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UNEXPECTED PROPERTIES OF BANDWIDTH CHOICE WHEN
SMOOTHING DISCRETE DATA FOR CONSTRUCTING

A FUNCTIONAL DATA CLASSIFIER

BY RAYMOND J. CARROLL1, AURORE DELAIGLE2 AND PETER HALL2

Texas A&M University, University of Melbourne and University of Melbourne

The data functions that are studied in the course of functional data analy-
sis are assembled from discrete data, and the level of smoothing that is used is
generally that which is appropriate for accurate approximation of the concep-
tually smooth functions that were not actually observed. Existing literature
shows that this approach is effective, and even optimal, when using functional
data methods for prediction or hypothesis testing. However, in the present
paper we show that this approach is not effective in classification problems.
There a useful rule of thumb is that undersmoothing is often desirable, but
there are several surprising qualifications to that approach. First, the effect of
smoothing the training data can be more significant than that of smoothing
the new data set to be classified; second, undersmoothing is not always the
right approach, and in fact in some cases using a relatively large bandwidth
can be more effective; and third, these perverse results are the consequence
of very unusual properties of error rates, expressed as functions of smooth-
ing parameters. For example, the orders of magnitude of optimal smoothing
parameter choices depend on the signs and sizes of terms in an expansion of
error rate, and those signs and sizes can vary dramatically from one setting to
another, even for the same classifier.

1. Introduction. All supposedly “functional” data are actually observed dis-
cretely, sometimes on a grid and on other occasions at randomly scattered points.
For example, in longitudinal data analysis the observation points are often widely
spaced and irregularly placed, and substantial smoothing is commonly used to
convert discrete data like these to functions. The impact of such smoothing has
been addressed in the context of prediction or hypothesis testing for functional
data; see, for example, Hall and Van Keilegom (2007), Panaretos, Kraus and Mad-
docks (2010), Wu and Müller (2011), Benhennia and Degras (2011), Cardot and
Josserand (2011) and Cardot, Degras and Josserand (2013). The main conclusion
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of these papers has been that conventional rules for smoothing discrete data typ-
ically apply, and that smoothing parameters of standard size generally are appro-
priate.

In contrast, the present paper was motivated by numerical work indicating that,
in the context of classifying functional data, smoothing parameters of highly non-
standard sizes are appropriate, and more generally that, even for a relatively simple
classifier, there is no simple precept (even an asymptotic prescription of size) that
leads to minimisation of error rate. If one had to give a rule, valid in some but by
no means all cases, it would be to undersmooth, but even there unexpected caveats
must be addressed.

For example, it turns out that the impact of smoothing the training data can
be more significant than that of smoothing the new data to be classified. In-
deed, the effect of smoothing the new data is characteristic of a parametric prob-
lem, rather than a nonparametric one. There, asymptotic arguments indicate that
(sample size)−1/2 is an appropriate bandwidth size for reducing the impact of
smoothing to parametric levels, whereas (sample size)−1/3 is the nearest analogue
for smoothing the training data.

However, both these recommendations are incorrect in many cases. Depending
on the signs and sizes of certain functionals of the data distributions, it can be
optimal to use smoothing parameters that are an order of magnitude smaller, or
an order of magnitude larger, than these. Using some viewpoints the need for a
low level of smoothing is intuitively clear. Indeed, we expect that relatively minor
features of a curve, of the sort that might disappear if we were too enthusiastic in
the smoothing step, could have important information to convey in a classification
analysis. On the other hand, our results show that very high levels of smoothing
are sometimes advantageous.

We drew these conclusions after studying three different classifiers for func-
tional data: the standard centroid-based method, the scale-adjusted form of that ap-
proach, and a version for functional data of quadratic discrimination. Our conclu-
sions are valid for all three approaches, although they contradict conclusions which
are well known for standard nonparametric approximations to the Bayes classifier
in multivariate, rather than functional-data, settings. Specifically, for univariate and
functional data, and nonparametric Bayes classifiers, conventional smoothing pa-
rameters, for example, those chosen using standard plug-in rules for function esti-
mation, typically are of the correct order even though they do not quite minimise
asymptotic classification error; see, for example, Hall and Kang (2005). Moreover,
there does not exist a version of our results in univariate or multivariate settings,
since there is no analogue in such cases of the “lattice effect,” represented by the
mkj ’s.

To these comments, we should add that in practice there is relatively little dif-
ficulty in choosing smoothing parameters to minimise error rate; cross-validation
is usually effective. Our aim in this paper is therefore not to develop methods for
choosing the bandwidth optimally, or nearly optimally, in classification problems,
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but to provide an understanding of the many aspects of those problems that con-
spire together to determine the optimal choice.

2. Model and methodology.

2.1. Model. We consider n0 (resp., n1) unknown random functions {g0j ,1 ≤
j ≤ n0} (resp., {g1j ,1 ≤ j ≤ n1}) coming from two populations. We observe a
training sample of the data pairs Dkj = {(Xkji, Ykji), 1 ≤ i ≤ mkj }, for 1 ≤ j ≤ nk

and k = 0,1, corresponding to noisy versions of the gkj ’s sampled at a discrete set
of random points (i.e., Xkji’s) and generated by the model

Ykji = gkj (Xkji) + εkji,(2.1)

where k indexes the population, �k , from which the data in Dkj came, j de-
notes the index of an individual drawn from �k , and i is the index of a data pair
(Xkji, Ykji) for the j th individual from the kth population.

The gkj are random functions defined on a compact interval I , but observed
only at mkj points Xkj1, . . . ,Xkjmkj

. These points may be fixed or random, and
although we shall develop our arguments in the random case, they can easily be
extended to the fixed case. We assume that each gkj has two bounded derivatives
on I ; the respective sequences of X’s and ε’s are each identically distributed with
distributions that do not depend on the g’s; the g’s, X’s and ε’s are all mutually
independent; the X’s are supported on I ; and the ε’s have zero mean and finite
variance.

We also observe a new data set D = {(Xi, Yi), 1 ≤ i ≤ m}, similar to the Dkj ’s
except that in this case we do not know which population the data come from.
Here,

Yi = g(Xi) + εi,(2.2)

where the function g, the X’s and the ε’s have the properties given in the previous
paragraph. Using the training data, we wish to determine whether D came from
�0 or �1.

In the functional data literature [see, e.g., Ramsay and Silverman (2005)], when
the data are noisy, it is common to preprocess them prior to further analysis. Typi-
cally, this is done by smoothing the data in some way, for example, through a spline
or kernel smoother, thereby obtaining, from the data in Dkj and D, estimators ĝkj

and ĝ of gkj and g, respectively. In the classification context, once these estimators
have been derived, they are plugged into functional data classifiers, replacing there
the unobserved functions g and gkj by their estimators ĝ and ĝkj . Our aim in this
paper is to describe the application of estimators ĝ and ĝkj of g and gkj , and in
particular to describe the influence of tuning parameters used to construct them,
when the aim is classification rather than just function estimation.
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2.2. Estimating g, gkj and their mean and covariance functions. There are
several ways to obtain nonparametric estimators of the functions g and gkj , but
the most popular ones are spline and local linear methods. They have similar prop-
erties, but since local linear estimators are much more tractable theoretically, we
shall use these in this work. For x ∈ I , the local linear estimators of g and gkj are
defined by

ĝ(x) = U2(x)V0(x) − U1(x)V1(x)

U2(x)U0(x) − U2
1 (x)

,

ĝkj (x) = Ukj2(x)Vkj0(x) − Ukj1(x)Vkj1(x)

Ukj2(x)Ukj0(x) − U2
kj1(x)

,(2.3)

where

U�(x) = 1

m

m∑
i=1

(
x − Xi

h

)�

Kh(x − Xi),(2.4)

V�(x) = 1

m

m∑
i=1

Yi

(
x − Xi

h

)�

Kh(x − Xi),(2.5)

Ukj�(x) = 1

mkj

mkj∑
i=1

(
x − Xkji

h1

)�

Kh1(x − Xkji),(2.6)

Vkj�(x) = 1

mkj

mkj∑
i=1

Ykji

(
x − Xkji

h1

)�

Kh1(x − Xkji),

K is a kernel function, h > 0 and h1 > 0 are bandwidths, and Kh(x) = K(x/h)/h.
See, for example, Fan and Gijbels (1996). For simplicity, throughout we use the
same bandwidth h1 for each population and each individual, but we could have
replaced h1 by bandwidths that depended on k and j , as we do in our numerical
work.

