
The Annals of Statistics
2013, Vol. 41, No. 3, 1642–1668
DOI: 10.1214/13-AOS1122
© Institute of Mathematical Statistics, 2013

REGRESSIONS WITH BERKSON ERRORS IN
COVARIATES—A NONPARAMETRIC APPROACH

BY SUSANNE M. SCHENNACH1

Brown University

This paper establishes that so-called instrumental variables enable the
identification and the estimation of a fully nonparametric regression model
with Berkson-type measurement error in the regressors. An estimator is pro-
posed and proven to be consistent. Its practical performance and feasibility
are investigated via Monte Carlo simulations as well as through an epidemio-
logical application investigating the effect of particulate air pollution on res-
piratory health. These examples illustrate that Berkson errors can clearly not
be neglected in nonlinear regression models and that the proposed method
represents an effective remedy.

1. Introduction. Many statistical data sets involve covariates X that are error-
contaminated versions of their true unobserved counterpart X∗. However, the mea-
surement error often does not fit the classical error structure X = X∗ + �X with
�X independent from X∗. A common occurrence is, in fact, the opposite situa-
tion, in which X∗ = X + �X∗ with �X∗ independent from X, a situation often
referred to as Berkson measurement error [Berkson (1950), Wang (2004), Carroll
et al. (2006)]. A typical example is an epidemiological study in which an individ-
ual’s true exposure X∗ to some contaminant is not observed, but instead, what is
available is the average concentration X of this contaminant in the region where
the individual lives. The individual-specific X∗ randomly fluctuate around the re-
gion average X, resulting in Berkson errors.

Existing approaches to handle data with Berkson measurement error [e.g.,
Delaigle, Hall and Qiu (2006), Carroll, Delaigle and Hall (2007)] unfortunately
require the distribution of the measurement error to be known, or to be estimated
via validation data, which can be costly, difficult or impossible to collect. (In clas-
sical measurement error problems, the distribution of the error can be identified
from repeated measurements via a Kotlarski-type equality [Schennach (2004), Li
and Vuong (1998)]. However, such results do not yet exist for Berkson-type mea-
surement error.) A popular approach to relax the assumption of a fully known dis-
tribution of the measurement error is to allow for some adjustable parameters in the
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distributions of the variables and their relationships, and solve for the parameter
values that best reproduce various conditional moments of the observed variables,
under the assumption that this solution is unique. This approach has been used, in
particular, for polynomial specifications [Huwang and Huang (2000)] and, more
recently, for a very wide range of parametric models [Wang (2004, 2007)].

The present paper goes beyond this and provides a formal identification result
and a general nonparametric regression method that is consistent in the presence
of Berkson errors, without requiring the distribution of the measurement error to
be known a priori. Instead, the method relies on the availability of a so-called
instrumental variable [e.g., see Chapter 6 in Carroll et al. (2006)] to recover the
relationship of interest. For instance, in the epidemiological study of the effect of
particulate matter pollution on respiratory health we consider in this paper, suitable
instruments could include (i) individual-level measurement of contaminant levels
that can even be biased and error-contaminated or (ii) incidence rates of diseases
other than the one of interest that are known to be affected by the contaminant in
question.

Our estimation method essentially proceeds by representing each of the un-
known functions in the model by a truncated series (or a flexible functional form)
and by numerically solving for the parameter values that best fits the observable
data. Although such an approach is easy to suggest and implement, it is a chal-
lenging task to formally establish that such a method is guaranteed to work in
general. First, there is no guarantee that the solution (i.e., parameter values that
best match the distribution of the observable data) is unique. Second, estimation
in the presence of a number of unknown parameters going to infinity with sample
size is fraught with convergence questions. Can the postulated series represent the
solution asymptotically? Is the parameter space too large to obtain consistency?
Is the noise associated with estimating an increasing number of parameters kept
under control?

Our solution to these problems is two-fold. First, we target the most difficult
obstacle by formally establishing identification conditions under which the regres-
sion function and the distribution of all the unobserved variables of the model
are uniquely determined by the distribution of the observable variables. A second
important aspect of our solution to the Berkson measurement error problem is to
exploit the extensive and well-developed literature on nonparametric sieve estima-
tion [e.g., Grenander (1981), Gallant and Nychka (1987), Shen (1997)] to formally
address the potential convergence issues that arise when nonparametric unknowns
are represented via truncated series with a number of terms that increases with
sample size. These theoretical findings are supported by a simulation study and
the usefulness of the method is illustrated with an epidemiological application to
the effect of particulate matter pollution on respiratory health.
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2. Model and framework. We consider a regression model of the general
form

Y = g
(
X∗) + �Y,(2.1)

X∗ = X + �X∗,(2.2)

Z = h
(
X∗) + �Z,(2.3)

where the function g(·) is the (unknown) relationship of interest between Y , the
observed outcome variable and X∗, the unobserved true regressor, while �Y is a
disturbance. Information regarding X∗ is only available in the form of an observ-
able proxy X contaminated by an error �X∗. Equation (2.3) assumes the availabil-
ity of an instrument Z, related to X∗ via an unknown function h(·) and a distur-
bance �Z. Our goal is to estimate the function g(·) in (2.1) nonparametrically and
without assuming that the distribution of the measurement error �X∗ is known.
[As by-products, we will also obtain h(·) and the joint distribution of all the unob-
served variables.] To this effect, we require the following assumptions, which are
very common in the literature focusing on nonlinear models with measurement
error [e.g., Carroll et al. (2006), Wang (2004), Hausman et al. (1991), Fan and
Truong (1993), Li (2002), Lewbel (1996)].

ASSUMPTION 2.1. The random variables X, �X∗, �Y , �Z are mutually
independent.

Note that Assumption 2.1 implies the commonly-made “surrogate assump-
tion” fY |X,X∗(y|x, x∗) = fY |X∗(y|x∗), as can be seen by the following sequence
of equalities between conditional densities: fY |X,X∗(y|x, x∗) = f�Y |X,X∗(y −
g(x∗)|x, x∗) = f�Y |�X∗,X(y −g(x∗)|x∗ −x, x) = f�Y (y −g(x∗)) = f�Y |X∗(y −
g(x∗)|x∗) = fY |X∗(y|x∗).

ASSUMPTION 2.2. The random variables �X∗, �Y , �Z are centered (i.e.,
the model’s restrictions preclude replacing �X∗ by �X∗ + c for some nonzero
constant c, and similarly for �Y and �Z; this includes either zero mean, zero
mode or zero median, e.g.).

As our approach relies on the availability of an instrument Z to achieve iden-
tification, it is instructive to provide practical examples of suitable instruments
in common settings. Although the use of instrumental variables has historically
been more prevalent in the econometrics measurement error literature [Hausman,
Newey and Powell (1995), Hausman et al. (1991), Newey (2001), Schennach
(2007)], instruments are gathering increasing interest in the statistics literature, es-
pecially in the context of measurement error problems [see Chapter 6 entitled “In-
strumental Variables” in Carroll et al. (2006) and the numerous references therein].

Note that instrument equation (2.3) is entirely analogous to (2.1), the equation
generating the main dependent variable. Hence, the instrument is nothing but an-
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other observable “effect” caused by X∗ via a general nonlinear relationship h(·).
Let us consider a few examples, which were inspired by some of the case studies
found in Carroll et al. (2006), Wang (2004) and Hyslop and Imbens (2001).

EXAMPLE 2.1. Epidemiological studies.

In these studies, the dependent variable Y is typically a measure of the severity
of a disease or condition, while the true regressor X∗ is someone’s true but unob-
served exposure to some contaminant. The average concentration X of this con-
taminant in the region where the individual lives is, however, observed. The error
on X is Berkson-type because individual-specific X∗ typically randomly fluctu-
ate around the region average X. In this setup, multiple plausible instruments are
available:

(1) A measurement of contaminant concentration in the individual’s house
(these would be error-contaminated by classical errors, since the concentration
at a given time randomly fluctuates around the time-averaged concentration which
would be relevant for the impact on health). Thanks to the flexibility introduced
by the function h(·) in (2.3), these measurements can even be biased. They can
therefore be made with a inexpensive method (that can be noisy and not even well-
calibrated), making it practical to use at the individual level. Hence, it is possible
to combine (i) accurate, but expensive, region averages that are not individual-
specific (X) and (ii) inexpensive, inaccurate individual-specific measurements (Z)
to obtain consistent estimates.

