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NONPARAMETRIC REGRESSION WITH THE SCALE DEPENDING
ON AUXILIARY VARIABLE

BY SAM EFROMOVICH1

University of Texas at Dallas

The paper is devoted to the problem of estimation of a univariate compo-
nent in a heteroscedastic nonparametric multiple regression under the mean
integrated squared error (MISE) criteria. The aim is to understand how the
scale function should be used for estimation of the univariate component. It
is known that the scale function does not affect the rate of the MISE conver-
gence, and as a result sharp constants are explored. The paper begins with de-
veloping a sharp-minimax theory for a pivotal model Y = f (X) + σ(X,Z)ε,
where ε is standard normal and independent of the predictor X and the aux-
iliary vector-covariate Z. It is shown that if the scale σ(x, z) depends on the
auxiliary variable, then a special estimator, which uses the scale (or its esti-
mate), is asymptotically sharp minimax and adaptive to unknown smoothness
of f (x). This is an interesting conclusion because if the scale does not depend
on the auxiliary covariate Z, then ignoring the heteroscedasticity can yield a
sharp minimax estimation. The pivotal model serves as a natural benchmark
for a general additive model Y = f (X) + g(Z) + σ(X,Z)ε, where ε may de-
pend on (X,Z) and have only a finite fourth moment. It is shown that for this
model a data-driven estimator can perform as well as for the benchmark. Fur-
thermore, the estimator, suggested for continuous responses, can be also used
for the case of discrete responses. Bernoulli and Poisson regressions, that
are inherently heteroscedastic, are particular considered examples for which
sharp minimax lower bounds are obtained as well. A numerical study shows
that the asymptotic theory sheds light on small samples.

1. Introduction. We begin the Introduction with a simple model which will
allow us to explain the setting and the problem, then formulate studied extensions
and finish with terminology used in the paper.

1.1. Pivotal regression model. In order to set the stage for a variety of con-
sidered problems, it is convenient to begin with a simple nonparametric regression
model

Y = f (X) + σ(X,Z)ε,(1.1)

which will serve as a pivot for all other models. In (1.1) Y is the response, X is
the univariate random predictor of interest and Z := (Z1, . . . ,ZD) is the vector of
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FIG. 1. Scattergrams for a data simulated according to model (1.1) with D = 1.

random auxiliary covariates, σ(x, z) is the scale function [σ 2(x, z) is also called
the variance or volatility] and ε is a standard normal error independent of (X,Z).
It is assumed that (X,Z) has a joint density p(x, z) supported on [0,1]1+D , and
in what follows p(x) denotes the (marginal) density of X. The problem is to esti-
mate the nonparametric regression function f (x) based on a sample of size n from
(X,Z, Y ).

Figure 1 illustrates model (1.1) for a particular case D = 1 and n = 100 (more
details will be revealed shortly). The data is volatile (compare with “typical” data
studied in [7, 13, 20, 35]), and it is difficult to visualize an underlying regres-
sion. The XY -scattergram suggests a number of possible outliers, but here we do
know that these are not outliers, and they are due to heteroscedasticity that can
be observed in the ZY -scattergram. Typically, for such a data with two covariates
one would definitely attempt to use a multiple or additive regression to explain or
reduce the volatility in XY -scattergram and to improve visualization of the under-
lying regression. However, here we do know that there is no additive component
in z. The only hope to help a nonparametric estimator is to use a known (or esti-
mated) scale function. But is this worthwhile to do, and if the answer is “yes,” then
how one should proceed? Before presenting the answer, let us return to describing
the studied setting and known results.

1.2. Pivotal problem. To be specific about smoothness of f (x) and because
we are going to study minimax constants, let us assume that f (x) belongs to
a Sobolev class S(α,Q) := {f (x) :f (x) = ∑∞

j=0 θjϕj (x), ϕ0(x) := 1, ϕj (x) :=
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21/2 cos(πjx), j ≥ 1,
∑∞

j=0[1 + (πj)2α]θ2
j ≤ Q < ∞, x ∈ [0,1], α ≥ 1}. Further-

more, the risk of an estimate f̌ (x) is defined by the mean integrated squared error
(MISE) E{∫ 1

0 (f̌ (x) − f (x))2 dx}.
The above-presented discussion of a simulation exhibited in Figure 1 raises the

following question. Suppose that, apart of f (x), the statistician knows everything
about regression (1.1). Should one use the scale function (and correspondingly the
auxiliary variable) in a regression estimator? To warm up the reader, let us consider
several arguments against and for using the scale. Against: (a1) A majority of non-
parametric research is devoted to rates of the MISE convergence. For the consid-
ered setting the rate is n−2α/(2α+1), and then practically all known estimators can
attain this rate without using the scale; see [13–15, 22]. (a2) There is a widely held
opinion that regression estimation is “. . . relatively insensitive to heteroscedastic-
ity. . . ” as discussed in [35]. (a3) This is probably the strongest argument against
using/estimating the scale. Let us consider a particular case σ(x, z) = σ(x) and
assume that p(x) and σ(x) are positive and have bounded derivatives on [0,1].
Then in [12] the following sharp minimax lower bound is established:

inf
f̌ ∗

sup
f ∈S(α,Q)

E

{∫ 1

0

(
f̌ ∗(x;p,σ,α,Q) − f (x)

)2
dx

}
(1.2)

≥ P(α,Q)
[
d1(p,σ )n−1]2α/(2α+1)(1 + on(1)

)
,

where the infimum is taken over all possible f̌ ∗ based on a sample {(X1, Y1), . . . ,

(Xn,Yn)}, the design density p(x), the scale function σ(x) and parameters (α,Q)

that define the underlying Sobolev class. In (1.2)

P(α,Q) := [
α/π(α + 1)

]2α/(2α+1)[
Q(2α + 1)

]1/(2α+1)(1.3)

is the Pinsker constant [31], and

d1 := d1(p,σ ) :=
∫ 1

0

σ 2(x)

p(x)
dx(1.4)

is the coefficient of difficulty which is equal to one in the classical case of the unit
scale and uniform design, and here and in what follows on(1)’s denote generic se-
quences which vanish as n → ∞. Furthermore, in [12] (see also [7]) it is shown
that there exists an estimator based solely on data (in what follows referred to as
E-estimator) that does not estimate the scale σ(x), “ignores” the heteroscedas-
ticity and nonetheless attains the lower bound (1.2). In other words, the “ignore-
heteroscedasticity” methodology may yield a sharp-minimax estimation. Further-
more, according to [7, 12] the E-estimator performs well for small samples.

Typical arguments in favor of using/estimating the scale are as follows: (f1)
Scale affects the constant of the MISE convergence, and constants may be more
important for small samples than rates [7, 28, 29]; (f2) Weighted regression (with
weights depending on the scale) is a familiar remedy for heteroscedasticity [13,
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15, 16, 19, 22, 32, 35]; (f3) It is reasonable to believe that using the scale may
improve an estimator.

Because there are many rate-optimal estimators, to answer the raised pivotal
question it is natural to explore a sharp-minimax estimation, that is, estimation
with best constant and rate of the MISE convergence. It will be shown shortly that
for the model (1.1) the lower bound (1.2) [with the infimum taken over all possible
f̌ ∗ based on a sample of size n from (X,Z, Y ), all nuisance functions defining the
model (1.6) and parameters (α,Q)] still holds with d1 being replaced by

d := d(p,σ ) :=
∫ 1

0

dx

p(x)E{σ−2(X,Z)|X = x} .(1.5)

The E-estimator, if it is naïvely used for model (1.1), is consistent and even rate
minimax, and supremum (over the Sobolev class) of its MISE is equal to the right-
hand side of (1.2) with d1 being replaced by d2 := E{σ 2(X,Z)p−2(X)}. The latter,
according to the Cauchy–Schwarz inequality, is larger than d whenever the scale
depends on the auxiliary variable.

We conclude that for the scale depending on an auxiliary variable, the E-
estimator, which ignores heteroscedasticity, is no longer sharp minimax. As a re-
sult, it is reasonable to explore a regression estimator that uses the scale to attain
the sharp minimaxity. The underlying idea of the proposed estimator, based on the
developed asymptotic theory, is to use weighted responses wlYl with weights

wl(p,σ ) := p−1(Xl)
σ−2(Xl,Zl)

E{σ−2(Xl,Zl)|Xl} .

