , h

�
t ), which satisfies IZ, and at the same time, leaving � = 0 intact.

Given the asymptotic representation in Proposition 3.1, together with the relation-
ship between the two sets, we have the following theorem, which does not depend
on IZ.

THEOREM 3.1. Under Assumptions A–E, we have

P(β̂ − β) = 1

NT

N∑
i=1

T∑
t=1

	−1
iie eit vitx + 1

NT

N∑
i=1

T∑
t=1

	−1
iie γ h′

ix h�
t eit

− 1

NT

N∑
i=1

T∑
t=1

	−1
iie ψ ′

i�
−1
ψψ

(
1

N

N∑
j=1

ψj	
−1
jjeγ

h′
jx

)
h�

t eit

+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),
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where

h�
t = ḣt − Ḣ

′
Ġ
(
Ġ

′
Ġ
)−1

ġt ;
P is a K × K symmetric matrix with its (p, q) element equal to

1

NT
tr
[
M̈�h

qH
′M(�G)H�h′

p

] + 1

N

N∑
i=1

	−1
iie 	

(p,q)
iix ,

where �G = (1T ,G); �ψψ = 1
N

∑N
i=1 ψi	

−1
iie ψ ′

i; M̈ = 	
−1/2
ee M(	

−1/2
ee �)	

−1/2
ee ,

�h
p = (γ h

1p, γ h
2p, . . . , γ h

Np)′.

REMARK 3.1. In Appendix B.3, we show that the asymptotic expression of
β̂ − β in Theorem 3.1 can be expressed alternatively as

β̂ − β =

⎛⎜⎜⎝
tr
[
M̈X1M(�G)X′

1

] · · · tr
[
M̈X1M(�G)X′

K

]
...

...
...

tr
[
M̈XKM(�G)X′

1

] · · · tr
[
M̈XKM(�G)X′

K

]
⎞⎟⎟⎠

−1

×

⎛⎜⎜⎝
tr
[
M̈X1M(�G)e′]

...

tr
[
M̈XKM(�G)e′]

⎞⎟⎟⎠
+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where Xk and e are defined below (2.9) and �G = (1T ,G). Notice M̈ is defined
as 	

−1/2
ee M(	

−1/2
ee �)	

−1/2
ee , which is equal to 	

−1/2
ee M(	

−1/2
ee �)	

−1/2
ee since

� = (�,0N×r2) in the present context. In Appendix B.3 of the supplement [11],
we also provide an intuitive explanation for this alternative expression.

Given Theorem 3.1 and Remark 3.1 we have the following corollary.

COROLLARY 3.1 (Limiting distribution). Under Assumptions A–E, if√
N/T → 0, we have

√
NT (β̂ − β)

d→ N
(
0, �P−1),

where �P = limN,T →∞P , and �P is also the probability limit of

�P = plim
N,T →∞

1

NT

⎛⎜⎜⎝
tr
[
M̈X1M(�G)X′

1

] · · · tr
[
M̈X1M(�G)X′

K

]
...

...
...

tr
[
M̈XKM(�G)X′

1

] · · · tr
[
M̈XKM(�G)X′

K

]
⎞⎟⎟⎠ .
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REMARK 3.2. Compared with the model in Section 2, β̂ is more efficient
under the zero loading restrictions. The reason is intuitive. In the previous model,
only variations in vitx provide information for β . But in the present case, variations
in γ h′

ik ht of xit also provide information for β . This can also be seen by comparing
the limiting variances of Corollaries 2.1 and 3.1. Notice the projection matrix now
only involves �G instead of �F; and �G is a submatrix of �F. In addition, the covariance
matrix �P can be estimated by the same method as in estimating ��; see Remark 2.6.

4. Models with time-invariant regressors and common regressors. In this
section, we extend the basic model in Section 2 to include time-invariant regressors
and common regressors. Examples of time-invariant regressors include gender,
race and education; and examples for common regressors include price variables,
unemployment rate, or macroeconomic policy variables. These types of regressors
are important for empirical applications.

