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TWISTED PARTICLE FILTERS

BY NICK WHITELEY1 AND ANTHONY LEE2

University of Bristol and University of Warwick

We investigate sampling laws for particle algorithms and the influence
of these laws on the efficiency of particle approximations of marginal like-
lihoods in hidden Markov models. Among a broad class of candidates we
characterize the essentially unique family of particle system transition ker-
nels which is optimal with respect to an asymptotic-in-time variance growth
rate criterion. The sampling structure of the algorithm defined by these opti-
mal transitions turns out to be only subtly different from standard algorithms
and yet the fluctuation properties of the estimates it provides can be dramat-
ically different. The structure of the optimal transition suggests a new class
of algorithms, which we term “twisted” particle filters and which we validate
with asymptotic analysis of a more traditional nature, in the regime where the
number of particles tends to infinity.

1. Introduction. A hidden Markov model (HMM) with measurable state
space (X,X ) and observation space (Y,Y) is a process {(Xn,Yn);n ≥ 0} where
{Xn;n ≥ 0} is a Markov chain on X, and each observation Yn, valued in Y, is
conditionally independent of the rest of the process given Xn. Let μ0 and f be
respectively a probability distribution and a Markov kernel on (X,X ), and let g

be a Markov kernel acting from (X,X ) to (Y,Y), with g(x, ·) admitting a strictly
positive density, denoted similarly by g(x, y), with respect to some dominating
σ -finite measure. The HMM specified by μ0, f and g is

X0 ∼ μ0(·), Xn|{Xn−1 = xn−1} ∼ f (xn−1, ·), n ≥ 1,
(1.1)

Yn|{Xn = xn} ∼ g(xn, ·), n ≥ 0.

In practice, one often seeks to fit a HMM to data {Y0, Y1, . . .}. This motivates
computation of the marginal likelihood of {Y0, Y1, . . .} under the model (1.1). We
consider methods for approximate performance of this computation.

Let � := YZ be the set of doubly infinite sequences valued in Y. For ω =
{ω(n)}n∈Z ∈ � we shall write the coordinate projection Yn(ω) = ω(n) and take
as a recursive definition of the prediction filters, the sequence of distributions
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{πω
n ;n ≥ 0} given by

πω
0 := μ0,

(1.2)

πω
n (A) :=

∫
X πω

n−1(dx)g(x,Yn−1(ω))f (x,A)∫
X πω

n−1(dx)g(x,Yn−1(ω))
, A ∈ X , n ≥ 1.

We are centrally concerned with the sequence {Zω
n ;n ≥ 0} defined by

Zω
0 := 1, Zω

n := Zω
n−1

∫
X
πω

n−1(dx)g
(
x,Yn−1(ω)

)
, n ≥ 1.(1.3)

Due to the conditional independence structure of the HMM, πω
n is the conditional

distribution of Xn given Y0:n−1(ω); and Zω
n is the marginal likelihood evaluated

at the point Y0:n−1(ω). The simplest particle filter, known as the “bootstrap” algo-
rithm [19], is given below. It yields an approximation, Zω,N

n , of each Zω
n .

Convergence properties of particle algorithms in the regime N → ∞ are well
understood [7, 9, 13, 22] and their stability properties have been expressed through
finite-N error bounds [6, 10, 29], time-uniform convergence [23, 24, 26, 28] and
control on N → ∞ asymptotic variance expressions [11, 16, 18, 29]. Our aim is
to rigorously address comparative questions of how and why one algorithm may
outperform another, and how it is possible to modify standard algorithms in order
to improve performance. Our study is formulated in a generic framework which
accommodates standard particle algorithms and novel extensions. As an introduc-
tion we discuss some of our intentions and findings in the context of the bootstrap
particle filter as per Algorithm 1; more precise statements are given later.

Writing Eω
N for expectation with respect to the law of the bootstrap particle

filter processing a fixed observation sequence ω ∈ �, the well-known lack-of-bias
property ([8], Proposition 7.4.1) reads

Eω
N

[
Zω,N

n

] = Zω
n ,(1.4)

and holds for any n ≥ 0 and N ≥ 1. This property is desirable because it allows
particle filters to be used within “pseudo-marginal”-type algorithms (see [2] and
references therein), and plays a role in explaining the validity of some compound

Algorithm 1 Bootstrap particle filter
For n = 0,

Sample (ζ i
0)

N
i=1

i.i.d.∼ μ0,

Report Z
ω,N
0 = 1.

For n ≥ 1,
Report Zω,N

n = Z
ω,N
n−1 · 1

N

∑N
j=1 g(ζ

j
n−1, Yn−1(ω)),

Sample (ζ i
n)

N
i=1|(ζ i

n−1)
N
i=1

i.i.d.∼
∑N

j=1 g(ζ
j
n−1,Yn−1(ω))f (ζ

j
n−1,·)∑N

j=1 g(ζ
j
n−1,Yn−1(ω))

.
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Monte Carlo techniques such as particle Markov chain Monte Carlo [1]. The ac-
curacy of Zω,N

n influences the performance of such schemes [3]. We shall analyze
novel particle algorithms arising through changes of measure on the left-hand side
of (1.4), similarly enjoying lack-of-bias, and which could therefore be used in lieu
of more standard particle filters in compound Monte Carlo algorithms. The result-
ing approximation of Zω

n will be of the form

Z̃ω,N
n := Zω,N

n ·
n∏

p=1

φω,N
p ,(1.5)

where Zω,N
n is exactly the same functional of the particles as in Algorithm 1 and

{φω,N
n ;n ≥ 1} is a sequence of functionals chosen such that, if we write Ẽω

N for
expectation under the (as yet unspecified) alternative sampling law, then the lack
of bias property is preserved:

Ẽω
N

[
Z̃ω,N

n

] = Zω
n .(1.6)

Our main objective is to identify “good” choices of alternative sampling laws,
possibly allowing the transitions of the particles to depend on past and/or future
observations. Our criterion for performance arises from a study of the normalized
second moment of Z̃ω,N

n , in the regime where N is fixed and n → ∞, in an ω-
pathwise fashion.

For now, let us still consider ω ∈ � as fixed. Then under the probability law
corresponding to Algorithm 1, the generations of the particle system, ζ0, ζ1, . . .

with ζn := (ζ 1
n , . . . , ζN

n ), form an XN -valued time-inhomogeneous Markov chain.
Let {Mω;ω ∈ �} be the family of Markov kernels such that for each ω ∈ �,
Mω : XN ×X⊗N → [0,1] is given by

Mω(x, dz) =
N∏

i=1

∑N
j=1 g(xj , Y0(ω))f (xj , dzi)∑N

j=1 g(xj , Y0(ω))
,(1.7)

with x = (x1, . . . , xN) ∈ XN and z = (z1, . . . , zN) ∈ XN . Let θ :� → � be the
shift operator, (θω)(n) := ω(n + 1), n ∈ Z,ω ∈ �, so that, for example, Y0(θω) =
Y1(ω). The n-fold iterate of θ will be written θn with θ0 = Id. It is then clear that
the sampling steps of Algorithm 1 implement

ζ0 ∼ μ⊗N
0 , ζn|ζn−1 ∼ Mθn−1ω(ζn−1, ·), n ≥ 1.(1.8)

Variance growth rates. For a family of Markov kernels {M̃ω;ω ∈ �} belonging
to a broad class of candidates and which may depend on ω in a rather general
fashion, but subject to Mω(x, ·) � M̃ω(x, ·) and other regularity conditions, we
shall consider sampling the particle system according to

ζ0 ∼ μ⊗N
0 , ζn|ζn−1 ∼ M̃θn−1ω(ζn−1, ·), n ≥ 1,(1.9)



118 N. WHITELEY AND A. LEE

and simply setting

φω,N
n := dMθn−1ω(ζn−1, ·)

dM̃θn−1ω(ζn−1, ·)
(ζn), n ≥ 1.(1.10)

Then letting Ẽω
N denote expectation under the Markov law (1.9), and with Z̃ω,N

n as
in (1.5), we of course achieve (1.6).