The classifiers we consider in this work require estimators of the population
means and covariances. For k = 0,1, let μk denote the mean function

μk = Ek(g) = Ek(gkj ),(2.7)

where Ek represents expectation under the assumption that the data come from �k .
Also, let Gk be the covariance function, defined by Gk(u, v) = covk{g(u), g(v)} =
Ek{g(u)g(v)} − μk(u)μk(v), where covk denotes covariance when the data come
from �k . Estimators μ̂k and Ĝk of μk and Gk are defined in the standard way by
the empirical mean and covariance functions, but replacing, in the definitions of
these estimators, the unobserved gkj by ĝkj :

μ̂k = 1

nk

nk∑
j=1

ĝkj ,(2.8)
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Ĝk(u, v) = 1

nk

nk∑
j=1

{
ĝkj (u) − μ̂k(u)

}{
ĝkj (v) − μ̂k(v)

}
.(2.9)

See, for example, Ramsay and Silverman (2005), Chapter 2.
Consider the spectral decomposition of the covariance function

Gk(u, v) =
∞∑

�=1

θk�ψk�(u)ψk�(v),(2.10)

where (θk�,ψk�) is an (eigenvalue, eigenfunction) pair for the linear operator Gk

defined by Gk(ψ)(u) = ∫
Gk(u, v)ψ(v) dv, and where, following convention, we

have used the notation Gk for both the operator and the covariance. The terms in
(2.10) are ordered such that θk1 ≥ θk2 ≥ · · · ≥ 0. If g is drawn from �k then we
can write

g(x) = μk(x) +
∞∑

�=1

Zk�θ
1/2
k� ψk�(x),(2.11)

where μk = Ek(g) denotes the mean of the random process of which g is a re-
alisation, Zk� = θ

−1/2
k�

∫
(g − μk)ψk�, and the Zk�’s (for � = 1,2, . . .) comprise

a sequence of uncorrelated random variables with zero mean and unit variance.
The quantities θk� and ψk� can be estimated consistently by the eigenvalues and
eigenfunctions θ̂k� and ψ̂k� of the linear operator Ĝk , defined by Ĝk(ψ)(u) =∫

Ĝk(u, v)ψ(v) dv, with the covariance estimator Ĝk defined as at (2.9):

Ĝk(u, v) =
∞∑

�=1

θ̂k�ψ̂k�(u)ψ̂k�(v),(2.12)

where θ̂k1 ≥ θ̂k2 ≥ · · · ≥ 0, and, since θ̂k� = 0 for all � > nk , all but the first nk

terms in the series at (2.12) vanish. See Hall and Hosseini-Nasab (2006, 2009) for
properties of these estimators in the case where g and gkj are observed; see also
Li and Hsing (2010a, 2010b) for other cases.

2.3. Constructing classifiers. Classifiers for functional data have received a
great deal of attention in the literature. See, for example, Vilar and Pértega (2004),
Biau, Bunea and Wegkamp (2005), Fromont and Tuleau (2006), Leng and Müller
(2006), López-Pintado and Romo (2006), Rossi and Villa (2006), Cuevas, Febrero
and Fraiman (2007), Wang, Ray and Mallick (2007), Berlinet, Biau and Rou-
vière (2008), Epifanio (2008), Araki et al. (2009), Delaigle and Hall (2012) and
Delaigle, Hall and Bathia (2012).

In those papers the authors suggest methods for constructing classifiers, but so
far the theoretical impact of smoothing; that is, the impact of using ĝ and ĝkj in-
stead of g and gkj when constructing classifiers; has been largely ignored in the
literature. In this paper, we study this impact of smoothing for three relatively sim-
ple functional classifiers: the centroid classifier, or Rocchio classifier [see, e.g.,
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Manning, Raghavan and Schütze (2008)], commonly used for classifying high-
dimensional data; a scaled version of this classifier, which we define below in a
general way; and a version for functional data of Fisher’s quadratic discriminant,
studied, for example, by Leng and Müller (2006) and Delaigle and Hall (2012).
These classifiers are usually defined in terms of the functions g and gkj , and here
we shall define them in terms of ĝ and ĝkj . The standard versions of these classi-
fiers are obtained by replacing ĝ and ĝkj by g and gkj . The functions ĝkj appear
only implicitly through the estimated means and covariance functions constructed
in Section 2.2.

In the present setting, the centroid-based classifier assigns the curve g, observed
through D, to �0 if the statistic

S(ĝ) =
∫

I

{
ĝ(t) − μ̂0(t)

}2
dt −

∫
I

{
ĝ(t) − μ̂1(t)

}2
dt(2.13)

is negative, and to �1 if S(ĝ) > 0.
A scaled version of the centroid classifier, which accommodates differences in

scales between the two populations, can be defined by replacing S in (2.13) by

Sscale(ĝ) = 1

s2
0

∫
I

{
ĝ(t) − μ̂0(t)

}2
dt

(2.14)

− 1

s2
1

∫
I

{
ĝ(t) − μ̂1(t)

}2
dt + log

(
s2

0

s2
1

)
,

where s2
k is an estimator of the scale of population �k . For example, we might take

s2
k to equal nk

−1 ∑nk

j=1

∫
I (ĝkj − μ̂k)

2, the version we used in our numerical work,

or
∫

I
∫

I Ĝk(u, v)ψ(u)ψ(v) dudv, where ψ is open to choice; or s2
0 and s2

1 could
be selected empirically by minimising a cross-validation estimator of classification
error. The definition at (2.14) should be compared with those at (2.15) and (2.16),
below. The form of (2.14), and also of (2.15) and (2.16), is motivated by likelihood-
ratio statistics for Gaussian data.

A version for functional data of Fisher’s quadratic discriminant is based on

T (ĝ) =
p∑

�=1

[
1

θ̂0�

{∫
I
(ĝ − μ̂0)ψ̂0�

}2

(2.15)

− 1

θ̂1�

{∫
I
(ĝ − μ̂1)ψ̂1�

}2

+ log
(

θ̂0�

θ̂1�

)]
,

where ĝ and μ̂k are as at (2.3) and (2.8), (θ̂0�, θ̂1�) are at (2.12) and p is a positive
truncation parameter. (Here we assume, as is often the case in practice, that the
prior probabilities of each population are unknown and estimated by 1/2. A more
general version of the classifier can be used if these probabilities are estimated
by other values, but this does not alter our main conclusions.) We assign the new



BANDWIDTH CHOICE IN CLASSIFICATION 2745

data set D to �0 if T (ĝ) ≤ 0, and to �1 otherwise. Of course, the statistic T (ĝ),
at (2.15), is just an empirical version of the quantity

T0(g) =
p∑

�=1

[
1

θ0�

{∫
I
(g − μ0)ψ0�

}2

(2.16)

− 1

θ1�

{∫
I
(g − μ1)ψ1�

}2

+ log
(

θ0�

θ1�

)]
.

If the functions g are Gaussian, and the first p eigenvalues, in versions of (2.10)
and (2.12) for either population, are distinct and nonzero, and the remaining eigen-
values vanish, then the classifier based on T0(g), at (2.16), is optimal in the sense
of having least classification error among all classifiers, since it is, after all, just a
likelihood ratio statistic. When the eigenvalues and eigenfunctions are estimated
from data, as at (2.15), the classifier is asymptotically optimal. Bearing in mind the
effectiveness of Fisher’s discriminant analysis in the case of vector-valued data,
even when the data are not normal, the classifier based on T (ĝ) is an attractive
choice even in non-Gaussian cases.

3. Theoretical properties.

3.1. Standard centroid-based classifier. In this section, we derive properties
of the centroid classifier based on the estimators ĝ and ĝkj , and in particular we
examine the impact of smoothing. First, we introduce notation. Let n = n0 + n1
(hence n is a positive integer sequence diverging to infinity), let m = m(n) be
of the same size as mkj [see (3.7) below], and write σ 2

εk for the variance of the
experimental errors εkji and εi , in (2.1) and (2.2), when the data come from �k .
Let

ḡk = 1

nk

nk∑
j=1

gkj , νk = n2
k

(
nk∑

j=1

m−1
kj

)−1

(3.1)

and define

bk0 =
∫

I
(μ1 − μ0)

{
2μk − (μ0 + μ1)

}
,

(3.2)
βk0 =

∫
I
(ḡ1 − ḡ0)

{
2μk − (ḡ0 + ḡ1)

}
,

σ 2
k = 4κ2

∫
I

∫
I
(ḡ1 − ḡ0)(x1)(ḡ1 − ḡ0)(x2)Gk(x1, x2) dx1 dx2,(3.3)

τ 2
k = 4κ2

∫
I

∫
I
(μ1 − μ0)(x1)(μ1 − μ0)(x2)Gk(x1, x2) dx1 dx2,(3.4)

where κ2 = ∫
u2K(u)du. Finally, put κ = ∫

K2, and let I be the compact interval
that equals the support of the density fX of the Xi’s and Xkji’s, and of the functions
g and gkj .



2746 R. J. CARROLL, A. DELAIGLE AND P. HALL

We make the following assumptions:

(a) The distribution of the experimental errors εkji and εi , in (2.1)
and (2.2), has zero mean and all moments finite, may depend on k, and
has variance σ 2

εk; (b) the density fX of the variables Xkji and Xi does not
depend on i, j or k; (c) fX has two bounded derivatives, fX(x) ≥ C > 0
for all x ∈ I , and f ′′

X is Hölder continuous on the support I of fX.

(3.5)

(a) The functions g and gkj associated with the populations �k, for
k = 0,1, are realisations of Gaussian processes, have uniformly bounded
covariance functions Gk and mean functions μk, both depending only
on k, and satisfy τ 2

k > 0 for k = 0,1; and (b) with probability 1 the
functions are uniformly bounded and have Hölder-continuous second
derivatives, with the property that, for a constant C > 0, all moments of
supx1,x2

|g′′(x1) − g′′(x2)|/|x1 − x2|C are finite when g is sampled from
either �0 or �1.

