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A TEST FOR THE RANK OF THE VOLATILITY PROCESS:
THE RANDOM PERTURBATION APPROACH

BY JEAN JACOD AND MARK PODOLSKIJ

Institut de Mathématiques de Jussieu and Heidelberg University

In this paper, we present a test for the maximal rank of the matrix-valued
volatility process in the continuous Itô semimartingale framework. Our idea is
based upon a random perturbation of the original high frequency observations
of an Itô semimartingale, which opens the way for rank testing. We develop
the complete limit theory for the test statistic and apply it to various null and
alternative hypotheses. Finally, we demonstrate a homoscedasticity test for
the rank process.

1. Introduction. In recent years asymptotic statistics for high frequency ob-
servations has received a lot of attention in the literature. This interest was mainly
motivated by financial applications, where observations of stocks or currencies
are available at very high frequencies. As under the no-arbitrage condition, prices
processes must be semimartingales (see, e.g., [4]), a lot of research has been de-
voted to statistics of high frequency data of semimartingales. We refer to a re-
cent book [10] for a comprehensive study of infill asymptotic for semimartin-
gales.

This paper is devoted to testing for the maximal rank of the matrix-valued
volatility process in the continuous Itô semimartingale framework, and more
specifically for a d-dimensional continuous Itô semimartingale X which is
observed at equidistant times over a fixed time interval [0, T ]: we observe
(Xi�n)0≤i≤[T/�n], and the high-frequency approach consists in assuming �n → 0.

A continuous Itô semimartingale can be written as

dXt = bt dt + σt dWt,(1.1)

where W is a Brownian motion, and there are many representations of this form,
with different Brownian motions W and, accordingly, different volatility pro-
cesses σ . What is “intrinsic” is the drift coefficient bt and the diffusion coefficient
(“squared volatility”) ct = σtσ

∗
t , in the sense that they are uniquely determined

by X, up to a Lebesgue-null set of times (throughout the paper σ ∗
t denotes the

transpose of the matrix σ ).
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For modeling purposes and economical interpretation, we would like to find,
and often choose, the smallest possible dimension of the Brownian motion W in
the representation (1.1). Assuming further that t �→ ct is continuous, this small-
est possible dimension is the supremum in time of the rank of the R

d×d -valued
process c over the time interval [0, T ]. Although the estimation of the maximal
rank of c, which is an integer, does not make much sense (see the discussion in
Section 3.3), testing for the maximal rank is a well formulated statistical problem.
Besides the obvious application of the rank test, we will link our testing procedure
to other statistical problems, such as testing for market (in)completeness in finan-
cial mathematics, testing for integrated diffusions and testing the local volatility
vs. stochastic volatility hypothesis (cf. Remark 3.9). We are further interested in
homoscedasticity testing for the rank process.

A partial answer to this question was given in [9]. The authors of this paper
studied the problem of testing the null hypothesis supt∈[0,T ) rank(ct ) ≥ r0 against
supt∈[0,T ) rank(ct ) < r0 for a given number r0. However, their method does not ex-
tend to testing null hypotheses of other types, for example, supt∈[0,T ) rank(ct ) = r0
against supt∈[0,T ) rank(ct ) �= r0 (which is much more useful). In the classical set-
ting of i.i.d. or weakly dependent data, various estimation methods for the rank
of an unknown covariance matrix (and related objects) have been proposed. We
would like to mention Gaussian elimination method with complete pivoting of [3]
and the test suggested in [13] among others. Unfortunately, these procedures can
not be applied to our statistical problem as the probabilistic structure of the process
X is more complex and the rank is time-varying.

Our method is based upon a random perturbation of the original data and de-
terminant expansions. The main idea can be described as follows: if we compute
det(ct + het ) for a positive definite d × d matrix et independent of ct and h ↓ 0,
then, under appropriate conditions, its rate of decay to 0 depends on the unknown
rank of ct . Hence, the ratio det(ct + 2het )/det(ct + het ) asymptotically identifies
the rank of ct . Indeed, our main statistic is a partial sum of squared determinants
of matrices built from d consecutive increments of the process X and the ran-
dom perturbation is performed by a properly scaled Brownian motion W ′, which
is independent of all ingredients of X. We remark that perturbation methods (and
matrix expansions as well) find applications in various fields of mathematics; we
refer, for instance, to [11] whose authors apply matrix perturbation methods to
determine the number of components in a linear mixture model from high dimen-
sional noisy samples. Furthermore, the methods of [2] also rely upon a generation
of a new Brownian motion W ′ although in a completely different setting.

The paper is structured as follows. Section 2 is devoted to model assumptions,
testing hypotheses and test statistics. We present the asymptotic theory for our
estimators and apply it to maximal rank testing in Section 3. In Section 4, we
develop a test for the null hypothesis of constant rank. All proofs are deferred to
Section 6.
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2. Model, assumptions and a random perturbation.

2.1. The setting and testing hypotheses. Our process of interest is a d-dimen-
sional continuous Itô semimartingale X, given on some filtered probability space
(�, F , (Ft )t≥0,P). In vector form, and with W denoting a q-dimensional Brown-
ian motion, it can be written as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs,(2.1)

where bt is a d-dimensional drift process and σt is a R
d×q -valued volatility pro-

cess, assumed to be continuous in time [and indeed much more, see Assump-
tion (H) below]. We set

ct = σtσ
∗
t , rt = rank(ct ), Rt = sup

s∈[0,t)

rs .(2.2)

We remark that the maximal rank RT is not bigger than the rank of the integrated
volatility

∫ T
0 ct dt , but may be strictly smaller. As already mentioned, it is suitable

to use the smallest possible dimension for W , on the time interval [0, T ]. This is
the P-essential supremum of ω �→ RT (ω), but, since a single path t �→ Xt(ω) is
(partially) observed, the only available information is RT itself. So the problem
really boils down to finding the behavior of the process rt , and for this the choice
of the dimension of W in (2.1) is irrelevant.

The rank rt is the biggest integer r ≤ d such that the sum of the determinants
of the matrices (c

ij
t )i,j∈J , where J runs through all subsets of {1, . . . , d} with

r points, is positive (with the convention that a 0 × 0 matrix has determinant 1)
see, for example, [9], Lemma 3. Since ct is continuous, this implies that for any
r the random set {t : rt (ω) > r} is open in [0, T ), so the mapping t �→ rt is lower
semi-continuous. In particular, the set {t ∈ [0, T ) : rt (ω) = RT (ω)} is a nonempty
open subset. These properties also yield that the process rt is predictable and
that the following subsets of �, which later will be the “testing hypotheses,” are

FT -measurable:

�r
T = {

ω :RT (ω) = r
}
,

�=
T = {

ω : rt (ω) = RT (ω) for all t ∈ [0, T ]},
(2.3)

�
�=
T = {

ω : t �→ rt (ω) has finitely many discontinuities and is,

not Lebesgue-a.s. constant on [0, T ]}.
Notice that we impose that rT = RT in �=

T , whereas the lower semi-continuity
only implies in general that rT ≤ RT . Observe also that a priori t �→ rt may
be Lebesgue-a.s. constant and still have discontinuities (even infinitely many) on
[0, T ]. So, �=

T and �
�=
T are disjoint but �=

T ∪ �
�=
T �= � in general. The main aim of

this paper is testing the null hypothesis �r
T against �

�=r
T =⋃

r ′ �=r,0≤r ′≤d �r ′
T (and

related hypotheses) and testing the null hypothesis of �=
T against �

�=
T .
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2.2. Matrix perturbation. In order to explain the main idea of our method,
we need to introduce some notation. Recall that d and q are the dimensions of
X and W , respectively. Then M is the set of all d × d matrices, Mr for r ∈
{0, . . . , d} is the set of all matrices in M with rank r , and M′ is the set of all d ×q

matrices. For any matrix A we denote by Ai the ith column of A; for any vectors
x1, . . . , xd in R

d , we write mat(x1, . . . , xd) for the matrix in M whose ith column
is the column vector xi . For r ∈ {0, . . . , d} and A,B ∈ M we define

Mr
A,B = {

G ∈ M :Gi = Ai or Gi = Bi with #{i :Gi = Ai} = r
}
.(2.4)

In other words, Mr
A,B is the set of all matrices G ∈ M with r columns equal to

those of A (at the same places), and the remaining d − r ones equal to those of B .
Let us define

γr(A,B) = ∑
G∈Mr

A,B

det(G).(2.5)

We demonstrate the main ideas for a deterministic problem first. Let A ∈ M
be an unknown matrix with rank r . Assume that, although A is unknown, we have
a way of computing det(A+hB) for all h > 0 and some given matrix B ∈ Md . We
will see that the multi-linearity property of the determinant implies the following
asymptotic expansion:

det(A + hB) = hd−rγr(A,B) + O
(
hd−r+1),(2.6)

which is the core of our method. Thus, if γr(A,B) �= 0, we have

det(A + 2hB)

det(A + hB)
→ 2d−r as h ↓ 0(2.7)

and this convergence identifies the parameter r . However, it is impossible to choose
a matrix B ∈ M which guarantees γr(A,B) �= 0 for all A ∈ Mr . To solve this
problem, we can use a random perturbation. As we will show later, for any A ∈ Mr

we have γr(A,B) �= 0 a.s. when B is the random matrix whose entries are inde-
pendent standard normal. This idea will be the core of our testing procedure.

2.3. Assumptions and the test statistic. Before we proceed with the defini-
tion of the test statistic, we introduce the main assumptions. We need more struc-
ture than the mere equation (2.1), namely that the processes bt and σt , and also
the volatility of σt , are continuous Itô semimartingales. In view of the previous
discussion, it is no restriction to assume that all these are driven by the same
q-dimensional Brownian motion, provided we take q large enough. This leads us
to put:
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ASSUMPTION (H). The d-dimensional semimartingale X, defined on (�, F ,

(Ft )t≥0,P), has the form

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs,

σt = σ0 +
∫ t

0
as ds +

∫ t

0
vs dWs,

(2.8)

bt = b0 +
∫ t

0
a′
s ds +

∫ t

0
v′
s dWs,

vt = v0 +
∫ t

0
a′′
s ds +

∫ t

0
v′′
s dWs,

where W is a q-dimensional Brownian motion, and bt and a′
t are R

d -valued,
σt , at and v′

t are R
d×q -valued, vt and a′′

t are R
d×q×q -valued, and v′′

t is
R

d×q×q×q -valued, all those processes being adapted. Finally, the processes at ,
v′
t , v′′

t are càdlàg and the processes a′
t , a′′

t are locally bounded.

At this stage it is not quite clear why the full force of Assumption (H) is re-
quired. In the standard limit theory for high frequency data of continuous Itô semi-
martingales, see, for example, [1, 7], only the first two representations of (2.8)
are assumed. We will further explain Assumption (H) once we introduce the test
statistic. When bt = g1(Xt), σt = g2(Xt) with g1 ∈ C2(Rd) and g2 ∈ C4(Rd), then
Assumption (H) is automatically satisfied due to Itô’s formula.

REMARK 2.1. Since σt is not uniquely specified, whereas ct is, and since we
really are interested in specific properties of ct , it would be much nicer to replace
the structural assumption on σt [second equation in (2.8)] by a similar assumption
on the process ct itself.

This is of course a trivial matter when ct is everywhere invertible: in this case
ct is a continuous Itô semimartingale if and only if σt is. But here we are precisely
trying to describe the rank of the matrix ct , so it is out of the question to assume that
it is a priori invertible. Unfortunately, we were unable to replace the assumption
on σ by a similar (and de facto weaker) assumption on c.