Let � be endowed with the product σ -algebra F = Y⊗Z and let P be a probabil-
ity measure on (�,F). We stress that P is not necessarily a measure on observation
sequences derived from the particular HMM (1.1), nor indeed any HMM. Under
the assumption that θ is P-preserving and ergodic, and under certain other reg-
ularity conditions, application of our first main result, Proposition 4, establishes,
for any fixed N ≥ 1, existence of a deterministic constant ϒN(M̃), depending on
M̃ = {M̃ω;ω ∈ �} such that

1

n
log

Ẽω
N [(Z̃ω,N

n )2]
(Zω

n )2 −→ ϒN(M̃) as n −→ ∞, for P-a.a. ω.(1.11)

It must be the case that ϒN(M̃) ≥ 0, because variance is nonnegative and the lack
of bias property (1.6) holds. We shall see that typically ϒN(M̃) > 0.

Optimal sampling. Our second main result (Theorem 1) identifies, for any fixed
N ≥ 1 and among the class of candidates, the essentially unique choice of the
family {M̃ω;ω ∈ �} which achieves ϒN(M̃) = 0. It turns out that this optimal
choice arises from a particular form of re-weighting applied to each transition
kernel Mω and is defined in terms of a family of functions {hω : X →R+;ω ∈ �}
which are, in abstract terms, generalized eigenfunctions associated with algebraic
structures underlying the particle algorithm. In the context of the bootstrap particle
filter, hω has the following interpretation. πθ−nω

n is the prediction filter initialized
at time −n and run forward to time zero, giving a distribution over X0 conditional
on Y−n(ω), . . . , Y−1(ω). Then, letting 
ω

n be the distribution over X0 obtained by
further conditioning on Y0(ω), . . . , Yn−1(ω), hω arises as the pointwise limit:

hω(x) = lim
n→∞

d
ω
n

dπθ−nω
n

(x).

Theorem 1 establishes that for any N ≥ 1, ϒN(M̃) = 0 if and only if, for P-almost
all ω ∈ � there exists a set Aω ∈ X⊗N such that Ac

ω is null (with respect to an as
yet unnamed measure) and for any x ∈ Aω,

M̃ω(x,B) =
∫
B Mω(x, dx′)hθω(x′)∫

XN Mω(x, dx′)hθω(x′)
for all B ∈ X⊗N,(1.12)

where

hω :x = (
x1, . . . , xN ) ∈ XN 
−→ N−1

N∑
i=1

hω(
xi) ∈ R+.
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In the rare-event and large deviations literatures, the action of re-weighting
Markov kernels using nonnegative eigenfunctions is generically referred to as
“twisting.” Since in the present context we are applying re-weighting to the transi-
tions of the entire particle system, we shall adopt this terminology and consider a
class of algorithms which we refer to as twisted particle filters.

Twisted particle filters. The form of the optimal transition (1.12), where Mω

is re-weighted by an additive, nonnegative functional, leads us to consider a new
class of particle algorithms. Consider a family of functions {ψω : X →R+;ω ∈ �}
and let {M̃ω;ω ∈ �} be defined by

M̃ω(
x, dx′) = Mω(x, dx′)ψθω(x′)∫

XN Mω(x, dz)ψθω(z)
,(1.13)

ψω :x = (
x1, . . . , xN ) ∈ XN 
−→ N−1

N∑
i=1

ψω(
xi) ∈ R+.(1.14)

This setup clearly admits the optimal transition (ψω = hω) and the standard transi-
tion (take ψω = c, for some positive constant c) as special cases. Then introducing

g̃ω(x) := g
(
x,Y0(ω)

) ∫
X
f (x, dz)ψθω(z),

we observe that φω,N
n , defined in (1.10), is given by

φω,N
n =

[
1

N−1 ∑N
i=1 g(ζ i

n−1, Yn−1(ω))

]∑N
i=1 g̃θn−1ω(ζ i

n−1)∑N
i=1 ψθnω(ζ i

n)
.(1.15)

Since ψω is an additive functional, it is clear that M̃ω as per (1.13) is of mixture
form, and introducing the ω-dependent Markov kernel

f̃ ω(
x, dx′) := f (x, dx′)ψθω(x′)∫

X f (x, dz)ψθω(z)
,

the procedure of sampling from (1.9) and evaluating Z̃ω,N
n can be implemented

through Algorithm 2, in which Kn and An are auxiliary random variables em-
ployed for algorithmic purposes, and the recursion for Z̃ω,N

n arises from the defi-
nition of Zω,N

n combined with (1.5) and (1.15).
The difference between the sampling steps of Algorithm 2 and Algorithm 1 is

fairly subtle: loosely speaking, at each time step, N − 1 of the particles in Algo-
rithm 2 are propagated by the same mechanism as in Algorithm 1. However, with
an appropriate choice of ψω, the fluctuation properties of Z̃ω,N

n under (1.13)–(1.14)
can be dramatically different to those of Zω,N

n under (1.8)–(1.7). Our third main
result (Theorem 2) concerns asymptotic fluctuation properties of twisted particle
approximations when n and ω are fixed and N → ∞. Under mild regularity con-
ditions, we prove central limit theorems for generic particle systems under tran-
sitions like (1.13)–(1.14). For bounded functions ϕ centered w.r.t. πω

n , we find
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Algorithm 2 Twisted bootstrap particle filter
For n = 0,

Sample (ζ i
0)

N
i=1

i.i.d.∼ μ0,

Report Z̃
ω,N
0 = 1.

For n ≥ 1,
Sample Kn from the uniform distribution on {1, . . . ,N},
Sample An from the distribution on {1, . . . ,N} with probabilities proportional
to {

g̃θn−1ω(
ζ 1
n−1

)
, . . . , g̃θn−1ω(

ζN
n−1

)}
,

Sample ζ
Kn
n |{An,Kn, (ζ

i
n−1)

N
i=1} ∼ f̃ θnω(ζ

An

n−1, ·),
Sample (ζ i

n)i �=Kn |{Kn, (ζ
i
n−1)

N
i=1}

i.i.d.∼
∑N

j=1 g(ζ
j
n−1,Yn−1(ω))f (ζ

j
n−1,·)∑N

j=1 g(ζ
j
n−1,Yn−1(ω))

,

Report Z̃ω,N
n = Z̃

ω,N
n−1 ·

∑N
i=1 g̃θn−1ω(ζ i

n−1)∑N
i=1 ψθnω(ζ i

n)
.

that the N → ∞ asymptotic variance associated with N−1/2 ∑N
i=1 ϕ(ζ i

n) is the
same when sampled under Algorithms 1 and 2, but the asymptotic variances of√

N(Zω,N
n − Zω

n ) and
√

N(Z̃ω,N
n − Zω

n ) are, in general, different.
The finite-N , finite-n behavior of the relative variance of the standard estimate

Zω,N
n from Algorithm 1 is well understood. Under certain regularity assumptions,

it can be deduced from [6], Theorem 5.1, that in our setting ϒN(M) must satisfy

ϒN(M) ≤ log
[
1 + C

N − 1

]
(1.16)

for some finite constant C which depends on g and f . Our fourth main result
(Proposition 5) generalizes (1.16) to the case of twisted particle filters. With
ϒN(M̃) as in (1.11), M̃ω as in (1.13), and under some regularity conditions,

ϒN(M̃) ≤ log
[
1 + C′

N − 1
sup

ω,x,x′

∣∣∣∣ hω(x)

ψω(x)
− hω(x′)

ψω(x′)

∣∣∣∣],
where C′ is a constant. Thus, whenever ϒN(M) > 0, by choosing ψ “close” to h,
we can in principle achieve ϒN(M̃) < ϒN(M).

The rest of the paper is structured as follows. Section 2 introduces our general
setting, addressing the generalized eigenvalue properties of families of nonnegative
kernels and sampling laws of the particle systems we consider. Section 3 narrows
attention to twisted particle filters and considers some properties in the regime
where N is fixed and n → ∞, and vice-versa. Section 4 discusses the application
of our main results to sequential importance sampling, bootstrap and auxiliary
particle filters. The proofs of Lemmas 3–4, Propositions 1–5 and Theorems 1–2
are housed in the supplementary material [30].
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2. Nonnegative kernels, sampling particles and variance growth.