(2) Another plausible instrument could be a measure of the severity of another
disease or condition that is known to be caused by the contaminant. The fact that
it is caused by the contaminant, introduces an error structure which is consistent
with equation (2.3). Other measurable effects due to the contaminant (e.g., the
results of saliva or urine tests for the presence of contaminants) could also serve as
instruments. Clearly these measurements are not units of exposure, but the function
h(·) can account for this.

EXAMPLE 2.2. Experimental studies.

Researchers may wish to study how an effect Y (e.g., the production of some
chemical) is related to some imposed external conditions X (e.g., oven or reactor
temperature), but the true conditions X∗ experienced by the sample of interest
may deviate randomly from the imposed conditions (e.g., temperature may not be
completely uniform). In this case, an instrument Z could be (i) another “effect”
(e.g., the amount of another chemical) that is known to be caused by X∗ or (ii) a
measurement of X∗ that is specific to the sample of interest but that may be very
noisy or even biased (e.g., it could be an easier-to-take temperature measurement
after the experiment is completed and the sample has partly cooled down).

EXAMPLE 2.3. Self-reported data.
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Hyslop and Imbens (2001) have argued that individuals reporting data (e.g.,
their food intake, or exercise habits) are sometimes aware of the uncertainty in
their estimates of X∗ and, as a result, try to report an average X over all plausi-
ble estimates consistent with the information available to them, thus leading to
Berkson-type errors, because the individuals try to make their prediction error
independent from their report. In this setting, an instrument Z could be another
observable outcome variable Z that is also related to X∗.

3. Identification. We now formally state conditions under which the Berk-
son measurement error model can be identified with the help of an instrument. Let
Y , X , X ∗ and Z denote the supports of the distributions of the random variables
Y , X, X∗ and Z, respectively. We consider Y,X,X∗ and Z to be jointly continu-
ously distributed (with Y ⊂ R

ny , X ⊂ R
nx , X ∗ ⊂ R

nx and Z ⊂ R
nz with nz ≥ nx).

Accordingly, we assume the following.

ASSUMPTION 3.1. The random variables Y,X,X∗,Z admit a bounded joint
density with respect to the Lebesgue measure on Y × X × X ∗ × Z . All marginal
and conditional densities are also defined and bounded.

We use the notation fA(a) and fA|B(a|b) to denote the density of the random
variable A and the density of A conditional on B , respectively. Lower case letters
denote specific values of the corresponding upper case random variables. Next, as
in many treatments of errors-in-variables models [Carroll et al. (2006), Fan and
Truong (1993), Li and Vuong (1998), Li (2002), Schennach (2004, 2007)], we re-
quire various characteristic functions to be nonvanishing. We also place regularity
constraints on the two regression functions of the model.

ASSUMPTION 3.2. For all ζ ∈ R
nz , E[exp(iζ · �Z)] �= 0 and for all ξ ∈ R

nx ,
E[exp(iξ · �X∗)] �= 0 (where i =√−1).

ASSUMPTION 3.3. g : X ∗ �→ Y and h : X ∗ �→ Z are one-to-one (but not nec-
essarily onto).

ASSUMPTION 3.4. h is continuous.

Assumption 3.3 is somewhat restrictive when X∗ has a dimension larger or
equal to the ones of Y (or Z). Fortunately, it is often possible to eliminate this
problem by re-defining Y (and Z) to be a vector containing auxiliary variables in
addition to the outcome of interest, in order to allow for enough variation in Y

(and Z) to satisfy Assumption 3.3. Each of these additional variables need not be
part of the relationship of interest per se, but does need to be affected by X∗ is some
way. In that sense, such auxiliary variables would also be a type of “instrument.”
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Our main identification result can then be stated as follows. (Note that the theo-
rem also holds upon conditioning on an observed variable W , so that additional,
correctly measured, regressors can be straightforwardly included.)

THEOREM 3.1. Under Assumptions 2.1–3.4, given the true observed condi-
tional density fY,Z|X , the solution (g,h,f�Z,f�Y ,f�X∗) to the functional equa-
tion

fY,Z|X(y, z|x) =
∫

f�Z

(
z − h

(
x∗))

f�Y

(
y − g

(
x∗))

f�X∗
(
x∗ − x

)
dx∗(3.1)

for all y ∈ Y , x ∈ X , z ∈ Z is unique (up to differences on sets of null probabil-
ity measure). A similar uniqueness result holds for the solution (g,h,f�Z,f�Y ,

f�X∗, fX) to

fY,Z,X(y, z, x)
(3.2)

= fX(x)

∫
f�Z

(
z − h

(
x∗))

f�Y

(
y − g

(
x∗))

f�X∗
(
x∗ − x

)
dx∗.

Establishing this result demands techniques radically different from existing
treatment of Berkson error models, such as the spectral decomposition of linear op-
erators [see Carrasco, Florens and Renault (2005) for a review], which are emerg-
ing as powerful alternatives to the ubiquitous deconvolution techniques that are
typically applied in classical measurement error problems. The proof can be found
in the Appendix and can be outlined as follows. Assumption 2.1 lets us obtain the
following integral equation relating the joint densities of the observable variables
to the joint densities of the unobservable variables:

fY,Z|X(y, z|x) =
∫

fZ|X∗
(
z|x∗)

fY |X∗
(
y|x∗)

fX∗|X
(
x∗|x)

dx∗(3.3)

from which equation (3.1) follows directly. Uniqueness of the solution is then
shown as follows. Equation (3.3) defines the following operator equivalence re-
lationship:

Fy;Z|X = FZ|X∗Dy;X∗FX∗|X,(3.4)

where we have introduced the following operators:

[Fy;Z|Xr](z) =
∫

fY,Z|X(y, z|x)r(x) dx,

[FZ|X∗r](z) =
∫

fZ|X∗
(
z|x∗)

r
(
x∗)

dx∗,

[FZ|Xr](z) =
∫

fZ|X(z|x)r(x) dx,(3.5)

[Dy;X∗r](x∗) = fY |X∗
(
y|x∗)

r
(
x∗)

,

[FX∗|Xr](x∗) =
∫

fX∗|X
(
x∗|x)

r(x) dx
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for some sufficiently regular but otherwise arbitrary function r . Note that, in the
above definitions, y is viewed as a parameter (the operators do not act on it) and
that Dy;X∗ is the operator equivalent of a diagonal matrix. Next, we note that the
equivalence FZ|X = FZ|X∗FX∗|X also holds [e.g., by integration of (3.4) over all
y ∈ Y ]. We can then isolate FX∗|X

FX∗|X = F−1
Z|X∗FZ|X(3.6)

and substitute the result into (3.4) to yield, after rearrangements,

Fy;Z|XF−1
Z|X = FZ|X∗Dy;X∗F−1

Z|X∗,(3.7)

where all inverses can be shown to exist over suitable domains under our assump-
tions. Equation (3.7) states that the operator Fy;Z|XF−1

Z|X admits a spectral decom-
position. The operator to be “diagonalized” is defined in terms of observable densi-
ties, while the resulting eigenvalues fY |X∗(y|x∗) (contained in Dy;X∗) and eigen-
functions fZ|X∗(·|x∗) (contained in FZ|X∗) provide the unobserved densities of
interest.

A few more steps are required to ensure uniqueness of this decomposition,
which we now briefly outline. One needs to (i) invoke a powerful uniqueness re-
sult regarding spectral decompositions [Theorem XV 4.5 in Dunford and Schwartz
(1971)], (ii) exploit the fact that densities integrate to one to fix the scale of the
eigenfunctions, (iii) handle degenerate eigenvalues and (iv) uniquely determine the
ordering and indexing of the eigenvalues and eigenfunctions. This last, and perhaps
most difficult, step, addresses the issue that both fZ|X∗(·|x∗) and fZ|X∗(·|S(x∗)),
for some one-to-one function S, are equally valid ways to state the eigenfunctions
that nevertheless result in different operators FZ|X∗ . To resolve this ambiguity, we
note that for any possible operator FZ|X∗ satisfying (3.7), there exist a unique cor-
responding operator FX∗|X , via equation (3.6). However, only one choice of FZ|X∗
leads to an operator FX∗|X whose kernel fX∗|X(x∗|x) satisfies Assumption 2.2.
Hence, fX∗|X(x∗|x), fY |X∗(y|x∗) and fZ|X∗(z|x∗) are identified, from which the
functions f�Z , f�Y , f�X∗ , h and g can be recovered by exploiting the centering
restrictions on �X∗, �Y and �Z.