(3.6)

(a) For a constant C > 0, the results h(1) = O(n−C) and n1−Ch(1) → ∞
hold for h(1) = h and h(1) = h1; (b) the kernel K is a symmetric, nonneg-
ative, compactly supported and Hölder continuous probability density;
and (c) for each k the values of m−1 minj mkj , m−1 maxj mkj and n0/n1
are bounded away from zero and infinity as n → ∞, and, for constants C1
and C2 satisfying 0 < C1 < C2 < ∞, m and n0 lie between nC1 and nC2 .

(3.7)

The assumption in (3.5)(c) that fX is bounded away from zero on its support is
only a technical requirement, and is unnecessary in practice. To make this clear,
in our numerical work we shall take fX to be a normal density, and show that the
conclusions of Theorem 1 are nevertheless reflected clearly.

Let errk = Pk{(−1)kS(ĝ) > 0} denote the probability that the standard centroid-
based classifier, based on the statistic S(ĝ) at (2.13), commits an error when the
data set D actually comes from �k . Theorem 1 below describes the asymptotic
behaviour of errk , and highlights the effect of the smoothing parameters h and h1,
used to construct the estimators ĝ and ĝkj of g and gkj , on the classifier. A proof
is given in Appendix A.1.

THEOREM 1. Assume that (3.5)–(3.7) hold, and let �0 = 1 − 
 and �1 = 
,
where 
 denotes the c.d.f. of a standard normal random variable. Then

errk = errk0 + h2ck + h2
1ck1 + dk0

ν0h1
+ dk1

ν1h1
(3.8)

+ O
{
m−1 + (mh)−2} + o

(
h2 + h2

1 + 1

ν0h1

)
,

where errk0 = Ek[�k{−βk0/σk}], ck = κ2αk

∫
I (μ1 −μ0)μ

′′
k , ck1 = −κ2αk

∫
I (μ1 −

μ0)μ
′′
1−k , dkj = (−1)jαkσ

2
εj κ

∫
I f −1

X , with αk = (−1)kτ−1
k φ(bk0/τk), and where

φ denotes the standard normal density function.
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The leading term errk0 on the right-hand side of (3.8) does not depend in any
way on the bandwidths h and h1. It does involve the training sample sizes n0
and n1, and in particular does not equal the asymptotic limit of errk as n increases,
since that limit is given by �k(−bk0/τk), but the effects of the bandwidths are
all confined to subsequent terms on the right-hand side of (3.8). The terms in h2

and h2
1 represent contributions to classification error arising from biases of the

estimators ĝ and ĝkj , and the terms in (ν0h1)
−1 and (ν1h1)

−1 are contributions
from the variances of the estimators ĝkj .

While a priori it might be thought that, since the total number of observations in
the training sample,

∑
j mkj , for k = 0 and 1, is an order of magnitude larger than

the number of observations, m, in the new data set D, then h1 should be chosen
smaller than h, Theorem 1 shows that the influence of bandwidths on error rate is
much more complex than this.

For one thing, there are no terms in (mh)−1 on the right-hand side of (3.8).
(Section 3.1.2 will explain the reason for this.) As a result, the terms on the right-
hand side of (3.8) that depend on h can be rendered equal to O(m−1) simply by
taking h equal to a constant multiple of m−1/2. As noted in Remark 1, below, this
level of contribution to the error rate is generally impossible to remove, even in
simple parametric problems. Therefore the contribution of h to error rate cannot be
rendered smaller than m−1. However, in some instances choosing h to be an order
of magnitude larger or smaller than m−1/2 can be beneficial; see Section 3.1.1
below.

The terms in h1 on the right-hand side of (3.8) are a different matter because
each of ck1 and dk0ν

−1
0 + dk1ν

−1
1 can be either positive or negative. Depending on

the signs and sizes of ck1 and dk0ν
−1
0 + dk1ν

−1
1 , it can be optimal to take h1 to be

of order ν
−1/3
k , which achieves a trade-off between terms in h2

1 and (νkh1)
−1, or

to take h1 to decrease to zero more quickly or to converge to a positive constant,
as n increases; see Section 3.1.1 below.

Therefore, the impact that smoothing has on classification performance is much
more subtle than it might have appeared. We discuss these issues in more detail in
the next sections.

3.1.1. Sizes of h and h1 that optimise overall error rate. Using Theorem 1 we
can deduce the orders of magnitudes of h and h1 that minimise the error rate of
the classifier, that is, that minimise the probability of misclassification,

err = π0err0 + π1err1,(3.9)

where err0 and err1 are as in (3.8), πk denotes the prior probability attached to
population �k , and π0 + π1 = 1. Using (3.8) and (3.9), we can write

err = err0 + c0h2 + c0
1h

2
1 + d0(ν0h1)

−1 + O
{
m−1 + (mh)−2}

(3.10)
+ o

{
h2 + h2

1 + (ν0h1)
−1}

,
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where err0 = π0err00 + π1err10 (recall that errk0 does not depend on the band-
widths),

c0 = κ2

∫
(μ1 − μ0)

{
π0

μ′′
0

τ0
φ

(
b00

τ0

)
− π1

μ′′
1

τ1
φ

(
b10

τ1

)}
,

c0
1 = κ2

∫
(μ0 − μ1)

{
π0

μ′′
1

τ0
φ

(
b00

τ0

)
− π1

μ′′
0

τ1
φ

(
b10

τ1

)}
,

d0 = κ

(∫
I
f −1

X

){
π0

τ0
φ

(
b00

τ0

)
− π1

τ1
φ

(
b10

τ1

)}(
σ 2

ε0 − σ 2
ε1

ν0

ν1

)
.

Since the function φ is symmetric, and b10 = −b00, then b10 can be replaced by
b00 in the formula for d0 without altering its veracity.

To appreciate the very wide range of optimal bandwidth choices that can arise
in the problem of minimising error rate, let us consider minimising err, at (3.10).
To help remove ambiguities, let us assume that as n increases the value of σ 2

ε0 −
σ 2

ε1ν0ν
−1
1 is of the same sign for all sufficiently large n, and its absolute value is

bounded away from zero; assumption (3.7)(c) ensures that it is uniformly bounded.
In this instance, and focusing just on the terms in h1, we see that four distinct cases
can arise in practice:

(i) c0
1 and d0 are both positive. In this case, to minimise the contribution

from h1, we should minimise c0
1h

2
1 + d0(ν0h1)

−1, which is achieved by taking

h1 to be of size ν
−1/3
0 .

(ii) c0
1 and d0 are both negative. In this case, the contribution made by h1

behaves like −{|c0
1|h2

1 + |d0|(ν0h1)
−1} as sample size increases. The term within

braces here is maximised by taking h1 = 0, and analogously, in minimising err, it
is optimal to take h1 to be of strictly smaller order than ν

−1/3
0 .

(iii) c0
1 > 0 and d0 ≤ 0. In this case, to minimise the error rate, we need to max-

imise the size of the negative term and minimise that of the positive term, which is
achieved by taking h1 to be of strictly smaller order than ν

−1/3
0 (the precise order

depends on the magnitude of second order terms, but deriving the latter precisely
would require a lot of additional computation).

(iv) c0
1 < 0 and d0 ≥ 0. Here, using arguments similar to those in case (iii),

taking h1 to be of strictly larger order than ν
−1/3
0 is optimal.

The case d0 = 0 occurs, for example, if the covariance Gk of the Gaussian pro-
cess g, the experimental error variance σ 2

εk , and the values of mkj and nk do not
depend on k. Equal values of mkj commonly arise when the data are observed on
a grid; see Remark 4.

A similar analysis can be carried out in the case of optimisation over h rather
than h1, although there the optimum is accessed from a comparison of terms in
h and (mh)−2, rather than h2

1 and (ν0h1)
−1. [A tedious analysis of the term of
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size (mh)−2, represented by the remainder O{(mh)−2} in (3.8), shows that it can
be either positive or negative.] Depending on the relative signs of the terms in h2

and (mh)−2, it can be optimal to take h � m−1/2, or h of strictly larger, or strictly
smaller order than m−1/2.

Similar results are obtained if we investigate properties of errk , in (3.8), instead
of the overall error rate, err, at (3.9).

These results explain the very diverse patterns of behaviour that are seen in
numerical work, and that motivated our research; see Section 1. In summary, in
apparently similar problems and using the same type of classifier, it can be opti-
mal to use a very small bandwidth, or a very large bandwidth, or a bandwidth of
only moderate size, depending on the signs of certain constants. Therein lies the
contradictory nature of the smoothing parameter choice problem for classification
of functional data.

3.1.2. Absence of terms in (mh)−1. The centroid-based classifier statistic
S(ĝ), at (2.13), can be written equivalently as

S(ĝ) =
∫

I
(μ̂1 − μ̂0)(2ĝ − μ̂0 − μ̂1) dt.(3.11)

Importantly, there is no quadratic term in ĝ2 in (3.11), and as a result the impact of
the bandwidth h, although not h1, on properties of the classifier is greatly reduced.
This reduction is brought about by the smoothing effect of the integral in (3.11),
which results in the elimination of terms in (mh)−1.