2.1. Notation and conventions. Let (X,X ), (Y,Y), � := YZ, F := Y⊗Z, and
P and θ be as in Section 1. Expectation w.r.t. P will be denoted by E. Let M(X),
P(X) and L(X) be respectively the collections of measures, probability measures
and real-valued, bounded, X -measurable functions on X. We write

‖ϕ‖ := sup
x

∣∣ϕ(x)
∣∣

and

μ(ϕ) :=
∫

X
ϕ(x)μ(dx) for any ϕ ∈ L(X),μ ∈ M(X).(2.1)

We will be dealing throughout with various real-valued functions on �×X (and
more generally � × XN , etc.). For any such function ϕ, we write the ω-section of
ϕ as ϕω : X → R, ϕω(x) := ϕ(ω,x). For a function ξ :� → R it will sometimes
be convenient to write ξω instead of the more standard ξ(ω). We will need to
express various integration operations involving functions on �× XN and their ω-
sections, so for completeness we quote the following facts of measure theory (see,
e.g., [12], Chapter VI, which will be used repeatedly without further comment):
when ϕ :�× XN →R is measurable w.r.t. to F ⊗X⊗N , then for every ω ∈ �, the
ω-section ϕω is measurable w.r.t. X⊗N ; and, furthermore, for any σ -finite measure
μ on (XN,X⊗N), if ϕ is integrable w.r.t. to P⊗μ, then the function acting � →R

which maps ω 
→ μ(ϕω) is measurable w.r.t. F and is P-integrable.
Let ϕ, ϕ̃ be two functions, each acting � × XN →R and each measurable w.r.t.

F ⊗ X⊗N . We will need to talk about the sets on which such functions take the
same values. For any ω ∈ �, let Aω := {x ∈ XN :ϕω(x) = ϕ̃ω(x)} and let μ be a σ -
finite measure on (XN,X⊗N). In order to avoid having to make the sets {Aω;ω ∈
�} explicit in various statements, we will write by convention

for P-a.a. ω, ϕω(x) = ϕ̃ω(x) for μ-a.a. x

to mean P({ω :μ(Ac
ω) = 0}) = 1.

2.2. Generalized eigenvalue theory for nonnegative kernels. Fix arbitrarily
μ0 ∈ P(X) and let M :� × X × X → [0,1] be such that M(ω,x, ·) ∈ P(X) for
each (ω, x) ∈ � × X, and M(·, ·,A) is F ⊗ X -measurable for each A ∈ X . Then
for any ω, M(ω, ·, ·) is a Markov kernel on (X,X ) and when it is important to
emphasize this perspective, we shall often write Mω(x,A) instead of M(ω,x,A).
We shall adopt similar notation for other kernels.

For any fixed ω ∈ �, let Eω denote expectation with respect to the law of the
time-inhomogeneous Markov chain {Xn;n ≥ 0}, with each Xn valued in X, ini-
tialized from X0 ∼ μ0 and Xn|{Xn−1 = xn−1} ∼ Mθn−1ω(xn−1, ·), for n ≥ 1. Let
G :� × X →R+ be a F ⊗X -measurable, strictly positive and bounded function.
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REMARK 1. This setup is purposefully generic and accommodates, as one
particular instance, the case

Gω(x) = g
(
x,Y0(ω)

)
, Mω(

x, dx′) = f
(
x, dx′) ∀ω ∈ �,(2.2)

where g and f are as in Section 1, and then Eω[∏n−1
p=0 g(Xp,Yp(ω))] = Zω

n =
Eω[∏n−1

p=0 Gθpω(Xp)]. Other instances will be discussed in Section 4.

We next introduce two hypotheses. Since � := YZ, (H1) amounts to saying that
the observation process is stationary and ergodic. (H2) is a strong mixing condition
that rarely holds when X and Y are noncompact, and some results do not rely on
both (2.3) and (2.4) simultaneously but their combination allows us to avoid a layer
of technical presentation which would further lengthen and complicate our proofs.

(H1) The shift operator θ preserves P and is ergodic.
(H2) There exist constants β ∈ [1,∞), (ε−, ε+) ∈ (0,∞)2, and ν ∈ P(X) such

that
G(ω,x)

G(ω′, x′)
≤ β ∀(

ω,ω′, x, x′) ∈ �2 × X2,(2.3)

ε−ν(·) ≤ M(ω,x, ·) ≤ ε+ν(·) ∀(ω, x) ∈ � × X.(2.4)

We now introduce the nonnegative kernel

Q :� × X ×X →R+, Q
(
ω,x, dx′) := G(ω,x)M

(
ω,x, dx′).(2.5)

For any fixed ω ∈ �, we define the operators

Qω(ϕ)(x) :=
∫

X
Qω(

x, dx′)ϕ(
x′), ϕ ∈ L(X),(2.6)

μQω(·) :=
∫

X
μ(dx)Qω(x, ·), μ ∈M(X),(2.7)

and let {Qω
n ;n ∈ N} be defined recursively by

Qω
0 := Id, Qω

n = Qω
n−1Q

θn−1ω, n ≥ 1.(2.8)

This operator notation allows us to express

μ0Q
ω
n (ϕ) = Eω

[
ϕ(Xn)

n−1∏
p=0

Gθpω(Xp)

]
, n ≥ 1, ϕ ∈ L(X).(2.9)

It is well known that (H1) and (H2) together are sufficient to establish the fol-
lowing result; see [25] for related ideas in the context of HMMs.

PROPOSITION 1. Assume (H1) and (H2). Then there exists a constant � ∈
(−∞,∞) independent of the initial distribution μ0 ∈ P(X) such that

1

n
log Eω

[
n−1∏
p=0

Gθpω(Xp)

]
→ � as n → ∞,P-a.s.(2.10)
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It turns out that Proposition 1 is one element of a generalized eigenvalue theory
for the nonnegative kernel Q. Another element is Proposition 2, which involves
the following objects. Let �ω :P(X) → P(X) be defined by

�ω(μ) = μQω

μQω(1)
, μ ∈ P(X),

and let {�ω
n ;n ∈ N} be the family of operators defined recursively by

�ω
0 := Id, �ω

n := �θn−1ω ◦ �ω
n−1,

so that each �ω
n acts P(X) → P(X). Under these definitions, for any n ∈ N,

�ω
n (μ) = μQω

n

μQω
n (1)

,(2.11)

which can be verified by induction, since from the above definitions �ω
0 = Id,

Qω
0 := Id and when (2.11) holds,

�ω
n+1(μ) = (

�θnω ◦ �ω
n

)
(μ) = �ω

n (μ)Qθnω

�ω
n (μ)Qθnω(1)

= μQω
nQθnω

μQω
nQθnω(1)

= μQω
n+1

μQω
n+1(1)

.

REMARK 2. In the setting Mω(x, dx′) := f (x, dx′), Gω(x) := g(x,Y0(ω)),
then if μ0 and πω

n are respectively the initial distribution and prediction-filter as
in (1.2), we have

πω
n+1 = �θnω(

πω
n

)
, n ≥ 0.

REMARK 3. Under (H2), it is known that �ω
n is exponentially stable with

respect to initial conditions (e.g., [8], Chapter 4) that is, there exist constants C <

∞ and ρ < 1 such that for any ϕ ∈ L(X) and any n ≥ 1,

sup
ω∈�

sup
μ,μ′∈P(X)

∣∣[�ω
n (μ) − �ω

n

(
μ′)](ϕ)

∣∣ ≤ ‖ϕ‖Cρn.(2.12)

Equation (2.12) is used extensively in the proof of the following proposition, which
is a variation on the theme of Kifer’s Perron–Frobenius theorem for positive oper-
ators in a random environment [21], Theorem 3.1.

PROPOSITION 2. Assume (H2).