Motivated by the matrix perturbation at (2.6), our tests will be based on statistics
involving sums of (squared) determinants. The test function will be the nonnega-
tive map f on (Rd)d defined as

f (x1, . . . , xd) = det
(
mat(x1, . . . , xd)

)2
.(2.9)

The authors of [9] used the following statistics:

�n

[t/�n]−d+1∑
i=1

f
(
�n

i X/
√

�n, . . . ,�
n
i+d−1X/

√
�n

)
,

(2.10)
�n

i X = Xi�n − X(i−1)�n
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to test for the full rank, thus allowing for efficient testing of the null hypothesis �d
T .

On the sets �r
T with r < d , however, it exhibits complex degeneracies and becomes

difficult to study. In order to be able to analyze the asymptotic behavior of the
preceding statistics, we introduce a random perturbation of the original process X

as motivated at the end of Section 2.2 (a somewhat similar idea in a different
context was applied in [2]). More specifically, we choose a nonrandom invertible
d × d matrix σ̃ and generate a new process

X′
t = σ̃W ′

t ,(2.11)

where W ′ is a d-dimensional Brownian motion independent of all processes
in (2.8) [without loss of generality, for the mathematical treatment below we may
assume that it is also defined on the space (�, F , (Ft )t≥0,P)]. Following the ideas
of Section 2.2, we add to X this new process X′, with a multiplicative factor going
to 0. As a matter of fact we introduce two such additions, and for κ = 1 or 2 we
set

Z
n,κ
t = Xt +√

κ�nX
′
t .(2.12)

Hence, with the notation of Section 2.2, we use h = √
�n, which leads later to the

optimal rate of convergence.
Another problem arises, namely in (2.10) successive summands partly use the

same increments of X, and this causes problems for the central limit theorem.
These problems can actually be overcome, at the expense of quite many additional
technicalities, and with the advantage of a smaller asymptotic variance for our es-
timators below. However, in our case the crucial point is the choice of the tuning
“parameter” σ̃ : this choice has an impact on the asymptotic variance as well, and
since an “optimal” choice of σ̃ seems out of reach, we will content ourselves with
an arbitrary choice of σ̃ and with a version of (2.10) with no overlapping of incre-
ments between the successive summands. This leads us to use the following two
basic statistics:

S
n,1
t = 2d�n

[t/2d�n]−1∑
i=0

f

(Z
n,1
(2id+1)�n

− Z
n,1
2id�n√

�n

, . . . ,

Z
n,1
(2id+d)�n

− Z
n,1
(2id+d−1)�n√

�n

)
,

(2.13)

S
n,2
t = 2d�n

[t/2d�n]−1∑
i=0

f

(Z
n,2
(2id+2)�n

− Z
n,2
(2id)�n√

2�n

, . . . ,

Z
n,2
(2id+2d)�n

− Z
n,2
(2id+2d−2)�n√

2�n

)
.

Notice that the statistics S
n,1
t and S

n,2
t are essentially the same (upon using

Zn,1 and Zn,2, of course), except S
n,2
t is computed using the frequency 2�n.
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At stage n one observes the increments �n
i X and simulates the increments �n

i X
′

for i ≤ [t/�n], so one “observes” all variables incurring in the definition of these
two statistics.

REMARK 2.2. Now, let us explain why Assumption (H) and the random per-
turbation in (2.12) are required. A direct stochastic expansion of the increments
�n

i Z
n,1 under Assumption (H) implies the decomposition

mat
(
�n

i Z
n/
√

�n, . . . ,�
n
i+d−1Z

n/
√

�n

)
(2.14)

= αn
i +√

�n

(
βn

i (1) + βn
i (2)

)+ OP(�n),

where the matrices αn
i = mat(αn

i,1, . . . , α
n
i,d) and βn

i (k) = mat(βn
i,1(k), . . . , βn

i,d(k))

in M, for k = 1,2, are given by

αn
i,j = �−1/2

n σ(i−1)�n�
n
i+j−1W,

βn
i,j (1) = b(i−1)�n + �−1

n v(i−1)�n

∫ (i+j)�n

(i+j−1)�n

(Ws − W(i−1)�n) dWs,(2.15)

βn
i,j (2) = �−1/2

n σ̃�n
i+j−1W

′.

We remark that the matrices αn
i , βn

i (1), βn
i (2) are OP(1). In the case rt ≤ d − 1 for

all t , the first order term αn
i , which depends on the process σt , gives a degenerate

limit when plugged in into the statistics (2.12) or (2.13). Hence the second order
term

√
�n(β

n
i (1) + βn

i (2)), which involves the processes bt and vt , becomes im-
portant. Indeed, we will see in Section 3 that it affects the limits. Furthermore, it
is important to control the error of the above decomposition, and this is done by
using the last two equations in (2.8).

The asymptotic expansion in (2.14) is a stochastic analogue of the perturba-
tion presented in (2.6) (up to an error term) with A = αn

i , B = βn
i (1) + βn

i (2)

and h = √
�n. Under Assumption (H) the term βn

i (1) already constitutes a ran-
dom perturbation of the leading matrix αn

i . However, this perturbation does not
guarantee that the quantity γr(α

n
i , βn

i (1)) defined in (2.5) does not vanish when
rank(σ(i−1)�n) = r (which is essential for our method). To illustrate this problem,
let us give a simple example. Let d = 3, q = 1 and define the processes

dX
j
t = σ

j
t dWt , dσ

j
t = v

j
t dWt , j = 1,2,3.

(So W is a one-dimensional Brownian motion.) Then rank(αn
i ) = 1, rank(βn

i (1)) =
1, and hence γ1(α

n
i , βn

i (1)) = 0. The presence of the new independent process X′,
and thus of the term βn

i (2), regularizes the problem. Indeed, we will show that
γr(α

n
i , βn

i (1) + βn
i (2)) does not vanish whenever rank(σ(i−1)�n) = r . Finally, the

perturbation rate h = √
�n in front of the process X′ is chosen to achieve the best

rate of convergence for the normalized versions of the statistics S
n,1
t , S

n,2
t .
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Following the expansion (2.6), we know that the order of det(αn
i +√

�n(β
n
i (1)+

βn
i (2)))2 is increasing in r = rank(σ(i−1)�n). Consequently, as in (2.7), the ratio

S
n,2
T /S

n,1
T is expected to identify (asymptotically) the maximal rank RT . The com-

plete asymptotic theory is presented in the next section.

3. The asymptotic results and test for the maximal rank.

3.1. Notation. In order to present the main asymptotic results, we need to in-
troduce some more notation. We define the function Fr on (R2d)d by

Fr(v1, . . . , vd) = γr

(
mat(x1, . . . , xd),mat(y1, . . . , yd)

)2
(3.1)

if vj =
(

xj

yj

)
∈ R

2d,

where the quantity γr is defined by (2.5). Next, let U = M′ × M × R
dq2 × R

d ,
whose points are u = (α,β, γ, a), where α ∈ M′ and β ∈ M and γ ∈ R

dq2
and

a ∈ R
d . Let us denote by 
W and 
W ′ two independent Brownian motions with re-

spective dimensions q and d , defined on some space (
�, 
F , (
Ft ),
P). If u ∈ U and
κ = 1,2 and i ≥ 1, we associate the 2d-dimensional variables with the following
components for l = 1, . . . , d :


(u,κ)li = 1√
κ

q∑
m=1

αlm(
Wm
κi − 
Wm

κ(i−1)

)
,


(u, κ)d+l
i = al + 1√

κ

d∑
m=1

βlm(
W ′m
κi − 
W ′m

κ(i−1)

)
(3.2)

+ 1

κ

q∑
m,k=1

γ lmk
∫ κi

κ(i−1)


Wk
s d 
Wm

s .

With the notation (3.1) we can then define the variables


Fr(u, κ) = Fr

(

(u,κ)1, . . . ,
(u, κ)d

)
.(3.3)

The two sequences (
(u, κ))i≥1 are not independent, but they have the same
(global) law, for κ = 1,2. Therefore if u = (α,β, γ, a) we can set

�r(u) = 
E(
Fr(u,1)
)= 
E(
Fr(u,2)

)
,

�′
r (u) = 
E(
Fr(u,1)2)− �r(u)2 = 
E(
Fr(u,2)2)− �r(u)2,(3.4)

�′′
r (u) = 
E(
Fr(u,1)
Fr(u,2)

)− �r(u)2.

We then obtain the following crucial properties.
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LEMMA 3.1. Let u = (α,β, γ, a) ∈ U with β ∈ Md . Then if r ∈ {0,1, . . . , d},
rank(α) = r �⇒ �r(u) > 0, �′

r (u) > �′′
r (u),

(3.5)
rank(α) < r �⇒ �r(u) = �′

r (u) = �′′
r (u) = 0.

3.2. The limiting results. The key result is the asymptotic behavior of the pro-
cesses Sn,j , which are defined by (2.13), as n → ∞. These processes enjoy a law
of large numbers and a central limit theorem, the centering being around one of
the following processes, where r is any (fixed) integer between 0 and d:

S(r)t =
∫ t

0
�r(σs, σ̃ , vs, bs) ds.(3.6)

We will in fact have a CLT for the two-dimensional processes U(r)n with compo-
nents

U(r)n,κ = 1√
�n

(
1

(κ�n)d−r
Sn,κ − S(r)

)
.(3.7)

Of course, the centering process S(r) depends on r , so one needs an additional as-
sumption related with the particular value of r which is chosen below (in contrast,
the centering term is the same for all components).

THEOREM 3.2. Assume Assumption (H), and also that rt (ω) ≤ r identically
for some r ∈ {0, . . . , d}. Then we have the stable (functional) convergence in law

U(r)n
L−s�⇒ U (r),(3.8)

where U (r) = (U (r)κ)κ=1,2 is defined on an extension (�̃, F̃ , (F̃t )t≥0, P̃) of
(�, F , (Ft )t≥0,P) and is, conditionally on F , a continuous centered Gaussian
martingale with conditional covariance

Ẽ
(

U (r)κt U (r)κ
′

t | F
)

(3.9)

= V (r)κκ ′
t :=

⎧⎪⎪⎨⎪⎪⎩
2d

∫ t

0
�′

r (σs, σ̃ , vs, bs) ds, if κ = κ ′,

2d

∫ t

0
�′′

r (σs, σ̃ , vs, bs) ds, if κ �= κ ′.

Note that in the above setting, if r < r ′ ≤ d , we also have rt ≤ r ′ and thus the
results also hold with r ′ instead of r everywhere. This does not bring a contradic-
tion because, by (3.5), in this case the processes S(r ′) and U(r ′) are identically
vanishing.

Now, these processes Sn,j are only tools, and at the end we will be interested,
for any T > 0 fixed, in “estimators” for RT , which are

R̂(n, T ) = d − log(S
n,2
T /S

n,1
T )

log 2
.(3.10)
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The quantity is a transformed analogue of the term on the left-hand side of (2.7).
Since RT is by definition an integer between 0 and d , we can also use the following
estimators:

R̂int(n,T ) =

⎧⎪⎪⎨⎪⎪⎩
0, if R̂(n, T ) < 1

2 ,

r, if 1 ≤ r ≤ d − 1, r − 1
2 ≤ R̂(n, T ) < r + 1

2 ,

d, if R̂(n, T ) ≥ d − 1
2 .

(3.11)

The following corollary is a simple consequence of the previous theorem.

