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MULTIVARIATE DENSITY ESTIMATION UNDER SUP-NORM
LOSS: ORACLE APPROACH, ADAPTATION AND INDEPENDENCE

STRUCTURE

BY OLEG LEPSKI

Université Aix-Marseille

This paper deals with the density estimation on R
d under sup-norm loss.

We provide a fully data-driven estimation procedure and establish for it a so-
called sup-norm oracle inequality. The proposed estimator allows us to take
into account not only approximation properties of the underlying density, but
eventual independence structure as well. Our results contain, as a particular
case, the complete solution of the bandwidth selection problem in the multi-
variate density model. Usefulness of the developed approach is illustrated by
application to adaptive estimation over anisotropic Nikolskii classes.

1. Introduction. Let (�,A,P) be a complete probability space, and let Xi =
(X1,i , . . . ,Xd,i), i ≥ 1, be the sequence of R

d -valued i.i.d. random variables de-
fined on (�,A,P) and having the density f with respect to lebesgue measure.
Furthermore, P

(n)
f denotes the probability law of X(n) = (X1, . . . ,Xn), n ∈ N

∗ and

E
(n)
f is the mathematical expectation with respect to P

(n)
f .

The objective is to estimate the density f and the quality of any estimation
procedure, that is, X(n)-measurable mapping f̂n : Rd → L∞(Rd), is measured by
sup-norm risk given by

R(q)
n (f̂ , f ) = (E(n)

f ‖f̂n − f ‖q∞
)1/q

, q ≥ 1.

It is well known that even asymptotically (n → ∞) the quality of estimation given
by R

(q)
n heavily depends on the dimension d . However, these asymptotics can be

essentially improved if the underlying density possesses some special structure.
Let us briefly discuss one of these possibilities which will be exploited in the se-
quel.

Introduce the following notation. Let Id be the set of all subsets of {1, . . . , d}.
For any I ∈ Id denote xI = {xj ∈ R, j ∈ I}, Ī = {1, . . . , d} \ I and let |I| = card(I).
Moreover for any function g : R|I| → R we denote ‖g‖I,∞ = supxI∈R|I| |g(xI)|. De-
fine also

fI(xI) =
∫

R|Ī|
f (x)dxĪ, xI ∈ R

|I|.
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In accordance with this definition we put fI ≡ 1, I = ∅. Note that fI is the
marginal density of XI,1 := {Xj,1, j ∈ I}. Denote by P the set of all partitions
of {1, . . . , d} completed by empty set ∅, and we will use ∅̄ for {1, . . . , d}. For any
density f let

P(f ) =
{

P ∈ P : f (x) = ∏
I∈P

fI(xI),∀x ∈ R
d

}
.

First we note that f ≡ f∅̄, and therefore P(f ) is not empty since ∅̄ ∈ P(f )

for any f . Next, if P ∈ P(f ), then {XI,1I ∈ P} are independent random vec-
tors. At last, if X1,1, . . . ,Xd,1, are independent random variables, then obviously
P(f ) = P.

Suppose now that there exists P 
= ∅̄ such that P ∈ P(f ). If this partition is
known, we can proceed as follows. For any I ∈ P basing on observation X

(n)
I , we

estimate first the marginal densityfI by f̂I,n and then construct the estimator for
joint density f as

f̂n(x) = ∏
I∈P

f̂I,n(xI).

One can expect (and we will see that our conjecture is true) that quality of esti-
mation provided by this estimator will correspond not to the dimension d but to
so-called effective dimension, which in our case is defined as d(P) = supI∈P |I|.
The main difficulty we meet trying to realize the latter construction is that the
knowledge of P is not available. Moreover, our structural hypothesis cannot be
true in general, that is expressed formally by P(f ) = {∅̄}. So, one of the problem
we address in the present paper consists in adaptation to unknown configuration
P ∈ P(f ).

We note, however, that even if P is known, for instance, P = ∅̄, the quality
of an estimation procedure depends often on approximation properties of f or
{f̂I,n, I ∈ P}. So, our second goal is to construct an estimator which would mimic
an estimator corresponding to the minimal, and therefore unknown, approximation
error. Using modern statistical language our goal here is to mimic an oracle. It is
important to emphasize that we would like to solve both aforementioned problems
simultaneously. Let us now proceed with detailed consideration.