(1) Fix μ ∈ P(X). Then the limits

ηω(A) := lim
n→∞�θ−nω

n (μ)(A), ω ∈ �,A ∈X ,(2.13)

h(ω,x) := lim
n→∞

Qω
n (1)(x)

�θ−nω
n (μ)Qω

n (1)
, ω ∈ �,x ∈ X,(2.14)

exist and define a family of probability measures η := {ηω ∈ P(X);ω ∈ �} and an
F ⊗X -measurable function h :� × X →R.
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(2) In fact, η and h are independent of the particular μ chosen in part (1) and
there exist constants C < ∞ and ρ < 1 such that for any ϕ ∈ L(X),

sup
ω∈�

sup
μ∈P(X)

∣∣[�θ−nω
n (μ) − ηω]

(ϕ)
∣∣ ≤ ‖ϕ‖Cρn, n ≥ 1(2.15)

and

sup
ω∈�

sup
x∈X

sup
μ∈P(X)

∣∣∣∣ Qω
n (1)(x)

�θ−nω
n (μ)Qω

n (1)
− h(ω,x)

∣∣∣∣ ≤ Cρn, n ≥ 1.(2.16)

(3) λ :ω ∈ � 
−→ ηω(Gω) ∈ R+ is measurable w.r.t. F and we have

sup
(ω,ω′)∈�2

λω

λω′
< ∞, sup

(ω,ω′,x,x′)∈�2×X2

h(ω,x)

h(ω′, x′)
< ∞.(2.17)

(4) Among all triples which consist of (i) an �-indexed family of probability
measures on (X,X ), (ii) an R+-valued, not identically zero, measurable function
on �× X, and (iii) a measurable function on �, the triple (η,h,λ), with η,h as in
part (1) and λ as in part (3), uniquely satisfies the system of equations

ηωQω = λωηθω, Qω(
hθω) = λωhω, ηω(

hω) = 1
(2.18)

for all ω ∈ �.

The connection with Proposition 1 is as follows:

PROPOSITION 3. Assume (H1), (H2) and let � be as in Proposition 1 and λ

be as in Proposition 2. Then

� = E[logλ] =
∫
�

log
Qω(hθω)(x)

hω(x)
P(dω) for any x ∈ X.(2.19)

In the setting of HMMs as per Remark 1, equalities like the first one in (2.19)
appear routinely in the study of likelihood-based estimators [14, 25]. However, it
is the second equality in (2.19), and generalizations thereof, which shall be crucial
for our purposes in the sequel.

REMARK 4. If one weakens the “1-step” condition (2.4) to an m-step ver-
sion for some m ≥ 1, then Propositions 1–3 can easily be generalized, working
with the kernel Qω

m instead of Qω. Part of the utility of the uniform in ω and x

bounds in (H2) is that various parts of Proposition 2 hold uniformly over ω ∈ �.
If one allows ω-dependent constants and measures in (2.3) and (2.4), and imposes
certain explicit compactness and continuity assumptions and (H1), then [21], The-
orem 3.1, provides a partial alternative to our Proposition 2.

We proceed by introducing the laws of the particle systems of interest.
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2.3. Law of the standard particle system. Unless stated otherwise, in this sec-
tion we fix arbitrarily N ≥ 1 and write P(XN) for the collection of probability
measures on (XN,X⊗N).

Let M :� × XN ×X⊗N → [0,1] be given, in integral form, by

M(ω, x, dz) =
N∏

i=1

[∑N
j=1 G(ω,xj )M(ω,xj , dzi)∑N

j=1 G(ω,xj )

]
,(2.20)

where x = (x1, . . . , xN), z = (z1, . . . , zN) ∈ XN . Each member of the family
{Mω;ω ∈ �} is a Markov transition kernel for the entire N -particle system accord-
ing to a “multinomial” resampling scheme with fitness function G(ω, ·), followed
by conditionally independent mutation according to Mω.

Now for any given ω ∈ �, we shall denote by Eω
N expectation with respect to

the law of the Markov chain {ζn;n ≥ 0}, with each ζn = {ζ 1
n , . . . , ζN

n } valued in
XN and

ζ0 ∼ μ⊗N
0 , ζn|ζn−1 ∼ Mθn−1ω(ζn−1, ·).(2.21)

We define, with x = (x1, . . . , xN),

G : (ω, x) ∈ � × XN 
−→ 1

N

N∑
i=1

G
(
ω,xi) ∈ R+.(2.22)

REMARK 5. For any ϕ ∈ L(X), if we define the function

ϕ :x = (
x1, . . . , xN ) ∈ XN 
−→ 1

N

N∑
i=1

ϕ
(
xi) ∈ R,

then the lack-of-bias property of the particle approximation [8], Proposition 7.4.1,
is

Eω
N

[
ϕ(ζn)

n−1∏
p=0

Gθpω(ζp)

]
= Eω

[
ϕ(Xn)

n−1∏
p=0

Gθpω(Xp)

]
.(2.23)

REMARK 6. When Mω(x, ·) = f (x, ·) and Gω(x) = g(x,Y0(ω)), the sam-
pling recipe for simulating the process {ζn;n ≥ 0} according to (2.21) is the boot-
strap particle filter: Algorithm 1. Furthermore, the particle approximation of Zω

n is
then

∏n−1
p=0 Gθpω(ζp). To see it is unbiased, apply (2.23) with ϕ = 1.

Part of our investigation will develop some limit theory for

Eω
N [∏n−1

p=0 Gθpω(ζp)2]
Eω[∏n−1

p=0 Gθpω(Xp)]2
,(2.24)
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when N is fixed and n → ∞. Our notation G,M and (2.23) are intended to
hint that the phenomena described in Propositions 1–3 are relevant to the study
of (2.24). Indeed, this is the direction in which we are heading. However, we will
actually study an object more general than (2.24), arising from a more general
form of particle approximation, for the particle system is distributed according to
some Markov law, possibly different to (2.21).

2.4. Alternative sampling of the particle system. Let us introduce M̃ :� ×
XN × X⊗N → [0,1], possibly different from M. For fixed ω, now denote by Ẽω

N

expectation with respect to law of the Markov chain

ζ0 ∼ μ⊗N
0 , ζn|ζn−1 ∼ M̃θn−1ω(ζn−1, ·).(2.25)

We are going to specify a class of candidates for M̃, and we first notice that the
regularity condition (H2) transfers to G,M in the following sense:

LEMMA 1. Assume (H2). Then for any N ≥ 1,

G(ω, x)

G(ω′, x′)
≤ β ∀(

ω,ω′, x, x′) ∈ �2 × X2N,

εN−ν⊗N(·) ≤ M(ω, x, ·) ≤ εN+ν⊗N(·) ∀(ω, x) ∈ � × XN.

The proof is omitted. We shall consider the following family of kernels.

DEFINITION 1 (of M). Any M̃ :� × XN × X⊗N → [0,1] is a member of M
if and only if there exist constants (̃ε−, ε̃+) ∈ (0,∞)2 and ν̃ ∈ P(XN) such that

ν̃(·)̃ε− ≤ M̃(ω, x, ·) ≤ ε̃+ν̃(·) ∀(ω, x) ∈ � × XN,
(2.26)

ν⊗N � ν̃ and
∫

XN

(
dν⊗N

dν̃
(x)

)2

ν̃(dx) < ∞,

where ν is as in (H2).

When M̃ is a member of M we write

φω(
x, x′) := dMω(x, ·)

dM̃ω(x, ·)
(
x′), (

ω,x, x′) ∈ � × X2N,(2.27)

and in the context of sampling the particle system (ζn;n ≥ 0) under the law (2.25),
we will take

n−1∏
p=0

Gθpω(ζp)φθpω(ζp, ζp+1)(2.28)
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as an approximation of Eω[∏n−1
p=0 Gθpω(Xp)]. In light of (2.23) and (2.27), we have

Ẽω
N

[
n−1∏
p=0

Gθpω(ζp)φθpω(ζp, ζp+1)

]
= Eω

[
n−1∏
p=0

Gθpω(Xp)

]
.