An operator approach has recently been proposed to address certain types of
nonclassical measurement error problems [Hu and Schennach (2008)], but under
assumptions that rule out Berkson-type measurement errors: it should be empha-
sized that, despite the use of operator decomposition techniques similar to the ones
found in Hu and Schennach (2008) (hereafter HS), it is impossible to simply use
their results to identify the Berkson measurement error model considered here, for
a number of reasons. First, the key condition (Assumption 5 in HS) that the distri-
bution of the mismeasured regressor X given the true regressor X∗ is “centered”
around X∗ does not hold for Berkson errors. Consider the simple case where the
Berkson measurement error is normally distributed and so are the true and mis-
measured regressors. The distribution of X given X∗ = x∗ is a normal centered
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at x∗σ 2
x /(σ 2

x + σ 2
�x∗). Hence, there is absolutely no reasonable measure of loca-

tion (mean, mode, median, etc.) that would yield the appropriate centering at x∗
that is needed in Assumption 5 of HS. In addition, one cannot simply replace the
assumption of centering of X given X∗ (as in HS) by a centering of X∗ given X

(as would be required for Berkson errors) and hope that Theorem 1 in HS remains
valid. HS exploit the fact that, in a conditional density, there is no Jacobian term as-
sociated with a change of variable in a conditioning variable (here X∗). However,
with Berkson errors, the corresponding change of variable would not take place
in the conditional variables, and a Jacobian term would necessarily appear, which
makes the approach used in HS fundamentally inapplicable to the Berkson case.
Solving this problem involves (i) using a different operator decomposition than in
HS and (ii) using a completely different approach for “centering” the mismeasured
variable.

A referee suggested an alternative argument (formalized in the Appendix) that
makes a more direct connection with Theorem 1 in HS but under the additional
assumption that Z and X∗ have the same dimension. Such an assumption is rather
restrictive because it will often result in the assumption that h(·) is one-to-one (As-
sumption 3.3) being violated. For instance, if X∗ is scalar and we have access to
two instruments Z1 and Z2 such that neither E[Z1|X∗] nor E[Z2|X∗] are strictly
monotone, then h(·) is not one-to-one for either instrument used in isolation. How-
ever, the mapping X∗ �→ (E[Z1|X∗],E[Z2|X∗]) will typically be one-to-one, ex-
cept for really exceptional cases. Hence, allowing for the dimensions of X∗ and
Z to differ is important. Nevertheless, even assuming away this problem, such an
approach still requires a different technique for centering X∗ than the one used in
HS. That said, both HS and the current paper rely on operator spectral decomposi-
tion as an alternative to conventional convolution/deconvolution techniques, and it
appears likely that these new techniques will find applications in a number of other
measurement error models.

Observe that our identification result is also useful in a parametric and semi-
parametric context, as it provides the confidence that, under simple conditions, the
model is identified. Rank conditions that would need to be verified on a case-by-
case basis in any given parametric model are automatically implied by our identifi-
cation results in a wide class of models. Also, although X is allowed to be random
throughout, considering X to be fixed poses no particular difficulty, since equation
(3.1) provides a valid conditional likelihood function in that case.

As discussed in Schennach (2013), a number of extensions of the method are
possible: (i) Relaxing the independence between X and �X∗ to allow for some
heteroskedasticity in the measurement error and (ii) combining classical and Berk-
son errors, a possibility considered in, for example, Mallick, Hoffman and Carroll
(2002), Carroll, Delaigle and Hall (2007), Stram, Huberman and Wu (2002) and
Hyslop and Imbens (2001). It can also be shown that some extensions are not
plausible, such as assuming that both the measurement equation (2.2) and the in-
strument equation (2.3) have a Berkson error structure [Schennach (2013)].
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4. Estimation. A natural way to obtain a nonparametric estimator of the
model is to substitute truncated series approximations into (3.1) or (3.2) for each
of the unknown functions and construct a log likelihood function to be maximized
numerically with respect to all coefficients of the series [e.g., Shen (1997)]. Such
sieve-based estimators have recently found applications in a variety of measure-
ment error problems [e.g., Newey (2001), Mahajan (2006), Hu and Schennach
(2008), Carroll, Chen and Hu (2010), among others]. Below we first define our
estimator before establishing its consistency.

We represent the regression functions g(·) and h(·) as

m̂(Km)(x∗, β(Km)
m

) =
Km∑
k=1

β
(Km)
m,k q

(Km)
k

(
x∗)

for m = g,h,(4.1)

where q
(Km)
k (x∗) is some sequence (indexed by the truncation parameters Km)

of progressively larger sets of basis functions indexed by k = 1, . . . ,Km while
β

(Km)
m = (β

(Km)
m,1 , . . . , β

(Km)
m,K ) is a vector of coefficients to be determined. The

q
(Km)
k (x∗) could be some power series, trigonometric series, orthogonal polynomi-

als, wavelets or splines, for instance. The double indexing by k and Km is useful
to allow for splines, where changing the number of knots modifies all the basis
functions.

A similar expansion in terms of basis functions p
(KV )
k (v) (with truncation pa-

rameter KV ) is used for the density of each disturbance V = �Z,�Y,�X∗,

f̂
(KV )
V

(
v, θ

(KV )
V

) = 1

θ
(Kv)
V,0

φ0
(
v/θ

(Kv)
V,0

) KV∑
k=1

θ
(KV )
V,k p

(KV )
k (v),(4.2)

where θ
(KV )
V = (θ

(KV )
V,0 , . . . , θ

(KV )
V,K ) is a vector of coefficients to be determined, and

φ0(·) is a user-specified “baseline” function. The “baseline” function is convenient
to reduce the number of terms needed in the expansion, when the approximate
general shape of the density is known. It is not strictly needed, however, and can
be set to 1. Either way, the method is fully nonparametric. A convenient choice
of basis [see Gallant and Nychka (1987)] is to take φ0(·) to be a Gaussian and
p

(KV )
k (v) = vk−1 for any KV .
An important distinction with the functions g(·) and h(·) is that some constraints

have to be imposed on the densities. One constraint is needed to ensure centering
(Assumption 2.2),

KV∑
k=1

θ
(KV )
V,k C

(KV )
V,c,k = 0,

where, for some user-specified function cV (v), we define

C
(KV )
V,c,k =

∫
cV (v)

1

θ
(Kv)
V,0

φ0

(
v

θ
(Kv)
V,0

)
p

(KV )
k (v) dv.
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For instance, to impose zero mean on the disturbance V , let cV (v) = v. To impose
zero median, let cV (v) = 1(v ≤ 0) − 1/2, where 1(·) denotes an indicator func-
tion, while to impose zero mode, let cV (v) = −δ(1)(v) (a delta function derivative,
in a slight abuse of notation). Another constraint is needed to ensure unit total
probability:

∑KV

k=1 θ
(KV )
V,k C

(KV )
V,1,k = 1. Note that both types of constraints exhibit the

computationally convenient property of being linear in the unknown coefficients.
Given the above definitions, we can define an estimator of all unknown func-

tions based on a sample (Xi, Yi,Zi)
n
i=1 and equation (3.1) [a corresponding es-

timator based on equation (3.2) can be derived analogously]. Let β̂
(Kg)
g , β̂

(Kg)

h ,

θ̂
(KV )
�X∗ , θ̂

(KV )
�Y , θ̂

(KV )
�Z denote the minimizer of the sample log likelihood

1

n

n∑
i=1

ln f̂Y,Z|X(Yi,Zi |Xi),(4.3)

where f̂Y,Z|X(y, z|x) = ∫
f̂

(K�Z)
�Z (z − ĥ(Kh)(x∗, β(Kh)

h ), θ
(K�Z)
�Z )f̂

(K�Y )
�Y (y −

ĝ(Kg)(x∗, β(Kg)
g ), θ

(K�Y )
�Y ) f̂

(K�X∗ )

�X∗ (x∗ − x, θ
(K�X∗ )

�X∗ ) dx∗, subject to

KV∑
k=1

θ
(KV )
V,k C

(KV )
V,1,k = 1 and

KV∑
k=1

θ
(KV )
V,k C

(KV )
V,c,k = 0(4.4)

for V = �Z,�Y,�X∗ and subject to technical regularity constraints to be defined
below. Estimators are then given by

ĝ
(
x∗) = ĝ(Kg)(x∗; β̂(Kg)

g

)
, ĥ

(
x∗) = ĥ(Kg)(x∗; β̂(Kg)

h

)
,

(4.5)
f̂V (v) = f̂

(KV )
V

(
v, θ̂

(KV )
V

)
for V = �X∗,�Y,�Z.