Collection of estimators. Let K : R → R be a given function satisfying the fol-
lowing assumption.

ASSUMPTION 1.
∫

K = 1, ‖K‖∞ < ∞, supp(K) ⊆ [−1/2,1/2], K is sym-
metric and

∃L > 0 :
∣∣K(t) − K(s)

∣∣≤ L|t − s| ∀t, s ∈ R.

Put for I ∈ Id

KhI(u) = V −1
hI

∏
j∈I

K(uj/hj ), VhI =∏
j∈I

hj .
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For two vectors u, v here and later u/v denotes coordinate-vise division. We will
use the notation Vh = ∏d

j=1 hj instead of VhI when I = {1, . . . , d}. Denote also
km = ‖K‖m,m = {1,∞}.

For any p ≥ 1 let γp : N∗ ×R+ → R+ be the function whose explicit expression
is given in Section 2.3 (its expression is quite cumbersome, and it is not convenient
for us to present it right now).

Introduce the notation (remember that q is the quantity involved in the definition
of the risk)

Hn = {h ∈ (0,1]d :nVh ≥ (a∗)−1 ln(n)
}
, a∗ = inf

I∈Id

[
2γ2q

(|I|,k∞
)]−2

,

and for any I ∈ Id and h ∈ Hn consider the kernel estimator

f̃hI(xI) = n−1
n∑

i=1

KhI(XI,i − xI).

Introduce the family of estimators

F(P) =
{
f̂h,P (x) = ∏

I∈P
f̃hI(xI), x ∈ R

d, P ∈ P, h ∈ Hn

}
.

In particular, f̂h,∅̄(x) = n−1∑n
i=1 Kh(Xi − x), x ∈ R

d, is the Parzen–Rosenblatt
estimator [Parzen (1962), Rosenblatt (1956)] with kernel K and multi-
bandwidth h. Our goal is to propose a data-driven selection from the family F(P).

The estimation of a probability density is the subject of the vast literature. We
do not pretend here to provide a complete overview and only present the results
relevant in the context of the considered problems. Minimax and minimax adap-
tive density estimation with Ls -risks were considered in Bretagnolle and Huber
(1979), Ibragimov and Khasminskii (1980, 1981), Devroye and Györfi (1985),
Efroimovich (1986, 2008), Khasminskii and Ibragimov (1990), Donoho et al.
(1996), Golubev (1992), Kerkyacharian, Picard and Tribouley (1996), Juditsky
and Lambert-Lacroix (2004), Rigollet (2006), Mason (2009), Reynaud-Bouret,
Rivoirard and Tuleau-Malot (2011) and Akakpo (2012), where further references
can be found. Oracle inequalities for Ls -risks for s = 1 and s = 2 were established
in Devroye and Lugosi (1996, 1997, 2001), Massart (2007), Chapter 7, Samarov
and Tsybakov (2007), Rigollet and Tsybakov (2007) and Birgé (2008). The last
cited paper contains a detailed discussion of recent developments in this area. The
bandwidth selection problem in the density estimation on R

d with Ls -risks for
any 1 ≤ s < ∞ was studied in Goldenshluger and Lepski (2011). The oracle in-
equalities obtained there were used for deriving adaptive minimax results over the
collection of anisotropic Nikolskii classes.

The adaptive estimation under sup-norm loss was initiated in Lepskiı̆ (1991,
1992) and continued in Tsybakov (1998) in the framework of Gaussian white noise
model. Then it was developed for anisotropic functional classes in Bertin (2005).
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The adaptive estimation of a probability density on R in sup-norm was the sub-
ject of recent papers Giné and Nickl (2009, 2010) and Gach, Nickl and Spokoiny
(2013).

Organization of the paper. In Section 2 we present a data-driven selection pro-
cedure from F(P) and establish for it sup-norm oracle inequality. Section 3 is de-
voted to the adaptive estimation over the collection of anisotropic Nikolskii classes
of functions. The proof of main results are given in Section 4, and technical lem-
mas are proven in the Appendix.