The following result describes the n → ∞ behavior of

Ṽω
n,N := Ẽω

N [∏n−1
p=0 Gθpω(ζp)2φθpω(ζp, ζp+1)

2]
Eω[∏n−1

p=0 Gθpω(Xp)]2
.(2.29)

Its proof starts by considering the family of kernels {R̃ω;ω ∈ �}, with

R̃ω(
x, dx′) := Gω(x)2φω(

x, x′)2M̃ω(
x, dx′),

in terms of which the numerator of (2.29) may be written and which exhibit exactly
similar properties to Qω appearing in the proof of Proposition 1.

PROPOSITION 4. Assume (H1), (H2) and fix N ≥ 1 arbitrarily. For every M̃ ∈
M there exists a constant ϒN(M̃) ∈ [0,∞), independent of the initial distribution
μ0 such that

1

n
log Ṽω

n,N −→ ϒN(M̃) as n → ∞,P-a.s.

We now proceed to address the question of how ϒN(M̃) depends on M̃. To this
end, let us introduce two further pieces of notation:

Q
(
ω,x, dx′) := G(ω, x)M

(
ω,x, dx′),

and when (H2) holds, so that h as in Proposition 2 is well-defined, consider the
function

h : (ω, x) ∈ � × XN 
−→ 1

N

N∑
i=1

h
(
ω,xi) ∈R+.(2.30)

Our interest in (2.30) stems from the following pivotal lemma, which shows how
the generalized eigenfunction h and eigenvalue λ of Q appearing in Proposition 2
define a generalized eigenfunction and eigenvalue for Q, for any N ≥ 1. Its proof
is quite elementary, but is included here for exposition since the structure it deals
with underpins the algorithmic developments in Section 3.

LEMMA 2. For any ω ∈ �,

Qω(
hθω) = λωhω,

where λω is as in Proposition 2.
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PROOF.

Qω(
hθω)

(x) = 1

N

N∑
k=1

∫
XN

Qω(x, dz)hθω(
zk)

= 1

N

N∑
k=1

Gω(x)

∫
X

∑N
i=1 Qω(xi, dzk)∑N

i=1 Gω(xi)
hθω(

zk)

= 1

N

N∑
k=1

1

N

N∑
i=1

∫
X
Qω(

xi, dzk)hθω(
zk)

= λω

1

N

N∑
i=1

hω(
xi) = λωhω(x).

�

Now consider taking

M̃ω(
x, dx′) = Mω(x, dx′)hθω(x′)∫

XN Mω(x, dz)hθω(z)
,(2.31)

which is a member of M, due to the definition of h and part (3) of Proposition 2.
In this case we have

n−1∏
p=0

Gθpω(ζp)φθpω(ζp, ζp+1)

=
n−1∏
p=0

Gθpω(ζp)

∫
XN Mθpω(ζp, dzp+1)hθp+1ω(zp+1)

hθp+1ω(ζp+1)

=
n−1∏
p=0

Qθpω(hθp+1ω)(ζp)

hθp+1ω(ζp+1)
(2.32)

= hω(ζ0)

hθnω(ζn)

n−1∏
p=0

Qθpω(hθp+1ω)(ζp)

hθpω(ζp)

= hω(ζ0)

hθnω(ζn)

n−1∏
p=0

λθpω,

where the final equality is due to Lemma 2. Thus, if we choose M̃ as per (2.31),
then the quantity in (2.32) depends on the particle system trajectory ζ0, . . . , ζn

only through the quantities hω(ζ0) and hθnω(ζn), and we then might hope that
ϒN(M̃) = 0. This turns out to be true, and much more strikingly, up to its definition
on certain sets of measure zero, M̃ as in (2.31) is the unique member of M which
achieves ϒN(M̃) = 0, in the sense of the following theorem.
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THEOREM 1. Assume (H1), (H2), let N ≥ 1 be fixed arbitrarily and assume
M̃ belongs to M. Then (1)–(3) are equivalent:

(1) ϒN(M̃) = 0.
(2) For P-almost all ω ∈ �, there exists Aω ∈ X⊗N such that ν⊗N(Ac

ω) = 0
and for any x ∈ Aω,

M̃ω(x,B) =
∫
B Mω(x, dx′)hθω(x′)∫
XN Mω(x, dz)hθω(z)

for all B ∈ X⊗N.(2.33)

(3) For P-almost all ω ∈ �, supn Ṽω
n,N < ∞.

The re-weighted particle transitions (2.33) are reminiscent of certain eigenfunction
transformations of general type branching processes studied by Athreya [4] and
more broadly can be viewed as a randomized version of Doob’s h-process. See [30]
for further information. Time-homogeneous counterparts of such transitions arise
in the analysis of certain Markov chain rare event problems [5]; in order to prove
(1) ⇒ (2), we generalize the proof of necessity in [5], Theorem 3, to the case of
families of kernels driven by an ergodic, measure-preserving transform.

The following lemma serves to accompany Proposition 4 and Theorem 1, and
provides necessary and sufficient conditions for ϒN(M̃) = 0 in the case of taking
M̃ = M, that is, the transitions of the standard particle system.

LEMMA 3. Assume (H1), (H2) and let N ≥ 1 be fixed arbitrarily. Then (1)–(3)
are equivalent:

(1) ϒN(M) = 0.
(2) For P-a.a. ω,hω(x) = 1, for ν-a.a. x.
(3) There exists a random variable C :� →R+ such that

for P-a.a. ω, Gω(x) = Cω for ν-a.a. x.

In situations of practical interest, point (3) of Lemma 3 is usually false, and
then it must be the case that ϒN(M) > 0. It then appears that a choice of M̃ which
approximates the optimal transition, (2.33), may yield a provable performance ad-
vantage over M, in the sense of achieving strict inequality ϒN(M̃) < ϒN(M). This
leads us to consider the class of particle algorithms treated in the next section.

3. Twisted particle algorithms. The form of the optimal transition ker-
nel (2.33) suggests that we consider families of kernels arising from re-weighting
of Mω(x, ·) by an additive, nonnegative functional. In this section we will analyze
particle algorithms arising from kernels of this general form. Let ψ :� × X →R+
be a strictly positive, bounded and measurable function and define

ψ : (ω, x) ∈ � × XN 
−→ 1

N

N∑
i=1

ψ
(
ω,xi) ∈ R+.
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For the purposes of this section, let us consider the following mild regularity as-
sumption:

(H3) For each ω ∈ �, supx Gω(x) < ∞ and supx ψω(x) < ∞.

When (H3) holds the following Markov kernel is well-defined:

M̃ω(
x, dx′) = Mω(x, dx′)ψθω(x′)∫

XN Mω(x, dz)ψθω(z)
.(3.1)

We shall analyze particle approximations which arise from sampling under (3.1).
Our motivation here is that we have in mind situations where ψ is chosen to be
some approximation of h, assuming the latter exists. The kernel (3.1) accommo-
dates the standard transition (2.20) (e.g., take ψω = 1) and the optimal transition
identified in Theorem 1 (take ψω = hω). We note that (3.1) depends on ψωonly up
to a constant of proportionality.

This section addresses two main objectives: First, to validate the particle ap-
proximations delivered when sampling under (3.1), by analyzing some of their
convergence and fluctuation properties in the regime where N → ∞. Second, to
provide an estimate of ϒN(M̃) which exhibits dependence on N and on the dis-
crepancy between ψω and hω.

Let us introduce a little more notation. Define, for each ω ∈ �, the sequence of
probability measures:

ηω
0 := μ0, ηω

n := �θn−1ω(
ηω

n−1
)
, n ≥ 1.

With {ζn;n ≥ 0} the sequence of generations of the particles, we write

ηN
n := 1

N

N∑
i=1

δζ i
n
, n ≥ 0,

φω,N
n := ηN

n−1Q
θn−1ω(ψθnω)

ηN
n−1(G

θn−1ω)

1

ηN
n (ψθnω)

= �θn−1ω(ηN
n−1)(ψ

θnω)

ηN
n (ψθnω)

, n ≥ 1,

γ ω
0 := μ0, γ ω

n (ϕ) := ηω
n (ϕ)

n−1∏
p=0

ηω
p

(
Gθpω)

, n ≥ 1,

γ
ω,N
0 := ηN

0 , γ ω,N
n (ϕ) := ηN

n (ϕ)

n−1∏
p=0

ηN
p

(
Gθpω)

φ
ω,N
p+1, n ≥ 1.