This type of estimator falls within the very general class of sieve nonparamet-
ric maximum likelihood estimators (MLE), whose asymptotic theory has received
considerable attention over the last few decades [e.g., Grenander (1981), Gallant
and Nychka (1987), Shen (1997)]. Here, we parallel the treatment of Gallant and
Nychka (1987) and Newey and Powell (2003) to establish the consistency of the
above procedure. Although the consistency of sieve-type estimators has been pre-
viously established in very general settings under some high-level assumptions,
our contribution is to provide very primitive sufficient conditions for consistency
for the class of models considered here.

We first need to define the set in which the densities of interest reside. The for-
mal proof of consistency of the estimator requires this set to be compact, although
this requirement appears to have little impact in practice. In essence, compactness
is helpful to rule out very extreme but rare events associated with very poor esti-
mates. It is a standard regularity condition; see, for example, Gallant and Nychka
(1987), Newey and Powell (2003), Newey (2001). A well-known type of infinite-
dimensional but compact sets are those generated via boundedness and Lipschitz
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constraints in an L∞ space. Here, we use a weighted Lipschitz constraint in or-
der to allow for densities supported on an unbounded set, while still maintaining
compactness (our treatment can be straightforwardly adapted to cover the simpler
case where the variables are supported on finite intervals). Following Gallant and
Nychka (1987), we enforce restrictions that avoid too rapid divergences in the log
likelihood.

DEFINITION 4.1. Let ‖f ‖ = supv∈R |f (v)|. Let B be finite and strictly posi-
tive. Let f ′+(v) be strictly positive and bounded function that is decreasing in |v|,
symmetric about v = 0 and such that

∫ ∞
−∞ f ′+(v) dv < ∞. Let S = {f : R �→

[−B,B] such that |∂λf (v)/∂vλ| ≤ f ′+(v)}. Let f−(v) and f+(v) be strictly posi-
tive and bounded functions with f−(v) decreasing in |v| and

∫ ∞
−∞ f+(v) dv < ∞.

Let F = {f ∈ S :f−(v) ≤ f (v) ≤ f+(v)}.
We also define suitable norms and sets for the regression functions. Here, we

need to allow for functions that diverge to infinity at controlled rates toward in-
finite values of their argument. In analogy with any existing global measure of
expected error, we also use a norm that downweights errors in the tails, which is
consistent with the fact that the tails of a nonparametric regression function are
always estimated with more noise, since there are fewer datapoints there.

DEFINITION 4.2. Let ω : R �→ R
+ by some given strictly positive, bounded

and differentiable weighting function. For any function g : R �→ R, let ‖g‖ω =
‖ωg‖ where ωg(v) ≡ g(v)ω(v). Let G = {g :ωg ∈ S and |g(v)| ≤ g+(v)} where
g+(v) is a given positive function that is increasing in |v| and symmetric about
v = 0.

We can now state the regularity conditions needed.

ASSUMPTION 4.1. The observed data (Xi, Yi,Zi) are independent and iden-
tically distributed across i = 1,2, . . . .

ASSUMPTION 4.2. We have f�X∗, f�Y ,f�Z ∈ F and g,h ∈ G .

ASSUMPTION 4.3. The set of functions representable as series (4.2) and (4.1)
are, respectively, dense in F (in the norm ‖ · ‖) and G (in the norm ‖ · ‖ω).

Denseness results for numerous types of series are readily available in the lit-
erature [e.g., Newey (1997), Gallant and Nychka (1987)]. Although such results
are sometimes phrased in a mean square-type norm rather than the sup norm used
here, Lemma 4.1 below [proven in Schennach (2013)] establishes that, within the
sets F and G , denseness in a mean square norm implies denseness in the norms
we use.
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LEMMA 4.1. Let {fn} be a sequence in F . Then
∫ |fn(v)|2 dv → 0 implies

‖fn‖ → 0 (for F and ‖ · ‖ as in Definition 4.1).

We also need standard boundedness and dominance conditions.

ASSUMPTION 4.4. For any x ∈ R,
∫
(ω(x∗))−1f+(x∗ − x)dx∗ < ∞ for ω

and f+ as in Definitions 4.2 and 4.1, respectively.

ASSUMPTION 4.5. There exists b > 0 such that E[| ln(f−(X,Y,Z))|] < ∞,
where f−(x, y, z) ≡ 2bf−(b)f−(|y| + (g+(|x| + b)))f−(|z| + (g+(|x| + b))) for
f− and g+ as in Definitions 4.1 and 4.2, respectively.

We can then state our consistency result [proven in Schennach (2013)]:

THEOREM 4.1. Under Assumptions 3.1–4.5, if KV
p→ ∞, for V = h,g,�X∗,

�Y,�Z, the estimators given by (4.5) evaluated at the minimizer of (4.3) subject
to (4.4), f̂�X∗, f̂�Y , f̂�Z ∈ F and ĝ, ĥ ∈ G and satisfying Assumption 4.4 are such

that ‖ĝ − g∗‖ω
p→ 0, ‖ĥ − h∗‖ω

p→ 0, ‖f̂�X∗ − f ∗
�X∗‖ p→ 0, ‖f̂�Y − f ∗

�Y ‖ p→ 0,

‖f̂�Z − f ∗
�Z‖ p→ 0, where the stared quantities denote the true values [i.e., the

unique solution to (3.1)].

The practical implementation of the above approach necessitates the selection
of the number of terms KV in each of the approximating series. Theorem 4.1 al-
lows for a data-driven selection of the KV , since KV is allowed to be random.
To select the KV , one can employ the bootstrap cross-validation model selection
method based on the Kullback–Leibler (KL) criterion, shown by van der Laan, Du-
doit and Keles (2004) to be consistent even when the number of candidate models
grows to infinity with sample size (as it is here). In this method, a fraction p of the
sample is excluded at random and the remaining 1 − p fraction is used to estimate
the model parameters with given numbers (K�X∗,K�Y ,K�Z,Kg,Kh) of terms
in the corresponding series. The likelihood (or KL criterion) is then evaluated us-
ing the excluded fraction p at the value of the estimated parameters found in the
previous step. The process is repeated many times with different random parti-
tions of the sample into fractions p and (1 − p), to obtain an average KL criterion
with a sufficiently small variance (which can be estimated from the KL criterion
of each random partitions). This procedure is carried out for various trial choices
of (K�X∗,K�Y ,K�Z,Kg,Kh) and the choice that yields the largest likelihood
is selected. This method is consistent asymptotically (as sample size n → ∞) as
np → ∞ and p → 0 and under some mild technical regularity conditions stated in
van der Laan, Dudoit and Keles (2004).

Our nonparametric approach nests parametric and semiparametric models.
These subcases can be easily implemented by replacing some, or all, of the non-
parametric series approximations by suitable parametric models. It is possible to
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obtain convergence rates and limiting distribution results, along the lines of Shen
(1997) or Hu and Schennach (2008), although we do not do so here due to space
limitations [stating suitable regularity conditions, even in high-level form, is rather
involved, as seen in the supplementary material of Hu and Schennach (2008),
which covers a related but different measurement error model]. It is, however,
important to point out one important property. Sieve nonparametric MLE is opti-
mal in the following sense: under suitable regularity conditions, any sufficiently
regular semiparametric functional of the nonparametric sieve MLE estimates is
asymptotically normal and root n consistent and reaches the semiparametric effi-
ciency bound for that functional; see Theorem 4 in Shen (1997). This notion of
optimality is a natural nonparametric generalization of the well-known efficiency
of parametric maximum likelihood.

5. Simulations study. We now investigate the practical performance and fea-
sibility of the proposed estimator via a simulation example purposely chosen to
be a difficult case. The data is generated as follows. The distribution of X is a
uniform distribution over [−1,1] (implying a standard deviation of 0.58). We con-
sider a thick-tailed t distribution with 6 degrees of freedom scaled by 0.5 as the
distribution of �X∗. The standard deviation of the error �X∗ is almost identical
to the one of the “signal” X, thus making this estimation problem exceedingly dif-
ficult. The distribution of �Y is a logistic scaled by 0.125 while the distribution
of �Z is a t distribution with 6 degrees of freedom scaled by 0.25. The regression
function has the form

g
(
x∗) = ∣∣x∗∣∣x∗,(5.1)

which is only finitely many times differentiable, thus limiting the convergence
rate of its series estimator in the measurement-error-robust estimator (the naive
estimator would be less affected since it would “see” a smoothed version of this
function). The instrument equation has a specification that is strictly convex and
therefore tends to exacerbate the bias in many nonparametric estimators,

h
(
x∗) = ln

(
1 + exp

(
2x∗))

.