Note that: p−1(Xl) is a well-known weight in a univariate sharp-minimax regres-
sion [7]; If σ(x, z) = σ(x), then the weight does not depend on the scale; Given
Xl = xl , conditional expectation E{σ−2(xl,Zl)|Xl = xl} is the best estimate (pre-
dictor) of σ−2(xl,Zl) under the MSE criteria, and the better the estimation is,
the closer the weight will be to p−1(Xl); In the light of the foregoing, the pro-
posed weight may be of a special benefit to the case of independent X and Z;
The weights should help in dealing with “outliers” created by heteroscedasticity in
auxiliary covariates. To shed additional light on the made comments, let us return
to Figure 1. The underlying model is defined in Section 4 where it is revealed that
the used scale is σ(x, z) = σ(z) and X and Z are independent. [The interested
reader can also look at the identical left diagram in Figure 2 where the solid line
shows the underlying regression f (x).] We can now realize that “outliers” in the
XY -scattergram are created by the heteroscedasticity in z and the independence of
Z from X which creates a chaotic placement of “outliers” in the scattergram.

1.3. Extensions. The following extensions of the model (1.1) will be consid-
ered:

(i) Model (1.1) is a natural benchmark for a general additive model

Y = f (X) + g(Z) + σ(X,Z)ε,(1.6)
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where g(z) is a nuisance D-dimensional additive component integrated to zero on
[0,1]D . There is a vast literature devoted to univariate additive models [15, 16,
18, 19, 21, 23–25, 34, 36], with the most advanced sharp-minimax result due to
Horowitz, Klemela and Mammen [21] where, for the case of a known σ(x, z) = σ ,
g(z) = g1(z1) + · · · + gD(zD) with differentiable univariate additive components,
and known parameters α, Q and σ , a shrinkage estimator f̌ (x,α,Q,σ) is pro-
posed such that for any C > 0,

sup
f ∈S(α,Q)

Pr
(
(n/d1)

2α/(2α+1)P −1(α,Q)

× E

{∫ 1

0

(
f̌ (x,α,Q,σ) − f (x)

)2
dx|(X1,Z1), . . . , (Xn,Zn)

}

> 1 + C

)

= on(1).

We will show shortly that without any assumption on the structure of unknown
g(z) there exists a data-driven sharp-minimax estimator. In other words, the pres-
ence of a nuisance additive component g(z) affects neither minimax rate, nor the
sharp minimax constant, nor the ability of adaptive estimation.

(ii) It is of interest to relax the assumption about independence between the
regression error and covariates as well as the assumption about normal distribution
of the error. It will be shown shortly that the MISE of the proposed regression
estimator still attains the minimax lower bound (1.2), with d1 being replaced by d ,
whenever the regression error satisfies

E{ε|X,Z} = 0, E
{
ε2|X,Z

} = 1, E
{
ε4|X,Z

}
< C < ∞ a.s.(1.7)

To compare with a known assumption for a univariate regression, in [12] for model
(1.1) with σ(x, z) = σ(x) the proposed adaptive estimation assumes independence
of the predictor and regression error ε plus a finite eighth moment of the regression
error.

(iii) Extension (ii) is a natural bridge to other classical heteroscedastic models as
well as to discrete responses. In this paper Bernoulli and Poisson regressions, that
are inherently heteroscedastic, are considered. Note that these regressions create
a new issue of satisfying bona fide properties of the regression function, and the
following extension is instrumental in solving the issue.

(iv) As we shall see shortly, it is worthwhile to replace a single Sobolev class
S(α,Q) by a family F of function classes that includes Sobolev, local Sobolev
(introduced in Golubev [17]) and shrinking (toward a pivotal regression function)
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Sobolev classes as particular cases. Namely, set

F := F (f0, ρn,Mn,α,Q)

:=
{
f (x) :f (x) =

Mn−1∑
j=0

∫ 1

0
f0(u)ϕj (u) duϕj (x)I (Mn > 0) + ∑

j≥Mn

θjϕj (x),

x ∈ [0,1],
(1.8)

sup
x∈[0,1]

∣∣f0(x)
∣∣ < ∞,

∫ 1

0
f 2

0 (x) dx < ∞, θj :=
∫ 1

0
f (u)ϕj (u) du,

∑
j≥Mn

[
1 + (πj)2α]

θ2
j ≤ Q < ∞, sup

x∈[0,1]

∣∣∣∣ ∑
j≥Mn

θjϕ(x)

∣∣∣∣ < ρn,

α ≥ 1,0 ≤ Mn < n1/(2α+1)/ ln2(n), ρn > n−1/(2α+1) ln(n)

}
.

Here f0(x) is a bona fide (e.g., positive for Poisson regression) regression function
which will be referred to as a pivot, I (·) is the indicator and the last line in (1.8)
specifies restrictions on α and numerical sequences ρn and Mn.

1.4. Comments on the family F and minimax approach. (a) With respect to a
classical Sobolev class S(α,Q), we have S(α,Q) = F (0,∞,0, α,Q), and if the
pivot is constant f0(x) = C, C < Q1/2, then F (C,ρn,1, α,Q − C2) ⊂ S(α,Q).
As a result, the classical Sobolev class is a particular (not changing with n) mem-
ber of the family. A function f from the family is not farther than ρn in L∞-norm
from the pivot. Furthermore, if Mn > 0, then on Mn low frequencies the regres-
sion function f is equal to the pivot, and on higher frequencies it is not farther
than ρn in L∞-norm and not farther than ([1 + (πMn)

2α]−1Q)1/2 in L2-norm.
As a result, if either ρn or M−1

n vanishes as n → ∞, the set of considered re-
gression functions shrinks toward the pivot. This allows us to conclude that the
family F includes local Sobolev classes shrinking in L2-norm, or L∞-norm, or in
both norms to the pivot. Two other shrinking properties are F (f0, ρ,M,α,Q) ⊂
F (f0, ρ + γ,M,α,Q) and F (0, ρ,M + γ,α,Q) ⊂ F (0, ρ,M,α,Q), γ > 0. Let
us also note that a local Sobolev class, proposed in Golubev [17], can be written
as f0 + F (0, ρ,0, α,Q) where f0 ∈ S(α′,Q′), α′ > α and ρ > 0. Furthermore,
let us note that n1/(2α+1) is the classical number of Fourier coefficients that should
be estimated by a rate-minimax estimator; this sheds light on the upper bound in
the last line of (1.8) for considered Mn. The lower bound for considered ρn is
due to a specific least favorable prior distribution of parameters which is used in
establishing the minimax lower bound.

(b) It may be convenient to think about both the function family (1.8) and the
minimax approach in terms of the game theory. There are three players in a min-
imax game: the dealer, nature and the statistician. The game is defined by: (i) an
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underlying model [here a regression model (1.6)]; (ii) assumptions about nuisance
functions [here the additive component g(z), scale σ(x, z), distribution of the error
ε and the design density p(x, z)]; (iii) parameters of a family F which defines a
class of estimated functions f (x) [here F is defined in (1.8) and the parameters
are the pivotal regression f0(x), sequences Mn and ρn and Sobolev’s α and Q].
The game begins with the dealer dealing nuisance functions and parameters of F
to nature. This deal must satisfy assumptions of the game. Then for each n nature
chooses a regression function f from the dealt F and generates a sample of size n

using f and the dealt model. The dealer and the statistician, using the sample, es-
timate f . The dealer knows everything apart of estimated f , the statistician knows
the sample, all assumptions of the game plus may know some nuisance functions
(like the design density in controlled regressions or the distribution of error in
special regression models like Poisson). Nature tries to select most difficult regres-
sion function f for estimation, and the dealer and the statistician try to estimate it
with the smallest MISE. The dealer has an advantage of knowing the dealt F and
nuisance functions, and therefore the dealer’s MISE may serve as a lower bound
(benchmark) for the statistician.

(c) Using family (1.8) of function classes in place of a single Sobolev class
allows us to answer (at least partially) to a familiar criticism of a minimax ap-
proach that the statistician cares only about the worst case scenario regression
from S(α,Q) which can be far from an underlying regression function. This is
where introducing a pivot whose smoothness is not restricted, together with the
possibility to consider shrinking function classes, shines.