To connect with (2.27), we note that for M̃ as in (3.1), we have

φω,N
n =

(
1

N

N∑
i=1

Gθn−1ω(
ζ i
n−1

))−1 ∑N
i=1 Qθn−1ω(ψθnω)(ζ i

n−1)∑N
i=1 ψθnω(ζ i

n)

= φθnω(ζn−1, ζn)
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Algorithm 3 Twisted particle algorithm
For n = 0,

Sample (ζ i
0)

N
i=1

i.i.d.∼ μ0 and report Z̃
ω,N
0 = 1.

For n ≥ 1,
Sample Kn from the uniform distribution on {1, . . . ,N},
Sample An from the distribution on {1, . . . ,N} with probabilities proportional
to {

Qθn−1ω(
ψθnω)(

ζ 1
n−1

)
, . . . ,Qθn−1ω(

ψθnω)(
ζN
n−1

)}
,

Sample ζ
Kn
n |{An,Kn, (ζ

i
n−1)

N
i=1} ∼ M̃θnω(ζ

An

n−1, ·),
Sample (ζ i

n)i �=Kn |{Kn, (ζ
i
n−1)

N
i=1}

i.i.d.∼
∑N

j=1 Gθn−1ω(ζ
j
n−1)M

θn−1ω(ζ
j
n−1,·)∑N

j=1 Gθn−1ω(ζ
j
n−1)

,

Report Z̃ω,N
n = Z̃

ω,N
n−1 ·

∑N
i=1 Qθn−1ω(ψθnω)(ζ i

n−1)∑N
i=1 ψθnω(ζ i

n)
.

and

n−1∏
p=0

Gθpω(ζp)φθpω(ζp, ζp+1) =
n−1∏
p=0

∑N
i=1 Qθpω(ψθp+1ω)(ζ i

p)∑N
i=1 ψθp+1ω(ζ i

p+1)
= γ ω,N

n (1).

Introducing the Markov kernel M̃ω(x, dx′) ∝ Mω(x, dx′)ψθω(x′), Algorithm 3
gives a recipe for sampling the particle system according to (2.25) with M̃ as
in (3.1) (details of the derivation of this algorithm are given in [30]). Here Kn

and An are just some auxiliary random variables introduced for algorithmic con-
venience.

3.1. Analysis for N → ∞.

LEMMA 4. For each, n ≥ 0, fixed ω ∈ � and ϕ ∈ L(X),

ηN
n (ϕ) − ηω

n (ϕ) −→ 0,(3.2)

γ ω,N
n (ϕ) − γ ω

n (ϕ) −→ 0(3.3)

almost surely, as N → ∞.

Now define

Q
ω

n,n := Id, n ≥ 0, Q
ω

p,n := Qθpω · · ·Qθn−1ω∏n−1
q=p ηω

q (Gθqω)
, n ≥ 1,0 ≤ p < n,

and notice that μ0Q
ω

0,n = ηω
n .
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THEOREM 2. Assume (H3). Then for any n ≥ 0, fixed ω ∈ � and ϕ ∈ L(X),√
N

[
γ ω,N
n (ϕ) − γ ω

n (ϕ)
] ⇒ N

(
0, ς2

n,ω(ϕ)
)
,(3.4)

√
N

[
ηN

n (ϕ) − ηω
n (ϕ)

] ⇒ N
(
0, σ 2

n,ω(ϕ)
)

(3.5)

as N → ∞ where

ς2
n,ω(ϕ) =

n∑
p=0

γ ω
p (1)2ηω

p

[(
Qθpω

n−p(ϕ) − ψθpω

ηω
p(ψθpω)

ηω
pQθpω

n−p(ϕ)

)2]
,(3.6)

with the convention ψω/ηω
0 (ψω) = 1, and

σ 2
n,ω(ϕ) =

n∑
p=0

ηω
p

[(
Q

ω

p,n

(
ϕ − ηω

n (ϕ)
))2]

.(3.7)

REMARK 7. The asymptotic variance expression (3.7) is independent of the
particular choice of ψ [the CLT holding subject to (H3), of course] and is exactly
the same expression obtained in the CLT for the standard particle system (i.e.,
ψ constant); see, for example, [8], Proposition 9.4.2. However, the asymptotic
variance in (3.6) clearly does depend on ψ in general.

3.2. Analysis for n → ∞. For M̃ as in (3.1), we obtain an estimate of ϒN(M̃)

which exhibits its dependence on N and the discrepancy between ψ and h.

PROPOSITION 5. Assume (H1), (H2) and supω,ω′x,x‘′ ψω(x)/ψω′
(x′) < ∞.

Then for any N ≥ 2,

ϒN(M̃) ≤ log
[
1 + 1

N − 1
DP(ψ,h)

]
,

where

DP(ψ,h) := P− ess supω

{
Cω sup

(z,z′)∈X2

∣∣∣∣ hω(z)

ψω(z)
− hω(z′)

ψω(z′)

∣∣∣∣},

Cω :=
(

2 sup
z,z′∈X

ψω(z)

ψω(z′)
− 1

)
sup
z∈X

(
ψω(z)

hω(z)

)
.

4. Discussion.

4.1. Sequential importance sampling. In the case N = 1, we have by inspec-
tion of (1.7) and (2.22) the identity Mω ≡ Mω, so the particle process {ζn;n ≥ 0}
reduces to a Markov chain with state-space X and also Gω(x) ≡ Gω(x). With these
observations in hand, we may apply our results to analyze sequential importance
sampling (SIS) estimators: arithmetic averages involving independent copies of
this (and other) Markov chains on X.
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Let M̃ :� × X × X → [0,1] be a Markov kernel, and for some L ≥ 1 and any
fixed ω ∈ �, let {Xi

n;n ≥ 0}Li=1 be L i.i.d. time-inhomogeneous Markov chains,
each with law

Xi
0 ∼ μ0, Xi

n|
{
Xi

n−1 = xi
n−1

} ∼ M̃θn−1ω(
xi
n−1, ·

)
, n ≥ 1.(4.1)

To connect with the setting of Sections 2.3 and 2.4, let N = 1, and set M̃ := M̃ .
We shall assume that (H1) and (H2) hold and that M̃ is a member of M. With each
{Xi

n;n ≥ 0} distributed according to (4.1), the quantity

1

L

L∑
i=1

[
n−1∏
p=0

Gθpω(
Xi

p

)
φθpω(

Xi
p,Xi

p+1
)]

(4.2)

is clearly an unbiased estimator of Eω[∏n−1
p=0 Gθpω(Xi

p)]. Furthermore, since the L

Markov chains are independent and Gω(x) ≡ Gω(x), for any fixed ω the relative
variance of (4.2) is L−1(Ṽω

n,1 − 1), where Ṽω
n,1 is as in (2.29). By application of

Proposition (4) (again with N = 1), we have the P-almost-sure convergence

1

n
log Ṽω

n,1 −→ ϒ1(M̃),(4.3)

and so if L = L(n),

lim inf
n→∞

1

n
log

(
1

L(n)
Ṽω

n,1

)
= ϒ1(M̃) − lim sup

n→∞
1

n
logL(n),(4.4)

P-almost-surely. By Theorem 1, except in the case (up to the sets of measure zero
mentioned therein) that M̃ω(x, dx′) ∝ Mω(x, dx′)hθω(x′), ϒ1(M̃) > 0 and so the
number of chains L(n) must be scaled up exponentially in n in order to prevent
exponential growth of the relative variance of (4.2). In this sense the SIS approach
is typically an inefficient method for approximating Eω[∏n−1

p=0 Gθpω(Xi
p)], at least

relative to particle methods, which we shall now discuss.