A total of 100 independent samples, each containing 500 observations, were
generated as above and fed into our estimator. For estimation purposes, the func-
tions g(·) and h(·) are both represented by polynomials while the densities of �X∗,
�Y and �Z are represented by a Gaussian multiplied by a polynomial [following
Gallant and Nychka (1987), who establish that these choices satisfy a suitable
denseness condition]. The Gaussian is centered at the origin, but its width is left
as a parameter to be estimated. Note that the functional forms considered are not
trivially nested within the space spanned by the truncated sieve approximation.
This was an intentional choice aimed at properly accounting for the nonparametric
nature of the problem (in which the researcher never has the fortune of selecting a
truncated sieve fitting the true model exactly).
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The integral in equation (3.1) is evaluated numerically by discretizing the in-
tegral as a sum over the range [−3,3] in intervals of 0.05. Naive least-squares
estimators ignoring measurement error (i.e., least-squares regressions of Y on X

and of Z on X) were used as a starting point for the numerical sieve optimization
of the g and h functions, while the variances of the corresponding residuals were
used to construct an initial Gaussian guess for the optimization of all the error dis-
tributions. The simplex method due to Nelder and Mead (1965) (also known as
“amoeba”) was used to carry out the numerical optimization of the log likelihood
(4.3) with respect to all the parameters θ

(KV )
V for V = �X∗,�Y,�Z and β

(Km)
m

for m = g,h simultaneously. The constraints that the estimated densities and re-
gression functions lie, respectively, in the sets F and G of the form given in Defini-
tions 4.1 and 4.2 are implied by bounds on the magnitude of the sieve coefficients
θ

(KV )
V,k and β

(Km)
m,k in (4.2) and (4.1). Such constraints are easy to impose within

the simplex optimization method: parameter changes that would yield violations
of the bounds are simply rejected (effectively assigned an “infinite” value)—the
simplex optimization method easily accommodates such extreme behavior in the
objective function, since it does not rely on derivatives. However, we found that
these constraints are rarely binding in practice, unless the number of terms KV in
the expansions is large [Gallant and Nychka (1987) reports a similar observation].
Such large values of KV tend to be naturally ruled out via our data-driven selection
method of the number of terms.

To select the number of terms in the approximating series for a given sam-
ple, we use the “bootstrap cross-validation” method described in Section 4 with
a fraction p = 1/8 and 100 bootstrap replications. Trial values of the number of
free parameters (not counting parameters uniquely determined by zero mean and
unit area constraints) in the series representing f�X∗, f�Y ,f�Z each span the set
{1,2,3,4} while for g, h each span the set {4,5,6,7}. The optimal numbers of pa-
rameters (kept constant during the replications) were found to be f�X∗ : 3; f�Y : 3;
f�Z : 3; g : 6; h : 6.

Figure 1 summarizes the result of these simulations, where a naive nonpara-
metric series least-squares estimator ignoring measurement error (i.e., least-square
regressions of Y on X and of Z on X) with the same number of sieve terms is
also shown for comparison. The reliability of the method can be appreciated by
noting how closely the median of the replicated measurement-error-robust esti-
mates matches the true model, while the naive estimator ignoring the presence of
measurement error is considerably more biased, even missing the fact that the true
regression function is nearly flat in the middle section and instead producing a
very misleading linear shape despite the strong nonlinearity of the true model. In
fact, unlike the proposed estimator, the naive estimator is so significantly biased
that any type of hypothesis test based on it would exhibit completely misleading
confidence levels: the true model curves (for g and h) almost always lies beyond
the 95% or 5% percentiles of the estimator distribution.



1656 S. M. SCHENNACH

FIG. 1. Simulation study of the practical performance of the proposed measurement-error-robust
estimator in comparison with a “naive” nonparametric polynomial series least-square estimator that
ignores the presence of measurement error. In each plot, the pointwise 90% confidence band of the
estimator simulated over 100 replications is shown as error bars.

Overall, the proposed measurement-error-robust estimator exhibits low variabil-
ity and low bias at the reasonable sample size of 500. The bias is not exactly zero in
a finite sample because our estimator is a nonlinear functional of sample averages
and because the sieve approximation necessarily has a limited accuracy in a finite
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sample. Nevertheless, the fact that our estimator performs so well in the presence
of measurement error of such large magnitude is a strong indication of its practical
usefulness. This behavior is not specific to this model—we have tested the method
in other simulation settings; see Schennach (2013).

6. Application. Numerous studies have sought to quantify the effect of air
pollution on respiratory health [e.g., Dockery et al. (1993)]. Specifically, there is
a growing concern regarding the effect of small particulate matter [Pope et al.
(1995), Samet et al. (2000)]. A key difficulty with such studies is that air quality
monitors are not necessarily located near the subjects being affected by air pollu-
tion, implying that the main regressor of interest is mismeasured.

Our approach to this question relies on very comprehensive country-wide data
collected by Environment Protection Agency (EPA) and the Center for Disease
Control (CDC) in the United States. Pollution levels are taken from EPAs Monitor
Values Report—Criteria Air Pollutants database for year 2005. EPAs data pro-
vides point measurements of the particulate matter levels (we focus on so-called
95th percentile level of PM2.5 particles, those having less than 2.5 micrometers in
diameter) at various monitoring stations throughout the United States, from which
we construct state-averaged pollution levels (our X variable, measured in μg of
particles per m3). We do so because pollution data is only available for a small
fraction of counties, and even where it is available, the nature of its measurement
error is complex (it could be a mixture of classical and Berkson errors). By con-
structing state-level averages, we average out the randomness in monitor measure-
ments while leaving the randomness in the individual exposure untouched, thus
obtaining a valid Berkson error-contaminated estimate of the pollution level expe-
rienced by individuals from each state, whether they live in a county with a mon-
itoring station or not. Each individual faces an exposure equal to the state average
plus an unknown random noise due to his/her precise geographic whereabouts and
lifestyle.

Health data is obtained from the publicly available “CDC Wonder” database
entitled “Mortality—underlying cause of death” for year 2005. To measure respi-
ratory health, we use data on causes of death, which offers the advantage that it
is very comprehensive and accurate (medical professionals are required to collect
it and there is no reliance on voluntary surveys). One limit to the completeness
of the data is that, for some counties, the data is “suppressed” (for privacy rea-
sons) or labeled as “unreliable” by the CDC and were therefore omitted from our
sample. Our dependent variable of interest (Y ) is the rate (per 10,000) of death
due to “chronic lower respiratory diseases” (e.g., asthma, bronchitis, emphysema),
while our instrument (Z) is the rate (per 10,000) of death resulting from “lung
diseases due to external agents” (e.g., pneumoconiosis due to organic or inor-
ganic dust, coalworker’s pneumoconiosis). The rationale is to use, as an instru-
ment, a variable that is clearly expected to be affected by pollution levels. This
variable indirectly provides information regarding the true level of pollution, so
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that the effect of pollution (if any) on the variable of interest can be more accu-
rately assessed. We employ county-level data on causes of death because they are
readily available without concerns for patient privacy issues. Moreover, the CDC
provides age-corrected death rates, thus correcting for demographic differences
between counties. We construct our sample by matching mortality data via coun-
ties and matching pollution data via states, resulting in 1305 observations over as
many counties and covering all 51 states. A limitation of our approach is that it
does not control for other possible confounding effects, for example, if the propor-
tion of smokers differs between industrial and nonindustrial cities. However, such
a limitation is common in studies of this kind [as noted in Dockery et al. (1993)].

We use the same types of sieves and computational methods as in the simula-
tion example and select the number of terms using the “bootstrap cross-validation”
method described in Section 4 with a fraction p = 1/8 and 100 bootstrap repli-
cations. Trial values of the number of free parameters in the series representing
f�X∗, f�Y ,f�Z span the range {1,2,3} while trial values of the number of terms
in the series representing g and h span the range {2,3,4} (increasing any one of
the KV beyond that range resulted in clearly worse performances). The optimal
numbers of free parameters (not counting parameters uniquely determined by zero
mean and unit area constraints) were found to be f�X∗ : 2; f�Y : 3; f�Z : 1; g : 4;
h : 3. Pointwise 90% confidence bands around the nonparametric estimates were
obtained using the standard bootstrap [see, e.g., Giné and Zinn (1990) for general
conditions justifying its use] with 100 replications.