We first consider the model with only time-invariant regressors,

yit = αi + xit1β1 + xit2β2 + · · · + xitKβK + ψ ′
igt + φ′

iht + eit ,
(4.1)

xitk = μik + γ
g′
ik gt + γ h′

ik ht + vitk

for k = 1,2, . . . ,K , where gt is an r1-dimensional vector, and ht is an r2-dimensio-
nal vector. Let ft = (g′

t , h
′
t )

′, an r-dimensional vector. The key point of model (4.1)
is that the φi ’s are known (but not zeros). We treat φi as new added time-invariant
regressors, whose coefficient ht is allowed to be time-varying. The parameter of
interest is still β . The inference for ht is provided in Appendix C.4 of the sup-
plement [11]. The model in the previous section can be viewed as � = 0, where
� = (φ1, φ2, . . . , φN)′. However, the earlier derivation is not applicable here be-
cause now � is a general matrix with full column rank, which provides more in-
formation (restrictions) on the rotation matrix. Thus the number of restrictions re-
quired to eliminate rotational indeterminacy is even fewer than in Section 3. This
point can be seen in the next subsection.

We define the following notation for further analysis:

�
g
i = (

ψi, γ
g
i1, . . . , γ

g
iK

)
, �h

i = (
φi, γ

h
i1, . . . , γ

h
iK

)
, �i = (

�
g
i

′
,�h

i

′)′
,

� = (φ1, φ2, . . . , φN)′, � = (ψ1,ψ2, . . . ,ψN)′, λi = (
ψ ′

i , φ
′
i

)′
,

� = (λ1, λ2, . . . , λN)′.

Then equation (4.1) has the same matrix expression as (2.2). Note that � = [�,�]
is the factor loading matrix for the N × 1 vector (y1t , y2t , . . . , yNt )

′.

4.1. Identification conditions. We make the following identification condi-
tions, which we refer to as IO (Identification conditions with partial Observable
fixed effects), to emphasize the observed fixed effects:
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(IO1) We partition the matrix Mff as

Mff =
[
Mgg Mgh

Mhg Mhh

]
and impose Mgh = 0 and Mgg = Ir1 ;

(IO2) 1
N

�g′	−1
εε �g = D, where D is a diagonal matrix with its diagonal ele-

ments distinct and arranged in descending order;
(IO3) 1′

T G= 0 and 1′
T H= 0.

In Appendix C, we show that IO is sufficient for identification. These re-
strictions can be imposed without loss of generality, as argued formally in Ap-
pendix C.3. In addition, we make the following assumption.

ASSUMPTION F. The loading matrix � = [�,�] is of full column rank.

4.2. Estimation. For clarity, in this subsection, we use �∗ to denote the ob-
served value for �. Recall that 	zz = �Mff �′ + 	εε , where � contains the fac-
tor loading coefficients (including �); Mff contains the sub-blocks Mgg , Mgh

and Mhh; 	εε contains the heteroskedasticity coefficients. The regression coef-
ficient β is contained in matrix B . The maximization of the likelihood function
is now subject to four sets of restrictions, Mgh = 0, Mgg = Ir1 , � = �∗ and
1
N

�g′	−1
εε �g = D. The likelihood function augmented with the Lagrange mul-

tipliers is

lnL = − 1

2N
ln |	zz| − 1

2N
tr
[
(IN ⊗ B)Mzz

(
IN ⊗ B ′)	−1

zz

] + tr[ϒ1Mgh]

+ tr
[
ϒ2(Mgg − Ir1)

] + tr
[
ϒ3

(
1

N
�g′	−1

εε �g − D

)]
+ tr

[
ϒ4

(
� − �∗)],

where ϒ1,ϒ2,ϒ3 and ϒ4 are all Lagrange multipliers matrices; ϒ1 is an r2 × r1

matrix; ϒ2 is an r1 × r1 symmetric matrix; ϒ3 is an r1 × r1 symmetric matrix with
all diagonal elements zeros; ϒ4 is an r2 × N matrix; and 	zz = �Mff �′ + 	εε .
Using the same arguments in deriving ϒ1 = 0 in Section 3, we have ϒ3 = 0. Then
the likelihood function is simplified as

lnL = − 1

2N
ln |	zz| − 1

2N
tr
[
(IN ⊗ B)Mzz

(
IN ⊗ B ′)	−1

zz

]
(4.2)

+ tr[ϒ1Mgh] + tr
[
ϒ2(Mgg − Ir1)

] + tr
[
ϒ4

(
� − �∗)].