(d) The smaller a function class is, the smaller the minimax MISE (for the dealer
and the statistician) may be. This is where the imposed restriction [see the last line
in (1.8)] on the dealer’s choice of deals comes into the play. As we shall see shortly,
none of the legitimate deals (which may imply local and/or shrinking function
classes) changes a sharp lower bound known for a classical Sobolev class S(α,Q).
On the other hand, not all estimates, that are sharp minimax for Sobolev classes,
are even rate minimax for particular deals. For instance, classical estimates based
on the Pinsker smoothing, used for a univariate regression model in Efromovich
[7] and an additive regression model in Horowitz, Klemela and Mammen [21], are
sharp minimax for a Sobolev class, but not even rate minimax for F whenever
pivot f0 and sequence Mn are such that

∑Mn

j=1 j2α[∫ 1
0 f0(x)ϕj (x) dx]2 → ∞ as

n → ∞. In other words, if the pivot is not a Sobolev function of order α, then
the famous Pinsker smoothing is no longer even rate minimax. We will prove this
assertion in the Appendix (see [11]).

1.5. Terminology. The aforementioned approach [Section 1.4(b)] allows us to
introduce the following terminology. Estimator is a statistic based on a sample,
made assumptions and, if known, on nuisance functions defining model (1.6). In
what follows we will explicitly state what nuisance functions, if any, are known.
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Dealer-estimator knows everything about model (1.6) apart of the regression func-
tion f chosen by nature and also knows the dealt class (1.8). As an example, we
may say that (1.2) is the lower bound for the minimax MISE where the supremum
is taken over all regression functions from S(α,Q), and the infimum is taken over
all possible dealer-estimators. Oracle-estimator knows everything that a dealer-
estimator does plus a regression function f chosen by nature. As we shall see
shortly, they may be useful in suggesting a good estimator.

The context of the paper is as follows. Section 2 presents main theoretical re-
sults. Section 3 presents the methodology, estimators and a discussion of assump-
tions and results, for a ladder of regression models where each model is of interest
on its own. Section 4 is devoted to a numerical study. Proofs, notes and more dis-
cussion can be found in the online Appendix (see [11]).

2. Main results. We begin with lower bounds and then show that they are
sharp (attainable) by estimators.

2.1. Lower bounds for dealer-estimators. Using terminology of the Intro-
duction, our aim is to propose a lower minimax bound for all possible dealer-
estimators that know: (i) A sample of size n; (ii) Model (1.6) where nuisance
functions g(z), σ(x, z) and joint design density p(x, z) are given and ε is an
independent standard normal random variable; (iii) Pivot f0, constants α and Q

and sequences ρn and Mn used to define a family (1.8). In other words, a dealer-
estimator f̃ ∗ knows everything apart of a regression function f and

f̃ ∗(x) := f̃ ∗(
x, (X,Z, Y )n, f0(x), g(z),p(x, z), σ (x, z), ρn,Mn,α,Q

)
.(2.1)

Here (X,Z, Y )n := ((X1,Z1, Y1), . . . , (Xn,Zn, Yn)) denotes a sample.
Please note that, for the dealer who knows the additive component g(z), model

(1.6) is equivalent to the pivotal model (1.1).

ASSUMPTION 2.1. In models (1.1) and (1.6) the regression error ε is standard
normal and independent of (X,Z).

ASSUMPTION 2.2. The joint design density p(x, z) of (X,Z) is supported on
[0,1]D+1, and max(|ln(p(x, z))|, |ln(σ (x, z))|) is bounded on [0,1]D+1. Function
I(x) := ∫

[0,1]D p(x, z)σ−2(x, z) dz is Riemann integrable on [0,1].
THEOREM 2.1. Let Assumptions 2.1 and 2.2 hold. Then for models (1.1) and

(1.6) the following lower minimax bound for dealer-estimators (2.1) holds:

inf
f̃ ∗

sup
f ∈F (f0,ρn,Mn,α,Q)

E

{∫ 1

0

[
f̃ ∗(x) − f (x)

]2
dx

}
(2.2)

≥ P(α,Q)

[∫ 1

0

dx∫
[0,1]D p(x, z)σ−2(x, z) dz

n−1
]2α/(2α+1)(

1 + on(1)
)
,
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where the infimum is taken over all possible dealer-estimators f̃ ∗, and P(α,Q) is
defined in (1.3).

Remember that S(α,Q) = F (0,∞,0, α,Q), and this implies that the lower
bound also holds for classical Sobolev classes. Let us also note that for the case
σ(x, z) = σ(x), with positive and having bounded derivatives on [0,1] functions
p(x) and σ(x) and Sobolev regression functions, the lower bound (2.2) is known
from [12] where it is established via the equivalence (between regression and fil-
tering in white noise) principle. In this paper a different technique of finding a
lower bound is employed which allows us to relax the assumptions.

The lower bound (2.2) is challenging for an estimator to match because the
dealer knows everything apart from an underlying regression function. Nonethe-
less, as we shall see shortly, it is possible to propose an estimator that matches
performance of the best dealer-estimator.

Now let us consider two classical discrete nonparametric regression models,
Bernoulli and Poisson [7, 15]. They may be defined as (1.6) where now the
distribution of ε depends on (X,Z) and Y ∈ {0,1} in the Bernoulli case and
Y ∈ {0,1, . . .} in the Poisson case. Another way to describe these models is as fol-
lows: (i) For Bernoulli regression we observe a sample from (X,Z, Y ) where Y is
Bernoulli and Pr(Y = 1|X,Z) = f (X) + g(Z); (ii) For Poisson regression we ob-
serve a sample from (X,Z, Y ) where Y is Poisson and E{Y |X,Z} = f (X)+g(Z).
Furthermore, there is an extra bona fide restriction on estimated regression func-
tions. For Bernoulli case a regression function takes on values between zero and
one, and for Poisson case a regression function is positive. This is the place where
using a pivot and local/shrinking classes becomes handy.

These two regressions are inherently heteroscedastic because for the Bernoulli
regression

σ 2(x, z) := σ 2
fg(x, z) := [

f (x) + g(z)
][

1 − f (x) − g(z)
]

(2.3)

and for the Poisson regression

σ 2(x, z) := σ 2
fg(x, z) := f (x) + g(z).(2.4)

This is another specific of these regressions because the scale function contains ex-
tra information about the estimand (the regression function). Can this information
help and improve the minimax MISE convergence? As the following result shows,
the answer is “no.”

THEOREM 2.2. Consider the above-described Bernoulli and Poisson regres-
sions. Suppose that Assumption 2.2 holds with correspondingly defined scale func-
tions (2.3) or (2.4), and in (1.8) Mn → ∞ as n → ∞. For all (x, z) ∈ [0,1]D+1 it
is assumed that the pivot f0(x), used in (1.8), satisfies 0 < C∗ ≤ f0(x) + g(z) and
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additionally for the Bernoulli regression f0(x) + g(z) ≤ C∗ < 1. Then for both
regressions,

inf
f̃ ∗

sup
f ∈F (f0,ρn,Mn,α,Q)∩F ∗(g)

E

{∫ 1

0

[
f̃ ∗(x) − f (x)

]2
dx

}
(2.5)

≥ P(α,Q)

[∫ 1

0

dx∫
[0,1]D p(x, z)σ−2

f0g
(x, z) dz

n−1
]2α/(2α+1)(

1 + on(1)
)
,

where the infimum is taken over all possible dealer-estimators f̃ ∗, F ∗(g) is a class
of all bona fide f and P(α,Q) is defined in (1.3).

As we see, the lower oracle’s bounds are the same for the normal regression
with continuous responses and Bernoulli and Poisson regressions with discrete
responses; this can be explained by the fact that conditional distributions of re-
sponses, given covariates, belong to exponential families [6, 27].

The following result, whose proof and a specific dealer-estimator can be found
in the Appendix (see [11]), shows that the lower bounds are sharp.