This property, to which we shall refer to as the “integration effect,” is known in
other settings, for example, when integrating a kernel density estimator, computed
from a sample of size m, to produce a distribution estimator. Integration results in
the variance reducing from order (mh)−1, for the density estimator, to order m−1,
for the distribution function estimator—just as it does in the setting above.

REMARK 1 (Order m−1 term in expansion of classification error). We as-
sumed in (3.7)(c) that the values of mkj , representing the number of pairs
(Xkji, Ykji) for a given population index k and given individual j , are all of roughly
the same size. In this setting it is easy to see that, even in an elementary parametric
setting, we must expect the operation of observing the functions gkj at scattered
points to affect error rate through a term of order m−1, and no smaller. For exam-
ple, consider the case where gkj = ψ(· | ωkj ), with ψ(· | ω) being a known function
completely determined by the parameter ω, and ωkj = ∫

I gkjw where the weight
function w is known. Using the data Dkj on gkj we can estimate ωkj root-m con-
sistently, but no faster, and as a result we incur a classification error of size m−1,
and no smaller, from not knowing the values ωkj . It is for this reason that, when
developing expansions of classification error, we do not explore the remainder of
size m−1; it is stated simply as O(m−1) on the right-hand side of (3.8).
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3.1.3. Other remarks. We conclude our discussion of Theorem 1 with a num-
ber of remarks.

REMARK 2 (Definition of μ̂k). The size of the fourth and fifth terms on the
right-hand side of (3.8) is determined by the sizes of ν−1

0 and ν−1
1 , and those quan-

tities can be made slightly smaller by using a slightly different definition of μ̂k ,
at (2.8). In particular in (2.8), on account of the definition of ĝkj at (2.3), μ̂k is
defined as an average of ratios of sums, whereas slightly better statistical perfor-
mance is obtained by taking μ̂k to be simply a ratio of sums:

μ̂k =
∑

j (Ukj2Vkj0 − Ukj1Vkj1)∑
j (Ukj2Ukj0 − U2

kj1)
,

compare (2.3). However, this approach departs from standard practice in working
with functional data, and therefore, since convergence rates do not alter (only the
constant multiples of rates are reduced), we have followed standard practice in the
definition of μ̂k .

REMARK 3 (Gaussian assumption). Of course, if m is sufficiently large then
ĝ is itself approximately Gaussian, and so the assumption that g is a Gaussian
process is reflected particularly well in properties of its estimator. More generally,
our assumption that g is a Gaussian process is made for simplicity, and can be
relaxed. For example, generalisations to chi-squared and other processes, where
shape can be described in terms of a small number of fixed functions (mean and
covariance in the Gaussian case), are straightforward.

More generally we would require a model which described the properties of ran-
dom functions relatively simply. The Gaussian model fills this need ideally; shape
is described by mean and variance functions, on which we have imposed only
smoothness, rather than parametric, conditions. Moreover, in the Gaussian case all
moments of g(x) are finite, for each x (we use this property repeatedly during our
theoretical arguments), and the principal component scores are independent (this
is used frequently during our proof of Theorem 2).

REMARK 4 (Case of regularly spaced design). Theorem 1 continues to hold
if the mkj design variables Xkji are regularly spaced on I for each k and j . The
only change necessary is to replace

∫
I f −1

X , on the right-hand side of (3.8), by the
square of the length of the interval I .

3.2. Scale-adjusted centroid-based classifier. Recall that scale-adjusted
centroid-based classifier is defined in terms of Sscale(ĝ), at (2.14). A decomposition
similar to that of Theorem 1 can be derived for this classifier, as we shall prove in
Theorem 2 below. For this classifier, it seems necessary to strengthen (3.7) by im-
posing conditions on the behaviour of the eigenvalues θk� as � increases. However,
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since our aim in this section is only to corroborate the conclusions in Section 3.1,
drawn there in the case of the standard centroid-based classifier, then we shall sim-
plify our account by assuming that g is finite dimensional, and in particular taking
the covariance expansion at (2.10) to have just q terms:

For k = 0 and 1: (a) the first q eigenvalues in the sequence θk1 ≥ θk2 · · · ,
arising in the covariance expansion (2.10) of g when the data come
from �k, are distinct; (b) θk� = 0 for � > q; (c) for 1 ≤ � ≤ q the eigen-
functions ψk� in (2.10) have two Hölder continuous derivatives on I ;
(d) Ek(g) is a linear form in ψk1, . . . ,ψkq ; and (e) in the definition of
Sscale(ĝ), s2

0 	= s2
1 .

(3.12)

Without (3.12)(a), separate conditions, valid uniformly in j = 1,2, . . . , have to
be imposed on remainders in Taylor expansions of “smoothed” versions of the
eigenvalues θkj , depending on h.

The next theorem indicates that the results of Theorem 1 also apply for the scale-
adjusted centroid-based classifier. Its proof is given in the supplementary material
[Carroll, Delaigle and Hall (2013)].

THEOREM 2. Assume that (3.5), (3.6) and (3.12) hold. Then the error rate
of the scale-adjusted centroid-based classifier, when the data in D are drawn
from �k , admits the expansion at (3.8), but with different constants, where the
various terms have the properties stated immediately below that formula.

The diversity of possible signs of ck , ck1 and dk0ν
−1
0 +dk1ν

−1
1 in (3.8), discussed

in Section 3.1.1, is also present in this case. Therefore the conclusions drawn in that
section apply to the scale-adjusted centroid-based classifier. However, we have not
derived explicitly the counterparts of the constants ck , ck1, dk0 and dk1 that appear
in equation (3.8).

The integration effect discussed in Section 3.1.2 is also present here, although
we had originally expected that the scale-adjusted centroid classifier would pro-
duce a term of size (mh)−1 in an expansion of error rate. Indeed, the situation
initially seems quite different in the case of the scale-adjusted version Sscale(ĝ)

of S(ĝ), at (2.14), when s2
0 	= s2

1 . There the quadratic term in ĝ persists. The rea-
son it still does not produce a term in (mh)−1 is quite subtle. Define 
�k to be >

or ≤ according as k = 0 or k = 1, respectively. The probability Pk{Sscale(ĝ) 
�k 0}
can be written as

Pk

{ ∞∑
j=1

wj(Zj + Vj )
2 
�k W

}
+ negligible terms,

where the Zj ’s are independent N(0,1) variables, conditional on the Vj ’s and W ;
the positive weights wj are nonrandom; and critically, W does not involve the
experimental errors εi in (2.2), from which any term in (mh)−1 would arise. The
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terms Vj depend on the experimental errors only through integrals of the error
process, and the integration effect at this point largely removes the impact of the
error bandwidth h, with the result that there is no term of size (mh)−1. However,
terms in (ν0h1)

−1 remain; the integration effect only influences smoothing of the
new data, not of the training data.

3.3. Quadratic discriminant. Finally, we show that similar smoothing effects
are present in the case of the quadratic discriminant classifier defined through the
statistic T (ĝ) at (2.15). Recall that, when the data in D come from �k , the random
function g has covariance function Gk . To derive the counterpart of Theorem 1 for
this classifier, let r, r1, r2 take the values 0 and 1, let 1 ≤ �, �1, �2 ≤ p, and define
the covariances

covk[r1, r2;�1, �2] =
∫

I

∫
I
Gk(x1, x2)ψr1�1(x1)ψr2�2(x2) dx1 dx2,

the variances vark[r, �] = covk[r, r;�, �], and the correlations

ρk[r1, r2;�1, �2] = cov[r1, r2;�1, �2]
(vark[r1, �1]vark[r2, �2])1/2 .

Let p ≥ 1, a fixed number, be the number of principal components used to
construct the quadratic discriminant statistic T (ĝ), defined at (2.15). Theorem 3
below addresses the error rate of the quadratic discriminant based on T (ĝ), and
there we shall assume that:

(a) For k = 0,1 the eigenvalues θk1, . . . , θk,p+1 are distinct; and
(b) among the values taken by ρk[r1, r2;�1, �2] for k, r1, r2 = 0,1 and
1 ≤ �1, �2 ≤ p, the absolute value of ρk[r1, r2;�1, �2] equals 1 only when
r1 = r2 and �1 = �2.

(3.13)

Condition (3.13)(a) ensures that the eigenfunctions ψk� are well defined for k =
0,1 and � = 1, . . . , p; and (3.13)(b) guarantees that the quantities

∫
I (g−μr1)ψr1�1

and
∫

I (g − μr2)ψr2�2 , which appear in the definition of T0(g) at (2.16), cannot be
identical, except for a difference in means, unless r1 = r2 and �1 = �2, thereby
avoiding degeneracy.

The counterpart of Theorem 1 for the quadratic discriminant classifier is stated
in the next theorem. Its proof is given in the supplementary material [Carroll, De-
laigle and Hall (2013)].

THEOREM 3. Assume that (3.5)–(3.7) and (3.13) hold. Then the error rate
of the quadratic discriminant, when the data in D come from �k , admits the ex-
pansion at (3.8), but with different constants, where the various terms have the
properties stated immediately below that formula.

Again the signs of ck , ck1 and dk0ν
−1
0 +dk1ν

−1
1 , in (3.8), are particularly diverse,

and so the conclusions reached in Section 3.1.1 apply. Likewise, the integration
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effect discussed in Section 3.1.2 is also observed. Here, as can be seen directly
from (2.15), the estimator ĝ is integrated, and only the integral is squared, not
ĝ itself. The resulting integration effect eliminates any term in (mh)−1 from the
analogue of the expansion (3.8) in this setting, although again this influence does
not carry over to the training data.