Results are shown in Figure 2. A few observations are in order. First, our mea-
surement error-robust estimator is perfectly able to detect a clear monotone rela-
tionship between Y and X∗ and between Z and X∗ with useful confidence bands,
despite the use of a fully nonparametric approach. Second, although the distri-
bution of the measurement error is difficult to estimate (as reflected by the wide
confidence bands), the impact of this uncertainty on the main function of inter-
est [g(x∗)] is fortunately very limited. The 90% confidence bands indicate that the
presence of substantial measurement error is consistent with the data: the measure-
ment error is of the order of 10 μg/m3, whereas the observed X roughly ranges
from 10 to 40 μg/m3. Third, the distribution of �Y exhibits nonnegligible asym-
metry, thus illustrating the drawbacks of methods merely assuming normality of all
the error terms. In contrast, the distributions of �X∗ and �Z are apparently very
close to symmetric (this is a conclusion of the formal model selection procedure,
not an assumption).

For comparison purposes, we also naively regress the dependent variables
(Y or Z) on the mismeasured regressor X using a conventional least squares
(thereby neglecting measurement error) with a polynomial specification with the
same number of terms as our Berkson model. A first troubling observation from
this exercise [see Figure 2(b)] is that the naive estimate of g(x∗) is not monotone,
although in the region where it is unexpectedly decreasing, the confidence bands
do not rule out a constant response. Second, it is perhaps counter-intuitive that the
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FIG. 2. Application of the proposed estimator to an epidemiologic example (see text for a descrip-
tion of the variables and the estimated functions). In each plot, the estimator is shown as a solid line
while the error bars indicate the pointwise 90% confidence bands. In (b), the “naive” estimator is
a nonparametric polynomial series least-square estimator that ignores the presence of measurement
error. The estimator in (a) is shown on the plot (b) for comparison.

confidence bands for the naive estimator are sometimes larger than the correspond-
ing bands for the measurement error-robust estimator. This is a consequence of the
fact that correcting for Berkson errors amounts to an operation akin to convolution
(rather than deconvolution, as in classical measurement errors). Unlike deconvolu-
tion, convolution is a noise-reducing operation, effectively averaging observations
of Y over a wide range of values of X to yield an estimate the expected value
of Y given a specific value of X. This phenomenon is probably also responsible
for the more reasonable (i.e., increasing) behavior of the response for the mea-
surement error-robust estimate. Finally, the measurement error-robust regression
function often lies at or beyond the 95% or 5% percentiles of the naive estima-
tor distribution; see Figure 2(b). This implies that the level of any statistical test
would be severely biased. For instance, the confidence bands of the naive estima-
tor would reject our best estimate of g(x∗) obtained with the measurement-error
robust procedure.

In summary, this application example serves to illustrate that ignoring Berkson
errors can be seriously misleading in nonlinear settings. Not only is the shape of
the estimated response considerably affected, but statistical inferences based on
a measurement error-blind method would be seriously biased. This application
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example also shows that our fully nonparametric and measurement error-robust
method works well at sample sizes typically available in real data sets, without
assuming the knowledge of the distribution of the measurement error.

APPENDIX: PROOFS

Let Lb
1(D) with D ⊂ R

n0 for some n0 denote the set of all bounded functions
in L1(D) endowed with the usual L1 norm. Also, whenever we state an equality
between functions in Lb

1(D), we mean that their difference is zero in the L1 norm.
We provide two proofs of Theorem 1. The first one, suggested by a referee,

relies on the additional assumptions that (i) Z and X∗ have the same dimension
and (ii) h and its inverse are differentiable. Assumption (i) makes Assumption 3.3
unlikely to hold, but enables a somewhat direct application of Theorem 1 in Hu
and Schennach (2008). The second proof relaxes those assumptions. It borrows
some of the operator techniques from Hu and Schennach (2008), yet requires con-
siderable changes in the approach—we focus here on the aspects of the proof that
differ.

PROOF THEOREM 3.1 (SIMPLE SPECIAL CASE). Let variables from Hu and
Schennach (2008) be denoted by the corresponding uppercase letter with tildes
and make the following assignments: (X̃∗, X̃, Ỹ , Z̃) = (h(X∗),Z,Y,X). We now
verify the 5 assumptions of Theorem 1 in Hu and Schennach (2008).

To verify Assumption 1, we observe that the densities of (X̃∗, X̃, Ỹ , Z̃) and
(X∗,Z,Y,X) are related through:f

X̃∗,X̃,Ỹ ,Z̃
(x̃∗, x̃, ỹ, z̃) = fX∗,Z,Y,X(h−1(x̃∗),

x̃, ỹ, z̃)|∂h−1(x̃∗)/∂x̃∗′| where the density fX∗,Z,Y,X exists by Assumption 3.1,
and h−1(x̃∗) exists by Assumption 3.3. The Jacobian ∂h−1(x̃∗)/∂x̃∗′ matrix is
only defined if X∗ and Z (and therefore X̃∗) have the same dimension and is fi-
nite and nonsingular under the assumption that h and its inverse are differentiable.
A similar argument can be used for marginals and conditional distributions.

To verify Assumption 2, we note that our model can be written in terms of tilded
variables as

Ỹ = Y = g
(
h−1(

X̃∗)) + �Y,(A.1)

Z̃ = X = h−1(
X̃∗) − �X∗,(A.2)

X̃ = Z = X̃∗ + �Z.(A.3)

To verify Assumption 2(i), we write

f
Ỹ |X̃,X̃∗,Z̃

(
ỹ|x̃, x̃∗, z̃

) = fY |Z,X∗,X
(
ỹ|x̃, h−1(

x̃∗)
, z̃

)

= f�Y |�Z,�X∗,X
(
ỹ − g

(
h−1(

x̃∗))|x̃ − x̃∗, h−1(
x̃∗) − z̃, z̃

)
= f�Y

(
ỹ − g

(
h−1(

x̃∗)))
= f

Y |X̃∗
(
ỹ|x̃∗) = f

Ỹ |X̃∗
(
ỹ|x̃∗)

,
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where we have used, in turn, (i) the equality (X̃∗, X̃, Ỹ , Z̃) = (h(X∗),Z,Y,X)

and the fact that changes of variables in the conditioning variables do not intro-
duce Jacobian terms, (ii) the fact that conditioning on Z,X∗,X is equivalent to
conditioning on �Z,�X∗,X, (iii) Assumption 2.1, (iv) the relationship between
�Y and Y via (A.1) and (v) the equality Y = Ỹ .

To verify Assumption 2(ii), we similarly write

f
X̃|X̃∗,Z̃

(
x̃|x̃∗, z̃

) = fZ|X∗,X
(
x̃|h−1(

x̃∗)
, z̃

)

= f�Z|�X∗,X
(
x̃ − x̃∗|h−1(

x̃∗) − z̃, z̃
)

= f�Z

(
x̃ − x̃∗) = f

Z|X̃∗
(
x̃|x̃∗) = f

X̃|X̃∗
(
x̃|x̃∗)

.

Assumption 3 is implied by Assumptions 3.1, 2.1, 3.2, 3.3, 3.4 and Lemma A.1
below.

Assumption 4 requires that f
Ỹ |X̃∗(ỹ|x̃∗

1 ) �= f
Ỹ |X̃∗(ỹ|x̃∗

2 ) for x̃∗
1 �= x̃∗

2 . This can
be verified as follows:

f
Ỹ |X̃∗

(
ỹ|x̃∗

1
) = f

�Y |X̃∗
(
ỹ − g

(
h−1(

x̃∗
1
))|x̃∗

1
)

= f�Y

(
ỹ − g

(
h−1(

x̃∗
1
)))

�= f�Y

(
ỹ − g

(
h−1(

x̃∗
2
))) = f

Ỹ |X̃∗
(
ỹ|x̃∗

2
)

by invoking (i) the definition of �Y , (ii) independence of �Y from X∗ (and there-
fore X̃∗), (iii) the fact that x̃∗

1 �= x̃∗
2 implies g(h−1(x̃∗

1 )) �= g(h−1(x̃∗
2 )) since g(·)

and h(·) are one-to-one by Assumption 3.3 and so is g(h−1(·)).
Assumption 5 is trivially satisfied, by equation (A.3).
Theorem 1 in Hu and Schennach (2008) then allows us to conclude that the

joint distribution of (h(X∗),X,Y,Z) is identified. However, in order to identify the
distribution of (X∗,X,Y,Z), we need to identify h(·). To this effect, we note that,
conditional on X = x, the fluctuations in X̃∗ are entirely caused by fluctuations in
�X∗ by equation (A.2). Moreover, �X∗ is independent from X, hence

f
X̃∗|X

(
x̃∗|x) = f�X∗

(
h−1(

x̃∗) − x
)∣∣∣∣∂h−1(x̃∗)

∂x̃∗′
∣∣∣∣,(A.4)

where the left-hand side was previously identified and where the Jacobian term
is well defined by Assumptions 3.3 and the assumed differentiability of h−1(x̃∗).
The Jacobian can be identified by integrating (A.4) with respect to x∗ to yield∫

f
X̃∗|X(x̃∗|x)dx = | ∂h−1(x̃∗)

∂x̃∗′ |. By varying x while keeping x̃∗ fixed in equation

(A.4), we can identify the density f�X∗ up to a shift of h−1(x̃∗). Assumption 2.2,
pins down what the shift should be, so that h−1(x̃∗) is identified for any given x̃∗.
Since h(·) is one-to-one by Assumption 3.3, h−1(·) uniquely determines h(·).
Hence, the joint distribution of (X∗,X,Y,Z) is identified. Finally, noting that
fY |X∗(y|x∗) = f�Y (y − g(x∗)) (by Assumption 2.1), then establishes the iden-
tification of g(x∗) with the help of Assumption 2.2. �
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PROOF OF THEOREM 3.1 (GENERAL CASE). This proof borrows some of the
operator techniques from Hu and Schennach (2008), and we focus here on the
aspects of the proof that differ.