The first order condition for � gives

M̂ff �̂′	̂−1
zz

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

zz = W ′,
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where W is defined in (3.3). Pre-multiplying M̂−1
ff and post-multiplying �̂, and by

the special structures of W and �̂, we have

1

N
�̂′	̂−1

zz

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

zz �̂

= −
⎡⎣ 0r1×r1 0r1×r2

1

N
M̂−1

hh ϒ ′
4�̂

1

N
M̂−1

hh ϒ ′
4�

⎤⎦ .

But the first order condition for Mff gives

1

N
�̂′	̂−1

zz

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

zz �̂ =
[
ϒ2 ϒ ′

1

ϒ1 0r2×r2

]
.(4.3)

Comparing the proceeding two results and noting that the left-hand side is a sym-
metric matrix, we have �̂′	̂−1

zz [(IN ⊗ B̂)Mzz(IN ⊗ B̂ ′) − 	̂zz]	̂−1
zz �̂ = 0. But

�̂′	̂−1
zz can be replaced by �̂′	̂−1

εε ; see (S.2) in the Appendix. Thus

�̂′	̂−1
εε

[
(IN ⊗ B̂)Mzz

(
IN ⊗ B̂ ′) − 	̂zz

]
	̂−1

εε �̂ = 0.(4.4)

The above result implies that ϒ1 = 0, ϒ2 = 0, ϒ ′
4�̂ = 0 and ϒ ′

4� = 0.
The first order condition for 	ii is the same as (3.7), that is,

B̂Mjj
zz B̂ ′ − 	̂jj

zz − �̂′
j Ĝ

N∑
i=1

�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
(4.5)

−
N∑

i=1

(
B̂Mji

zz B̂
′ − 	̂ji

zz

)
	̂−1

ii �̂′
iĜ�̂j = W,

where W is defined following (2.8).
The first order condition on β is the same as (3.8), that is,

1

NT

N∑
i=1

T∑
t=1

	̂−1
iie

{
(ẏit − ẋit β̂) − λ̂′

iĜ

N∑
j=1

�̂j 	̂
−1
jj

[
ẏj t − ẋj t β̂

ẋ′
j t

]}
ẋit = 0.(4.6)

We need an additional identify for the theoretical analysis in the Appendix. The
preceding analysis shows that 1

N
ϒ ′

4�̂ = 0 and 1
N

ϒ ′
4� = 0. They imply

1

N

N∑
i=1

N∑
j=1

Ĝ2�̂i	̂
−1
ii

(
B̂Mij

zzB̂
′ − 	̂ij

zz

)
	̂−1

jj I 1
K+1λ̂

′
j = 0,(4.7)

where λ̂j = (ψ̂ ′
i , φ

′
i )

′.
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4.3. Asymptotic properties. The asymptotic representation for β̂ − β is:

PROPOSITION 4.1. Under Assumptions A–D and F, and under the identifica-
tion condition IO, we have

Q0(β̂ − β) = 1

NT

N∑
i=1

T∑
t=1

	−1
iie eit vitx + 1

NT

N∑
i=1

T∑
t=1

	−1
iie γ h′

ix hteit

− 1

NT

N∑
i=1

T∑
t=1

	−1
iie λ′

i�
−1
λλ

(
1

N

N∑
j=1

λ′
j	

−1
jjeγ

h′
jx

)
hteit

+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where Q0 is a K × K symmetric matrix with its (p, q) element equal to
1
N

tr[Mhh�
h′
p M̈�h

q ] + 1
N

∑N
i=1 	−1

iie 	
(p,q)
iix ; M̈ = 	

−1/2
ee M(	

−1/2
ee �)	

−1/2
ee ; �h

p =
[γ h

1p, γ h
2p, . . . , γ h

Np]′; �λλ = 1
N

∑N
i=1 λi	

−1
iie λ′

i ; and γ h
jx = [γ h

j1, γ
h
j2, . . . , γ

h
jK ].

Proposition 4.1 is derived under the identification conditions IO. In Ap-
pendix C.3, we show that for any set of factors and factor loadings (ψi, γik, gt , ht ),
we can always transform it to another set (ψ�

i , γ �
ik, g

�
t , h

�
t ) which satisfies IO,

and at the same time, still maintains the observability of � (i.e., � is untrans-
formed). This is in agreement with the Lagrange multiplier analysis, in which
ϒj = 0 (j = 1,2,3), but the multiplier for � = �∗ is nonzero. Using the relation-
ship between the two sets, we can generalize Proposition 4.1 into the following
theorem, which does not depend on IO.