4. Numerical illustrations.

4.1. Simulated data. To illustrate the impact of bandwidth on classification
performance, we generated data from several instances of model (2.1), taking, in
each case, mkj = 50. Let φσ (x) denote the normal density function with mean
zero and standard deviation σ . We considered the following cases, each with three
different levels of errors, which we refer to as noise versions 1, 2 and 3:

(A): gkj (t) = μk(t) + (3t + 100)1/2{cos(t/50)}kZkj , where μ0(t) = φ10(t −
5), μ1(t) = μ0(t) + 0.3 cos(t/5) + 0.1, Zkj ∼ U [−1/(30 − 10k),1/(30 − 10k)],
and εkji ∼ N(0,1/(4 − 2k)2) (noise version 1), εkji ∼ N(0,2/(4 − 2k)2) (noise
version 2) or εkji ∼ N(0,4/(4 − 2k)2) (noise version 3), and π0 = 1/3, π1 = 2/3.
Moreover, Xkji = 2i − 1, for i = 1, . . . ,50.

(B): gkj (t) = μk(t) + (3t + 100)1/2Zkj , where μ0(t) = 30{0.2φ4(t − 5) +
0.1φ4(t − 10) + 0.4φ6(t − 20) + 0.4φ6(t − 35) + 0.6φ7(t − 55) + 0.6φ7(t − 80)},
μ1(t) = μ0(t) + 4/{(t − 50)2 + 10}, Zkj ∼ U [−1/(60 + 15k),1/(60 + 15k)],
εkji ∼ {Exp(0.5) − 2}/(2 + 2k) (noise version 1), εkji ∼ √

2{Exp(0.5) − 2}/(2 +
2k) (noise version 2) or εkji ∼ {Exp(0.5) − 2}/(1 + k) (noise version 3), and
π0 = 2/5 and π1 = 3/5. Moreover, Xkji was as in (A).

(C): g0j (t) = μ0(t) + (3t + 100)1/2Z0j , g1j (t) = μ1(t) + (t + 5)Z1j , where
μ0(t) = 15φ17(t −65) cos(t/7), μ1(t) = μ0(t)+5φ20(t −50), Zkj ∼ U [−1/(50−
10k),1/(50−10k)], εkji ∼ N(0, (4−k)2/100) (noise version 1), εkji ∼ N(0, (4−
k)2/50) (noise version 2), εkji ∼ N(0, (4 − k)2/25) (noise version 3), and π0 =
2/3 and π1 = 1/3. Moreover, Xkji was as in (A).

(D)–(F): Same as (A) to (C) but with Xkji = 2i − 1 + Tkji , where Tkji ∼
N(0,0.25).

We chose these examples to illustrate various features of the problems, namely
that the impact of smoothing may differ among classifiers, and that in some cases,
some classifiers perform better with more smoothing and in other cases, they might
perform better with less smoothing.

In each case, for k = 0,1 and for several values of ntr, we generated 100
(resp., ntr) noisy test curves (resp., training curves) from model (2.1), each of
which came with probability πk from �k . We constructed each classifier from
the training data, and applied it to the test data. To compute ĝ and ĝkj , we com-
pared three approaches for selecting the bandwidths: no smoothing (NS), the stan-
dard plug-in (PI) bandwidths hPI and hPI,kj that estimate the optimal bandwidth
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for estimation of the regression functions g and gkj , which we computed using
the dpill function in the R package KernSmooth; see Ruppert, Sheather and
Wand (1995); and the bandwidths γ hPI and γ1hPI,kj , where γ and γ1 (and also the
truncation parameter p in the case of the quadratic discriminant classifier) were
chosen to minimise the following cross-validation (CV) estimator of classification
error:

êrr = π̂0

n0

n0∑
i=1

I {Ĉi0,−i = 1} + π̂1

n1

n1∑
i=1

I {Ĉi1,−i = 0}

with π̂0 and π̂1 denoting estimators of π0 and π1 (we took π̂k = 1/2), and Ĉik,−i

being the estimator of the class label of the ith training observation from group k,
obtained from the classifier constructed without using this observation.

For each configuration, we generated B = 200 sets of training and test samples.
In Tables 1 and 2, we report the percentage of correctly classified test curves, av-
eraged over the B replicates. Depending on the model, the classifier, and the type
of data (test or training), the cross-validation bandwidths were either smaller or
larger than the PI regression bandwidths, illustrating the variety of settings already
explained by our theory. See Table B.1 in Section B.3 in the supplementary ma-
terial [Carroll, Delaigle and Hall (2013)], where we report the value of γ and γ1
averaged over the B replicates. We can see from the table that in most cases, γ was
smaller than γ1, and both were usually smaller than 1, except in cases (C) and (F).

As expected, we conclude from Tables 1 and 2, depending on the model and the
classifier, the negative impact of smoothing with the standard PI bandwidth can be
quite significant, indeed sometimes reducing the percentage of correctly classified
data by as much as 10%. In cases (A) and (D), it is the centroid classifier and its
scaled version that are the most affected by this inappropriate level of smoothing,
whereas the quadratic discriminant classifier is more robust against the level of
smoothing. In cases (B) and (E), the scaled centroid classifier and the quadratic
discriminant classifier are the most affected by inappropriate smoothing. Cases
(C) and (F) are more robust against smoothing; there, all three versions (PI, CV
and NS) of the data result in similar classification performance, although overall
the data smoothed by CV result in slightly improved performance. Depending on
the case, when the noise level increases the impact of inappropriate bandwidth
choice can either increase or decrease.

4.2. Real data. We illustrate our findings on the ovarian cancer data set 8-
7-02, which concerns 253 patients (91 controls and 162 with ovarian cancer).
The data, which were produced to study the effect of robotic sample handling, are
available from http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp. In this
example, the functions Xi represent proteomic mass spectra and t ∈ [0,20,000]
is the mass over charge ratio, m/z. These raw curves are ideal for illustrating the
negative impact that systematically smoothing by standard methods can have, be-
cause in some ranges of values of t , the spectra have considerable activity, and

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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TABLE 1
Percentage of correctly classified observations for the simulated data of Section 4.1, using

plug-in (PI) regression bandwidths, bandwidths that minimise a crossvalidation (CV) estimate of
classification error, or without smoothing the noisy data (NS). The three noise versions, in

increasing order, are described in cases (A)–(C) in Section 4.1. Here “Cent” is the centroid
classifier (2.13), “Cent sc.” is the scaled centroid classifier (2.14) and “QDA” is the quadratic

discriminant classifier (2.15)

Cent Cent sc. QDA

ntr CV PI NS CV PI NS CV PI NS

Case (A)

Noise version 1 50 82.9 74.1 84.0 91.8 73.2 92.0 95.1 94.1 53.5
Noise version 1 100 84.4 74.9 84.8 92.6 74.1 92.6 97.6 94.8 67.6

Noise version 2 50 77.7 69.6 78.1 94.3 70.4 94.4 91.0 89.3 49.1
Noise version 2 100 79.9 70.7 80.2 95.1 71.2 95.1 94.3 89.7 61.7

Noise version 3 50 71.1 65.6 71.1 97.1 69.0 97.1 85.4 84.3 46.2
Noise version 3 100 73.7 66.8 74.1 97.9 69.4 97.9 89.9 84.1 58.4

Case (B)

Noise version 1 50 63.2 60.1 65.7 96.3 78.7 96.5 77.1 74.3 65.8
Noise version 1 100 65.5 61.5 66.8 96.8 80.0 96.8 81.8 76.3 73.0

Noise version 2 50 61.5 58.6 64.6 96.3 80.6 96.4 76.9 74.1 65.2
Noise version 2 100 62.6 58.7 64.4 96.7 81.3 96.7 81.3 75.0 72.4

Noise version 3 50 60.9 57.6 64.0 96.2 81.6 96.4 77.3 74.2 65.4
Noise version 3 100 60.7 56.8 63.3 96.7 82.3 96.7 81.6 75.2 72.3

Case (C)

Noise version 1 50 61.5 60.8 60.8 88.7 89.2 87.4 84.8 83.7 82.0
Noise version 1 100 59.4 58.4 58.2 90.0 90.3 88.5 86.9 85.7 79.0

Noise version 2 50 61.3 60.2 60.3 87.3 87.9 82.8 81.9 81.2 82.4
Noise version 2 100 58.9 57.9 57.6 88.8 89.0 85.2 84.6 83.1 80.4

Noise version 3 50 61.0 59.7 59.3 85.2 85.4 71.2 80.5 79.9 79.6
Noise version 3 100 58.5 57.4 57.0 87.2 86.6 74.9 82.6 81.1 79.7

the impact of smoothing such data can be striking. We focus on one such ranges,
namely t ∈ [200,500].