The definition of marginal and conditional densities in combination with As-
sumption 2.1 lead to the following sequence of equalities:

fY,Z|X(y, z|x)

=
∫

fY |X∗,Z,X

(
y|x∗, z, x

)
fX∗,Z|X

(
x∗, z|x)

dx∗

=
∫

f�Y |X∗,�Z,�X∗
(
y − g

(
x∗)|x∗, z − h

(
x∗)

, x∗ − x
)
fX∗,Z|X

(
x∗, z|x)

dx∗

=
∫

f�Y

(
y − g

(
x∗))

fX∗,Z|X
(
x∗, z|x)

dx∗

=
∫

f�Y

(
y − g

(
x∗))

fZ|X∗,X
(
z|x∗, x

)
fX∗|X

(
x∗|x)

dx∗

=
∫

f�Y

(
y − g

(
x∗))

f�Z|X∗,�X∗
(
z − h

(
x∗)|x∗, x∗ − x

)

× f�X∗|X
(
x∗ − x|x)

dx∗

=
∫

f�Y

(
y − g

(
x∗))

f�Z

(
z − h

(
x∗))

f�X∗
(
x∗ − x

)
dx∗

or, equivalently,

fY,Z|X(y, z|x) =
∫

fZ|X∗
(
z|x∗)

fY |X∗
(
y|x∗)

fX∗|X
(
x∗|x)

dx∗.(A.5)

As in Hu and Schennach (2008), this integral equation can be written more conve-
niently as an operator equivalence relation

Fy;Z|X = FZ|X∗Dy;X∗FX∗|X(A.6)

by introducing the operators defined in equation (3.5), which are acting on an
arbitrary r ∈ Lb

1(X ) [or r ∈ Lb
1(X ∗)].

Similarly, one can show that

fZ|X(z|x) =
∫

fZ|X∗
(
z|x∗)

fX∗|X
(
x∗|x)

dx∗(A.7)

and thus FZ|X = FZ|X∗FX∗|X . By Assumptions 3.1, 2.1, 3.2, 3.3, 3.4 and Lem-
ma A.1 below, we know that FZ|X∗ admits an inverse on the range of FZ|X∗ (and
therefore the range of FZ|X), and we can write

FX∗|X = F−1
Z|X∗FZ|X.(A.8)

Substituting (A.8) into (A.6), we obtain

Fy;Z|X = FZ|X∗Dy;X∗F−1
Z|X∗FZ|X.
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By Assumptions 3.1, 2.1, 3.2, 3.3, 3.4 and Lemma A.1 below again, FZ|X admits
an inverse. Moreover, by Lemma 1 in Hu and Schennach (2008), the domain of
F−1

Z|X is dense in Lb
1(Z), and we can then write

Fy;Z|XF−1
Z|X = FZ|X∗Dy;X∗F−1

Z|X∗ .(A.9)

Equation (A.9) states that the operator Fy;Z|XF−1
Z|X admits a spectral decompo-

sition, where the eigenvalues are given by the fY |X∗(y|x∗) for x∗ ∈ X ∗ (for a
fixed y) defining the operator Dy;X∗ while the eigenfunctions are the functions
fZ|X∗(·|x∗) for x∗ ∈ X ∗ defining the kernel of the operator FZ|X∗ . As usual, the
knowledge of a linear operator [e.g., FZ|X] only determines the value of its kernel
[e.g., fZ|X(z|x)] everywhere except on a set of null Lebesgue measure. The result-
ing equivalence class exactly matches the usual equivalence class for probability
densities with respect to the Lebesgue measure, so identifiability of the model is
not affected.

The operator to be diagonalized is entirely defined in terms of observable den-
sities while the decomposition provides the unobserved densities of interest. To
ensure uniqueness of this decomposition, we employ four techniques. First, a pow-
erful result from spectral analysis [Theorem XV 4.5 in Dunford and Schwartz
(1971)] ensures uniqueness up to some normalizations. Second, the a priori arbi-
trary scale of the eigenfunctions is fixed by the requirement that densities must in-
tegrate to one. Third, to avoid any ambiguity in the definition of the eigenfunctions
when degenerate eigenvalues are present, we use Assumption 3.3 and the fact that
the eigenfunctions [which do not depend on y, unlike the eigenvalues fy|x∗(y|x∗)]
must be consistent across different values of the dependent variable y. These three
steps are described in detail in Hu and Schennach (2008) and are not repeated here.

The fourth step [which differs from the approach taken in Hu and Schen-
nach (2008)] is to rule out that the eigenvalues fy;X∗(y, x∗) and eigenfunctions
fZ|X∗(·|x∗) could be indexed by a different variable without affecting the operator
Fy;Z|XF−1

Z|X . (This issue is analogous to the nonunique ordering of the eigenvalues
and eigenvectors in matrix diagonalization.) Suppose that the eigenfunctions can
be indexed by another value, that is, they are given by f

Z|X̃∗(·|x̃∗) where x̃∗ is an-

other variable related to x∗ through x∗ = S(x̃∗) for some one-to-one function S.2

Under this alternative indexing, all the assumptions of the original model must still
hold with x∗ replaced by x̃∗, so a relationship similar to (A.7) would still have to
hold, for the same observed fZ|X(z|x)

fZ|X(z|x) =
∫

f
Z|X̃∗

(
z|x̃∗)

f
X̃∗|X

(
x̃∗|x)

dx̃∗(A.10)

or, in operator notation, FZ|X = F
Z|X̃∗FX̃∗|X .

2Note that S(·) is also measurable, for otherwise X∗ ≡ S(X̃∗) would not be a proper random
variable.
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In order for f
Z|X̃∗(z|x̃∗) to be a valid alternative density, it must satisfy the same

assumptions (and their implications) as fZ|X∗(z|x∗). In particular, the fact that
FZ|X∗ is invertible (established above via Lemma A.1) must also hold for F

Z|X̃∗ .
Hence, for any alternative F

Z|X̃∗ , there is a unique corresponding F
X̃∗|X , given by

F
X̃∗|X = F−1

Z|X̃∗FZ|X . We can find a more explicit expression for f
X̃∗|X(x̃∗|x) as

follows. First note that we trivially have that f
Z|X̃∗(z|x̃∗) = fZ|X∗(z|S(x̃∗)) since

x∗ = S(x̃∗) and S is one-to-one. By performing the change of variable x∗ = S(x̃∗)
in (A.7), we obtain

fZ|X(z|x) =
∫

fZ|X∗
(
z|S(

x̃∗))
fX∗|X

(
S
(
x̃∗)|x)

dμ
(
x̃∗)

,

where the measure μ is defined, via μ(A) = λ(S−1(A)) for any measurable set A,
where λ denotes the Lebesgue measure and S−1(A) ≡ {x̃∗ ∈ A : S(x̃∗) = x∗}.
From this we can conclude the equality between the two following measures:

f
X̃∗|X

(
x̃∗|x)

dx̃∗ = fX∗|X
(
S
(
x̃∗)|x)

dμ
(
x̃∗)