4.2. The bootstrap particle filter. In the case

G(ω,x) := g
(
x,Y0(ω)

)
, M

(
ω,x, dx′) := f

(
x, dx′),(4.5)

we have that {Mω;ω ∈ �} is the collection of the transitions of the bootstrap
particle filter, as described in the Introduction. When (H1) and (H2) hold, by
Lemma 3 we find that in this scenario, for any N ≥ 1, ϒN(M) = 0 if and only if
for P-a.a. ω,∃Aω ∈X s.t. ν(Ac

ω) = 0 and g(x,Y0(ω)) is constant on Aω. The con-
dition of g(x,Y0(ω)) being constant in x represents an entirely degenerate HMM
in which the observations do not provide any information about the hidden state.
Thus, we concentrate on the situation ϒN(M) > 0. By an application of Proposi-
tion 5 in the case that ψω(x) = 1 for all ω and x, and using the bound (2.17) of
Proposition 2, we find that there exists a constant c < ∞ such that

1

n
log Ṽω

n,N → ϒN(M) ≤ log
[
1 + c

N − 1

]
,(4.6)
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where the convergence holds P-almost surely. The practical importance of this re-
sult is that it shows why even the rather basic bootstrap filter is to be preferred over
the SIS method in terms of variance growth behavior, as seen by comparing (4.6)
with (4.4).

It should be noted that under our assumptions (H1) and (H2), the bound (4.6)
is implied by the bound of [6], Theorem 5.1. The latter also provides important
information about the nonasymptotic-in-n behavior of the relative variance, which
our Proposition 5 does not. On the other hand, Proposition 5 applies not just to the
standard particle transition M, but also to twisted transitions, to which the analysis
of [6] does not extend.

Continuing with the setting (4.5), and assuming that (H1) and (H2) hold, we
shall now discuss h. The objects appearing in part (1) of Proposition 2 have the
following interpretations: �θ−nω

n (μ) ≡ πθ−nω
n is the prediction filter initialized at

time −n using μ, and run forward to time zero, thus conditioning on the observa-
tions Y−n(ω), . . . , Y−1(ω). The quantity Qω

n (1)(x) is the conditional likelihood of
observations Y0(ω), . . . , Yn−1(ω) given that the hidden state in the HMM at time
zero is x. Thus, if we denote by 
ω

n the probability measure


ω
n (A) :=

∫
A πθ−nω

n (dx)Qω
n (1)(x)∫

X πθ−nω
n (dz)Qω

n (1)(z)
, A ∈X ,

we find by inspection of part (1) of Proposition 2 that h can be interpreted as the
pointwise limit

h(ω,x) ≡ lim
n→∞

d
ω
n

dπθ−nω
n

(x).(4.7)

Moreover, by part (2) of Proposition 2, we find that

sup
ω,x

∣∣∣∣ d
ω
n

dπθ−nω
n

(x) − h(ω,x)

∣∣∣∣ ≤ Cρn(4.8)

for some constants C < ∞ and ρ ∈ (0,1).
Let us now consider a twisted bootstrap particle filter (as per Section 1), in

the case that for some fixed � ≥ 1, we take ψω := d
ω
� /dπθ−�ω

� , and as an in-
stance of the setup in Section 3, we let M̃� = M̃ be as per (3.1) with this choice
of ψω. We note that ψω(x) is proportional to the conditional likelihood, under the
HMM, of observations Y0(ω), . . . , Y�−1(ω) given X0 = x, and that Algorithm 2
can be implemented with ψω only specified up to a constant of proportionality.
Although typically unavailable in practice, this ψω allows an illustrative applica-
tion of Proposition 5. Indeed, using (4.8), and the fact that under the bounds of
part (3) of Proposition 2 h(ω,x) is uniformly bounded above and below away
from zero, elementary manipulations show that there exists some finite constant
C′ < ∞ such that

ϒN(M̃�) ≤ log
[
1 + C′ρ�

N − 1

]
.(4.9)
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We see that, in principle, increasing the lag length � is useful in helping to control
ϒN(M̃�).

Now under the mild regularity condition (H3), for fixed ω and n, and ϕ a
bounded measurable function on X, Lemma 4 shows that for the twisted particle
filter,

N−1
N∑

i=1

ϕ
(
ζ i
n

) − πω
n (ϕ) → 0(4.10)

as N → ∞, with probability one, independently of ψ . Furthermore, by Theorem 2,
N−1/2 ∑N

i=1[ϕ(ζ i
n)−πω

n (ϕ)] converges in distribution to a centered Gaussian ran-
dom variable with variance independent of ψ , that is, the same asymptotic variance
obtained under the standard bootstrap particle filter.

4.3. Auxiliary particle filters. There exist many popular alternatives to the
bootstrap particle filter. One such algorithm is the auxiliary particle filter
(APF) [27], in which current and/or future observations can influence both the
resampling and proposal of particles. In this section we consider a family of APFs
which includes the “fully-adapted” version of [27]. Our presentation of the APF is
similar to that of [15, 20].

In addition to the ingredients of the HMM given in Section 1, introduce r :� ×
X →R+ such that for each ω, rω(x) is strictly positive and bounded in x. We have
in mind choosing rω to be d
ω

� /dπθ−�ω
� or some approximation thereof. Then set

Gω(x) := g(x,Y0(ω))
∫

X rθω(z)f (x, dz)

rω(x)
,

(4.11)
Mω

(
x, dx′) ∝ f

(
x, dx′)rθω

(
x′).

In this case, sampling according to Mω given by (2.20) amounts to a form of APF.
More specifically, let {μω

0 ∈ P(X);ω ∈ �} be the family of probability measures
such that μω

0 (dx) ∝ rω(x)μ0(dx), where μ0 is the initial distribution in the HMM,
as in Section 1. Then sampling

ζ0 ∼ (
μω

0
)⊗N

, ζn|ζn−1 ∼ Mθn−1ω(ζn−1, ·)(4.12)

(we leave it to the reader to write out the algorithmic details), it is straightforward
to check using (2.5), (2.9) and (2.23) that

Žω,N
n := μ0

(
rω)( 1

N

N∑
i=1

1

rθnω(ζ i
n)

)
n−1∏
p=0

Gθpω(ζp)(4.13)

is an unbiased estimator of Zω
n . If r is bounded above and below away from zero,

and (H1) and (H2) hold, then Proposition 4 may be applied to establish the exis-
tence of ϒN(M) ≥ 0 such that the following convergence holds P-almost surely:

1

n
log

Eω
N [(Žω,N

n )2]
(Zω

n )2 −→ ϒN(M),(4.14)



136 N. WHITELEY AND A. LEE

since the μ0(r
ω) and N−1 ∑N

i=1[rθnω(ζ i
n)]−1 terms have no asymptotic contribu-

tion and since the convergence in Proposition 4 is independent of the distribution
from which the particle system is initialized.

In the particular case of taking r(ω, x) := g(x,Y0(ω)), inspection of (4.11)
shows that we obtain the “fully adapted” APF [27]. Moreover, Lemma 3 then
shows that ϒN(M) = 0 if and only if for P-almost all ω,

∫
X g(z,Y1(ω))f (x, dz) is

ν-almost everywhere a constant. Outside of this kind of degenerate scenario, our
analysis does not reveal whether this constant ϒN(M) for the APF is bigger or
smaller than the counterpart constant for the bootstrap filter in (4.6) or the con-
stant for the twisted bootstrap filter on the l.h.s. of (4.9) (with � fixed and finite).
Moreover, our analysis does not reveal whether such orderings are invariant to the
ingredients of the underlying HMM or other elements of our setup such as the law
of the observation process, P. Exploratory numerical experiments suggest such
invariance does not hold in general—see Section 4.4.