COROLLARY 3.3. Assume Assumption (H), and let T > 0. Then the following
stable convergence in law holds:

1√
�n

(
R̂(n, T ) − r

) L−s−→ S(T ),(3.12)

where S(T ) can be realized on the set �r
T , for any r = 0, . . . , d , as S(T ) =

1
log 2(U (r)1

T − U (r)2
T )/S(r)T and is thus defined on an extension (�̃, F̃ , (F̃t )t≥0, P̃)

of (�, F , (Ft )t≥0,P) and is, conditionally on F , a centered Gaussian variable
whose conditional variance is

Ẽ
((

S(T )
)2 | F

)= V (T ),

where V (T ) is a.s. positive and given by

V (T ) = 1

(log 2)2

V (r)
1,1
T + V (r)

2,2
T − 2V (r)

1,2
T

(S(r)T )2 on each set �r
T .(3.13)

In particular, for any r = 0, . . . , d , we have the following consistency result:

P
(
�r

T ∩ {R̂int(n,T ) �= r
})→ 0.(3.14)

In order to make this result feasible, we need consistent estimators for V (T ).
For the denominator S(r)2

T , we can of course take the square of �r−d
n S

n,1
T . As for

the numerator, we need estimators for V (r)
κ,κ ′
T . Up to normalization, natural ones

are as follows:

V
n,κκ ′
t = 4d2�n

[t/2d�n]−1∑
i=0

f

(Z
n,κ
(2id+κ)�n

− Z
n,κ
2id�n√

κ�n

, . . . ,

Z
n,κ
(2id+κd)�n

− Z
n,κ
(2id+κ(d−1))�n√

κ�n

)
(3.15)

× f

(Z
n,κ ′
(2id+κ ′)�n

− Z
n,κ ′
2id�n√

κ ′�n

, . . . ,

Z
n,κ ′
(2id+κ ′d)�n

− Z
n,κ ′
(2id+κ ′(d−1))�n√

κ ′�n

)
,
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where the function f is given by (2.9).

PROPOSITION 3.4. Assume Assumption (H).

(a) If rt (ω) ≤ r identically for some r ∈ {0, . . . , d}, we have for κ, κ ′ = 1,2:

1

(κκ ′�2
n)

d−r
V n,κκ ′ u.c.p.�⇒ 2d

∫ ·
0

�r,κ,κ ′
s ds

(3.16)

where �r,κ,κ ′
s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�′

r (σs, σ̃ , vs, bs) + �r(σs, σ̃ , vs, bs)
2,

if κ = κ ′,
�′′

r (σs, σ̃ , vs, bs) + �r(σs, σ̃ , vs, bs)
2,

if κ �= κ ′,
where the quantities �r,�

′
r ,�

′′
r are defined in (3.4).

(b) We have

V (n,T ) := V
n,11
T + 22(R̂(n,T )−d)V

n,22
T − 21+R̂(n,T )−dV

n,12
T

(S
n,1
T log 2)2

P−→ V (T ).(3.17)

REMARK 3.5. In (3.17) one can replace R̂(n, T ) by R̂int(n,T ). The numer-
ator of the right-hand side of (3.13) is also 2(V (r)11

T − V (r)12
T ). Therefore, we

have

V ′(n,T ) = V
n,11
T − 21+R̂(n,T )−dV

n,12
T

(S
n,1
T )2

P−→ V (T ) on the set �r
T

as well. However, V (n,T ) ≥ 0 by construction (and it is even a.s. positive unless
rt = 0 identically on [0, T ]), a property not shared by V ′(n,T ).

Now, by the delta-method for stable convergence in law, the two previous results
immediately yield the following corollary.

COROLLARY 3.6. Under Assumption (H) and for any T > 0, we have

R̂(n, T ) − RT√
�nV (n,T )

L−s−→ 
,(3.18)

where 
 ∼ N (0,1) is defined on an extension (�̃, F̃ , (F̃t )t≥0, P̃) of (�, F ,

(Ft )t≥0,P) and is independent of F .

3.3. Tests for the maximal rank. So far, R̂(n, T ) are estimators for the max-
imal rank RT , which equals r on the set �r

T , and even feasible estimators if we
use Corollary 3.6. In particular, this corollary seems to allow us to easily construct
confidence intervals for RT . However, confidence interval do not make much sta-
tistical sense, since RT is integer-valued.
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One might also use, perhaps more to the point, R̂int(n,T ), but apart from
the consistency result (3.14) it is not easy to evaluate the error probability that
R̂int(n,T ) �= RT .

So, it seems more appropriate here to do testing: we can test the null hypothesis
that the path lies in �r

T for some r , against the alternative that it is in �r ′
T for

another specific r ′ �= r , or for all r ′ > r or all r ′ < r , or all r ′ �= r . We may also
use composite null hypotheses, such as being in �r

T for some r smaller, or bigger,
than a given value r0.

We start with the problem of testing the null hypothesis �r
T , against the alterna-

tive �
�=r
T =⋃

r ′ �=r,0≤r ′≤d �r ′
T . For any α ∈ (0,1), and with zα being the symmetric

α-quantile of N (0,1) defined by P(|
| > zα) = α when 
 ∼ N (0,1), we take the
critical (rejection) region

C(α)
n,=r
T = {

ω :
∣∣R̂(n, T ) − r

∣∣> zα

√
�nV (n,T )

}
.(3.19)

PROPOSITION 3.7. Under Assumption (H), the tests (3.19) have the asymp-
totic level α for testing the null �r

T , in the sense that

A ⊂ �r
T , P(A) > 0 ⇒ P

(
C(α)

n,=r
T | A)→ α(3.20)

[above, P(· | A) is the usual conditional probability]. They are also consistent for
the alternative �

�=r
T , in the sense that

P
(

C(α)
n,=r
T ∩ �

�=r
T

)→ P
(
�

�=r
T

)
.(3.21)

One constructs one-sided tests in the same way. For example, if we want to test
the null hypothesis �

≤r
T =⋃

r ′≤r �r ′
T against the alternative �>r

T =⋃
r ′>r �r ′

T , and
if z′

α is the one-sided α-quantile defined by P(
 > z′
α) = α, we take the critical

region

C(α)
n,≤r
T = {

ω : R̂(n, T ) > r + z′
α

√
�nV (n,T )

}
.(3.22)

Exactly as above, one obtains the following proposition.

PROPOSITION 3.8. Under Assumption (H), the tests (3.22) have the asymp-
totic level at most α for testing the null �

≤r
T , and indeed satisfy

A ⊂ �
≤r
T , P(A) > 0 ⇒ P

(
C(α)

n,≤r
T | A)→ αP

(
�

≤r
T | A)≤ α(3.23)

and are consistent for the alternative �>r
T .

The tests for the null �
≥r
T against �<r

T are obtained analogously.

REMARK 3.9. Apart from the direct rank testing, let us link our testing pro-
cedure with some other statistical problems:
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(a) In financial mathematics the full rank of the volatility matrix ct is required
for market completeness. Thus, testing �

≤d
T versus �=d

T is directly connected to
completeness of the market.

(b) In [5, 6] parametric estimation methods for the so called integrated diffu-
sions have been developed. An integrated diffusion is a process that satisfies the
first and the third equations of Assumption (H) with σ = 0, that is,

dXt = bt dt,

where bt is a continuous Itô semimartingale. We refer to [5] for various applica-
tions of these models in natural sciences. Given high frequency observations of X,
testing the null hypothesis of integrated diffusion versus the alternative of a diffu-
sion with a present volatility part σ is equivalent to testing �0

T versus �
�=0
T .

(c) Another potential application of our method is a test for “perfect correla-
tion” between the process X and the unobserved volatility σ . The problem can
be formulated as follows: Let X and σ be two one-dimensional continuous Itô
semimartingales of the form

dXt = bt dt + σt dWt, dσt = at dt + vt dBt ,

where W and B are one-dimensional Brownian motions with the bracket process
[W,B]t = ρt , |ρ| ≤ 1. For financial applications testing, the hypothesis |ρ| = 1
versus |ρ| < 1 is of certain interest. Note that |ρ| = 1 appears in the SDE case, that
is, when σt = g(Xt) with g ∈ C2(R). We refer to testing local volatility hypothesis
in [12] for a more detailed discussion (see also [14] for related statistical prob-
lems). The aforementioned problem is equivalent to testing �1

T versus �>1
T = �2

T

for the two-dimensional process (X,σ). Since the process σ is unobserved, it has
to be locally estimated from the high frequency observations of X first (see, e.g.,
[12] for more details).

4. A test for a constant rank. This section is devoted to a seemingly different
topic, namely whether the a priori time-dependent rank is constant or not. Our test
statistics will be based on a distance measure between the rank process rt and
the maximal rank RT , which vanishes if and only if the rank is constant almost
surely. For the formal testing procedure, we will need some limiting results for the
“spot estimators” of the rank. By this, we mean estimators for rt , for any given t ,
at least under the assumption that rs is equal to rt for all s in some right or left
neighborhood of t .

To describe these spot estimators, we pick a sequence kn ≥ 1 of integers going
to infinity, and such that kn�n → 0 (as for spot volatility estimators), and precise
specifications for kn will be given later, although we always assume kn ≥ 4d . For
any integer i ≥ 1, we set

R̂n
i = d − log Ŝn

i

log 2
, Ŝn

i = S
n,2
2d(i+1)kn�n

− S
n,2
2dikn�n

S
n,1
2d(i+1)kn�n

− S
n,1
2dikn�n

.(4.1)
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Then R̂n
i , more or less, plays the role of an estimator of the maximum of rt over

an interval of length 2dkn�n around the time 2id�n, and we set for any p > 0:

cA(p)nt = 2dkn�n

[t/2dkn�n]−2∑
i=0

{∣∣R̂n
ikn

∣∣p ∧ (d + 1)p
}
,

B(n,p,T ) = A(p)nT − a(n,T )
(
R̂(n, T )

)p
,(4.2)

a(n,T ) = 2dkn�n

([T/2dkn�n] − 1
)
.

The asymptotic results for the quantity B(n,p,T ) are as follows.

THEOREM 4.1. Assume Assumption (H), and let T > 0, p > 0 and kn be such
that kn�

3/4
n → ∞ and kn�n → 0.

(a) If t �→ rt (ω) is continuous except at finitely many points on [0, T ], hence
piecewise constant, we have

B(n,p,T )
P−→

∫ T

0
(rs)

p ds − T (RT )p.(4.3)

(b) We have the stable convergence in law:

1√
�n

B(n,p,T )
L−s−→ B(p,T ) in restriction to the set �=

T ∩ {RT ≥ 1},(4.4)

where B(p,T ) is defined on an extension (�̃, F̃ , (F̃t )t≥0, P̃) of (�, F , (Ft )t≥0,P)

and is, conditionally on F , a centered Gaussian variable with conditional variance

V (p,T ) = Ẽ(B(p,T )2 | F ) given on each set �r

T by


V (p,T ) =
(

prp−1

log 2

)2 ∫ T

0

(
1

�r(σs, σ̃ , vs, bs)
− T

S(r)T

)2

(4.5)
× (

dV (r)11
s + dV (r)22

s − 2dV (r)12
s

)
with V (r)κκ ′

being defined at (3.9).

Notice that the right-hand side of (4.3) is 0 on the set �=
T , and strictly negative

on �
�=
T .

REMARK 4.2. The reader will notice that in the definition of A(p)nt the sum-
mands are |R̂n

i |p ∧ (d + 1)d , instead of the more natural |R̂n
i |p . We could take this

more natural form for (b) above, but it is useful (and innocuous from a practical
viewpoint) to “bound” the summands, in order to obtain (a). We could bound them
by dp instead of (d + 1)p and still have (4.3), but then (4.4) would then fail in
case r = d is the maximal rank: we would obtain a CLT with a non-Gaussian and
noncentered limit.
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REMARK 4.3. In the setting of (b) above, we will in fact prove a joint conver-
gence for the variables A(p)nT − a(n,T )rp and R̂(n, T ) − r , both normalized by
1/

√
�n [the second one being as in (3.12)], and from which (4.4) follows. Such a

joint CLT even holds under the assumptions of (a), with a complicated limit, but
this refinement is not useful for us in this paper.

REMARK 4.4. One can also prove a joint convergence for the variables
A(p)nT − a(n,T )rp with different values of p, and still normalized by 1/

√
�n.

However, when p > p′ > 0 it turns out that the difference 1√
�n

(A(p)nT −
a(n,T )1−p′/p(A(p′)nT )p/p′

) converges to 0, and no known normalization gives
a proper CLT.