THEOREM 4.1. Under Assumptions A–D and F, we have

Q(β̂ − β) = 1

NT

N∑
i=1

T∑
t=1

	−1
iie eit vitx + 1

NT

N∑
i=1

T∑
t=1

	−1
iie γ h′

ix h�
t eit

− 1

NT

N∑
i=1

T∑
t=1

	−1
iie λ′

i�
−1
λλ

(
1

N

N∑
j=1

λ′
j	

−1
jjeγ

h′
jx

)
h�

t eit

+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where

h�
t = ḣt − Ḣ

′
Ġ
(
Ġ

′
Ġ
)−1

ġt ;
Q is a K × K symmetric matrix with its (p, q) element equal to

1

NT
tr
[
M̈�h

qH
′M(�G)H�h′

p

] + 1

N

N∑
i=1

	−1
iie 	

(p,q)
iix

and M̈ , �h
p and �λλ are defined in Proposition 4.1.



PANEL DATA MODELS WITH INTERACTIVE EFFECTS 161

REMARK 4.1. In Appendix C.3 we show that the asymptotic expression of
β̂ − β in Theorem 4.1 can be expressed alternatively as

β̂ − β =

⎛⎜⎜⎝
tr
[
M̈X1M(�G)X′

1

] · · · tr
[
M̈X1M(�G)X′

K

]
...

...
...

tr
[
M̈XKM(�G)X′

1

] · · · tr
[
M̈XKM(�G)X′

K

]
⎞⎟⎟⎠

−1

×

⎛⎜⎜⎝
tr
[
M̈X1M(�G)e′]

...

tr
[
M̈XKM(�G)e′]

⎞⎟⎟⎠ + Op

(
T −3/2)

+ Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where Xk and e are defined below (2.9) and �G = (1T ,G). We also show in Ap-
pendix C.3 that this alternative expression has an intuitive explanation.

From Theorem 4.1, we obtain the following corollary.

COROLLARY 4.1. Under the conditions of Theorem 4.1, if
√

N/T → 0, we
have

√
NT (β̂ − β)

d→ N
(
0, �Q−1),

where �Q = limN,T →∞Q, which has an alternative expression

�Q = plim
N,T →∞

1

NT

⎛⎜⎜⎝
tr
[
M̈X1M(�G)X′

1

] · · · tr
[
M̈X1M(�G)X′

K

]
...

...
...

tr
[
M̈XKM(�G)X′

1

] · · · tr
[
M̈XKM(�G)X′

K

]
⎞⎟⎟⎠ .

REMARK 4.2. Compared with the model in Section 2, β̂ is more efficient
with observable fixed effects (time-invariant regressors). The reason is provided in
Remark 3.2.

4.4. Models with time-invariant regressors and common regressors. In this
subsection, we consider the joint presence of time-invariant regressors and com-
mon regressors. Consider the following model:

yit = xit1β1 + xit2β2 + · · · + xitKβK + ψ ′
igt + φ′

iht + κ ′
idt + eit ,

(4.8)
xitk = γ

g′
ik gt + γ h′

ik ht + γ d′
ik dt + vitk

for k = 1,2, . . . ,K , where gt , ht and dt are r1 × 1, r2 × 1 and r3 × 1 vectors,
respectively. A key feature of model (4.8) is that dt and φi are observable for all
i and t . We call φi the time-invariant regressors because they are invariant over
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time and dt the common regressors because they are the same for all the cross-
sectional units. In this model, the time-invariant regressors have time-varying co-
efficients, and the common regressors have heterogeneous (individual-dependent)
coefficients. If dt ≡ 1, κi plays the role of αi in (4.1). So the model here is more
general.

Similar to the previous subsection, we make the following assumption:

ASSUMPTION G. The matrices (�,�,K) and (G,H,D) are both of full col-
umn rank, where K = (κ1, κ2, . . . , κN)′ and D= (d1, d2, . . . , dT )′.

Let λi = (ψ ′
i , φ

′
i )

′, γik = (γ
g′
ik , γ h′

ik )′ and δi = (κi, γ
d
ik). The model can be written

as [
1 −β ′

0 IK

]
zit = �′

ift + δ′
idt + εit ,

where zit ,�i, εit are defined in Section 2; Let � = (δ1, δ2, . . . , δN)′. Then

(IN ⊗ B)zt − �dt = �ft + εt ,(4.9)

where the symbols �, zt ,B, εt are defiend in Section 2.
The likelihood function can be written as

lnL = − 1

2N
ln |	zz| − 1

2NT

T∑
t=1

[
(IN ⊗ B)zt − �dt

]′
	−1

zz

[
(IN ⊗ B)zt − �dt

]
.