THEOREM 2.3. Lower bounds (2.2) and (2.5) are attainable by a dealer-
estimator f̌ ∗(x), that is, supf ∈S(f0,ρn,Mn,α,Q) E{∫ 1

0 [f̌ ∗(x) − f (x)]2 dx} is not

greater than the right-hand sides of (2.2) and (2.5) for the Normal and Bernoulli/
Poisson regressions considered in Theorems 2.1 and 2.2, respectively.

2.2. Sharpness of lower bounds for estimators. Our aim is to show that an
estimator can match performance of a dealer-estimator, that is, an estimator can
be adaptive (to underlying function class and nuisance functions in a regression
model) and sharp minimax.

Introduce: a tensor-product cosine basis {ψs(v) := ∏D
t=1 ϕst (vt ), s := (s1, . . . ,

sD) ∈ {0,1, . . .}D , v := (v1, . . . , vD) ∈ [0,1]D}, l∞-norm ‖s‖∞ := max(s1, . . . ,

sD), analytic function class A := A(β0, . . . , βD,Q1) := {q(x, z) :q(x, z) :=∑
i,s πisϕi(x)ψs(z), |πis| ≤ Q1[eβ0i + ∑D

k=1 eβksk ]−1,min(β0, β1, . . . , βD) > 0,

Q1 < ∞} and a k-variate Sobolev class Sk := {q(x1, . . . , xk) :q(x1, . . . , xk) =∑∞
i1,...,ik=0 qi1,...,ik

∏k
s=1 ϕis (xis ),

∑∞
i1,...,ik=0[1+∑k

s=1(2πis)
2k]×q2

i1,...,ik
≤ Q2 <

∞}; see [7, 30, 35]. Parameters of the classes are unknown to the statistician. In
what follows ν’s are generic nonnegative constants that are used as powers, and
C’s are generic positive constants used as factors.

For convenience of future references, let us introduce an array of assumptions.

ASSUMPTION 2.3. The following assumptions may be used in different
propositions:

(a) Assumption 2.2 holds and regression error ε satisfies (1.7).
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(b) Nuisance additive component g(z) is bounded and integrable on [0,1]D to
zero.

(c) The design density satisfies for some ν > 0,

∑
(j,s)∈{0,1,...}D+1

∣∣∣∣
∫
[0,1]D+1

p(x, z)ϕj (x)ψs(z) dx dz
∣∣∣∣ ≤ C lnν(n)(2.6)

and for some positive constant ν0 and any t > nν0 ,

∞∑
j=0

∑
‖s‖>t

[∫
[0,1]D+1

p(x, z)ϕj (x)ψs(z) dx dz
]2

≤ C lnν(n)t−D.(2.7)

(d) The L2-approximation of additive component g(z) satisfies for any t > 0
and some ν > 0

∑
‖s‖>t

[∫
[0,1]D

g(z)ψs(z) dz
]2

≤ Ct−ν.(2.8)

(e) Two constants, c∗ and c∗, are given such that 0 < c∗ ≤ σ 2(x, z) ≤ c∗ < ∞.
(f) Design density p(x, z) belongs to an analytic class A.
(g) Design density p(x, z) belongs to a (D +1)-variate Sobolev class SD+1 and

nuisance component g(z) belongs to a D-variate Sobolev class SD .

Let us note that: in part (c) a larger class of densities is allowed for larger n;
if in part (g) we additionally assume that g(z) = ∑D

r=1 gr(zr), then the familiar
assumption gr ∈ S1, r = 1, . . . ,D, is sufficient and the corresponding proof can be
found in the Appendix (see [11]).

The following proposition presents a ladder of settings, each of interest on its
own, for which sharp-minimax and adaptive estimation is possible. A discussion
of the settings and proposed estimators will be presented in Section 3.

THEOREM 2.4. Consider a general additive regression model (1.6) with the
regression error that may depend on covariates (X,Z) and satisfying (1.7). Then
for each of the following five sets of assumptions there exists an estimator that
is sharp minimax and matches performance of the dealer-estimator outlined in
Theorem 2.3:

(1) Additive component g(z), design density and scale are known and Assump-
tion 2.3(a) holds.

(2) Design density and scale are known and Assumption 2.3(a)–(d) holds.
(3) Design density is known and Assumption 2.3(a)–(e) holds.
(4) Assumption 2.3(a), (b), (d), (e), (f) holds.
(5) Assumption 2.3(a), (b), (e), (g) holds.

This result implies the following proposition.
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COROLLARY 2.1. Consider Bernoulli and Poisson regression models dis-
cussed in Theorem 2.2. Then the assertion of Theorem 2.4 holds, and the same
estimators attain the minimax lower bound of Theorem 2.2.

3. Estimation. We begin with an explanation of the methodology of sharp-
minimax estimation. Two technical results are presented for a general regression
model. The former is about a blockwise-shrinkage oracle-estimator which is adap-
tive and sharp-minimax. The latter is about sufficient conditions for an estimator
to mimic the oracle. These two results shed light on the underlying methodology
of constructing sharp-minimax estimators and are of interest on their own. Then
we are presenting specific estimators for each setting considered in Theorem 2.4.

To propose a blockwise-shrinkage oracle-estimator, let {Bk, k = 1,2, . . .} be
a partition of nonnegative integers [frequencies of the cosine basis {ϕj (x),
j = 0,1, . . .}] into nonoverlapping blocks of cardinality (length) Lk such that
max(j : j ∈ Bk) < min(j : j ∈ Bk+1). The blockwise-shrinkage oracle-estimator
is defined as

f̂ ∗(x) :=
Kn∑
k=1

μk

∑
j∈Bk

θ̂jϕj (x),(3.1)

where Kn is some positive, nondecreasing and integer-valued sequence,

μk := k

k + dn−1(3.2)

is the oracle’s shrinkage coefficient for frequencies from the block Bk , d :=
d(p,σ ) is the coefficient of difficulty (1.5) that appears in the lower bounds (2.2)
and (2.5),

k := L−1
k

∑
j∈Bk

θ2
j(3.3)

is the Sobolev functional which defines the average energy of f (x) on frequencies
from the block Bk . A statistic θ̂j , used in (3.1), is an appropriate estimator of the
Fourier coefficient θj = ∫ 1

0 f (x)ϕj (x) dx. For the purposes of this paper, the oracle
should be able to suggest a statistic whose mean squared error (MSE) satisfies

E
{
(θ̂j − θj )

2} ≤ dn−1(
1 + on(1) + oj (1) + a2

j lnν(n)
)
,(3.4)

where d is defined in (1.5), and its squared bias satisfies[
E{θ̂j } − θj

]2 ≤ n−1[
on(1) + oj (1) + a2

j lnν(n)
]
.(3.5)

Here and in what follows {a2
j }’s are generic summable sequences (

∑∞
j=0 a2

j < ∞)
and ν’s are generic nonnegative constants that are used in powers.

The following result explains why it is worthwhile to consider the oracle-
estimator (3.1).
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LEMMA 3.1. Suppose that in (3.1) the sequence Kn is large enough to satisfy
the inequality

∑Kn

k=1 Lk > n1/(2α+1) ln(ln(n + 20)), and (3.4)–(3.5) hold. Then

sup
f ∈F (f0,∞,Mn,α,Q)

E

{∫ 1

0

(
f̂ ∗(x) − f (x)

)2
dx

}
(3.6)

≤ P(α,Q)(d/n)2α/(2α+1)(1 + on(1)
)
.

Let us make several comments about this result: (i) Lemma 3.1 does not re-
fer to or is based on a specific regression model; (ii) It was explained in the In-
troduction that F (0,∞,0, α,Q) = S(α,Q) and thus the presented upper bound
holds for classical Sobolev classes; (iii) Using lower bounds of Section 2 and re-
lation F (f0, ρn,Mn,α,Q) ⊂ F (f0,∞,Mn,α,Q), we conclude that the oracle-
estimator is adaptive and sharp-minimax.

Now we are in a position to describe the proposed methodology of developing
a data-driven estimator that mimics the oracle-estimator and is sharp-minimax.

Let us introduce several new sequences and specific blocks used from now on.
Set: bn := �ln(n + 20) where �x denotes the largest integer which is at most
x; cn := �ln(bn); m := �n/(7cn) and it is assumed that n is large enough so
m > 3; Lk := 1 for k = 1,2, . . . , bn and Lk := �(1 + b−1

n )k for k > bn; Kn is the
smallest integer such that

∑Kn

k=1 Lk > n1/3cn; Bk := {k − 1} for k = 1,2, . . . , bn

and Bk := {∑k−1
s=1 Ls,

∑k−1
s=1 Ls + 1, . . . ,

∑k
s=1 Ls − 1} for bn < k ≤ Kn.