As before, we need consistent estimators for the conditional variance 
V (p,T ).
Such estimators are constructed in a way analogous to (3.15). That is, we set with
kn as above:


V n,κκ ′
t = 4d2�1+2d−2R̂(n,T )

n

×
[t/2d�n]−kn−1∑

i=0

(
2dkn�n

S
n,1
2d(i+kn)�n

− S
n,1
2id�n

− T

S
n,1
T

)2

× f

(Z
n,κ
(2id+κ)�n

− Z
n,κ
2id�n√

κ�n

, . . . ,

(4.6)
Z

n,κ
(2id+κd)�n

− Z
n,κ
(2id+κ(d−1))�n√

κ�n

)

× f

(Z
n,κ ′
(2id+κ ′)�n

− Z
n,κ ′
2id�n√

κ ′�n

, . . . ,

Z
n,κ ′
(2id+κ ′d)�n

− Z
n,κ ′
(2id+κ ′(d−1))�n√

κ ′�n

)
.

THEOREM 4.5. Assume Assumption (H), and let T > 0, p > 0 and kn be such
that kn�

3/4
n → ∞ and kn�n → 0. Then we have


V (n,p,T ) :=
(

pR̂(n,T )p−1

log 2

)2

× (
V n,11
T + 22(R̂(n,T )−d)
V n,22

T − 21+R̂(n,T )−d 
V n,12
T

)
(4.7)

P−→ 
V (p,T ) on the set �=
T .
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Moreover, the variables

Z(n,p,T ) = B(n,p,T )√
�n(
V (n,p,T ) ∧ (1/

√
�n))

(4.8)

have the following asymptotic behavior, where 
 ∼ N (0,1) is as in Corollary 3.6:

Z(n,p,T )
L−s−→ 
 in restriction to the set �=

T ∩ {RT ≥ 1},
(4.9)

Z(n,p,T )
P−→ −∞ in restriction to the set �

�=
T .

Having all instruments at hand we proceed with testing. What is easily available
is a family of tests for the null �=

T , whereas the alternative is restricted to �
�=
T . One

does not know how to test the null �
�=
T .

For this purpose, we use the statistic B(n,p,T ). In fact, (4.9) gives us the be-
havior of this statistic on �=

T ∩{RT ≥ 1}, and this is the null which is tested below.
Now, �=

T is the union of �=
T ∩ {RT ≥ 1} and �0

T , so if we are interested in testing
the whole �=

T one can do a double test, using what precedes and Proposition 3.8
with r = 0.

We propose to use the following critical region, where p > 0 is chosen arbitrar-
ily and z′

α is again the one-sided α-quantile of N (0,1):

C(α)
n,≡
T = {

ω :B(n,p,T ) < −z′
α

√
�n

(
V (n,p,T ) ∧ (1/
√

�n)
)}

.(4.10)

Exactly as in the previous section, we obtain the following result.

PROPOSITION 4.6. Under Assumption (H), the tests (4.10) have the asymp-
totic level α for testing the null �=

T ∩ {RT ≥ 1}, in the sense of (3.20), and are

consistent for the alternative �
�=
T .

5. Monte Carlo evidence. We have tested the performances of the test de-
scribed in Section 3.3 through some Monte Carlo experiments. These are per-
formed in the 2-dimensional case d = 2, and first we conducted preliminary exper-
iments to determine a reasonable value of σ̃ in (2.11). To this aim, we simulated
the processes over the time interval [0,1] and �n = 1/25,000 (corresponding ap-
proximately to 1 second for daily observations). In all cases, X has no drift and
constant volatility, and σ̃ = λId and we considered two cases:

1. X1 = W 1 and X2 = 0, so the rank is identically r = 1;
2. X1 = W 1 and X2 = W 2, so the rank is identically r = 2;

(the case of rank 0, i.e., X = 0 here, is left out since in this case the value of the
constant λ is irrelevant, by scaling). We measure the performance of the procedure
by reporting, as a function of λ, the empirical standard deviation of R̂(n,1) − r ,
over 5000 simulations:
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λ 0.012 0.037 0.11 0.33 1 3 9 27 81 243

stdv, r = 1 0.053 0.052 0.051 0.052 0.052 0.052 0.052 0.064 0.27 0.76
stdv, r = 2 0.052 0.052 0.052 0.051 0.052 0.051 0.052 0.095 0.53 1.52

The results are not sensitive to the value of λ, as long as λ is smaller than 10: so in
practice it seems advisable to take for σ̃ the identity matrix times the average value
of the volatility of X (i.e., when the two components of X have the same order of
variability).

Next, we conduct the Monte Carlo, again over 5000 simulations, in the case of a
time-varying but nonstochastic volatility, and with λ = 2. We think that a stochastic
volatility does not really affect the problem at hand, and taking always the same
deterministic volatility allows for better (or at least, easier) comparison between
the different simulations. The time interval is still [0,1] with �n = 1/25,000, and
we consider the function

f (t) = 1 + (2t − 1)2

(which decreases from 2 to 1 and increases back to 2 when t goes from 0 to 1).
Then we again consider two cases:

• Case 1: the matrix σt is diagonal with entries

σ 11
t = f (t), σ 22

t = f (t)1{t≤S}
for some S ∈ [0,1], so rt = 2 if t < S and rt = 1 if t > S, and thus R1 = 2 if
S > 0 and R1 = 1 if S = 0. We also added a rather large drift with components
b1
t = b2

t = 3.
• Case 2: the volatility matrix σt and the drift vector are

σt = f (t)

(
cos(tAπ/2) cos(tAπ/2)

sin(tAπ/2) sin(tAπ/2)

)
,

bt = b′
(

1 + sin(tAπ/2)

1 + cos(tAπ/2)

)
for some constant b′, so rt = 1 identically, although the structure of the drift
tends to “increase” the apparent rank when A > 0. Unless A = 0 (in which case
the continuous martingale part of X2 is identically vanishing), this implies that
the nonnull eigenvector of σt (and of ct as well) rotates with the period 4/A, so
when A increases the rotation becomes faster.

Below, in each table we report five quantities: the second and fourth empirical

moments of the studentized variables R̂(n,1)−r√
�nV (n,1)

(to check for normality); next, the
proportion of rejection for the three possible null hypotheses R1 = 0, R1 = 1 and
R1 = 2, for a nominal level α = 0.05.
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In Case 1 we have the following results:

S 2d moment 4th moment Test R1 = 0 Test R1 = 1 Test R1 = 2

0.0 1.04 3.34 1.00 0.053 1.000
0.1 1.02 3.29 1.00 1.000 0.050
0.2 1.05 3.29 1.00 1.000 0.051
0.5 1.00 3.06 1.00 1.000 0.049
0.8 0.98 2.87 1.00 1.000 0.050

(recall that when S = 0 we have R1 = 1, and otherwise R1 = 2). The columns
giving moments point toward a fairly good normal approximation, the actual level
of the tests for the correct value of R1 is rather close to the nominal value 0.05, and
the power is always 1: this is comforted by the fact that when we use the estimator
R̂int(n,1), the number of wrong decisions (when the estimator is not the correct
value) is overall 4, for 10 × 5000 simulations.

In Case 2 we have performed the simulations for various values of the constants
b′ and A. The results are fairly stable when these constants vary, so we only report
three cases for A and three cases for b′ as well.

b′ A 2d moment 4th moment Test R1 = 0 Test R1 = 1 Test R1 = 2

0 0 1.01 2.99 1.00 0.050 1.00
0 5 1.00 2.94 1.00 0.049 1.00
0 10 1.01 3.36 1.00 0.062 1.00

3 0 1.02 3.26 1.00 0.050 1.00
3 5 1.02 3.20 1.00 0.052 1.00
3 10 1.01 3.03 1.00 0.049 1.00

12 0 0.98 2.88 1.00 0.049 1.00
12 3 1.02 3.13 1.00 0.052 1.00
12 10 1.01 2.99 1.00 0.050 1.00

Comments analogous to those for Case 1 can be made, and here the number of
wrong decisions turns out to be 0 for the whole set of simulations.

6. Proofs. Before we start presenting the formal proofs, let us give the road
map. Section 6.1 demonstrates some technical results on expansions of determi-
nants. They are applied in Section 6.2 to prove Lemma 3.1. This lemma implies
that the process S(r)t defined at (3.6) is strictly positive on the set �r

T , which is
crucial for our method.

The first main result of our paper is Theorem 3.2 whose proof is rather in-
volved. First, we will show that the standard localization procedure (see, e.g., Sec-
tion 3 in [1]) implies that all processes in Assumption (H) may be assumed to
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be bounded without loss of generality. This first step considerably simplifies the
stochastic treatment of various quantities. A second crucial step is the stochastic
expansion explained in Remark 2.2: we have (2.14) and (2.15). Section 6.3 deals
with the formal justification of this expansion, for which we will use slightly dif-
ferent notation.

It turns out that the stochastic order of the error term related to the decomposi-
tion (2.14), namely OP(�n), is not sufficient to show its asymptotic negligibility.
However, we will prove that the error terms are martingale differences, so they
will not affect the stable central limit theorem at (3.8). A similar treatment will
be required for the error term connected with the stochastic version of the expan-
sion (2.6).

The proof of Proposition 3.4 (consistent estimation of the asymptotic condi-
tional covariance matrix) is somewhat easier. Corollary 3.3 follows essentially
from Theorem 3.2 by the delta method for stable convergence. The proofs of these
results are collected in Section 6.4. In particular, we apply a stable central limit the-
orem for semimartingales (see, e.g., [8], Theorem IX.7.28) to prove Theorem 3.2.

The proofs of Theorems 4.1 and 4.5, which are presented in Section 6.5, are
a bit more involved than that of Theorem 3.2, although the main techniques are
similar. The additional difficulty comes from the fact that we need to use the stable
convergence of Theorem 3.2, but for processes evaluated at random times. Corol-
lary 3.6 and Propositions 3.7, 3.8 and 4.6 are straightforward consequences of the
previous results.

6.1. Expansion of determinants. We first prove some general and easy facts
about determinants. Below ‖A‖ denotes the Euclidean norm of a matrix A ∈ M.

For m ≥ 1, we call Pm the set of all multi-integers p = (p1, . . . , pm) with p1 +
· · · + pm = d , and Ip is the set of all partitions I = (I1, . . . , Im) of {1, . . . , d}
such that Ij contains exactly pj points (so Ij = ∅ if pj = 0). If p ∈ Pm and
I ∈ Ip and A1, . . . ,Am ∈ M, we write GI

A1,...,Am
for the matrix whose ith column

is the ith column of Aj when i ∈ Ij . Letting A,B,C ∈ M, we can rewrite (2.5) as

γr(A,B) = ∑
I∈I(r,d−r)

det
(
GI

A,B

)
(6.1)

and we set

γ ′
r (A,B,C) = ∑

I∈I(r,d−r−1,1)

det
(
GI

A,B,C

)
.(6.2)

In the following two lemmas, we present some technical results on determinant
expansions.

LEMMA 6.1. For any m ≥ 1 and A1, . . . ,Am ∈ M we have

det(A1 + · · · + Am) = ∑
p∈Pm

∑
I∈Ip

det
(
GI

A1,...,Am

)
.(6.3)
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PROOF. Letting Sd be the set of all permutations of {1, . . . , d} and sign(s) be
the signature of s ∈ S , we have

det(A + B) = ∑
s∈Sd

(−1)sign(s)
d∏

i=1

(
as(i),i + bs(i),i)

= ∑
I⊂{1,...,d}

∑
s∈Sd

(−1)sign(s)
∏
i∈I

as(i),i
∏
i /∈I

bs(i),i

= ∑
I⊂{1,...,d}

det
(
G

(I,I c)
A,B

)
.