We can say something, however, about an “ideal” APF, arising through a partic-
ular choice of r . We have seen in (4.9) that taking � → ∞ in this twisted bootstrap
filter, we can push the variance growth rate to zero. There is an APF which per-
forms equally well in that sense; if we choose

r(ω, x) := lim
n→∞

d
ω
n

dπθ−nω
n

(x),(4.15)

that is, the generalized eigenfunction for the kernel g(x,Y0(ω))f (x, dx′), then∫
X
g
(
x,Y0(ω)

)
f

(
x, dx′)rθω(

x′) = χωrω(x)(4.16)

for a nonnegative random variable χ . Applying (4.16) to (4.11), we find that Gω

appearing therein is constant in x. By Lemma 3, the constant on the r.h.s. of (4.14)
then satisfies ϒN(M) = 0.

We can also point out a difference in how the APF and the twisted bootstrap
filter may be used to approximate integrals with respect to the prediction filters
{πω

n ;n ≥ 0}. If for some test function ϕ, one wishes to use N
−1 ∑N

i=1 ϕ(ζ i
n) to ap-

proximate πω
n (ϕ) in a N → ∞ consistent manner, then, in general and in contrast

to (4.10), some re-weighting must be applied to the particles. For example, assum-
ing (H3) holds with G as in (4.11) and rω(x) is bounded below away from zero
in x, Lemma 4 and some elementary manipulations involving �ω

n show that for
bounded measurable ϕ,∑N

i=1 ϕ(ζ i
n)/rθnω(ζ i

n)∑N
i=1 1/rθnω(ζ i

n)
− πω

n (ϕ) → 0(4.17)

as N → ∞, with probability 1 under the law of the particle system specified by
(4.11)–(4.12). Numerical experiments (see Section 4.4, Figure 3) indicate that the
variance of the APF estimator in (4.17) may be larger than that of the bootstrap esti-
mator (4.10). This is perhaps attributable to the weighting of the particles in (4.17).
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From a practical point of view, it should be noted that the computational cost
of the twisted bootstrap filter and the APF are, in general, different: in the former,
N − 1 of the particles are propagated using the HMM kernel f , whereas in the
APF, all N particles are propagated using the generally more complicated kernel
in (4.11). The difference in computational cost may, however, be rather dependent
on the particular model treated and the specific techniques of simulation.

Last we note that, upon assuming the setting (4.11) and then following the
generic structure of Section 3, twisted auxiliary particle filters can readily be de-
vised. The idea of “twisting” is equally applicable to several other families of se-
quential Monte Carlo algorithms.

4.4. Numerical illustrations. In order to give some impression of the practical
performance of the algorithms we have analyzed, we now present some numerical
findings. (H2) is not satisfied for the M and G which specify the models below; in
this section some of our theoretical results can only be used as guidelines for the
design of practical algorithms. We note, however, that the much milder regularity
condition (H3) is satisfied for the models we consider and, thus, Lemma 4 and
Theorem 2 apply to the particle systems in question.

We shall first consider the influence of ψ on the variance growth behavior of the
twisted bootstrap particle filter (henceforth TPF). The purpose of this example is
to illustrate an idealized scenario in which ψω := d
ω

� /dπθ−�ω
� can be computed

exactly. Consider a linear-Gaussian state-space model where Xn = 0.9Xn−1 + Vn,
Yn = Xn + Wn, where (Vn), (Wn) are i.i.d. zero mean, unit variance Gaussian se-
quences. Note that the TPF algorithm can be implemented with ψω only known
up to a constant of proportionality. Figure 1 shows variance growth behavior es-
timated empirically using 10,000 independent runs of the algorithm for a single
observation sequence, which was drawn from the model and then fixed. Conver-
gence of n−1 log Ṽω

n,N is apparent and the influence of � on the rate of variance
growth is substantial.

We now turn to a standard stochastic volatility model, in which d
ω
� /dπθ−�ω

�

is unavailable in closed form, but for which a standard deterministic (henceforth,
“the”) approximation is available. For details of the model, the approximation and
the real data set of daily returns on pound/dollar exchange rates, see [17] and
the references therein. We tested the TPF and APF using this data set and the
same model parameter settings as in the aforementioned paper. We took both ψω

(for the TPF) and rω [for the APF as in (4.11)] to both be the approximation of
d
ω

� /dπθ−�ω
� .

Figure 2 shows empirical variance growth behavior for a range of values of �,
estimated from 10,000 independent runs of each algorithm. For both algorithms,
increasing � appears to generally yield a decrease in variance. The figures indicate
that, apart from occasional fluctuations, the APF mostly exhibits lower variance
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FIG. 1. Linear-Gaussian model and the TPF. Estimated values of Ṽω
n,N −1 (left) and n−1 log Ṽω

n,N
(right) against n; with N = 100 and � = 0 (red), � = 1 (yellow), � = 2 (green) and � = 5 (cyan). The
� = 0 plot is omitted from the right-hand figure due to scale constraints. To the precision of these
figures, increasing the lag beyond � = 5 had no noticeable influence on the variance.

than the TPF, however, we found this phenomenon to be dependent on model pa-
rameter settings, for other parameter values we found the TPF exhibited lower
variance than the APF (not shown).

The left plot in Figure 3 illustrates how the variance of the estimates from the
TPF varies with N . An increase in variance growth rate is evident as N is de-

FIG. 2. Stochastic volatility model. Estimated values of Ṽω
n,N − 1 against n, for the TPF (left)

and APF (right); with N = 1000 and � = 0 (red), � = 1 (yellow), � = 2 (cyan), � = 5 (blue) � = 10
(green) and � = 50 (violet).
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FIG. 3. Stochastic volatility model. Left: estimated values of Ṽω
n,N − 1 against n for the TPF for

� = 5 and N = 10 (red), N = 100 (yellow) and N = 1000 (green). Right: empirical variance of
particle approximations of the mean of πω

n against n, with N = 1000 and � = 5, for the TPF (cyan)
and APF (red).

creased. The right plot of Figure 3 shows the empirical variance of particle esti-
mates of the mean of the prediction filter πω

n against n, obtained from the TPF and
APF both with � = 5. It is notable that here the TPF generally exhibits lower vari-
ance than the APF. Results for the standard bootstrap particle filter were found to
be identical to those for the TPF on the scale of this figure, which is in agreement
with the conclusions of Theorem 2 applied to the TPF, that is, that the asymptotic
variance of prediction filter approximations is independent of ψ .

4.5. Generalizations and extensions. We have only mentioned the multi-
nomial resampling scheme, appearing implicitly in the definition of M given
in (2.20). Several alternative schemes are popular in practice. In order to develop
extensions of Proposition 4 and Theorem 1 to alternative schemes (assuming re-
sampling is applied at every time step and with a fixed number of particles), it suf-
fices to redefine M appropriately so that it incorporates the resampling scheme of
interest, to check that the conditions in the statement of Lemma 1 are satisfied, and
to check that Lemma 2 holds with Q redefined in terms of this new M. Of course,
the new M will influence the form of the corresponding twisted algorithms.

Some types of standard particle algorithms and variants of the APF resample
according to weights which depend on two or more historical components of the
trajectory of each particle. Such algorithms can be incorporated into the framework
presented here by a simple state-space augmentation. For example, starting from
each Markov kernel Mω on (X,X ) (according to which particles are sampled in
the algorithm of interest), one builds a kernel, M

ω
(x, dz) := δx2(dz1)M

ω(z1, dz2)

on (X2,X⊗2), where x = (x1, x2), z = (z1, z2) are points in X2, and introduces
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the appropriate incremental weight G
ω
(x). Then the analyses of Section 2 can be

repeated with mostly superficial differences: when Mω satisfies (2.4), then M
ω

satisfies a 2-step version of the same condition; one then works on (X2,X⊗2) in-
stead of (X,X ), dealing with the kernel Q

ω
(x, dz) := G

ω
(x)M

ω
(x, dz) instead

of Qω.
Last, we note that Proposition 4 can be easily generalized from dealing with the

second moment to any 1+ δ moment (δ ≥ 0), subject to suitable redefinition of M.
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SUPPLEMENTARY MATERIAL

Twisted particle filters (DOI: 10.1214/13-AOS1167SUPP; .pdf). This supple-
ment contains proofs of Lemmas 3–4, Propositions 1–5 and Theorems 1–2.
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