Take 	zz and β as given. � maximizes the above function at

�̂ = (IN ⊗ B)

(
T∑

s=1

zsd
′
s

)(
T∑

s=1

dsd
′
s

)−1

.

Substituting �̂ into the above likelihood function, we obtain the concentrated like-
lihood function

lnL = − 1

2N
ln |	zz| − 1

2NT
tr
[
(IN ⊗ B)ZM(D)Z′(IN ⊗ B ′)	−1

zz

]
,

where Z = (z1, z2, . . . , zT ), D = (d1, d2, . . . , dT )′ and M(D) = IT −D(D′
D)−1

D
′,

a projection matrix. Consider (4.9), which is equivalent to

(IN ⊗ B)Z = �F′ + �D
′ + ε,

where ε = (ε1, ε2, . . . , εT ). Post-multiplying M(D) on both sides, we have

(IN ⊗ B)ZM(D) = �F′M(D) + εM(D).

If we treat ZM(D) as the new observable data, F′M(D) as the new unobservable
factors, the preceding equation can be viewed as a special case of (4.1). Invoking
Theorem 4.1, which does not need IO [the factors F

′M(D) may not satisfy IO],
we have the following theorem:
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THEOREM 4.2. Under Assumptions A–D and G, the asymptotic representa-
tion of β̂ in the presence of time invariant and common regressors is

R(β̂ − β) = 1

NT

N∑
i=1

T∑
t=1

	−1
iie eit vitx + 1

NT

N∑
i=1

T∑
t=1

	−1
iie γ h′

ix h�
t eit

− 1

NT

N∑
i=1

T∑
t=1

	−1
iie λ′

i�
−1
λλ

1

N

N∑
j=1

λ′
j	

−1
jjeγ

h′
jxh

�
t eit

+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1),

where

h�
t = ht −H

′
D
(
D

′
D
)−1

dt −H
′M(D)G

[
G

′M(D)G
]−1(

gt −G
′
D
(
D

′
D
)−1

dt

);
R is a K × K symmetric matrix with its (p, q) element equal to

1

NT
tr
[
M̈�h

qH
′M(B)H�h′

p

] + 1

N

N∑
i=1

	−1
iie 	

(p,q)
iix ,

where bt = (g′
t , d

′
t )

′ and B = (b1, b2, . . . , bT )′ = (G,D), a matrix of T × (r1 + r3)

dimension; M̈ = 	
−1/2
ee M(	

−1/2
ee �)	

−1/2
ee ;�h

p = (γ h
1p, γ h

2p, . . . , γ h
Np)′; �λλ =

1
N

∑N
i=1 λi	

−1
iie λ′

i .

REMARK 4.3. The asymptotic expression of β̂ − β can be alternatively ex-
pressed as

β̂ − β =

⎛⎜⎜⎝
tr
[
M̈X1M(B)X′

1

] · · · tr
[
M̈X1M(B)X′

K

]
...

...
...

tr
[
M̈XKM(B)X′

1

] · · · tr
[
M̈XKM(B)X′

K

]
⎞⎟⎟⎠

−1

×

⎛⎜⎜⎝
tr
[
M̈X1M(B)e′]

...

tr
[
M̈XKM(B)e′]

⎞⎟⎟⎠
+ Op

(
T −3/2) + Op

(
N−1T −1/2) + Op

(
N−1/2T −1).

If D = 1T , the above asymptotic result reduces to the one in Theorem 4.1 since
B = (1T ,G) = �G.

Given Theorem 4.2 and Remark 4.3, we have the following corollary.

COROLLARY 4.2. Under Assumptions A–D and G, if
√

N/T → 0, then
√

NT (β̂ − β)
d→ N

(
0, �R−1),
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where �R = limN,T →∞R, and �R can also be expressed as

�R = plim
N,T →∞

1

NT

⎛⎜⎜⎝
tr
[
M̈X1M(B)X′

1

] · · · tr
[
M̈X1M(B)X′

K

]
...