This readily implies that if (6.3) holds for some m, it also holds for m + 1. Since
(6.3) is obvious for m = 1, the result follows by induction on m. �

LEMMA 6.2. There is a constant K such that, for all r = 0, . . . , d , all h ∈
(0,1] and all A,B,C,D ∈ M with rank(A) ≤ r we have, with � = ‖A‖ + ‖B‖ +
‖C‖ + ‖D‖ and with the convention γ−1(A,B) = 0:∣∣det

(
A + hB + h2C + h2D

)− hd−rγr(A,B)

− hd−r+1(γr−1(A,B) + γ ′
r (A,B,C)

)∣∣(6.4)

≤ Khr−d+1�d−1(h� + ‖D‖),∣∣∣∣ 1

h2d−2r
det
(
A + hB + h2C + h2D

)2 − γr(A,B)2

− 2hγr(A,B)
(
γr−1(A,B) + γ ′

r (A,B,C)
)∣∣∣∣(6.5)

≤ Kh�2d−1(h� + ‖D‖).
PROOF. Let p ∈ P4 and I ∈ Ip. Then det(GI

A,hB,h2C,h2D
) = hp2+2p3+2p4 ×

det(GI
A,B,C,D) vanishes when p1 > r , and has absolute value smaller than

Khp2+2p3+2p4�d−p4‖D‖p4 . Then (6.4) readily follows from (6.3), and by tak-
ing squares in (6.4) we deduce (6.5). �

With the same notation, and if further A′,B ′,C′,D′ ∈ M with rank(A′) ≤ r

also and �′ = ‖A′‖ + ‖B ′‖ + ‖C′‖ + ‖D′‖, and h′ ∈ (0,1], the same argument
shows that∣∣∣∣ 1

(hh′)2d−2r
det
(
A + hB + h2C + h2D

)2
× det

(
A′ + h′B ′ + h′2C′ + h′2D′)2 − γr(A,B)2γr

(
A′,B ′)2∣∣∣∣(6.6)

≤ K
(
h + h′)(��′)2d

.
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6.2. Proof of Lemma 3.1.

(1) The results about �r(u). We write Vi and 
Vi for the d-dimensional vari-
ables whose components are, respectively, the d first and the d last compo-
nents of 
(u,1)i , for which we can take 
W = W and 
W ′ = W ′, and we set
A = mat(V1, . . . , Vd) and B = mat(
V1, . . . , 
Vd). If �jW

(′) = W
(′)
j − W

(′)
j−1, we

have

V l
i =

q∑
m=1

αlm�iW
m,

(6.7)


V l
i = al +

d∑
m=1

βlm�iW
′m +

q∑
m,k=1

γ lkmhi,km(W),

where each hi,lm is a function of the path of W . Note also that 
Fr(u,1) =
γr(A,B)2.

Assuming first that the rank of α is (strictly) smaller than r , we observe that
the rank of A is also smaller than r , implying by (6.1) that γr(A,B) = 0, hence
�r(u) = 0.

Next we assume that the rank of α is r , and proceed to prove �r(u) > 0.
We first simplify the problem as follows. The matrix β is invertible and the
rank of β−1αα∗β−1,∗ is r , so we can write β−1α = ��, where � ∈ M
is an orthonormal matrix and � ∈ M is a diagonal matrix whose diago-
nal entries λj satisfy λj �= 0 if j ≤ r and λj = 0 otherwise. Then, setting
V ′

j = �∗β−1Vj and 
V ′
j = �∗β−1
Vj , the sequence (V ′

j ,

V ′

j ) has the form (6.7),
upon replacing W ′ by �∗W ′ (another Brownian motion) and u = (α,β, γ, a)

by u′ = (α′, J, γ ′, a′), where J is the identity in M and α′ = �∗β−1α =
� and γ ′ij l = ∑d

m=1(�
∗β−1)jmγ mjl and a′ = �∗β−1a. Furthermore, A′ =

mat(V ′
1, . . . , V

′
d) = �∗β−1A and B ′ = mat(
V ′

1, . . . ,

V ′

d) = �∗β−1B , implying
γr(A

′,B ′) = det(�∗β−1)γr(A,B), which in turn yields �r(u) = 1
det(β)2 �r(u

′),
because det(�) = 1.

In other words, it is enough to prove the result when β = J and α = � is diag-
onal as above, and below we assume this. The two matrices A and B can thus be
realized as

A =

⎛⎜⎜⎜⎝
λ1


1
1 · · · λ1


1
d

· · · · ·
· · · · ·

λd
d
1 · · · λd
d

d

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
ϒ1

1 + �1
1 · · · ϒ1

d + �1
d

· · · · ·
· · · · ·

ϒd
1 + �d

1 · · · ϒd
d + �d

d

⎞⎟⎟⎟⎠ ,(6.8)

where all 
i
j and ϒi

j are i.i.d. N (0,1) and the variables �i
j are independent of the

ϒl
m’s (note that we have incorporated the constant ai in each variable �i

j ).
Let Jr be the class of all subsets of {1, . . . , d} with r points. Since λj �= 0 if

j ≤ r and λj = 0 otherwise, we see that, if I = (I, I c) with I = {j1 < · · · < jr} ∈
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Jr and I c = {j ′
1 < · · · < j ′

d−r}, we have det(GI
A,B) = εI det(AI )det(BI ), where

AI and BI are the r × r and (d − r) × (d − r) matrices with entries A
l,m
I =

Ajl,m and B
l,m
I = Bj ′

l ,r+l , and εI takes values in {−1,1}. Thus,

γr(A,B) = ∑
I∈Jr

εI det(AI )det(BI ).

In this sum, we single out the I ’s which contain d , and those which do not, and for
the former ones the product det(AI )det(BI ) does not depend of the vector ϒd . For
those which do not contain d , we develop det(BI ) along the last column, which
involves the determinants of the matrices BI,i which are the restrictions of B to
the last d − r lines except i, and to the column indexed by the complement I c of
I , except d . We thus get

γr(A,B) = Z +
d−r∑
i=1

(−1)i
(
ϒr+i

d + �r+i
d

)
Z′

i ,

(6.9)
Z′

i = ∑
I∈Jr ,d /∈I

εI det(AI )det(BI,i),

where Z and all Z′
i and �r+i

d are independent of the vector ϒd . Since this random
vector ϒd has a density, it follows that the variable γr(A,B) also has a density,
provided Z′

i �= 0 a.s. for at least one value of i.
At this stage, we observe that Z′

i has exactly the same structure as γr(A,B),
except that the dimension of each BI,i is (d − r − 1) × (d − r − 1) instead of
(d − r) × (d − r), and that the last column of the original problem has totally
disappeared. We can repeat the argument, to obtain that Z′

i has a density and is thus
a.s. nonvanishing, as soon as some similar quantity (where the last two columns
of the original problem no longer show up) is a.s. nonvanishing. Then, after an
obvious induction, we deduce that γr(A,B) has a density as soon as det(AI ) �= 0
a.s. for I = {1, . . . , r}.

However, since the entries of this last AI are λi

i
j for i, j = 1, . . . , r , and all

those λi are nonzero, it is well known [and also a simple consequence of the previ-
ous proof, in which we develop det(AI ) according to its last column and perform
the same induction procedure] that det(AI ) has a density. This indeed shows us
that γr(A,B) has a density, hence E(γr(A,B)2) > 0 and the proof of the first part
of (3.5) is complete.

(2) The results about �′
r (u) and �′′

r (u). When the rank of α is smaller than r ,
we have seen that, with the previous notation, γr(A,B) = 0, hence also �′

r (u) =
�′′

r (u) = 0.
Next, we turn to the case when the rank of α is r . Exactly as in the previ-

ous proof, it suffices to show the result when u = (�,J, γ, a). Recalling that

Fr(u,1) and 
Fr(u,2) have the same law, we have 
E((
Fr(u,1) − 
Fr(u,2))2) =
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2(�′
r (u) − �′′

r (u)) and thus the second part of (3.5) holds unless 
Fr(u,1) =

Fr(u,2) a.s.

With the previous notation, we have 
Fr(u,1) = γr(A,B)2, and also 
Fr(u,2) =
γr(
A, 
B)2, where 
A and 
B are given again by (6.8) with the same λj ’s, and ran-
dom vectors (

j, 
ϒj, 
�j) having globally the same distribution as (
j ,ϒj ,�j )

(which may of course be defined for j > d): these two families of vectors are not
independent, and we have in fact



j = 1√
2
(
2j−1 + 
2j ), 
ϒj = 1√

2
(ϒ2j−1 + ϒ2j ),(6.10)

plus a more complicated relation relating 
�j with the �j ′ for j ′ ≤ 2j and the
vector a. What we need to prove is then P(|γr(A,B)| �= |γr(
A, 
B)|) > 0.

We have (6.9), and also, by the same argument,

γr(
A, 
B) = 
Z +
d−r∑
i=1

(−1)i
(

ϒr+i
2d+1 + ϒr+i

2d√
2

+ 
�r+i
d

)

Z′

i ,


Z′
i = ∑

I∈Jr ,d /∈I

εI det(
AI )det(
BI,i),

where we have also used the second part of (6.10). Here, the vector ϒ2d has a
density and is independent of all other terms showing in the above expression, and
also independent of γr(A,B). Therefore, |γr(A,B)| �= |γr(
A, 
B)| almost surely
on the set {
Z′

i �= 0}. Now, 
Z′
i is the same as Z′

i , upon replacing (A,B) by (
A, 
B)

everywhere, hence the previous proof shows that indeed 
Z′
i �= 0 a.s. This shows

that in fact P(|γr(A,B)| �= |γr(
A, 
B)|) = 1, thus ending the proof of the second
part of (3.5).

6.3. Some stochastic calculus preliminaries. We assume Assumption (H) and,
by localization (see, e.g., Section 3 in [1]), we may also assume that all processes
Xt , σt , bt , at , vt , a′

t , v′
t , a′′

t , v′′
t are uniformly bounded in (ω, t). The constants

are always written as K , or Kp if we want to stress the dependency on an addi-
tional parameter p, and never depend on t, i, n, j . For any process Y , we use the
following simplifying notation:

F n
i = F2id�n, Y n

i = Y2id�n.(6.11)

For all p, t, s > 0, we have by the Burkholder–Gundy inequality

E

(
sup

u∈[0,s]
|Yt+u − Yt |p

∣∣ Ft

)
≤ Kpsp/2 if Y = X,σ, b, v.(6.12)

We set

ηt,s = sup
u∈[0,s], Y=a,v′,v′′

‖Yt+u − Yt‖2,

(6.13)
ηn

i =
√

E
(
η2id�n,2d�n | F n

i

)
.
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LEMMA 6.3. For all t > 0, we have �nE(
∑[t/2d�n]−1

i=0 ηn
i ) → 0.

PROOF. It suffices to prove the result separately when Y = a or Y = v′ or
Y = v′′. Set γ n

t = sups∈(0,4d�n] ‖Yt+s − Yt‖2, so E((ηn
i )2) is smaller than E(γ n

0 )

when i = 0 and than 1
2d�n

∫ 2id�n

2(i−1) d�n
E(γ n

s ) ds when i ≥ 1. Hence by the Cauchy–
Schwarz inequality,

�nE

([t/2d�n]−1∑
i=1

ηn
i

)
≤

√
t√

2d

(
E

(
�n

[t/2d�n]−1∑
i=0

(
ηn

i

)2))1/2

≤ Kt

(
E

(
γ n

0 +
∫ t

0
γ n
s ds

))1/2

.