Let us comment on the specific choice of blocks. The first bn blocks have
unit lengths, and this choice is motivated by good performance for small sam-
ples. Then the length of blocks increases geometrically but in such a way that
Lk+1/Lk = 1+on(1). This choice is motivated by the asymptotic analysis together
with a good performance for small samples. Let us note that the number of con-
sidered blocks, Kn, is of order ln2(n). The largest length of the blocks, LKn , is of
order n1/3[ln(ln(n))]/ ln(n). The total number of estimated low frequency Fourier
coefficients is of order n1/3 ln(ln(n)). This choice is explained by the fact that
the sum of not estimated squared Fourier coefficients is of order on(1)n−2α/(2α+1)

whenever α ≥ 1. Another way to look at this choice is as follows. It is known
[4, 6, 8–10, 13–15] that for Sobolev’s functions of order α at most n1/(2α+1)cn

first Fourier coefficients should be estimated, and this defines the choice of Kn.
Furthermore, if it is additionally known that α ≥ α0, then the total number can be
changed to n1/(2α0+1)cn.

The following proposition explains how to develop an estimator that matches
performance of the oracle.

LEMMA 3.2. Suppose that there exist two arrays of statistics {̂k, k =
1, . . . ,Kn} and {θ̂j , j = 0, . . . ,

∑Kn

k=1 Lk}, and a statistic d̂ such that the two ar-

rays and d̂ are mutually independent, the array {θ̂j } satisfies (3.4)–(3.5), the array
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{̂k} satisfies for some positive constants C1 and ν1

E
{
(̂k − k)

4} ≤ C1L
−1
k bν1

n n−2(
k + n−1)2

,(3.7)

and the statistic d̂ satisfies for some constant C2 ≥ 1

E

{
(d̂ − d)2

d̂

}
= on(1), d̂ ∈ [

(C2bn)
−1/4, (C2bn)

1/4]
a.s.(3.8)

Then the blockwise-shrinkage estimator

f̂ (x) :=
Kn∑
k=1

̂k

̂k + d̂n−1
I
(
̂k > (bnn)−1) ∑

j∈Bk

θ̂jϕj (x),(3.9)

which mimics the oracle-estimator (3.1), inherits the sharp-minimax property of
the oracle-estimator described in Lemma 3.1, namely

sup
f ∈F (f0,∞,Mn,α,Q)

E

{∫ 1

0

(
f̂ (x) − f (x)

)2
dx

}
(3.10)

≤ P(α,Q)(d/n)2α/(2α+1)(1 + on(1)
)
.

Now we are in a position to consider settings (1)–(5) of Theorem 2.4 in turn,
and propose corresponding statistics {θ̂j , ̂k, d̂} used in the estimator (3.9).

3.1. Known additive component, design and scale. This is the case where
model (1.6) transforms into the pivotal model (1.1). Because nuisance addi-
tive component g(z) is known, without loss of generality we could assume that
g(z) = 0 or replace Y by Y − g(Z). However, we do not do this because we would
like to indicate what may be done for the case of unknown g. Our idea is to mimic
oracle (3.1) via application of Lemma 3.2. To do this, we need to suggest estima-
tors for Sobolev functionals k and Fourier coefficients θj ; note that the coefficient
of difficulty d , defined in (1.5), is known. Set

θ̂j := 1

n − 2m

n∑
l=2m+1

[Yl − f̃−j (Xl) − g(Zl)]σ−2(Xl,Zl)ϕj (Xl)

I(Xl)
,(3.11)

where

I(x) :=
∫
[0,1]D

p(x, z)σ−2(x, z) dz,(3.12)

f̃−j (x) = m−1
m∑

l=1

∑
i∈N−j

(Yl − g(Zl)ϕj (Xl)

p(Xl)
ϕi(x)(3.13)
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and N−j := {0,1, . . . , bn} \ {j}. Note that f̃−j (x) estimates f−j (x) := f (x) −
θjϕj (x). Further,

̂k := 2

m(m − 1)

∑
m+1≤l1<l2≤2m

L−1
k

∑
j∈Bk

Yl1Yl2ϕj (Xl1)ϕj (Xl2)

p(Xl1,Zl1)p(Xl2,Zl2)
,(3.14)

and note that this is U-statistic and unbiased estimate of k . This special form of
the estimator ̂k (it is different from those used in [4, 7, 8, 12]) implies existence
of the fourth moment of ̂k given existence of the fourth moment of the regression
error. Another remark is that we may use the marginal density of X in place of the
joint design probability density if Yl − g(Zl) is used in the numerator of (3.14) in
place of Yl .

Let us comment on the estimator (3.11) of Fourier coefficients θj . First, the
statistic f̃−j is subtracted from the response to decrease the MSE. If the subtraction
is skipped then in (3.4) we would have a larger factor (d + ∫ 1

0 f 2(x) dx) in place
of the wished d . Second, the estimator uses weights (remember the discussion in
the Introduction)

wl = σ−2(Xl,Zl)

I(Xl)
= σ−2(Xl,Zl)

p(Xl)E{σ−2(X,Z)|X = Xl} .(3.15)

This choice of weights yields the wished properties (3.4)–(3.5). Note that if
σ(x, z) = σ(x), then weights (3.15) do not depend on the scale.

PROPOSITION 3.1. Consider setting (1) of Theorem 2.4. Then the blockwise-
shrinkage regression estimator (3.9) where ̂k is defined in (3.14) and θ̂j in (3.11),
is adaptive to (f0(x), ρn,Mn,α,Q) and sharp minimax, that is, its MISE satisfies
(3.10).

An interesting outcome of the proposition is that no smoothness of the pivotal
regression function is required for adaptive sharp-minimax estimation, and that
regression error may depend on covariates and have only the fourth moment.

REMARK 3.1. In Section 4, where estimators are tested on small samples, we
will study D-estimator which is the above-defined estimator without splitting data.
Similarly, all other proposed estimators, when used for small samples, do not split
data.

3.2. Known design and scale. Here the main complication is an unknown ad-
ditive nuisance component g(z). To mimic the oracle we need to “remove” the nui-
sance component from the response, and this is a familiar approach in the additive
models literature. As it is shown in the Appendix (see [11]), this straightforward
approach requires an extra assumption about smoothness of the scale. Because the
main topic of the paper is heteroscedasticity, it is of interest to assume as little
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as possible about the scale function. Furthermore, let us remind the reader that
estimation of the scale function is a complicated statistical problem on its own be-
cause quality of estimation depends on smoothness of the regression function and
the scale function [3]. As a result, even if for now the scale function is known, it
is desirable to assume as little as possible about its properties and then later use a
simple estimator of the scale.

The recommended approach is to replace the known σ−2(x, z) by its Fejér ap-
proximation of order bn,

σ−2
bn

(x, z)

:= b−1
n

bn−1∑
t=0

∑
‖(i,s)‖∞≤t

[∫
[0,1]D+1

σ−2(u,v)ϕi(u)ψs(v) dudvϕi(x)ψs(z)
]

(3.16)

=: ∑
‖(i,s)‖∞<bn

ηisϕi(x)ψs(z).