...
...

tr
[
M̈XKM(B)X′

1

] · · · tr
[
M̈XKM(B)X′

K

]
⎞⎟⎟⎠ .

5. Computing algorithm. To estimate the model by the maximum likeli-
hood method, we adapt the ECM (expectation and conditional maximization)
procedures of [22]. More specifically, in the M-step we split the parameter θ =
(β,�,	εε,Mff ) into two blocks, θ1 = (�,	εε,Mff ) and θ2 = β , and update θ

(k)
1

to θ
(k+1)
1 given θ

(k)
2 and then update θ

(k)
2 to θ

(k+1)
2 given θ

(k+1)
1 , where θ(k) is the

estimated value at the kth iteration. In this section, we only state the iterating for-
mulas for basic models. The iterating formulas for the models in Sections 3 and 4
can be found in Appendix E of [11]. In Appendix E, we also show that the iterated
EM solutions satisfy the first order conditions. So the EM estimators are at least
locally optimal.

In the basic model, Mff = Ir . So the parameters to be estimated reduce to θ =
(β,�,	εε). Let θ(k) = (β(k),�(k),	

(k)
εε ) be the estimated value at the kth iteration.

We update �(k) according to

�(k+1) =
[

1

T

T∑
t=1

E
(
ztf

′
t |Z,θ(k))][ 1

T

T∑
t=1

E
(
ftf

′
t |Z,θ(k))]−1

,(5.1)

where

1

T

T∑
t=1

E
(
ftf

′
t |Z,θ(k))

= Ir − �(k)′(	(k)
zz

)−1
�(k)(5.2)

+ �(k)′(	(k)
zz

)−1(
IN ⊗ B(k))Mzz

(
IN ⊗ B(k)′)(	(k)

zz

)−1
�(k),

1

T

T∑
t=1

E
(
ztf

′
t |Z,θ(k)) = (

IN ⊗ B(k))Mzz

(
IN ⊗ B(k)′)(	(k)

zz

)−1
�(k)(5.3)

with 	
(k)
zz = �(k)�(k)′ + 	

(k)
εε . We update 	

(k)
εε and β(k) according to

	(k+1)
εε = Dg

{(
IN(K+1) − �(k+1)�(k)′(	(k)

zz

)−1)
(5.4) × (

IN ⊗ B(k))Mzz

(
IN ⊗ B(k)′)},

β(k+1) =
(

N∑
i=1

T∑
t=1

ẋ′
it

(
	

(k+1)
iie

)−1
ẋit

)−1

(5.5)

×
(

N∑
i=1

T∑
t=1

ẋ′
it

(
	

(k+1)
iie

)−1(
ẏit − λ

(k+1)′
i f

(k)
t

))
,
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where f
(k)
t is the transpose of the t th row of

F
(k) = E

(
F|Z,θ(k)) = Ż′(IN ⊗ B(k)′)(	(k)

zz

)−1
�(k),

where Ż = (ż1, ż2, . . . , żT ) with żt = zt − 1
T

∑T
s=1 zs ; Dg(·) is the operator that

sets the entries of its argument to zeros if the counterparts of E(εtε
′
t ) are zeros.

Putting together, we obtain θ(k+1) = (�(k+1), β(k+1),	
(k+1)
εε ). The above iter-

ation continues until ‖θ(k+1) − θ(k)‖ is smaller than a preset error tolerance. The
initial values use the iterated PC estimators of [8].

6. Finite sample properties. In this section, we consider the finite sample
properties of the MLE. Data are generated according to

yit = αi + xit1β1 + xit2β2 + ψ ′
igt + φ′

iht + κ ′
idt + eit ,

(6.1)
xitk = μik + γ

g′
ik gt + γ h′

ik ht + γ d′
ik dt + vitk, k = 1,2.

The dimensions of gt , ht , dt are each fixed to 1. We set β1 = 1 and β2 = 2. We
consider four types of DGP (data generating process), which correspond to the
four models considered in the paper.

DGP1: φi, κi, γ
h
ik and γ d

ik are fixed to zeros; αi,μik,ψi and gt are generated
from N(0,1) and γ

g
ik = ψi + N(0,1).

DGP2: φi, κi and γ d
ik are fixed to zeros; αi,μik,ψi , γ h

ik, gt and ht are generated
from N(0,1); γ

g
ik = ψi + N(0,1).