We have γ n
s ≤ K , whereas the càdlàg property of Y yields that γ n

s (ω) → 0 for
all ω, and all s except for countably many strictly positive values (depending on ω).
Then, the claim follows by the dominated convergence theorem. �

The proof of Theorem 3.2 is based on a decomposition of the increments
Z

n,κ
(2id+κj)�n

− Z
n,κ
(2id+κ(j−1))�n

. In order to understand better this decomposition,
we first deduce from (2.8) that, for any z ≤ t ≤ s, and with vector notation,∫ s

t
bu du = α1 + α2 + α3 + α4,∫ s

t
σu dWu = α5 + α6 + α7 + α8 + α9 + α10 + α11,

where

α1 = bz(s − t), α2 =
∫ s

t

(∫ u

z
a′
w dw

)
du,

α3 = v′
z

∫ s

t
(Wu − Wz)du, α4 =

∫ s

t

(∫ u

z

(
v′
w − v′

z

)
dWw

)
du,

α5 = σz(Ws − Wt), α6 = az

∫ s

t
(u − z) dWu,

α7 =
∫ s

t

(∫ u

z
(aw − az) dw

)
dWu,

α8 = vz

∫ s

t
(Wu − Wz)dWu, α9 =

∫ s

t

(∫ u

z

(∫ w

z
a′′
r dr

)
dWw

)
dWu,

α10 = v′′
z

∫ s

t

(∫ u

z
(Ww − Wz)dWw

)
dWu,

α11 =
∫ s

t

(∫ u

z

(∫ w

z

(
v′′
r − v′′

z

)
dWr

)
dWw

)
dWu.
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A repeated use of the Burkholder–Gundy and Hölder inequalities shows that, in
view of our assumptions on the various coefficients, and for any p ≥ 1:

E
(‖αj‖p | Fz

)≤
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Kp(s − z)p/2, ifj = 5,
Kp(s − z)p, if j = 1,8,
Kp(s − z)3p/2, if j = 3,6,10,
Kp(s − z)2p, if j = 2,9,
Kp(s − z)3p/2

E
(
η

p
z,s−z | Fz

)
, if j = 4,7,11.

We can then apply the previous decomposition with z = 2id�n, t = (2id +
κ(j − 1))�n and s = (2id + κj)�n, and add the increment of the process X′, to
obtain

Z
n,κ
(2id+jκ)�n

− Z
n,κ
(2id+(j−1)κ)�n√

κ�n
(6.14)

= α
n,κ
i,j +√

κ�nβ
n,κ
i,j + κ�nγ

n,κ
i,j + �nδ

n,κ
i,j

for κ = 1,2, and where (explicitly writing the components)

α
n,κ,l
i,j = 1√

κ�n

q∑
m=1

σ
n,lm
i

(
Wm

(2id+κj)�n
− Wm

(2id+κ(j−1))�n

)
,

β
n,κ,l
i,j = b

n,l
i + 1

κ�n

q∑
m,k=1

v
n,lmk
i

∫ (2id+κj)�n

(2id+κ(j−1))�n

(
Wk

s − Wk
2id�n

)
dWm

s

+ 1√
κ�n

d∑
m=1

σ̃ lm(W ′m
(2id+κj)�n

− W ′m
(2id+κ(j−1))�n

)
,

γ
n,κ,l
i,j = 1

(κ�n)3/2

×
( q∑

m=1

a
n,lm
i

∫ (2id+κj)�n

(2id+κ(j−1))�n

(s − 2id�n)dWm
s

+
q∑

m=1

v
′n,lm
i

∫ (2id+κj)�n

(2id+κ(j−1))�n

(
Wm

s − Wm
2id�n

)
ds

+
q∑

m,k=1

v
′′n,mlk
i

×
∫ (2id+κj)�n

(2id+κ(j−1))�n

(∫ s

(2id+κ(j−1))�n

(
Wk

u − Wk
2id�n

)
dWl

u

)
dWm

s

)



2416 J. JACOD AND M. PODOLSKIJ

and δ
n,κ
i,j is a remainder term, and for p ≥ 1 we have the estimates when j ≤ 2d if

κ = 1 and j ≤ d when κ = 2 (recalling ηt,s ≤ K):

E
(∥∥αn,κ

i,j

∥∥p + ∥∥βn,κ
i,j

∥∥p + ∥∥γ n,κ
i,j

∥∥p | F n
i

)≤ Kp,
(6.15)

E
(∥∥δn,κ

i,j

∥∥p | F n
i

)≤ Kp

(
�p/2

n + (
ηn

i

)2∧p)≤ Kp.

We end these preliminaries with a lemma which compares Sn,κ for κ = 1,2
with the following processes:

S(r)
n,κ
t = 2d�n

[t/2d�n]−1∑
i=0

γr

(
A

n,κ
i ,B

n,κ
i

)2
(6.16)

where A
n,κ
i = mat

(
α

n,κ
i,1 , . . . , α

n,κ
i,d

)
,B

n,κ
i = mat

(
β

n,κ
i,1 , . . . , β

n,κ
i,d

)
.

It also compares V n,κ,κ ′
of (3.15) with

V (r)
n,κ,κ ′
t = 4d2�n

[t/2d�n]−1∑
i=0

γr

(
A

n,κ
i ,B

n,κ
i

)2
γr

(
A

n,κ ′
i ,B

n,κ ′
i

)2
.(6.17)

LEMMA 6.4. If rt (ω) ≤ r identically for some r ∈ {0, . . . , d}, we have for κ ,
κ ′ = 1,2:

1√
�n

(
1

(κ�n)d−r
Sn,κ − S(r)n,κ

)
u.c.p.�⇒ 0(6.18)

and

1

(κκ ′�2
n)

d−r
V n,κ,κ ′ − V (r)n,κ,κ ′ u.c.p.�⇒ 0.(6.19)

PROOF. We denote by ξ
n,κ
i the ith summand in the definition (2.13) of S

n,κ
t .

Besides the matrices in (6.16), we also define

C
n,κ
i = mat

(
γ

n,κ
i,1 , . . . , γ

n,κ
i,d

)
, D

n,κ
i = mat

(
δ
n,κ
i,1 , . . . , δ

n,κ
i,d

)
.

We start with (6.18). Applying (6.5) with h = √
κ�n, the fact that each A

n,κ
i has

at most rank r (because rt ≤ r), and the estimates (6.15) plus the Cauchy–Schwarz
inequality, we obtain

1

(κ�n)d−r
ξ

n,κ
i = γr

(
A

n,κ
i ,B

n,κ
i

)2 + 2
√

κ�nζ
n,κ
i + ζ̃

n,κ
i ,

where

ζ
n,κ
i = γr

(
A

n,κ
i ,B

n,κ
i

)(
γr−1

(
A

n,κ
i ,B

n,κ
i

)+ γ ′
r

(
A

n,κ
i ,B

n,κ
i ,C

n,κ
i

))
,

E
(∣∣̃ζ n,κ

i

∣∣) ≤ K�n + K
√

�nE
(
ηn

i

)
.
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In view of Lemma 6.3,
√

�n

∑[t/2d�n]−1
i=0 ζ̃

n,κ
i

u.c.p.�⇒ 0. Since S
n,κ
t = 2d�n ×∑[t/2d�n]−1

i=0 ξ
n,κ
i , it remains to prove that �n

∑[t/2d�n]−1
i=0 ζ

n,κ
i

u.c.p.�⇒ 0.
For this purpose we use the decomposition ζ

n,κ
i = ζ

′n,κ
i + ζ

′′n,κ
i , where

ζ
′n,κ
i = E(ζ

n,κ
i | F n

i ). By Doob’s inequality, (6.15) and the fact that ζ ′′n
i is

F n
i+1-measurable, we have

E

(
sup
s≤t

([s/2d�n]−1∑
i=0

ζ
′′n,κ
i

)2)
≤ 2d+1

E

([t/2d�n]−1∑
i=0

∣∣ζ n
i

∣∣2)≤ Kt

�n

.

Thus �n

∑[t/2d�n]−1
i=0 ζ

′′n,κ
i

u.c.p.�⇒ 0, and the result will hold if we can prove that
ζ

′n,κ
i = 0. We even prove the stronger statement that E(ζ

n,κ
i | GW ′ ∨ F n

i ) = 0,
where GW ′

is the σ -field generated by the whole process W ′, and this is implied
by

I ∈ I(r,d−r), I′ ∈ I(r−1,d−r+1), I′′ ∈ I(r,d−r−1,1)

�⇒ E
(
det
(
GI

A
n,κ
i ,B

n,κ
i

)
det
(
GI′

A
n,κ
i ,B

n,κ
i

) | GW ′ ∨ F n
i

)= 0,(6.20)

E
(
det
(
GI

A
n,κ
i ,B

n,κ
i

)
det
(
GI′′

A
n,κ
i ,B

n,κ
i ,C

n,κ
i

) | GW ′ ∨ F n
i

)= 0.

The variables α
n,κ,l
i,j , β

n,κ,l
i,j and γ

n,κ,l
i,j have the form 
(ω, (W(ω)2id�n+t −

W(ω)2id�n)t≥0), with 
 a (GW ′ ∨ F n
i ) ⊗ Cq -measurable function on � ×

C(R+,R
q), where C(R+,R

q) is the set of all continuous R
q -valued functions on

R+ and Cq is its Borel σ -field for the local uniform topology. When 
 = α
n,κ,l
i,j or


 = γ
n,κ,l
i,j , the map x �→ 
(ω,x) is odd, in the sense that 
(ω,−x) = −
(ω,x),

and it is even when 
 = β
n,κ,l
i,j .

In (6.20), the three variables det(GI
A

n,κ
i ,B

n,κ
i

), det(GI′
A

n,κ
i ,B

n,κ
i

), det(GI′′
A

n,κ
i ,B

n,κ
i ,C

n,κ
i

)

are associated with three functions 
 , 
 ′, 
 ′′ of the same type. What pre-
cedes yields that 
 is even (resp., odd) if r is even (resp., odd), and both

 ′ and 
 ′′ are even (resp., odd) if r is odd (resp., even). Consequently, the prod-
ucts 

 ′ and 

 ′′ are odd in all cases. Since the GW ′ ∨ F n

i -conditional law
of (W2id�n+t − W2id�n)t≥0 is invariant by the map x �→ −x on C(R+,R

d), we
deduce (6.20), hence (6.18) holds.

Finally, we turn to (6.19). Let θn
i be the ith summand in the right-hand side

of (3.15), for κ, κ ′ fixed. We can apply (6.6) with h = √
κ�n and h′ = √

κ ′�n,
and (6.14) and (6.15) again, to get

E

(∣∣∣∣ 1

(κκ ′�2
n)

d−r
θn
i − γr

(
A

n,κ
i ,B

n,κ
i

)2
γr

(
A

n,κ ′
i ,B

n,κ ′
i

)2∣∣∣∣)≤ K
√

�n.

Equation (6.19) follows, and the proof is complete. �
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6.4. Proof of Theorem 3.2, Corollary 3.3 and Proposition 3.4.

(1) Observe that, with the notation (3.2) and (3.3), and upon taking

un
i = (

σn
i , σ̃ , vn

i , bn
i

)
,


Wt = W(2id+t)�n − W2id�n√
�n

,(6.21)


W ′
t = W ′

(2id+t)�n
− W ′

2id�n√
�n

,

we have γr(A
n,κ
i ,B

n,κ
i )2 = 
F(un

i , κ). We consider the two-dimensional variables
ξn
i with components

ξ
n,κ
i = 2d

√
�n

(
γr

(
A

n,κ
i ,B

n,κ
i

)2 − �r

(
un

i

))
, κ = 1,2.(6.22)

Since un
i is F n

i -measurable, whereas the processes 
W and 
W ′ above are indepen-
dent of F n

i , we deduce from (3.4), and from (6.15) for the estimate below, that

E
(
ξ

n,κ
i | F n

i

)= 0, E
(∥∥ξn

i

∥∥4 | F n
i

)≤ K�2
n,

(6.23)

E
(
ξ

n,κ
i ξ

n,κ ′
i | F n

i

)=
{

4d2�n�
′
r

(
un

i

)
, if κ = κ ′,

4d2�n�
′′
r

(
un

i

)
, if κ �= κ ′.