To assess the performance of classifiers on this data set, we randomly and uni-
formly created B = 200 pairs of (training sample, test sample), where we took the
training sample to be of size ntr and the test sample of size 253 − ntr, for ntr = 50
and ntr = 100. We also generated two more noise versions of the data, adding to the
Ykji’s in both the test and training data, noise ε′

kji ∼ N(0,0.04) (noise version 1)
or ε′

kji ∼ N(0,0.25) (noise version 2), where the ε′
kji’s were totally independent.
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TABLE 2
Percentage of correctly classified observations for the simulated data of Section 4.1, using

plug-in (PI) regression bandwidths, bandwidths that minimise a crossvalidation (CV) estimate of
classification error, or without smoothing the noisy data (NS). The three noise versions, in

increasing order, are described in cases (D)–(F) in Section 4.1. Here “Cent” is the centroid
classifier (2.13), “Cent sc.” is the scaled centroid classifier (2.14) and “QDA” is the quadratic

discriminant classifier (2.15)

Cent Cent sc. QDA

ntr CV PI NS CV PI NS CV PI NS

Case (D)

Noise version 1 50 80.2 69.5 80.6 85.7 68.5 86.3 93.9 92.7 69.2
Noise version 1 100 81.5 70.0 82.0 87.3 69.2 87.3 96.6 93.2 84.3

Noise version 2 50 74.7 65.9 75.6 90.0 65.6 90.3 88.5 86.7 60.9
Noise version 2 100 76.9 66.8 77.3 90.9 66.8 91.0 92.3 86.8 77.6

Noise version 3 50 69.2 62.3 69.6 94.2 65.4 94.4 82.9 80.5 55.6
Noise version 3 100 71.4 63.4 72.0 95.1 66.4 95.1 87.9 80.8 72.7

Case (E)

Noise version 1 50 65.0 61.9 67.3 94.8 79.0 95.0 77.0 73.1 71.2
Noise version 1 100 65.8 62.5 67.6 95.4 79.6 95.4 84.3 69.7 82.8

Noise version 2 50 63.0 60.2 65.4 94.7 80.6 95.0 77.8 74.2 70.5
Noise version 2 100 63.4 59.9 64.9 95.4 81.4 95.5 84.8 69.8 82.4

Noise version 3 50 61.3 59.2 64.3 94.6 81.4 94.9 77.9 74.4 69.8
Noise version 3 100 61.8 58.2 63.1 95.4 82.5 95.5 84.5 71.5 81.8

Case (F)

Noise version 1 50 60.2 59.1 59.4 88.0 88.7 87.9 83.5 82.6 80.4
Noise version 1 100 58.8 57.8 57.7 89.0 89.3 88.5 84.9 83.2 77.3

Noise version 2 50 59.8 58.7 59.0 86.5 87.2 84.6 80.8 80.2 80.0
Noise version 2 100 58.6 57.3 57.2 87.6 87.7 85.8 83.1 81.1 77.0

Noise version 3 50 59.2 58.3 58.2 84.5 84.1 76.7 79.4 78.5 78.9
Noise version 3 100 58.0 56.8 56.5 85.8 84.6 78.5 81.0 79.1 75.7

For each version of the data (original data and noise versions 1 and 2), and for
each pair of test and training sample, we constructed each classifier from the train-
ing sample, and applied the classifier to the test sample using either plug-in regres-
sion bandwidths to construct the estimators ĝ and ĝkj , or bandwidths obtained by
minimising the CV estimator of classification error defined in Section 4.1, where
we took π̂k = 1/2.

Table 3 reports the percentage, averaged over the B pairs of samples, of cor-
rectly classified observations from the test samples. The table indicates very clearly
that smoothing the data using the plug-in regression bandwidths degraded the qual-
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TABLE 3
Percentage of correctly classified observations for the ovarian cancer data, using plug-in (PI)

regression bandwidths or bandwidths that minimise a crossvalidation (CV) estimate of classification
error. Here “Cent” is the centroid classifier (2.13), “Cent sc.” is the scaled centroid classifier (2.14)

and “QDA” is the quadratic discriminant classifier (2.15)

Cent Cent sc. QDA

Data ntr CV PI CV PI CV PI

Original data 50 90.60 80.25 90.05 78.79 93.32 89.69
Original data 100 90.43 80.96 90.00 79.96 98.58 98.86

Noisy version 1 50 88.07 75.19 87.83 74.23 78.03 68.50
Noisy version 1 100 87.58 76.76 88.54 76.27 91.48 90.97

Noisy version 2 50 76.15 66.57 76.65 66.09 56.91 48.54
Noisy version 2 100 81.97 67.55 81.91 67.64 77.62 66.49

ity of the two versions of the centroid classifier by about 10%, and a similar phe-
nomenon was observed for the quadratic discriminant classifier when the training
sample was small and when the data were noisy.

APPENDIX: PROOF OF THEOREM 1

A.1. Preliminary results. Define

��(x) = 1

mh

m∑
i=1

εi

(
x − Xi

h

)�

K

(
x − Xi

h

)
,

W�(x) = 1

mh

m∑
i=1

[∫ Xi

x

{
g′′(t) − g′′(x)

}
(Xi − t) dt

](
x − Xi

h

)�

K

(
x − Xi

h

)
.

With U� and V� given by (2.4) and (2.5), and using the model at (2.2) and the exact
form of the remainder in Taylor’s theorem, we can write:

V�(x) = 1

mh

m∑
i=1

{
g(Xi) + εi

}(x − Xi

h

)�

K

(
x − Xi

h

)

= 1

mh

m∑
i=1

[
g(x) + (Xi − x)g′(x) + 1

2
(Xi − x)2g′′(x) + εi

]

×
(

x − Xi

h

)�

K

(
x − Xi

h

)
+ W�(x)

= g(x)U�(x) − hg′(x)U�+1(x) + 1

2
h2g′′(x)U�+2(x) + ��(x) + W�(x).
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Assuming, without loss of generality, that K is supported on [−1,1],
∣∣W�(x)

∣∣ ≤ h2
{

sup
t∈I:|t−x|≤h

∣∣g′′(t) − g′′(x)
∣∣} 1

mh

m∑
i=1

K

(
x − Xi

h

)
≤ h2U0(x)Q,

where Q = sups,t∈I:|s−t |≤h |g′′(s) − g′′(t)|. Now,

ĝ = U2V0 − U1V1

U2U0 − U2
1

= g + 1

2
h2g′′ U2

2 − U1U3

U2U0 − U2
1

+ � + U2W0 − U1W1

U2U0 − U2
1

,

where � = (U2�0 − U1�1)/(U2U0 − U2
1 ). Therefore, since |U�| ≤ U0 for each

� ≥ 0, ∣∣∣∣ĝ −
(
g + 1

2
h2g′′ U2

2 − U1U3

U2U0 − U2
1

+ �

)∣∣∣∣ ≤ 2Qh2U2
0

U2U0 − U2
1

,(A.1)

uniformly on I .
Similarly, defining Qkj = sups,t∈I:|s−t |≤h |g′′

kj (s) − g′′
kj (t)|, and

�kj�(x) = 1

mkjh1

mkj∑
i=1

εkji

(
x − Xkji

h1

)�

K

(
x − Xkji

h1

)
,

�kj = Ukj2�kj0 − Ukj1�kj1

Ukj2Ukj0 − U2
kj1

,

where Ukj� is as at (2.6), we have, uniformly on I∣∣∣∣ĝkj −
(
gkj + 1

2
h2

1g
′′
kj

U2
kj2 − Ukj1Ukj3

Ukj2Ukj0 − U2
kj1

+ �kj

)∣∣∣∣ ≤ 2Qkjh
2
1U

2
kj0

Ukj2Ukj0 − U2
kj1

.(A.2)

Define

�̄k = 1

nk

nk∑
j=1

�kj(A.3)

and recall that κ2 = ∫
u2K(u)du. We shall derive the following result in Sec-

tion A.6:

LEMMA 1. Under the conditions of Theorem 1, for some C1 > 0, all C2 > 0
and k = 0,1,

Pk

(
sup

I

∣∣∣∣U2
2 − U1U3

U2U0 − U2
1

− κ2

∣∣∣∣ > n−C1

)
= O

(
n−C2

)
,

Pk

(
max

j=1,...,nk

sup
I

∣∣∣∣U2
kj2 − Ukj1Ukj3

Ukj2Ukj0 − U2
kj1

− κ2

∣∣∣∣ > n−C1

)
= O

(
n−C2

)
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as n → ∞, and for some C3 > 0, all C2 > 0 and k = 0,1,

Pk

(
sup

I

U2
0

U2U0 − U2
1

> C3

)
= O

(
n−C2

)
,

Pk

(
max

j=1,...,nk

sup
I

U2
kj0

Ukj2Ukj0 − U2
kj1

> C3

)
= O

(
n−C2

)
.

Furthermore, defining Msum = mink=1,2(
∑

j mkj ), we have for all C2,C4 > 0,

Pk

{
sup

I
|�| > nC4(mh)−1/2

}
+ max

k=0,1
Pk

{
sup

I
|�̄k| > nC4(Msumh)−1/2

}
(A.4)

= O
(
n−C2

)
.

A.2. Initial calculation of errk . Let G1 denote the sigma-field generated by
the random variables introduced in Section 2, and the random functions gkj , but
excluding g. Specifically, G1 is the sigma-field generated by gkj , Xkji and εkji for
1 ≤ i ≤ mkj , 1 ≤ j ≤ nk and k = 0,1, and by Xi and εi for 1 ≤ i ≤ m. Recall that

�k is > or ≤ according as k = 0 or k = 1, respectively, and recall formula (3.11)
for the statistic S(ĝ).