Here ηis are Fejér coefficients (note that they depend on the order bn). The Fe-
jér approximation has a unique property of preserving the range of approximated
σ−2(x, z); see more about this nice trigonometric approximation in [2, 7, 33, 37].
Note that while using Fejér’s approximation is important, the choice of its order
(here bn) is flexible. We also replace known I(x) by the corresponding approxi-
mation

Ibn(x) :=
∫
[0,1]D

p(x, z)σ−2
bn

(x, z) dz(3.17)

=
∞∑
t=0

∑
‖(i,s)‖∞<bn

πtsηisϕt(x)ϕi(x),(3.18)

where πts := ∫
[0,1]D+1 p(x, z)ϕt (x)ψs(z) dx dz are Fourier coefficients of the

known design density.
Introduce estimates for f−j (x), k , g(z), and θj in turn. Write

f̃−j (x) := m−1
m∑

l=1

∑
i∈N−j

Ylϕi(Xl)

p(Xl,Zl)
ϕi(x),(3.19)

where N−j is the same as in (3.13),

g̃(z) := m−1
3m∑

l=2m+1

∑
r∈Ng

Ylψr(Zl)

p(Xl,Zl)
ψr(z)(3.20)

is the projection series estimator of g(z) with Ng := {0,1, . . . ,Ng}D \ {0}D and

Ng := �n1/D/b
2/D
n , and

θ̂j := (n − 3m)−1
n∑

l=3m+1

[Yl − f̃−j (Xl) − g̃(Zl)]σ−2
bn

(Xl,Zl)ϕj (Xl)

Ibn(Xl)
.(3.21)
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PROPOSITION 3.2. Consider setting (2) of Theorem 2.4. Then the estimator
(3.9), with ̂k defined in (3.14), θ̂j in (3.21) and d̂ = d defined in (1.5), is adaptive
and sharp minimax, that is, its MISE satisfies (3.10).

Note that no regularity/smoothness of the scale is assumed (it can be even dis-
continuous), but we added a very mild assumption (2.8) on how well the nuisance
additive component can be approximated by the trigonometric basis. For instance,
(2.8) holds if in each variable the function g(z1, . . . , zD) is piecewise Lipschitz of
some positive order (note that Lipschitz functions of order β < 1 are often referred
to as Hölder functions) [7]. The reason why the proposed Fejér approximation of
σ−2(x, z) helps is due to the fact that it is just a weighted sum of first bn Fourier
terms of σ−2(x, z), that is, the approximation is an extremely smooth function. At
the same time, the approximation is sufficient for mimicking the scale and satisfy-
ing (3.4)–(3.5). While this result is of interest on its own, it plays a key role in the
case of an unknown scale because it indicates that a rough estimator of the scale
may be sufficient for a sharp-minimax and adaptive estimation.

3.3. Known design. This is a familiar regression problem which includes, as
a particular case, controlled design regressions [7, 13, 15, 35]. The main issue
now is an appropriate estimation of the scale. In the assumption for setting (3) of
Theorem 2.4 we still do not impose any restriction on smoothness of an underlying
scale σ(x, z) and have not added a new assumption about the additive nuisance
component g(z). On the other hand, we added Assumption 2.3(e) which requires
knowledge of the range of the scale function. If the latter is unknown, then some
information, on how well the scale can be approximated by the trigonometric basis,
is required; see Remark A.3 in the Appendix (see [11]).

Following Lemma 3.2 we need to propose an estimate of the coefficient of diffi-
culty d defined in (1.5), and, following Section 3.2, we need to propose an estimate
of σ−2

bn
(x, z). We begin with the explanation of how to construct an estimate of d .

Remember that, according to Lemma 3.2, an estimator should be independent of
all other statistics. To estimate the scale function we begin with a truncated projec-
tion estimate of q(x, z) := f (x) + g(z),

q̃1(x, z) := max

(
−bn,min

(
bn,m

−1
4m∑

l=3m+1

∑
‖(i,r)‖∞<bn

Ylϕi(Xl)ψr(Zl)

p(Xl,Zl)

(3.22)

× ϕi(x)ψr(z)

))
,

which is used in the following bona fide projection estimator of σ 2(x, z):

σ̃ 2
1 (x, z) := max

(
c∗,min

(
c∗,

∑
‖(i,r)‖∞<bn

σ̃1irϕi(x)ψr(z)
))

.(3.23)
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Here σ̃1ir is the estimate of Fourier coefficients σir of σ 2(x, z),

σir :=
∫
[0,1]D+1

σ 2(x, z)ϕi(x)ψr(z) dx dz,

and the proposed estimate, motivated by the method of moments, is

σ̃1ir := m−1
5m∑

l=4m+1

(Yl − q̃1(Xl,Zl))
2

p(Xl,Zl)
ϕi(Xl)ψr(Zl).(3.24)

With the bona fide estimate (3.23) of σ 2(x, z) at hand, we plug it in (1.5) and
get

d̃ :=
∫ 1

0

dx∫
[0,1]D p(x, z)σ̃−2

1 (x, z) dz
.(3.25)

Now we are utilizing the same approach to estimate σ−2
bn

(x, z) used by the esti-

mator θ̂j . Remember that, to follow the recipe of Lemma 3.2, this estimate should
be independent of d̃ . We define it similarly to (3.22)–(3.24),

q̃(x, z) := max

(
−bn,min

(
bn,m

−1
6m∑

l=5m+1

∑
‖(i,r)‖∞<bn

Ylϕi(Xl)ψr(Zl)

p(Xl,Zl)

(3.26)

× ϕi(x)ψr(z)

))

and

σ̃ 2(x, z) := max
(
c∗,min

(
c∗,

∑
‖(i,r)‖∞<bn

σ̃irϕi(x)ψr(z)
))

,(3.27)

where

σ̃ir := m−1
7m∑

l=6m+1

(Yl − q̃(Xl,Zl))
2

p(Xl,Zl)
ϕi(Xl)ψr(Zl).(3.28)

Note that now the estimate σ̃ 2(x, z) plays the role of σ 2(x, z), and then we
apply the Fejér approximation (3.16) to the estimate (3.27) and get the estimate of
σ−2

bn
(x, z),

σ̃−2
bn

(x, z)

:= b−1
n

bn−1∑
t=0

∑
‖(i,s)‖∞≤t

[∫
[0,1]D+1

σ̃−2(u,v)ϕi(u)ψs(v) dudvϕi(x)ψs(z)
]

(3.29)

=: ∑
‖(i,s)‖∞<bn

η̃isϕi(x)ψs(z).



1560 S. EFROMOVICH

Further, following (3.17) and (3.18), we define the plug-in estimate of Ibn(x),

Ĩbn(x) :=
∫
[0,1]D

p(x, z)σ̃−2
bn

(x, z) dz

(3.30)

=
∞∑
t=0

∑
‖(i,s)‖∞<bn

πtsη̃isϕt(x)ϕi(x).

Finally, mimicking (3.21), we introduce a new estimator of Fourier coeffi-
cients θj ,

θ̂j := (n − 7m)−1
n∑

l=7m+1

[Yl − f̃−j (Xl) − g̃(Zl)]σ̃−2
bn

(Xl,Zl)ϕj (Xl)

Ĩbn(Xl)
.(3.31)

Here f̃−j and g̃ are estimates (3.19) and (3.20).

PROPOSITION 3.3. Consider setting (3) of Theorem 2.4. Then the estimator
(3.9), with ̂k defined in (3.14), θ̂j defined in (3.31) and d̂ = d̃ defined in (3.25),
is adaptive and sharp minimax, that is, its MISE satisfies (3.10).

Note that a rough estimate of the scale is sufficient, and no assumption about
smoothness of an underlying scale function is made.

3.4. Unknown nuisance functions. Here we relax the last assumption that the
design density p is known. We are considering setting (4) of Theorem 2.4 (with
analytic p ∈ A) and setting (5) (with Sobolev p ∈ SD+1) simultaneously to high-
light similarities and differences in proposed estimators. We will use the indicator
I (p /∈ A) = 1 for the case of setting (5). Remember that Sobolev classes were dis-
cussed in the Introduction, a nice discussion of analytic functions can be found in
[1, 26, 30, 37] and in [7] they are recommended for modeling and approximation
of a wide variety of densities for the case of small data sets.