(2) By (6.18), for Theorem 3.2 it is enough to prove the stable convergence

U ′(r)n L−s�⇒ U (r), where U ′(r)n is the two-dimensional process with components
U ′(r)n,κ = 1√

�n
(S(r)n,κ − S(r)) and the quantity S(r)n,κ is defined in (6.16). We

have U ′(r)n = Yn + Y ′n, where

Yn
t =

[t/2d�n]−1∑
i=0

ξn
i ,

Y ′n
t = 1√

�n

(
2d�n

[t/2d�n]−1∑
i=0

�r

(
σn

i , σ̃ , vn
i , bn

i

)− ∫ t

0
�r(σs, σ̃ , vs, bs) ds

)

and ξn
i is given in (6.22). Since the three processes σ, v, b are Itô semimartingales,

whereas �r is a C∞ function, it is well known that Y ′n u.c.p.�⇒ 0 (see, e.g., Section 8
in [1]). We are thus left to prove that

Yn L−s�⇒ U (r).(6.24)

By virtue of the first two parts of (6.23), a standard CLT for triangular arrays of
martingale (see [8], Theorem IX.7.28) increments shows that, for (6.24) to hold, it
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suffices to show the next two properties:

[t/2d�n]−1∑
i=0

E
(
ξ

n,κ
i ξ

n,κ ′
i | F n

i

) P−→ V (r)κκ ′
t ,(6.25)

[t/2d�n]−1∑
i=0

E
(
ξn
i (N2(i+1)d�n − N2id�n) | F n

i

) P−→ 0(6.26)

for all t > 0 and for any bounded martingale N orthogonal to (W,W ′) and also for
N = Wm or N = W ′m for any m.

The last part of (6.23) and the càdlàg property of σ, v, b, plus the fact that
�′

r and �′′
r are polynomials, immediately gives us (6.25) by Riemann integration.

The proof of (6.26) is also standard: By construction, ξn
i is a two-dimensional

variable of the form 
(ω, (W2id�n+t (ω) − W2id�n(ω))t≥0, (W
′
2id�n+t (ω) −

W ′
2id�n

(ω))t≥0) similar to the functions occurring in Lemma 6.4, and since in
the definition of ξn

i one takes squared determinants, all these functions 
 are glob-
ally even in the sense that 
(ω,x, y) = 
(ω,−x,−y) for any two functions x, y

on R+. So, on the one hand, after multiplying the function 
 corresponding to ξn
i

by xm(2d�n) or ym(2d�n), one gets an odd function, and (6.26) when N = Wm

or N = W ′m follows. On the other hand, by the representation theorem one can
write ξn

i as the sum of two integrals over (2id�n,2(i + 1)d�n] with respect
to W and W ′, for suitable predictable integrands; thus when N is orthogonal to
W and W ′, the increment N2(i+1)d�n − N2id�n has F n

i -conditional correlation 0
with both those integrals, thus yielding (6.26) again.

Therefore, the proof of Theorem 3.2 is complete.
(3) A simple calculation shows that

R̂(n, T ) − r = 1

log 2
log

1 + √
�nU(r)

n,1
T /S(r)T

1 + √
�nU(r)

n,2
T /S(r)T

if S(r)T > 0,

hence on the set �r
T . Since the sequence U(r)nT is tight, it follows from a Taylor

expansion that

1√
�n

(
R̂(n, T ) − r

)− 1

S(r)T log 2

(
U(r)

n,1
T − U(r)

n,2
T

) P−→ 0(6.27)

on �r
T again. Then Corollary 3.3 follows from Theorem 3.2, upon observing that

the F -conditional variance of U(r)1
T − U(r)2

T is the numerator of the right-hand
side of (3.13).

(4) Now we turn to the proof of (3.16), and by (6.19) it suffices to prove the
convergence of V (r)n,κ,κ ′

. We suppose that κ = κ ′, the proof in the case κ �= κ ′
being analogous. We set

ηn
i = γr

(
A

n,κ
i ,B

n,κ
i

)4
, η′n

i = E
(
ηn

i | F n
i

)
, η′′n

i = ηn
i − η′n

i .
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As for (6.23), we deduce from (3.4) and (6.15) that

η′n
i = �′

r

(
un

i

)+ �r

(
un

i

)2
, E

(∣∣η′′n
i

∣∣2)≤ K.

On the one hand, the same argument as for proving (6.25) shows that 4d2�n ×∑[t/2d�n]−1
i=0 η′n

i converges in the u.c.p. sense to the right-hand side of (3.16) (for
κ = κ ′). On the other hand, since η′′n

i is a martingale increment relative to the filtra-

tion (F n
i )i≥0, we deduce from Doob’s inequality that 4d2�n

∑[t/2d�n]−1
i=0 η′′n

i

u.c.p.�⇒
0. We then deduce (3.16).

(5) Finally, for (3.17) it is enough to show the convergence in probability in
restriction to each set �r

T , for r = 0, . . . , d . For this we use the following con-
vergence properties, which readily follow from (3.8), (3.12), in restriction to the
set �r

T :

1

�d−r
n

S
n,1
T

P−→ S(r)T > 0, R̂(n, T )
P−→ r,

together with (3.16) applied at time T , which also holds on �r
T . Then (3.17) fol-

lows after a (slightly tedious) calculation, in view of the form (3.13) of V (T )

on �r
T : the proof of Proposition 3.4 is complete.

6.5. Proofs of Theorems 4.1 and 4.5. We begin with a lemma. Its setting ap-
parently extends the setting of the theorem to be proved, but this will be useful
for the proof itself. The extension concerns the fact that we replace the non-
random terminal time T by a stopping time, still denoted by T , which is pos-
itive and bounded. In this case, the notation (2.3) still makes sense, as well as
A(p)nT and a(n,T ) and 
V n,κκ ′

T , as given by (4.2) and (4.6).

LEMMA 6.5. Assume Assumption (H) and rt = r for all t ≤ T with T a
positive finite stopping time and r ∈ {0, . . . , d}. Then for all p > 0, κ, κ ′ ∈
{1,2} and �r,κκ ′

s as in (3.16) we have

A(p)nT
P−→ T rp,(6.28)

1

(κκ ′�2
n)

d−r

V n,κκ ′

T

P−→ 2d

∫ T

0

(
1

�r(σs, σ̃ , vs, bs)
− T

S(r)T

)2

�r,κκ ′
s ds.(6.29)

Moreover, if r ≥ 1, the following stable convergence in law holds, where U (r) is
defined in Theorem 3.2:(

U(r)nT ,
1√
�n

(
A(p)nT − a(n,T )rp))

(6.30)
L−s−→

(
U (r)T ,

prp−1

log 2

∫ T

0

1

�r(σs, σ̃ , vs, bs)

(
dU (r)1

s − dU (r)2
s

))
.
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PROOF. (1) Let γt = �r(σt , σ̃ , vt , bt ), which is a continuous process, pos-
itive on [0, T ] by Lemma 3.1. Thus Tm = m ∧ T ∧ inf(t :γt < 1/m) satisfies
P(Tm = T ) → 1 as m → ∞ and, if any one of the claimed convergence holds
for each Tm (instead of T ), it also holds for T . In other words, we can assume
T ≤ A and 1/γt ≤ A for some constant A and all t ∈ [0, T ]. Moreover, �r is a
polynomial, so the process γt is a continuous Itô semimartingale, and by localiza-
tion again one can assume that for some other constant A′,

E
(|γt+s − γt |2)≤ A′s.(6.31)

The sequence U(r)n converges in law toward a continuous process, so the
moduli of continuity ρ(n, x) = sup(‖U(r)nt+s − U(r)nt ‖ : t ≤ A′, |s| ≤ x) sat-
isfy limx↓0 lim supn P(ρ(n, x) > 1) = 0, and thus with the simplifying notation
wn = 2dkn�n we have

P(�n) → 1
(6.32)

where �n = {∥∥U(r)nt+s − U(r)nt
∥∥≤ 1 ∀t ≤ A′, s ≤ wn

}
.

(2) Observe that

R̂n
i = r + 1

log 2
log

ζ n
i + √

�nη
n,1
i

ζ n
i + √

�nη
n,2
i

,

where

ζ n
i = S(r)2id�n+wn − S(r)2id�n, η

n,k
i = U(r)

n,k
2id�n+wn

− U(r)
n,k
2id�n

.

Recalling 1/γt ≤ A, and since ζ n
i = wn(γ2id�n + ρn

i ), where E(|ρn
i |2) ≤ A′′wn

by (6.31), one has

0 ≤ wn

ζn
i

≤ A, E

(∣∣∣∣wn

ζn
i

− 1

γ2id�n

∣∣∣∣2)≤ A2A′′wn.(6.33)

Moreover, take α ∈ (0,1/2) such that 2| log(1−α)|
log 2 ≤ 1/2. For n large enough, we

have A
√

�n/wn ≤ α because kn�
3/4
n → ∞. In this case, in restriction to the

set �n, for all i ≤ [T/2d�n] − kn − 1 we have with a constant K (varying from
place to place below): ∣∣∣∣

√
�nη

n,k
i

ζ n
i

∣∣∣∣≤ A
√

�n

wn

≤ 1

2
,

∣∣∣∣R̂n
i − r −

√
�n

log 2

η
n,1
i − η

n,2
i

ζ n
i

∣∣∣∣≤ K
�n

w2
n

,

(6.34)

r ≥ 1 ⇒
∣∣∣∣ R̂n

i

r
− 1

∣∣∣∣≤ K
√

�n

wn

∧ 1

2
,

r = 0 ⇒ ∣∣R̂n
i

∣∣≤ K
√

�n

wn

∧ 1

2
.
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(3) Recalling (4.2) and T ≤ A, when r = 0 the last estimate above yields

E
(
A(p)nT 1�n

)≤ KA
�

p/2
n

w
p
n

,

which goes to 0 because kn

√
�n → ∞. Thus in view of (6.32) one gets (6.28)

when r = 0.
(4) At this stage, we start proving (6.30), and thus assume r ≥ 1. We observe

that

Yn := 1√
�n

(
A(p)nT − a(n,T )rp)= wn

[T/wn]−2∑
i=0

ξn
i ,

where

ξn
i = 1√

�n

(∣∣R̂n
ikn

∣∣p ∧ (d + 1)p − rp).
Equation (6.34) implies that for n large enough, |R̂n

i | ≤ d + 1 (recall r ≤ d), hence
a Taylor expansion of the function x �→ |r + x|p − rp implies, again for n large
enough:∣∣∣∣ξn

i − prp−1

log 2

η
n,1
ikn

− η
n,2
ikn

ζ n
ikn

∣∣∣∣≤ K

√
�n

w2
n

on �n and for i ≤ [T/wn] − 2.

Upon using (6.33), and by the Cauchy–Schwarz inequality, it follows that

E

(∣∣∣∣ξn
i − prp−1

log 2

η
n,1
ikn

− η
n,2
ikn

wnγ(i−1)wn

∣∣∣∣1�n

)
≤ K

√
�n

w2
n

+ K
√

wn,

hence

E
(∣∣Yn − Y ′

n

∣∣1�n

)→ 0 where Y ′
n = prp−1

log 2

[T/wn]−2∑
i=0

η
n,1
ikn

− η
n,2
ikn

γ(i−1)wn

,

because kn�
3/4
n → ∞. Recall also (6.27). Then, by virtue of (6.32), the conver-

gence (6.30) will follow from(
U(r)nT , Y ′

n

) L−s−→ (
U (r)T , Y

)
,

(6.35)

Y = prp−1

log 2

∫ T

0

1

�r(σs, σ̃ , vs, bs)

(
dU (r)1

s − dU (r)2
s

)
.