2. Oracle inequality. Let P ∈ P be fixed and define for any h,η ∈ Hn and
any I ∈ P

f̃hI,ηI(xI) = n−1
n∑

i=1

[KhI � KηI](XI,i − xI),(2.1)

where [KhI � KηI] = ∏
j∈I[Khj

∗ Kηj
] and [Khj

∗ Kηj
](z) = ∫

R
Khj

(u − z) ×
Kηj

(u)du, z ∈ R.

Note that “�” is the convolution operator on R
|I|. Define

fn = sup
h∈Hn

sup
I∈Id

∥∥∥∥∥n−1
n∑

i=1

∣∣KhI(XI,i − ·)∣∣∥∥∥∥∥
I,∞

, f̄n = 1 ∨ 2fn,

Ân(h, P) =
√

f̄n ln(n)

nV (h, P)
, V (h, P) = inf

I∈P
VhI .

Let us endow the set P with the operation “�” putting for any P, P ′ ∈ P

P � P ′ = {I ∩ I′ 
= ∅, I ∈ P, I′ ∈ P ′} ∈ P.

Introduce for any h,η ∈ Hn and any P, P ′ the estimator

f̂(h,P),(η,P ′)(x) = ∏
I�∈P�P ′

f̃hI� ,ηI� (xI�), x ∈ R
d .

Set finally � = supP∈P supI∈P γ2q(|I|,k∞), and let λ = �d(f̄n)d
2/4.

2.1. Selection procedure. Let P ⊆ P, satisfying ∅̄ = {1, . . . , d} ∈ P, and
Hn ⊆ Hn be fixed. Without further mentioning, we will assume that either Hn =
Hn or Hn is finite.

For any P ∈ P and h ∈ Hn set

�̂n(h, P) = sup
η∈Hn

sup
P ′∈P

[‖f̂(h,P),(η,P ′) − f̂η,P ′‖∞ − λÂn

(
η, P ′)]

+,(2.2)

and let ĥ and P̂ be defined as follows:

�̂n(ĥ, P̂) + λÂn(ĥ, P̂) = inf
h∈Hn

inf
P∈P

[
�̂n(h, P) + λÂn(h, P)

]
.(2.3)
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Our final estimator is f̂ĥ,P̂ (x), x ∈ R
d, and let us briefly discuss several issues

related to its construction.
Extra parameters P and Hn. The necessity to introduce these parameters is

dictated only by computational reasons [computation of fn, �̂n(h, P) and min-
imization led to ĥ and P̂ ] and their optimal “theoretical” choice is P = P and
Hn = Hn; see discussion after Theorem 1. However, the computational aspects
of the choice of P and Hn are quite different. Typically, Hn can be chosen as
an appropriate greed in Hn, for instance diadic one, that is sufficient for proving
adaptive properties of the proposed estimator; see Theorem 3.

The choice of P is much more delicate. The reason we consider P instead
of P is explained by the fact that the cardinality of P (Bell number) grows as
(d/ ln(d))d . Therefore, for large values of d our procedure is not practically feasi-
ble in view of the huge amount of comparisons to be done. On the other hand if d is
large, the consideration of all partitions is not reasonable itself. Indeed, even theo-
retically the best attainable trade-off between approximation and stochastic errors
corresponds to the effective dimension defined as d∗(f ) = infP∈P(f ) supI∈P |I|.
Of course d∗(f ) ≤ d , but if it is proportional, for example, to d , then we will not
win much for reasonable sample size. The suitable strategy in the case of large di-
mension consists of considering only partitions satisfying supI∈P |I| ≤ d0, where
d0 is chosen in accordance with d and the number of observation. In particular one
can consider P containing only 2 elements, namely ∅̄ and ({1}, {2}, . . . , {d}). It
corresponds to the hypotheses that we observe vectors with independent compo-
nents.

Existence and measurability. First, we note that all random fields considered in
the paper have continuous trajectories on Hn × R

d in the topology generated by
supremum norm. This is guaranteed by Assumption 1. Since Hn is totally bounded
and R

d can be covered by a countable collection of totally bounded sets, any supre-
mum over Hn × R

d of considered random fields will be X(n)-measurable. In par-
ticular, f̄n and

�̂n

(
h, P, P ′) := sup

η∈Hn

[‖f̂(h,P),(η,P ′) − f̂η,P ′‖∞ − λÂn

(
η, P ′)]

+,

P, P ′ ∈ P, h ∈ Hn.