DGP3: κi and γ d
ik are fixed to zeros; αi,μik,ψi, φi, gt and ht are generated

from N(0,1); γ
g
ik = ψi + N(0,1) and γ h

ik = φi + N(0,1). Here φi is observable.
DGP4: αi,μik,ψi, φi, κi, gt and ht are generated from N(0,1); dt = 1 +

N(0,1), γ
g
ik = ψi + N(0,1), γ h

ik = φi + N(0,1) and γ d
ik = κi + N(0,1). Here

φi and dt are observable.

Using the method of writing (2.2), we can rewrite (6.1) as

(IN ⊗ B)zt = μ + Lςt + εt ,

where ςt = gt for DGP1; ςt = (gt , ht )
′ for DGP2 and DGP3; ςt = (gt , ht , dt )

′ for
DGP4, and L is the corresponding loadings matrix. Let ι′i be the ith row of L. We
generate the cross-sectional heteroscedasticity �, an N(K +1)×1 vector, accord-
ing to �i = ηi

1−ηi
ι′i ιi , i = 1,2, . . . ,N(K + 1), where ηi is drawn from U [u,1 − u]

with u = 0.1. A similar way of generating heteroscedasticity is also used in [14]
and [16]. Let ϒ = diag(ϒ1,ϒ2, . . . ,ϒN) be an N(K + 1) × N(K + 1) block di-
agonal matrix, in which ϒi = diag{1, (M ′

iMi)
−1/2Mi} with Mi being a K × K

standard normal random matrix for each i. Once ϒ is generated, the error term εt ,
which is defined as (ε′

1t , ε
′
2t , . . . , ε

′
Nt)

′ with εit = (eit , vit1, vit2)
′, is calculated by

εt = √
diag(�)ϒεt , where εt is an N(K +1)×1 vector with all its elements being

i.i.d. (χ2
2 − 2)/2, where χ2

2 denotes the chi-squared distribution with two freedom
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degrees, which is normalized to mean zero and variance one. Additional simula-
tion results for normal and student-t errors are given in Appendix D. Once εt is
obtained, we use

zt = (IN ⊗ B)−1(μ + Lςt + εt )

to yield the observable data.
In the basic model, the number of factors is determined by

r̂ = argmin
0≤m≤rmax

IC(m)(6.2)

with

IC(m) = 1

N �K ln
∣∣�̂m�̂m′ + 	̂m

εε

∣∣ + m
N �K + T

N �KT
ln
(
min(N �K,T )

)
,

where �̂m and 	̂m
εε are the respective estimators of � and 	εε when the factor num-

ber is set to m and �K = K + 1. In the simulation, we set rmax = 4. For the model
with zero restrictions, we consider a two-step method to determine r1 and r2. First,
we use (6.2) to estimate the total number r = r1 + r2, denoted by r̂ , and obtain β̂ r̂

by the method of the basic model under r̂ . Then we calculate the matrix R = (Rit )

with Rit = ẏit − ẋit β̂
r̂ and use the information criterion proposed by [12] to de-

termine the factor number in R, which we use r̂1 to denote. In the second step,
the upper bound of the factor number is set to r̂ . Then r̂2 = r̂ − r̂1. For models in
Section 4, even though there are observable common regressors and time invariant
regressors in the y equation, we treat them as part of the unknown factor structure
when estimating the total number of factors. Once the total number of factors are
obtained, the dimension of gt is obtained by subtracting the dimension of φi and
that of dt because φi and dt are observable in Section 4. This approach works very
well. Other methods may also be considered.

We consider an unified way to estimate the model in Section 2 and the model
in Section 3 (with zero restrictions). More specifically, for a given data set, we
calculate r and r1. If r̂ = r̂1, we turn to the basic model; if r̂ > r̂1, we turn to the
model with zero restrictions.

Tables 1–2 report the simulation results based on 1000 repetitions. Bias and
root mean square error (RMSE) are computed to measure the performance of the
estimators. The percentage that the factor number is correctly estimated by the
above procedure is given in the third column of each table. For comparison, we
also report the performance of the within-group (WG) estimators and Bai’s iterated
principal components estimators (PC). Simulations for the models in Section 4 are
provided in the supplement [11].