(A.11)

by comparison to equation (A.10) and the uniqueness of the measure f
X̃∗|X(x̃∗|

x)dx̃∗ due to the injectivity of the F
Z|X̃∗ operator, shown in Lemma A.1 in the

general case where the domain of F
Z|X̃∗ could include finite signed measures. We

will now show that f
X̃∗|X(x̃∗|x) necessarily violates Assumption 2.2 (with �X∗

replaced by �X̃∗ ≡ X̃∗ − X), unless S(·) is the identity function.3

Since �X∗ = X∗ − X with �X∗ independent from X, we have fX∗|X(x∗|x) =
f�X∗(x∗ − x) and by a similar reasoning f

X̃∗|X(x̃∗|x) = f
�X̃∗(x̃∗ − x) with

�X̃∗ ≡ X̃∗ − X. Equation (A.11) then becomes

f
�X̃∗

(
x̃∗ − x

)
dx̃∗ = f�X∗

(
S
(
x̃∗) − x

)
dμ

(
x̃∗)

.(A.12)

Now, for a given x, consider Radom–Nikodym derivative of f
�X̃∗(x̃∗ − x)dx̃∗

with respect to the Lebesgue measure dx̃∗, which is, by definition (almost every-
where) equal to f

�X̃∗(x̃∗−x), a bounded function by Assumption 3.1. By equation
(A.12), the existence of the Radom–Nikodym derivative of the left-hand side im-
plies the existence of the same Radom–Nikodym derivative on the right-hand side,
and we can write

f
�X̃∗

(
x̃∗ − x

) = f�X∗
(
S
(
x̃∗) − x

) dμ(x̃∗)
dx̃∗(A.13)

almost everywhere. Integrating both sides of the equation over all x ∈ X , we ob-
tain (after noting that points where the equality may fail have null measure and
therefore do not contribute to the integral), 1 = 1 dμ(x̃∗)

dx̃∗ , since densities integrate

3Some of the steps below were inspired by comments from an anonymous referee.
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to 1, which implies that dμ(x̃∗)/dx̃∗ = 1, that is, μ is also the Lebesgue measure.
It follows from (A.13) that, almost everywhere

f
�X̃∗

(
x̃∗ − x

) = f�X∗
(
S
(
x̃∗) − x

)
.

In order for Assumption 2.2 to hold for both �X̃∗ and �X∗, we must have that
f

�X̃∗(x̃∗ − x), when viewed as a function of x̃∗ for any given x, is centered at
x̃∗ = x, and we must simultaneously have that f�X∗(x∗ − x) = f�X∗(S(x̃∗) − x),
when viewed as a function of x∗ for any given x, is centered at x∗ = x, that is,
S(x̃∗) = x. The two statements are only compatible if x̃∗ = S(x̃∗). Thus, there can-
not exist two distinct but observationally equivalent parametrization of the eigen-
values/eigenfunctions.

Hence we have shown, through equation (A.9), that the unobserved functions
fY |X∗(y|x∗) and fZ|X∗(·|x∗) are uniquely determined (up to an equivalence class
of functions differing at most on a set of null Lebesgue measure) by the observed
function fY,Z|X(y, z|x). Next, equation (A.8) implies that fX∗|X(x∗|x) is uniquely
determined as well.

Once fY |X∗(y|x∗) and fZ|X∗(z|x∗) are known, the functions g(x∗) and h(x∗)
can be identified by exploiting the centering restrictions on �Y , �X∗ and �Z,
for example, g(x∗) = ∫

yfY |X∗(y|x∗) dy if �Y is assumed to have zero mean.
Next, f�Y (�y) can be straightforwardly identified, for example, f�Y (�y) =
fY |X∗(g(x∗) + �y|x∗) for any x∗ ∈ X ∗. Similar arguments yield h(x∗) and
f�Z(�z) from fZ|X∗(z|x∗) as well as f�X∗(�x∗) from fX∗|X(x∗|x). It follows
that equation (3.1) has a unique solution. The second conclusion of the theorem
then follows from the fact that both fY,Z|X(y, z|x) and fX(x) are uniquely deter-
mined (except perhaps on a set of null Lebesgue measure) from fY,Z,X(y, z, x).

�

The following lemma is closely related to Proposition 2.4 in D’Haultfoeuille
(2011). It is different in terms of the spaces the operators can act on and more
general in terms of the possible dimensionalities of the random variables involved.

LEMMA A.1. Let X,X∗ and Z be generated by equations (2.2) and (2.3). Let
S(T ) be the set of finite signed measures on a given set T = X , X ∗ or Z [and note
that S(T ) includes Lb

1(T ) as a special case, in the sense that for any function in
r ∈ Lb

1(T ), there is a corresponding measure R ∈ S(T ) whose Radom–Nikodym
derivative with respect to the Lebesgue measure is r]. Under Assumptions 2.1, 3.1,
3.2, 3.3 and 3.4, the operators FX∗|X : S(X ) �→ Lb

1(X ∗), FZ|X∗ : S(X ∗) �→ Lb
1(Z)

and FZ|X : S(X ) �→ Lb
1(Z), defined in (3.5), are injective mappings.

PROOF. First, one can verify that R ∈ S(X ) implies that FX∗|XR ∈ Lb
1(X ∗)

and similarly for FZ|X∗ and FZ|X , since the (conditional) densities involving vari-
ables X∗,X and Z are bounded by Assumption 3.1 and are absolutely integrable.
We now verify injectivity of FZ|X∗ .
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By Assumptions 2.1, 3.1 and equation (2.3), we have, for any R ∈ S(X ∗),

[FZ|X∗R](z) =
∫

fZ|X∗
(
z|x∗)

dR
(
x∗) =

∫
f�Z

(
z − h

(
x∗))

dR
(
x∗)

.

Next, let R̃ denote the signed measure assigning, to any measurable set A ⊆ R
nz ,

the valueR̃(A) = ∫
1(h(x∗) ∈ A) dR(x∗) and note that R̃ is a finite signed measure

since R(x∗) is. Then, we can express FZ|X∗R as

[FZ|X∗R](z) =
∫

f�Z

(
z − x̃∗)

dR̃
(
x̃∗)

,(A.14)

that is, a convolution between the probability measure of �Z (represented by its
Lebesgue density) and the signed measure R̃; see Chapter 5 in Bhattacharya and
Rao (2010). By the convolution theorem for signed measures [Theorem 5.1(iii)
in Bhattacharya and Rao (2010)], one can convert the convolution (A.14) into a
product of Fourier transforms,4

σ(ζ ) = φ�Z(ζ )ρ(ζ )

where σ(ζ ) ≡ ∫ [FZ|X∗R](z)eiζz dz, φ�Z(ζ ) ≡ E[eiζZ] and ρ(ζ ) ≡ ∫
eiζz dR̃(z).

Since φ�Z(ζ ), the characteristic function of �Z, is nonvanishing by Assump-
tion 3.2, we can isolate ρ(ζ ) as

ρ(ζ ) = σ(ζ )/φ�Z(ζ ).

Since there is a one-to-one mapping between finite signed measures and their
Fourier transforms [by Theorem 5.1(i) in Bhattacharya and Rao (2010)], R̃ can
be recovered as the unique signed measure whose Fourier transform is ρ(ζ ). We
now show that the signed measure R̃ uniquely determines the measure R.

Let A B = ⋃
x∗∈B{h(x∗)} for any measurable B ⊆ R

nx , and note that A B is also
measurable since h is continuous by Assumption 3.4. Then observe that by As-
sumption 3.3, h(x∗) ∈ A B if and only if x∗ ∈ B, and we have

R̃(A B) =
∫

1
(
h
(
x∗) ∈ A B

)
dR

(
x∗) =

∫
1
(
x∗ ∈ B

)
dR

(
x∗)

.

Since B is arbitrary, the knowledge of R̃(A B) uniquely determines the value as-
signed to any measurable set by the signed measure R.

Injectivity of FX∗|X is a special case of the above derivation (with Z,X∗ re-
placed by X∗,X), in which h is the identity function. Finally, injectivity of FZ|X
is implied by the injectivity of FZ|X∗ and FX∗|X , since FZ|X = FZ|X∗FX∗|X by
Assumption 2.1 and equations (2.2) and (2.3). �

4Note that the Fourier transforms involved are all continuous functions because the original func-
tions (or measures) are absolutely integrable (or finite), hence “almost everywhere” qualifications do
not apply to them.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Regressions with Berkson errors in covari-
ates—A nonparametric approach” (DOI: 10.1214/13-AOS1122SUPP; .pdf).
The supplementary material provides (i) a proof of consistency of the proposed es-
timator, (ii) additional simulation results and (iii) various extensions of the method,
including the weakening of some of full independence assumptions to conditional
independence and handling the simultaneous presence of classical and Berkson
errors.
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