Since P is finite, we conclude that �̂n(h, P) is X(n)-measurable for any P ∈ P

and any h ∈ Hn. Assumption 1 implies also that �̂n(·, P) and Ân(·, P) are con-
tinuous on Hn for any P . Since Hn is a compact subset of R

d , we conclude
that ĥ(P) ∈ Hn and X(n)-measurable for any P ∈ P, Jennrich (1969), where
ĥ(P) = infh∈Hn

[�̂n(h, P) + λÂn(h, P)]. Since P is finite, we conclude that

(ĥ, P̂) ∈ Hn × P is X(n)-measurable.
Estimation construction. The adaptive and oracle approaches were not devel-

oped in the context of multivariate density estimation in the supremum norm, and
as a consequence, the selection rule (2.2)–(2.3) leading to the estimator f̂ĥ,P̂ (·) is
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new. However, some elements of its construction have been already exploited in
previous works.

The idea to use a special estimator based on the convolution operator “�”, which
led in the considered case to the estimator (2.1), goes back to Lepski and Levit
(1999). Further it was steadily used in Goldenshluger and Lepski (2008, 2009,
2011). In particular, if P = {∅̄}, that is, the independence hypotheses is not taken
into account, our selection rule, based on �̂n(h, ∅̄), is close to the selection rule
used in Goldenshluger and Lepski (2011), where the bandwidths selection problem
was solved under Ls -loss, 1 ≤ s < ∞. In this context, a completely new element
of our construction is the adaptation to eventual independence configuration P ∈
P(f ) which is obtained by the introduction of the operation “�” on P and the
criterion �̂n(h, P), h ∈ Hn, P ∈ P, based on it. Below we discuss in an informal
way the basic facts that led to the selection rule (2.2)–(2.3).

To simplify the presentation of our idea, let us consider the case where Hn = {h}
and h ∈ Hn is a given vector. This means that we are not interested in bandwidth
selection; for example, the density to be estimated is supposed to belong a given set
of smooth functions. If so, the special estimator based on the convolution operator
“�” is not needed anymore, and our selection rule can be rewritten on much simpler
way. The final estimator is now f̂h,P̂ and

�̂n(h, P) = sup
P ′∈P

[‖f̂(h,P�P ′) − f̂h,P ′‖∞ − λÂn

(
h, P ′)]

+,

�̂n(h, P̂) + λÂn(h, P̂) = inf
P∈P

[
�̂n(h, P) + λÂn(h, P)

]
.

Remember that f̂h,P (x) = ∏
I∈P f̃hI(xI), and f̃hI(xI) is the standard kernel esti-

mator for the marginal density fI(xI).
Set ξhI(xI) = f̃hI(xI) − Ef {f̃hI(xI)} and note that ξhI(xI), xI ∈ R

|I|, is the sum
of i.i.d. bounded and centered random variables and, therefore, is somehow small.

If we admit the latter remark we can expect that

‖f̂(h,P�P ′) − f̂h,P ′‖∞

≈
∥∥∥∥ ∏

I∈P�P ′
Ef

{
f̃hI(·)

}− ∏
I∈P ′

Ef

{
f̃hI(·)

}∥∥∥∥∞ + smaller order term.

The key observations in this context [explaining the introduction of �̂n(h, P)] are
the following:∏

I∈P�P ′
Ef

{
f̃hI(·)

}≡ ∏
I∈P ′

Ef

{
f̃hI(·)

} ∀P ∈ P(f ),∀P ′ ∈ P,

and (smaller order term) < λÂn(h, P ′) with high probability. Thus with high prob-
ability �̂n(h, P) = 0 for any P ∈ P(f ).

It allows us to conclude that with high probability our procedure select P̂ ∈
P(f ), which, moreover, minimizes V (h, P). For instance if ({1}, {2}, . . . , {d}) =:
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P (optimal) ∈ P(f ), that is, the coordinates of observable vectors are independent
random variables, then our procedure selects P (optimal) with high probability. It
provides us with the estimator f̂h,P (optimal) whose accuracy is dimension free.