From the tables, we can see that the factor number can be correctly estimated
with very high probability. It is also seen from the simulations that the WG estima-
tors are inconsistent. The bias of the WG estimators shows no signs of decreasing
as the sample size grows. The iterated PC estimators are consistent, but biased. As
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TABLE 1
The performance of WG, PC and ML estimators in the basic model

N T %
r̂ = r

WG PC MLE

β1 β2 β1 β2 β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 75 99.9 0.1562 0.1616 0.1550 0.1600 0.0174 0.0405 0.0171 0.0411 −0.0001 0.0020 0.0000 0.0034
100 75 100.0 0.1539 0.1568 0.1558 0.1587 0.0061 0.0228 0.0062 0.0224 0.0000 0.0011 0.0000 0.0010
150 75 100.0 0.1534 0.1556 0.1540 0.1561 0.0029 0.0168 0.0028 0.0146 0.0000 0.0007 0.0000 0.0007

50 125 100.0 0.1559 0.1605 0.1588 0.1636 0.0182 0.0389 0.0184 0.0409 0.0000 0.0017 0.0000 0.0016
100 125 100.0 0.1561 0.1586 0.1554 0.1579 0.0050 0.0167 0.0052 0.0167 0.0000 0.0009 0.0000 0.0008
150 125 100.0 0.1546 0.1565 0.1551 0.1570 0.0025 0.0108 0.0025 0.0106 0.0000 0.0006 0.0000 0.0005

TABLE 2
The performance of WG, PC and ML estimators in the model with zero restrictions

N T %
r̂ = r

WG PC MLE

β1 β2 β1 β2 β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 75 99.7 0.1098 0.1137 0.1095 0.1135 0.0097 0.0245 0.0099 0.0246 0.0000 0.0012 0.0000 0.0011
100 75 100.0 0.1088 0.1111 0.1092 0.1114 0.0038 0.0140 0.0038 0.0140 0.0000 0.0006 0.0000 0.0006
150 75 100.0 0.1086 0.1102 0.1083 0.1099 0.0011 0.0075 0.0015 0.0076 0.0000 0.0004 0.0000 0.0004

50 125 99.7 0.1089 0.1121 0.1097 0.1130 0.0076 0.0199 0.0077 0.0196 0.0000 0.0009 0.0000 0.0009
100 125 100.0 0.1088 0.1107 0.1087 0.1106 0.0029 0.0104 0.0026 0.0100 0.0000 0.0005 0.0000 0.0004
150 125 100.0 0.1086 0.1099 0.1076 0.1090 0.0011 0.0055 0.0010 0.0054 0.0000 0.0003 0.0000 0.0003
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the sample size becomes large, the bias decreases noticeably. However, when the
sample size is moderate, the bias of the iterated PC estimators is still pronounced.
In comparison, the ML estimators are consistent and unbiased. For all the sample
sizes, the biases of the ML estimators are very small and negligible. In addition,
the RMSEs of the ML estimators are always the smallest among the three estima-
tors, illustrating the efficiency of the ML method. The same patten is observed for
all of the four models considered.

7. Conclusion. This paper considers estimating panel data models with inter-
active effects, in which explanatory variables are correlated with the unobserved
effects. Standard panel data methods (such as the within-group estimator) are not
suitable for this type of models. We study the maximum likelihood method and
provide a rigorous analysis for the asymptotic theory. While the analysis is diffi-
cult, the limiting distributions of the MLE are simple and have intuitive interpreta-
tions. The maximum likelihood method can incorporate parameter restrictions to
gain efficiency, a useful feature in view of the large number of parameters under
large N and large T . We analyze the restrictions via the Lagrange multiplier ap-
proach, which is capable of revealing what kinds of restrictions lead to efficiency
gain. We allow the model to include time invariant regressors and common re-
gressors. The coefficients of the time invariant regressors are time dependent, and
the coefficients of the common regressors are cross-section dependent. This is a
sensible way for modeling the effects of such variables in panel data context and
fits naturally into the framework of interactive effects. The likelihood method is
easy to implement and performs very well, as demonstrated by the Monte Carlo
simulations.
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SUPPLEMENTARY MATERIAL

Supplement to “Theory and methods of panel data models with interac-
tive effects” (DOI: 10.1214/13-AOS1183SUPP; .pdf). This supplement provides
detailed technical proofs. Inferential theory for the estimated coefficients of time-
invariant and common regressors is given. The EM solutions are shown to have
local optimality property. Additional simulation results are presented.
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