(5) By Theorem VI.6.15 of [8] it follows from (6.23) and (6.25) that not only
does the sequence of processes U(r)n converge in law, but it also enjoys the so-
called P-UT property (predictable uniform tightness). By a trivial extension of
Theorem VI.6.22 in [8], this implies that if a sequence Hn of adapted càdlàg
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two-dimensional processes on � is such that the pair (U(r)n,Hn)
L−s�⇒ (U (r),H)

(functional convergence for the Skorokhod topology), the bi-dimensional pro-
cesses (U(r)n,

∫ t
0 Hn

s− dU(r)ns ) converge stably in law to (U (r),
∫ t

0 Hs− dU (r)s),
and since U (r) is continuous and T is F -measurable, this in turn implies

the stable convergence of the variables (U(r)nT ,
∫ T

0 Hn
s− dU(r)ns )

L−s−→ (U (r)T ,∫ T
0 Hs−dU (r)s). At this point, (6.35) follows by taking the processes Hn and H

with components

H
n,1
t = −H

n,2
t = prp−1

γ(i−1)wn log 2
if t ∈ ((i − 1)wn, (iwn) ∧ T

]
,

H 1
t = −H 2

t = prp−1

γt log 2
1{t≤T }.

[Note that the joint stable convergence (U(r)n,Hn)
L−s�⇒ (U (r),H) holds because

1/γt is continuous.] This ends the proof of (6.30).
(6) Since (6.30) implies (6.28) when r ≥ 1, we are left to prove (6.29). We

fix κ, κ ′. Our first observation is that, since U(r)nT
L−s−→ U (r)T follows from

(3.8) as seen before, the proof of (3.12) carries over to the case T is a stop-

ping time. Therefore (R̂(n, T ) − r) log�n
P−→ 0 because here �r

T = �, and thus

�
R̂(n,T )−r
n

P−→ 1. It follows that (6.29) amounts to proving the same result for the
variable Ṽ

n,κκ ′
T which is the same as 
V n,κκ ′

T except that in front of the sum we

substitute �
1+2d−2R̂(n,T )
n with �1+2d−2r

n .
With θn

i being as for Proposition 3.4, the ith summand in the right-hand side of
(3.15), we have

Ṽ
n,κκ ′
T =

2∑
j=0

(
T �d−r

n

S
n,1
T

)j

B(j)nT

where B(j)nT = 4d2�n

[T/2d�n]−kn−1∑
i=0

υ(j)ni θ
n
i ,

(6.36)

υ(0)ni =
(

wn

ζn
i + √

�nη
n,1
i

)2

,

υ(1)ni = −2
wn

ζn
i + √

�nη
n,1
i

, υ(2)ni = 1.

Combining (6.33) and (6.34), we obtain for i ≤ [T/2d�n]− kn − 1 and all n large
enough:

E

(∣∣∣∣υ(0)ni − 1

(γ2id�n)
2

∣∣∣∣21�n

)
+ E

(∣∣∣∣υ(1)ni + 2

γ2id�n

∣∣∣∣21�n

)
≤ K

(
�n

w2
n

+ wn

)
.
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Since by localization we may assume that the processes σt , vt , bt are bounded, we
may also assume θn

i ≤ K , and upon using (6.32) once more, we then deduce that
B(j)nT as the same asymptotic behavior as B ′(j)nT which is given by the same
formula, with υ(j)ni substituted with the following variables υ ′(j)ni :

υ ′(0)ni = 1

(γ2id�n)
2 , υ ′(1)ni = −2

1

γ2id�n

, υ ′(2)ni = 1.

This allows us to get, with ϒ(0) = 1
γ 2 , ϒ(1) = 1

γ
and ϒ(2) = 1,

1

(κκ ′�2
n)

d−r
B(j)nT

P−→ 2d

∫ T

0
ϒ(j)s�

r,κκ ′
s ds(6.37)

[indeed, the case j = 2 is (3.16), and the other two cases follow from a standard
argument, similar to step 5 above, but simpler because the integrand is a càdlàg

bounded process not depending on n, and θn
i ≥ 0]. Using further T �d−r

n /S
n,1
T

P−→
T/S(r)T and recalling (6.36), and upon expanding the square in the right-hand side
of (6.29), we obtain this convergence and the lemma is proved. �

PROOF OF (a) OF THEOREM 4.1. Since R̂(n, T )
P−→ RT by (3.12), it suffices

to prove that

A(p)nT
P−→ A(p)T :=

∫ T

0
(rs)

p ds.(6.38)

The assumption implies the existence of a sequence of stopping times τj increasing
to infinity, such that τ0 = 0 and τj < τj+1 if τj < ∞, and such that the process rt
takes a constant (random) value ρ(j) on the time interval Jj = (τj−1, τj ), with
ρ(j) �= ρ(j + 1) if 0 < τj < ∞. In view of the discussion preceding (2.3), the
values rτj

is necessarily smaller than or equal to ρ(j) ∧ ρ(j + 1), but is irrelevant
to our discussion. We also denote by NT the biggest j such that τj ≤ T .

With an empty sum being set to 0, we have

A(p)nT =
NT∑
j=1

Y(j)n + Zn, Y (j)n = wn

[(τj∧T )/wn]−2∑
i=[τj−1/wn]+1

∣∣R̂n
i

∣∣p
and where Zn is the sum of at most 3NT terms of the form wn(|R̂n

i |p ∧ (d + 1)p).
Since NT is finite and wn → 0, we have Zn

t → 0 (pointwise), and it suffices to
show that for each j ≥ 1 we have

Y(j)n
P−→ Y(j) := (

(T ∧ τj ) − (T ∧ τj−1)
)
ρ(j)p.(6.39)

We then fix j . The variable Y(j)n is the process A(p)n evaluated at time Tj =
T ∧ τj − τj−1 relative to the underlying process X(j)t = Xτj−1+t , up to at most
two border terms. We thus might be tempted to apply (6.28) right away, and indeed
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X(j) satisfies Assumption (H) for the filtration F (j)t = Fτj−1+t , relative to which
Tj is a positive bounded stopping time. There are, however, a few problems to
overcome:

1. The rank rt (X(j)) associated with X(j) is equal to ρ(j) for all t ∈ (0, Tj ), but
not necessarily for t = 0, nor for t = Tj ;

2. This rank ρ(j) is random, albeit F (j)0-measurable.

To solve these problems, we fix ε > 0 and consider the process X(j, ε)t =
Xτj−1+ε+t , satisfying Assumption (H) for the filtration F (j, ε)t = Fτj−1+ε+t , and
the F (j, ε)t -stopping time T (j, ε) = T ∧ τj −T ∧ τj−1 − 2ε. The associated rank
is thus ρ(j) for all t ∈ [0, T (j, ε)], and we will show that if A(p, j, ε) is associated
with X(j, ε) by (4.2), we have

A(p, j, ε)nT (j,ε)

P−→ T (j, ε)ρ(j)p = (T ∧ τj − T ∧ τj−1 − 2ε)ρ(j)p.(6.40)

Indeed, it suffices to prove this in restriction to each set �′
r = {ρ(j) = r} satisfying

P(�′
r ) > 0. If Pr denotes the (usual) conditional probability P(· | �′

r ), the process
X(j, ε), on the space (�′

r , F ∩ �′
r , (F (j, ε)t ∩ �′

r ),Pr ), still satisfies Assump-
tion (H) and the associated rank is now r on the time interval [0, T (j, ε)]. Then
Lemma 6.5 yields the convergence (6.40) under Pr , hence under P in restriction to
each �′

r , hence under P on � itself.
Finally, the difference Y(j)n − A(p, j, ε)nT (j,ε) is a sum of at most 2[ε/wn]

terms, each one smaller than wn(d + 1)p , so this difference is smaller than Kε,
as is the difference between the two right sides of (6.39) and (6.40). Hence (6.39)
follows from (6.40), by taking first n → ∞ and then ε → 0. This completes the
proof. �

PROOF OF (b) OF THEOREM 4.1. Exactly as in the previous proof, it
is enough to prove the result when rt = r ≥ 1 identically, for some nonran-
dom r ∈ {1, . . . , d}. By a standard localization procedure, we can assume that
�r(σt , σ̃ , vt , bt ), which is positive everywhere, is bounded from below by a con-
stant 1/A with A > 0, so the assumptions of Lemma 6.5 are satisfied. Therefore,
(6.27) and (6.30) yield that, with Yn and Y as in the proof of Lemma 6.5 and with
Zn = 1√

�n
(R̂(n, T ) − r) and Z = 1

S(r)T log 2(U (r)1
T − U (r)2

T ), we have

(Yn,Zn)
L−s−→ (Y, Z).(6.41)

Then we obtain
1√
�n

B(n,p,T ) = Yn + a(n,T )√
�n

(
rp − ∣∣r +√

�nZn

∣∣p).
On the one hand, a(n,T ) → T . On the other hand, since Zn converges in law

and r ≥ 1, we have by the mean value theorem

1√
�n

(
rp − ∣∣r +√

�nZn

∣∣p)+ prp−1Zn
P−→ 0.
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Hence, (6.41) yields

1√
�n

B(n,p,T )
L−s−→ B(p,T ) = Y − Tprp−1Z.

The pair (Y, Z) being F -conditionally centered Gaussian, the same is true of
B(p,T ), and the form (4.5) of its conditional variance is easily checked by virtue
of (3.9). �

PROOF OF THEOREM 4.5. It is easy to construct a process X′ which satisfies
the assumptions of (a) of Theorem 4.1 and such that X′

t = Xt for all t ≤ T on

the set �
�=
T . Then on this set B(n,p,T ) is the same, when constructed upon X

or upon X′, and thus it converges in probability on this set to a strictly negative
variable. On the other hand, Z(n,p,T ) is B(n,p,T ) divided by a quantity which
by construction is smaller than �

1/4
n . Then the convergence Z(n,p,T ) → −∞ on

�
�=
T is clear.
It suffices to prove (4.7) on the set �=

T ∩ �r
T for any r ∈ {0, . . . , d} such that

P(�r
T ) > 0. For this, we can argue under the conditional probability Pr = P(· |

{r0 = r}), or equivalently suppose that we have in fact r0 = r . As above, one can
construct a process X′ which satisfies the assumptions of Lemma 6.5 for some
stopping time T ′ which satisfies T ′ ≥ T on the set �=

T , and we can apply (6.29) to
X′ and the stopping time T ′ ∧ T . This gives us (6.29) for X, in restriction to the
set �=

T .
At this point, (4.7) follows from (6.29) by exactly the same calculations as

(3.17) follows from (3.16).

Finally, since 
V (n,p,T )
P−→ 
V (p,T ) on �=

T , we have Z(n,p,T ) = B(n,p,

T )/
√

�nBV (n,p,T ) on a set �′′
n whose probability goes to 1. The first part

of (4.9) than follows from (4.4) and (4.7) by delta method for stable convergence.
�

6.6. Proof of Corollary 3.6. The same stopping argument as in step 2 of the
previous proof allows us to show that, without assumptions on the rank process rt ,
the stable convergence in law (3.8) holds in restriction to the set �r

T , as soon as we
restrict our attention to the time interval [0, T ].

At this stage, the first claim of Corollary 3.6 follows from (3.12), an applica-
tion of the delta method, (3.17) and classical properties of stable convergence in
law. Equation (3.14) is in turn a trivial consequence of (3.12) and the definition
of R̂int(n,T ).

6.7. Proof of Propositions 3.7, 3.8 and 4.6. Equation (3.20) is an obvious con-
sequence of the stable convergence (3.18). For the alternative-consistency, it suf-
fices to prove that for any r ′ �= r we have

P
(

C(α)
n,=r
T ∩ �r ′

T

)→ P
(
�r ′

T

)
.(6.42)
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On the set �r ′
T we have S(n,T )

P−→ 2d−r ′
, and by (3.17) the variables V (n,T )

converge in probability to a limit which is [0,∞)-valued (actually, it is a.s. pos-

itive, but we do not use this fact here), so that �nV (n,T )
P−→ 0. Since r ′ �= r ,

(6.42) readily follows from the definition of C(α)
n,=r
T .

Propositions 3.8 and 4.6 are proved analogously, the alternative-consistency in
the latter case following from the second part of (4.9).
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