2.2. Main result. Let f > 0 be a given number, and introduce the following set
of densities:

F(f) =
{
f : sup

I∈Id

‖fI‖∞ ≤ f
}
.

With any density f ∈ F(f), any h ∈ (0,1]d and I ∈ Id associate the quantity

bhI :=
∥∥∥∥∫

R|I|
KhI(tI − ·)[fI(tI) − fI(·)]dtI

∥∥∥∥
I,∞

,

which can be viewed as the approximation error of fI measured in the supremum
norm.

For any h ∈ Hn and P ∈ P set B(h, P) = supP ′∈P supI∈P�P ′‖bhI‖I,∞ and in-
troduce the quantity

Rn(f ) = inf
h∈Hn

inf
P∈P(f )∩P

(
B(h, P) +

√
ln(n)

nV (h, P)

)
.

THEOREM 1. Let Assumption 1 be fulfilled. Then for any q ≥ 1 and any 0 <

f < ∞ there exist 0 < C1 < ∞ and 0 < C2 < ∞ such that for any f ∈ F(f) and
any n ≥ 3, (

Ef ‖f̂ĥ,P̂ − f ‖q∞
)1/q ≤ C1Rn(f ) + C2n

−1/2.

The explicit expression of C1 = C1(q, d,K, f) and C2 = C2(q, d,K, f) can be
found in the proof of the theorem.

Let us return to the discussion about extra parameters P and Hn. Their optimal
choice is given by P = P and Hn = Hn since it minimizes obviously the quantity
Rn(f ) for any f . But as it was mentioned above this choice leads to intractable
computations of the estimator in the case of large dimension. On the other hand the
consideration of P instead of P has a price to pay. It is possible that P(f )∩P = ∅̄

although P(f ) contains the elements besides ∅̄. However even in this case, where
structural hypothesis fails or is not taken into account (P = {∅̄}), our estimator
solves completely the bandwidths selection problem in multivariate density model
under sup-norm loss. Moreover the solution of the considered problem was not
known for any d ≥ 2, and, therefore, our investigations are not restricted by the
study of large dimension. In this context, noting that |P| = 2, d = 2, |P| = 5,
d = 3, |P| = 12, d = 4 etc, we can conclude that in the case of small dimension the
optimal choice P = P and Hn = Hn is always possible. We finish this discussion
with the following remark concerning the proof of Theorem 1.
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REMARK 1. Our selection rule is based on computation of upper functions
for some special type of random processes and the main ingredient of the proof of
Theorem 1 is exponential inequality related to them. Corresponding results may
have an independent interest and Section 4.1 is devoted to this topic. In particular
the function γp involved in the construction of our selection rule and which we
present below comes from this consideration.

2.3. Quantity γp . For any a > 0, p ≥ 1 and s ∈ N
∗, introduce

γp(s, a) = 4e

√
2sτp(s, a)

[
a + (3L/2)(a)s−1

]
+ (16e/3)

(
s
[
a + (3L/2)as−1]∨ 8a

)
τp(s, a);

τp(s, a) = s
(
234sδ−2∗ + 6.5p + 5.5

)
ln(2) + s(2p + 3)

+ [108sδ−2∗
∣∣log(a)

∣∣+ 36Cs + 1
][

ln(3)
]−1

.

Here δ∗ is the smallest solution of the equation 8π2δ(1+[ln δ]2) = 1, Cs = C
(1)
s +

C
(2)
s and

C(1)
s = s sup

δ>δ∗
δ−2
{[

1 + ln
(

9216(s + 1)δ2

[φ(δ)]2

)]
+

+ 1.5
[
log2

{(
4608(s + 1)δ2

[φ(δ)]2

)}]
+

}
;

C(2)
s = s sup

δ>δ∗
δ−1
{[

1 + ln
(

9216(s + 1)δ

φ(δ)

)]
+

+ 1.5
[
log2

{(
4608(s + 1)δ

φ(δ)

)}]
+

}
,

where φ(δ) = (6/π2)(1 + [ln δ]2)−1, δ > 0.

3. Adaptive estimation. In this section we illustrate the use of the oracle in-
equality proved in Theorem 1 for the derivation of adaptive rate optimal density
estimators.