Under the assumption that the new data set D comes from �k , and conditional
on G1, ĝ is a Gaussian process with mean α̂k = Ek(ĝ | G1) and covariance func-
tion �̂k , say. In this notation,

errk ≡ Ek

[
Pk

{
S(ĝ) 
�k 0 | G1

}] = Ek

{
�k(−β̂k/σ̂k)

}
,(A.5)

where, by (3.11),

β̂k = Ek

{
S(ĝ) | G1

} =
∫

I
(μ̂1 − μ̂0)

{
2α̂k − (μ̂0 + μ̂1)

}
,(A.6)

σ̂ 2
k = var

{
S(ĝ) | G1

}
= 4

∫
I

∫
I

{
μ̂1(x1) − μ̂0(x1)

}{
μ̂1(x2) − μ̂0(x2)

}
(A.7)

× �̂k(x1, x2) dx1 dx2.

The probability on the left-hand side of (A.5) equals the chance that, when D
comes from �k , the classifier based on S(ĝ) makes an error and assigns D to the
other population.
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A.3. Approximations to α̂k , ̂βk and σ̂k . In view of (A.1),∣∣∣∣α̂k −
(
μk + 1

2
h2μ′′

k

U2
2 − U1U3

U2U0 − U2
1

+ �

)∣∣∣∣ ≤ 2Ek(Q)h2U2
0

U2U0 − U2
1

.(A.8)

Noting that, for random variables A1, A2, B1 and B2, |cov(A1 + A2,B1 + B2) −
cov(A1,A2)| ≤ |cov(B1,B2)| + |cov(A1,B2)| + |cov(B1,A2)| where the covari-
ances are interpreted conditionally on G1, we deduce from (A.1) that for a constant
C4 > 0,

sup
x1,x2∈I

∣∣∣∣�̂k(x1, x2) −
{
Gk(x1, x2) + 1

2
h2G

(0,2)
k (x1, x2)

U2
2 − U1U3

U2U0 − U2
1

(x2)

+ 1

2
h2G

(2,0)
k (x1, x2)

U2
2 − U1U3

U2U0 − U2
1

(x1)

}∣∣∣∣(A.9)

≤ C4h
2{

h2 + Ek

(
Q + Q2)}

sup
I

(
1 + U2

0

U2U0 − U2
1

)2

,

where we define G
(j1,j2)
k (x1, x2) = ∂j1+j2Gk(x1, x2)/∂x

j1
1 ∂x

j2
2 . (Recall that Gk

denotes the covariance of the Gaussian process g when the data D are drawn
from �k .)

With ḡk defined as at (3.1), and defining �̄k as at (A.3), we have, in view
of (A.2), Lemma 1 and (3.6)(b), the result

Pk

{
sup

I

∣∣∣∣μ̂k −
(
ḡk + 1

2
h2

1κ2ḡ
′′
k + �̄k

)∣∣∣∣ > n−C1h2
1

}
= O

(
n−C2

)
(A.10)

for some C1 > 0 and all C2 > 0. Using Rosenthal’s inequality, it can be proved
from (3.6) and (3.7)(c) that, for some C1 > 0 and all C2 > 0,

Pk

(
sup

I

∣∣ḡ′′
k − μ′′

k

∣∣ > n−C1
)

= O
(
n−C2

)
.(A.11)

Together, (A.10) and (A.11) imply that

Pk

{
sup

I

∣∣∣∣μ̂k −
(
ḡk + 1

2
h2

1κ2μ
′′
k + �̄k

)∣∣∣∣ > n−C1h2
1

}
= O

(
n−C2

)
.(A.12)

Define H 2 = h2 + h2
1,

βk =
∫

I

{
ḡ1 − ḡ0 + 1

2
h2

1κ2
(
μ′′

1 − μ′′
0
) + �̄1 − �̄0

}
×

{
2μk − (ḡ0 + ḡ1) + h2κ2μ

′′
k

− 1

2
h2

1κ2
(
μ′′

0 + μ′′
1
) + 2� − (�̄0 + �̄1)

}
,(A.13)
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σ̃ 2
k = 4

∫
I

∫
I

{
ḡ1 − ḡ0 + 1

2
h2

1κ2
(
μ′′

1 − μ′′
0
) + �̄0 − �̄1

}
(x1)

×
{
ḡ1 − ḡ0 + 1

2
h2

1κ2
(
μ′′

1 − μ′′
0
) + �̄0 − �̄1

}
(x2)

×
[
Gk(x1, x2) + 1

2
h2κ2

{
G

(2,0)
k (x1, x2) + G

(0,2)
k (x1, x2)

}]
.

Combining Lemma 1, (A.5)–(A.9) and (A.12), we deduce that, for some C1 > 0
and all C2 > 0,

Pk

(|β̂k − βk| > n−C1H 2) = O
(
n−C2

)
,

(A.14)
Pk

(∣∣σ̂ 2
k − σ̃ 2

k

∣∣ > n−C1H 2) = O
(
n−C2

)
.

Observe from (A.13) that βk = βk0 +bk1 +βk1 +βk2 +�̄2, where βk0 is as at (3.2),

bk1 = κ2

∫
I
(μ1 − μ0)

(
h2μ′′

k − h2
1μ

′′
1−k

)
,(A.15)

βk1 =
∫

I
(ḡ1 − ḡ0)

{
2� − (�̄0 + �̄1)

}
+

∫
I

{
2μk − (ḡ0 + ḡ1)

}
(�̄1 − �̄0),

βk2 =
∫

I

{
2� − (�̄0 + �̄1)

}
(�̄1 − �̄0)

and �̄2 = βk − (βk0 +bk1 +βk1 +βk2). Using (A.4) it can be shown that, for some
C1 > 0 and all C2 > 0, and when � = 2,

Pk

(|�̄�| > n−C1H 2) = O
(
n−C2

)
.(A.16)

Hence, noting the first result in (A.14), we have:

Pk

{∣∣β̂k − (βk0 + bk1 + βk1 + βk2)
∣∣ > n−C1H 2} = O

(
n−C2

)
.(A.17)

Recall the definitions of σ 2
k and τ 2

k at (3.3) and (3.4), and put

σk0 = 2h2κ2

∫
I

∫
I
(ḡ1 − ḡ0)(x1)(ḡ1 − ḡ0)(x2)

(A.18)
× {

G
(2,0)
k (x1, x2) + G

(0,2)
k (x1, x2)

}
dx1 dx2,

σk1 = 4h2
1κ2

∫
I

∫
I
(ḡ1 − ḡ0)(x1)(μ1 − μ0)

′′(x2)Gk(x1, x2) dx1 dx2(A.19)

and �̄3 = σ̃ 2
k − (σ 2

k + σk0 + σk1). Thus, �̄3 is the term in �̄0 and �̄1 that arises
when σ̃ 2

k is expanded. Using (A.4) it can be proved that (A.16) holds when � = 3.
Moreover, σ̂ 2

k can be written as

σ̂ 2
k = σ 2

k + σk0 + σk1 + �̄3 + �̄4,(A.20)
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where, in view of the second part of (A.14), (A.16) holds in the case � = 4 and for
some C1 > 0 and all C2 > 0.

Define τk� to be equal to σk�, at (A.18) and (A.19), when ḡ0 and ḡ1 on the
respective right-hand sides are replaced by μ0 and μ1. Then for k = 0,1 and � =
0,1, noting property (3.7)(c) on the rates of increase of n0 and n1, it can be shown
that for some C1 > 0,

Pk

(|σk� − τk�| > n−C1h2
�

) = O
(
n−C2

)
(A.21)

for all C2 > 0, where we define h0 = h. Therefore, if C1 > 0 is sufficiently small,

max
k=0,1

max
�=0,1

Pk

(|σk�| > n−C1
) = O

(
n−C2

)
(A.22)

for all C2 > 0.

A.4. Approximation to σ̂−1
k . In the notation at (A.20),

1

σ̂k

= 1

τk

(
1 + σ 2

k − τ 2
k

τ 2
k

+ σk0 + σk1 + �̄3 + �̄4

τ 2
k

)−1/2

= sk(∞),

where, for 0 ≤ r ≤ ∞,

sk(r) = 1

τk

r∑
j=0

j∑
�=0

(
−1

2
j

)(
j

�

)(
σ 2

k − τ 2
k

τ 2
k

)j−�(σk0 + σk1 + �̄3 + �̄4

τ 2
k

)�

.

We claim that the infinite series defined by sk(∞) converges with probability 1 −
O(n−C2) for all C2 > 0. To appreciate why, note that, by (3.6) and (3.7)(c), there
exists C1 > 0 such that

Pk

(∣∣σ 2
k − τ 2

k

∣∣ > n−C1
) = O

(
n−C2

)
for all C2 > 0. Combining this property, (A.16) for � = 3 and 4, and (A.22), we
deduce that, for some C1 > 0 and all C2 > 0,

Pk

(∣∣∣∣σ 2
k − τ 2

k

τ 2
k

∣∣∣∣ + ∣∣∣∣σk0 + σk1 + �̄3 + �̄4

τ 2
k

∣∣∣∣ ≤ n−C1

)
= 1 − O

(
n−C2

)
.