Because now the design is unknown, all previously defined estimates become
dealer-estimates, and we will use a standard plug-in technique of using a den-
sity estimate in place of an unknown design density. To follow the recipe of
Lemma 3.2, we need to plug-in independent design density estimates in differ-
ent oracle-estimates, and this forces us to rewrite one more time all statistics.
This is a good review of what we have done so far. Remember our notation
bn := �ln(n + 20), cn := �ln(bn), and set Np := {0,1, . . . ,Np}D+1, Np :=
�bncnI (p ∈ A) + �n1/3(D+1)I (p /∈ A). Note that Np is a traditional minimax
cutoff for the studied densities. Set m := �n/[(21)cn], Ms := {(s −1)m+1, (s −
1)m+2, . . . , sm}, and introduce nine identical (but based on different subsamples)
truncated minimax projection density estimates [5, 7]

p̃s(x, z) := max
(
c−1
n ,m−1

∑
l∈Ms

∑
(i,r)∈Np

ϕi(Xl)ψr(Zl)ϕi(x)ψr(z)
)
,(3.32)
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where s = 1, . . . ,9. We have truncated the projection density estimate from below
by c−1

n because its reciprocal will be used.
Now we can define statistics used by the proposed estimator. The first one is the

estimator mimicking dealer-estimator (3.25) of the coefficient of difficulty d . We
begin with mimicking dealer-estimates (3.22) and (3.23) used in (3.25). Write

q̃1(x, z) := max
(
−bn,min

(
bn,m

−1
∑

l∈M10

∑
‖(i,r)‖∞<bn

Ylϕi(Xl)ψr(Zl)

p̃1(Xl,Zl)

(3.33)

× ϕi(x)ψr(z)
))

,

σ̃1ir := m−1
∑

l∈M11

(Yl − q̃1(Xl,Zl))
2

p̃2(Xl,Zl)
ϕi(Xl)ψr(Zl),(3.34)

σ̃ 2
1 (x, z) := max

(
c∗,max

(
c∗,

∑
‖(i,r)‖∞<bn

σ̃1irϕi(x)ψr(z)
))

.(3.35)

These statistics allow us to define the estimate of d [compare with (3.25)],

d̃ :=
∫ 1

0

dx∫
[0,1]D p̃3(x, z)σ̃−2

1 (x, z) dz
.(3.36)

Now we consider a number of statistics used to calculate θ̂j and ̂k . Following
(3.19), set N−j := {{0,1, . . . , bn} \ {j}}I (p ∈ A)+{{0,1, . . . , �n1/3} \ {j}}I (p /∈
A) and define the estimate of f−j (x) := f (x) − θjϕj (x) as

f̃−j (x) := m−1
∑

l∈M12

∑
i∈N−j

Ylϕi(Xl)

p̃4(Xl,Zl)
ϕi(x).(3.37)

Following (3.20), we define the estimate of the additive nuisance component
g(z) as

g̃(z) := m−1
∑

l∈M13

∑
r∈Ng

Ylψr(Zl)

p̃5(Xl,Zl)
ψr(z),(3.38)

where

Ng := {{
0,1, . . . ,

⌊
n1/D/b2D

n

⌋}D \ {0}D}
I (p ∈ A)

+ {{
0,1, . . . ,

⌊
n1/(3D)⌋}D \ {0}D}

I (p /∈ A).

Now we are following (3.26)–(3.30) and estimates σ−2
bn

(x, z) and Ibn(x). Write

q̃(x, z) := max
(
−bn,min

(
bn,m

−1
∑

l∈M14

∑
‖(i,r)‖∞<bn

Ylϕi(Xl)ψr(Zl)

p̃6(Xl,Zl)

(3.39)

× ϕi(x)ψr(z)
))
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for the estimate of q(x, z) := f (x) + g(z). This allows us to estimate Fourier co-
efficients σir of the squared scale function by

σ̃ir := m−1
∑

l∈M15

(Yl − q̃(Xl,Zl))
2

p̃7(Xl,Zl)
ϕi(Xl)ψr(Zl).(3.40)

Then, following (3.27), we can define a truncated projection estimate of the
squared scale function

σ̃ 2(x, z) := max
(
c∗,max

(
c∗,

∑
‖(i,r)‖∞<bn

σ̃irϕi(x)ψr(z)
))

.(3.41)

In addition to density estimates (3.32), let us introduce three identical (but
based on different subsamples) density estimates. Set N∗

p := NpI (p ∈ A) +
�n1/(2(D+2))I (p /∈ A), N ∗

p := {0,1, . . . ,N∗
p}D+1, and for s = 1,2,3, define

p̌s(x, z) := max
(
c−1
n ,m−1

∑
l∈M15+s

∑
(i,r)∈N ∗

p

ϕi(Xl)ψr(Zl)ϕi(x)ψr(z)
)
.(3.42)

Note that, with respect to (3.32), the estimate (3.42) is changed only for the case
of Sobolev design densities where a larger cutoff (implying a smaller bias) is used;
a discussion of why the change is needed and what are the other options can be
found in the Appendix (see [11]).

Now we can introduce estimates for σ−2
bn

(x, z) and Ibn(x). Following the
methodology of (3.29) and (3.30) we set

σ̃−2
bn

(x, z)

:= b−1
n

bn−1∑
t=0

∑
‖(i,s)‖∞≤t

[∫
[0,1]D+1

σ̃−2(u,v)ϕi(u)ψs(v) dudvϕi(x)ψs(z)
]

(3.43)

=: ∑
‖(i,s)‖∞<bn

η̃isϕi(x)ψs(z)

and [note that the estimate (3.42) is used]

Ĩbn(x) :=
∫
[0,1]D

p̌1(x, z)σ̃−2
bn

(x, z) dz

(3.44)

=
N∗

p∑
t=0

∑
‖(i,s)‖∞<bn

π̌tsη̃isϕt(x)ϕi(x),

where π̌ts := ∫
[0,1]D+1 p̌1(x, z)ϕt (x)ψs(z) dx dz are Fourier coefficients of the den-

sity estimate.
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Only for the case of a Sobolev design density do we need to calculate statistics

q̂−j,s(x) := m−1
∑

l∈M18+s

[ ∑
i∈N−j

Ylϕi(Xl)

p̃7+s(Xl,Zl)
ϕi(x)

(3.45)

+ ∑
r∈Ng

Ylψr(Zl)

p̃7+s(Xl,Zl)
ψr(z)

]
, s = 1,2.

Here N−j and Ng are defined above line (3.37) and below line (3.38), respectively.
This finishes all preliminary calculations. Now we can define a new estimator

for Sobolev functionals,

̂k := 2

m(m − 1)

× ∑
l1,l2∈M21,l1<l2

L−1
k

∑
j∈Bk

[Yl1 − I (p /∈ A)q̂−j,1(Xl1,Zl1)]ϕj (Xl1)

p̌2(Xl1,Zl1)
(3.46)

× [Yl2 − I (p /∈ A)q̂−j,2(Xl2,Zl2)]ϕj (Xl2)

p̌3(Xl2,Zl2)

and, mimicking dealer-estimate (3.31) of Fourier coefficients θj , define

θ̂j := (n − 21m)−1
n∑

l=21m+1

[Yl − f̃−j (Xl) − g̃(Zl)]σ̃−2
bn

(Xl,Zl)ϕj (Xl)

Ĩbn(Xl)
.(3.47)

Here f̃−j , g̃, σ̃−2
bn

and Ĩbn are defined in (3.37), (3.38), (3.43) and (3.44), respec-
tively.

PROPOSITION 3.4. Consider settings (4) and (5) of Theorem 2.4. Assume that
I (p ∈ A) = 1 and I (p /∈ A) = 1 indicate that settings (4) and (5) are considered,
respectively. Then estimator (3.9), with ̂k defined in (3.46), θ̂j defined in (3.47)
and d̂ = d̃ defined in (3.36), is adaptive and sharp minimax, that is, its MISE
satisfies (3.10).

REMARK 3.2. In what follows the proposed data-driven estimator, calculated
without splitting data and with I (p ∈ A) = 1, is referred to as S-estimator.

Propositions 3.1 and 3.4 imply that the pivotal model (1.1) is a fair benchmark
for the general additive model (1.6), and this proves the conjecture made in the
Introduction. More discussion, notes and remarks can be found in the Appendix
(see [11]).

4. Numerical study. We begin with the following Monte Carlo study. The un-
derlying model is (1.6) where D = 1, g(z) = 0, the joint design density p(x, z) =
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I ((x, z) ∈ [0,1]2), the scale function is σ(x, z) = eλz/2 and the regression error
is standard normal and independent of the covariates (X,Z). We use λ ∈ {1,2,3}
and four sample sizes n ∈ {50,100,200,400}. Figure 1 illustrates a particular sim-
ulation with n = 100 and λ = 2.