Therefore, if C3 > 0 is given then r0 = r0(C3) ≥ 1 can be chosen so large that,
whenever r0 ≤ r ≤ ∞, Pk{|σ̂−1

k −sk(r)| > n−C3} = O(n−C2) for all C2 > 0. Using
this property and (A.16), again for � = 3 and 4; and employing too (A.21); we see
that for some C1 > 0 and all C2 > 0, if r0 is chosen sufficiently large,

Pk

{∣∣σ̂−1
k − tk(r)

∣∣ > n−C1H 2} = O
(
n−C2

)
(A.23)

for r ≥ r0, where

tk(r) = 1

τk

r∑
j=0

min(j,1)∑
�=0

(
−1

2
j

)(
j

�

)(
σ 2

k − τ 2
k

τ 2
k

)j−�(τk0 + τk1

τ 2
k

)�

.(A.24)
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A.5. Approximation to Ek{�k(−̂βk/σ̂k)}. Let C1 > 0 and let �0 ≥ 0 be an
integer. With Ukj� defined as at (2.6), let E denote the event

E = E (C1, �0) =
{

max
1≤�≤�0

max
j=1,...,nk

sup
x∈I

∣∣Ukj�(x) − κ�fX(x)
∣∣ ≤ n−C1

}
,

where κ� = ∫
u�K(u)du and hence vanishes for odd �, since by (3.7)(b), K is

symmetric. It will be proved in Section A.6 that, for some C1 > 0 and each �0 ≥ 0,

Pk

{
E (C1, �0)

} = 1 − O
(
n−C2

)
for all C2 > 0.(A.25)

If E (C1, �0) holds for an �0 ≥ 2 then, if 0 < C′
1 < C1, there exists a nonrandom

integer n0 ≥ 1 such that the event E1 = E1(C
′
1), defined by

E1 =
{

max
j=1,...,nk

sup
x∈I

∣∣Ukj2(x)Ukj0(x) − Ukj1(x)2 − κ2fX(x)2∣∣ ≤ n−C′
1

}
(A.26)

holds for all n ≥ n0.
Let I = I (E ) denote the indicator of E . In view of (A.25),

Ek

{
�k(−β̂k/σ̂k)

} = Ek

{
I�k(−β̂k/σ̂k)

} + O
(
n−C2

)
(A.27)

for all C2 > 0, and so to approximate the term on the left-hand side of (A.27) we
may develop an approximation to the first term on the right-hand side.

Let G2 denote the sigma-field generated by the random variables Xi for
1 ≤ i ≤ m, and by Xkji and the functions gkji for 1 ≤ i ≤ mkj , 1 ≤ j ≤ nk and
k = 0,1 (i.e., generated by everything except g and the experimental errors εi

and εkji ). The quantities I , tk(r) at (A.24), βk0 at (3.2), and bk1 at (A.15) are
all G2-measurable. Therefore, using (A.17) and (A.23), and noting that �k is an
analytic function with all derivatives uniformly bounded, we obtain

Ek

{
I�k(−β̂k/σ̂k)

}
= Ek

(
Ek

[
I�k

{−(βk0 + bk1 + βk1 + βk2)tk(r)
} | G2

]) + o
(
H 2)

= Ek

[
I�k

{−βk0tk(r)
}] − bk1τ

−1
k Ek

[
I� ′

k

{−βk0tk(r)
}]

(A.28)

− τ−1
k Ek

[
Ek(βk2 | G2)I� ′

k

{−βk0tk(r)
}]

+ 1
2τ−2

k Ek

[
Ek

(
β2

k1 | G2
)
I� ′′

k

{−βk0tk(r)
}]

+ O
{
(mh)−2 + (Msumh1)

−2} + o
(
H 2)

.(A.29)

Here we have used the properties Ek(βk1 | G2) = 0, Ek|tk(r)− τ−1
k | = O(n−C) for

some C > 0,

Ek

[
Ek

(
β

�2
k�1

| G2
)
I�

(�2)
k

{−βk0tk(r)
}] = O

{
(mh)−2 + (Msumh1)

−2}
for �2 ≥ 3 if �1 = 1, and for �2 ≥ 2 if �1 = 2, and∣∣Ek

[
Ek(βk1βk2 | G2)I� ′′

k

{−βk0tk(r)
}]∣∣ = O

{
(mh)−2 + (Msumh1)

−2}
.
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Further, we have used the fact that the event E1, defined at (A.26), obtains when-
ever I 	= 0.

In addition,

1

4
Ek

[
Ek

(
β2

k1 | G2
)
I
] = Ek

{
I

∫
I
(ḡ0 − ḡ1)�

}2

+ Ek

{
I

∫
I
(ḡ0 − μk)�̄0

}2

+ Ek

{
I

∫
I
(ḡ1 − μk)�̄1

}2

(A.30)

= O
(
m−1)

,

that

Ek

[
Ek(βk2 | G2)I� ′

k

{−βk0tk(r)
}]

= (−1)k+1φ(bk0/τk)

∫
I
Ek

[
I
{
Ek

(
�̄2

0 | G2
) − Ek

(
�̄2

1 | G2
)}]

(A.31)
+ o

{
(ν0h1)

−1}
= κ

h1

(
σ 2

ε0ν
−1
0 − σ 2

ε1ν
−1
1

)
(−1)k+1φ(bk0/τk)

∫
I
f −1

X + o
{
(ν0h1)

−1}
and that

bk1τ
−1
k Ek

[
I� ′

k

{−βk0tk(r)
}] = bk1τ

−1
k (−1)k+1φ(bk0/τk) + o

(
H 2)

,(A.32)

where bk0 and bk1 are as at (3.2) and (A.15), φ is the standard normal density, and
we have used the fact that � ′

k = (−1)k+1φ. Combining (A.25) and (A.27)–(A.32),
and taking r sufficiently large (but fixed), we deduce that

Ek

{
�k(−β̂k/σ̂k)

} = Ek

[
�k{−βk0/σk}] − bk1τ

−1
k (−1)k+1φ(bk0/τk)

− κ

τkh1

(
σ 2

ε0ν
−1
0 − σ 2

ε1ν
−1
1

)
(−1)k+1φ(bk0/τk)

∫
I
f −1

X(A.33)

+ O
{
m−1 + (mh)−2} + o

{
H 2 + (ν0h1)

−1}
.

Result (3.8) follows from (A.5) and (A.33).

A.6. Proof of Lemma 1 and (A.25). The results in Lemma 1, with the excep-
tion of (A.4); and also result (A.25); will follow if we show that for each � ≥ 1,
some C1 > 0 and all C2 > 0,

Pk

{
sup
x∈I

∣∣U�(x) − κ�fX(x)
∣∣ > n−C1

}
= O

(
n−C2

)
,(A.34)

Pk

{
max

j=1,...,nk

sup
x∈I

∣∣Ukj�(x) − κ�fX(x)
∣∣ > n−C1

}
= O

(
n−C2

)
.(A.35)

We shall derive (A.35); a proof of (A.34) is similar.
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Markov’s inequality can be used to prove that

max
j=1,...,nk

sup
x∈I

Pk

{∣∣Ukj�(x) − κ�fX(x)
∣∣ > n−C1

} = O
(
n−C2

)
.(A.36)

It follows from (3.7)(c) that each nk is increasing no faster than polynomially in
n, and therefore, if we confine attention to x in a subset In, say, of I that contains
only O(nC) points for some C > 0, we can place the maximum and supremum
inside the probability statement at (A.36), provided that I is replaced by In: for
some C1 > 0 and all C2 > 0,

Pk

{
max

j=1,...,nk

sup
x∈In

∣∣Ukj�(x) − κ�fX(x)
∣∣ > n−C1

}
= O

(
n−C2

)
.(A.37)

The assumption, in (3.7)(b), that K is compactly supported and Hölder continuous,
and the implication, in (3.5)(c), that fX is also Hölder continuous, enable (A.35)
to be derived directly from (A.37) by taking In to be a sufficiently fine grid in I .

A proof of (A.4) in Lemma 1 is similar. To illustrate the argument, we derive
the following result part of (A.4): for all C2,C4 > 0,

Pk

{
sup
x∈I

∣∣�(x)
∣∣ > nC4(mh)−1/2

}
= O

(
n−C2

)
.(A.38)

Using Markov’s and Rosenthal’s inequalities, we first obtain the result when the
supremum is outside the probability statement:

sup
x∈I

Pk

{∣∣�(x)
∣∣ > nC4(mh)−1/2} = O

(
n−C2

)
.

Taking In to contain only O(nC) points, for any fixed C > 0, we deduce that

Pk

{
sup
x∈In

∣∣�(x)
∣∣ > nC4(mh)−1/2

}
= O

(
n−C2

)
,

and taking In to be a sufficiently fine grid in I we obtain (A.38).

SUPPLEMENTARY MATERIAL

Supplement to “Unexpected properties of bandwidth choice when smooth-
ing discrete data for constructing a functional data classifier” (DOI: 10.1214/
13-AOS1158SUPP; .pdf). The supplementary file contains the proof of Theorems
2 and 3, as well as additional simulation results.
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