We are exploring 4 different estimation procedures with the first two being
sharp-minimax for model (1.6) and the last two being sharp-minimax for the model
(1.1) with σ(x, z) = σ(x). The first one is D-estimator defined in Remark 3.1. It
knows a sample of size n from (X,Z,Y ) and all nuisance functions in the un-
derlying model (1.6). This dealer-estimator serves as a benchmark for the data-
driven S-estimator defined in Remark 3.2. The third estimator is the E-estimator
of [7, 12] and it was discussed in the Introduction. E-estimator ignores the het-
eroscedasticity but nonetheless for the considered experiment with g(z) = 0 it is
rate-minimax. In what follows an E-estimator based on a sample of size n from
(X,Y ) will be referred to as the En-estimator. The last estimator is also an E-
estimator which is based on a larger sample of size m. Namely, the larger sample
includes the sample of size n from (X,Y ), available to the three previous estima-
tors, and then we add extra m−n observations from (X,Y ). Here m is the rounded
up nd2/d = n

∫ 1
0 eλz dz

∫ 1
0 e−λz dz; remember the discussion below line (1.5). We

will refer to this estimator as the Em-estimator to stress that it is based on a larger
sample of size m. The underlying idea of exploring Em-estimator is as follows.
According to the asymptotic theory, D- and S-estimators, based on a sample of a
sufficiently large size n, should have the same MISE as Em-estimator which ig-
nores the heteroscedasticity but can use extra m−n observations. We will test this
asymptotic conclusion shortly.

Figure 2 shows us a particular simulation, underlying regression (the solid line)
and four estimates (explained in the caption) with their ISE. For the data, shown
in the left diagram, all three estimates do a very good job under the difficult cir-
cumstances, but their ISEs (denoted as ISED, ISES and ISEEn, resp.) reveal that
the D-estimate is better than the S-estimate, and the En-estimate lags behind. All
three estimates give us a fair visualization of the bell-type and symmetric about
0.5 underlying regression function. Furthermore, it is practically impossible to see
a difference between the D- and S-estimates. This highlights the sensitivity of the
ISE criterion. The main issue with the En-estimate is in its tails, but they do re-
flect the underlying pattern of the shown scattergram (remember that En-estimator
knows only the XY -scattergram and has no access to observations of Z). The right
diagram shows us a scattergram with 38 observations added from (X,Y ). The
Em-estimate (remember that the same E-estimator is used in the left and right
diagrams) yields a much better fit than the En-estimate, and its ISE (denoted as
ISEEm) is close to the ISED and ISES.

For each of 12 particular experiments, defined by the scale function and
the sample size, we conduct 1000 simulations and then calculate average ISE
(AISE) for the four estimates. Table 1 presents ratios R1 := AISES/AISED,
R2 := AISEEn/AISES and R3 := AISEEm/AISED.
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FIG. 2. Simulated data according to model (1.6) with f (x) being the Normal [7], page 18, and
shown by the solid line, D = 1, g(z) = 0, σ(x, z) = ez and p(x, z) = I ((x, z) ∈ [0,1]2). The left
scattergram is the same as in the left diagram of Figure 1, the right scattergram exhibits the same 100
observations plus 38 additional ones, so the total sample size is m = 138. All estimators know that the
underlying model is (1.6), but only the D-estimator knows everything else, except for the regression
function. The left scattergram is overlaid by the D-estimate, S-estimate and En-estimate shown by
the dashed, dotted and dashed-dotted lines, respectively. The dashed line in the right diagram shows
the Em-estimate.

The observed values of ratio R1 = AISES/AISED indicate that, with the ex-
ception of the smallest sample size n = 50, the proposed data-driven S-estimator
does mimic performance of the dealer-estimator. The ratio R2 = AISEEn/AISES

TABLE 1
Results of Monte Carlo simulations

n

λ 50 100 200 400

1 m 54 108 216 432

R1,R2,R3 1.04,0.87,0.90 1.02,1.08,1.02 1.04,1.12,0.98 1.01,1.21,1.13
R4,R5,R6 1.12,1.14,1.15 1.08,1.09,1.10 1.07,1.08,1.09 1.03,1.03,1.04

2 m 69 138 276 552

R1,R2,R3 1.03,0.94,0.79 1.09,1.21,1.01 1.06,1.20,0.95 1.02,1.26,0.96
R4,R5,R6 1.09,1,11,1,14 1.14,1.15,1.17 1.09,1.10,1.12 1.04,1.05,1.05

3 m 100 201 403 806

R1,R2,R3 1.61,1.03,0.68 1.11,1.24,0.85 1.09,1.63,0.96 1.06,1.51,0.91
R4,R5,R6 1.78,1.85,1.92 1.18,1.21,1.24 1.12,1.14,1.15 1.09,1.10,1.11
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shows that even for the scale function with a moderate heteroscedasticity (λ = 1) it
may be useful to take into account the scale in regression estimation. Furthermore,
the observed values of R2 indicate that a correct usage of the scale in regression es-
timation becomes paramount for regressions with pronounced heteroscedasticity.
Now let us look at the ratio R3 = AISEEm/AISED. The asymptotic theory asserts
that the Em-estimator, based on m observations, should have the same MISE as
the D-estimator based on n observations (remember Figure 2). As we see, results
of the numerical study indicate that the asymptotic theory sheds light on perfor-
mance of the estimators for small samples. Furthermore, please look at the sample
sizes m that make the MISE of Em-estimator equal to the dealer’s MISE. Even
for the case λ = 1 we need the 8 percent increase, and the required sample size
doubles for λ = 3.

Now let us repeat simulations three more times using nuisance additive com-
ponents g1(z) = z − 1/2, g2(z) = z2 − 1/3 and g3(z) = z + z3 − 3/4 in place of
g(z) = 0. We are interested in the effect of a nuisance component on estimation
of f , which can be evaluated via comparison of performances of the data-driven
S-estimator and the D-estimator which knows an underlying nuisance compo-
nent gs(z). Results are shown in Table 1 via R3+s := AISESs/AISED, s = 1,2,3,
where AISESs is calculated for the case of sth nuisance component. Note that now
R1 serves as a benchmark for R3+s , and we may conclude that S-estimator does a
good job in adapting to the presence of a nuisance component.

Overall, the presented numerical results indicate that: (a) Similarly to [7, 12,
28, 29], the asymptotic theory, which takes into account constants, does shed light
on small samples; (b) It is worthwhile to use the scale in regression estimation
whenever the scale may depend on auxiliary variables.

Conclusion: It is well known that in a nonparametric heteroscedastic regression
the scale function affects the MISE. At the same time, less is known about optimal
use of (or even necessity to use) the scale function in regression estimation. The
pivotal setting, studied in the paper, is a heteroscedastic regression (1.1) with a
univariate regression function, a multivariate scale and a normal regression error
which is independent of the covariates. For this setting a sharp-minimax theory of
data-driven and adaptive estimation is developed. The outcome is interesting be-
cause, depending on the scale function, the scale may or may not be recommended
for use by a sharp-minimax regression estimator. Namely, if the scale does not de-
pend on the auxiliary variable, then a sharp-minimax regression estimation does
not require knowing, using or estimation of the scale, but otherwise using the scale
yields a sharp-minimax MISE. Several extensions of the pivotal model are also
considered: (i) The general additive model (1.6) for which model (1.1) can be
considered as a benchmark. It is shown that the benchmark is fair meaning that
an estimator attains the same minimax MISE for the two models. Special atten-
tion is devoted to assumptions on the nuisance functions. In particular, it is shown
that no smoothness of the scale is required for the sharp-minimax regression es-
timation. This is an important conclusion in light of the known minimax result
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about the effect of the smoothness of a regression function on the scale estima-
tion. Furthermore, the result holds under a mild assumption on regularity of the
multivariate additive component; (ii) The regression error may not necessarily be
normal; it suffices that it has only four moments, and it may depend on the co-
variates; (iii) Response may be discrete with particular examples being classical
Bernoulli and Poisson regressions. A numerical study indicates that the developed
sharp-minimax asymptotic theory sheds light on performance of estimators for
small samples.
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SUPPLEMENTARY MATERIAL

Appendix: Notes and proofs (DOI: 10.1214/13-AOS1126SUPP; .pdf). Ap-
pendix contains proofs and notes.
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