We start with the definition of the anisotropic Nikol’skii class of functions
on R

s, s ≥ 1, and later on e1, . . . , es, denotes the canonical basis in R
s .

DEFINITION 1. Let r = (r1, . . . , rs), ri ∈ [1,∞], α = (α1, . . . , αs), αi > 0,
Q = (Q1, . . . ,Qs), Qi > 0. A function g : Rs → R belongs to the anisotropic
Nikol’ski class Nr,s(α,Q) of functions if∥∥Dk

i g
∥∥
ri

≤ Qi ∀k = 0, �αi�,∀i = 1, s;∥∥D�αi�
i g(· + tei ) − D

�αi�
i g(·)∥∥ri ≤ Qi |t |αi−�αi� ∀t ∈ R,∀i = 1, s.
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Here Dk
i f denotes the kth order partial derivative of f with respect to the vari-

able ti , and �αi� is the largest integer strictly less than αi .

The functional classes Nr,s(α,Q) were considered in approximation theory by
Nikol’skii; see, for example, Nikol’skiı̆ (1977). Minimax estimation of densities
from the class Nr,s(α,Q) was considered in Ibragimov and Khasminskii (1981).
We refer also to Kerkyacharian, Lepski and Picard (2001, 2007), where the prob-
lem of adaptive estimation over a scale of classes Nr,s(α,Q) was treated for the
Gaussian white noise model.

Our goal now is to introduce the scale of functional classes of d-variate prob-
ability densities taking into account the independence structure. It implies in par-
ticular that we will need to estimate, not only the density itself, but all marginal
densities as well. It is easily seen that if f ∈ Np,d(β, L) and additionally f is
compactly supported, then fI ∈ NpI,|I|(βI, LI) for any I ∈ Id , where L = cL and
c > 0 is a numerical constant. However if supp(f ) = R

d , the latter assertion is not
true in general. The assumption f ∈ Np,d(β, L) does not even guarantee that fI is
bounded on R

|I|. It explains the introduction of the following anisotropic classes
of densities.

Let p = (p1, . . . , pd),pi ∈ [1,∞], β = (β1, . . . , βd), βi > 0, L = (L1, . . . , Ld),

Li > 0.

DEFINITION 2. A probability density f : Rd → R+ belongs to the class
Np,d(β, L) if

fI ∈ NpI,|I|(βI, LI) ∀I ∈ Id .

Introduce finally the collection of functional classes taking into account the
smoothness of the underlying density and the independence structure simultane-
ously.

Let (β,p, P) ∈ (0,∞)d × [1,∞]d × P and L ∈ (0,∞)d be fixed. Introduce

Np,d(β, L, P) =
{
f (x) ∈ Np,d(β, L) :f (x) = ∏

I∈P
fI(xI),∀x ∈ R

d

}
.

For any (β,p, P) ∈ (0,∞)d × [1,∞]d × P define

ϒ(β,p, P) = inf
I∈P

γI(β,p), γI(β,p) = 1 −∑j∈I 1/(βjpj )∑
j∈I 1/βj

.

We will see that the quantity ϒ(β,p, P) can be viewed as an effective smoothness
index related to independence structure hypothesis and to the estimation under
sup-norm loss.
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THEOREM 2. For any (β,p, P) ∈ (0,∞)d × [1,∞]d × P such that ϒ(β,p,

P) > 0 and any L ∈ (0,∞)d

lim inf
n→∞ inf

f̂n

sup
f ∈Np,d (β,L,P)

(
E

(n)
f

[
ϕ−1

n (β,p, P)‖f̂n − f ‖∞
]q)1/q

> 0,

ϕn(β,p, P) =
(

lnn

n

)ϒ/(2ϒ+1)

,

where ϒ = ϒ(β,p, P) and infimum is taken over all possible estimators.

Our goal is to prove that the estimation quality provided by f̂ĥ,P̂ on Np,d(β, L,

P) coincides up to a numerical constant with optimal decay of minimax risk
ϕn(β,p, P) whatever the value of nuisance parameter {β,p, P, L}. It means that
this estimator is optimally adaptive over the scale of considered functional classes.
We would like to emphasize that not only is the couple (β, L) unknown, which
is typical in frameworks of adaptive estimation, but also the index p of norms
where the smoothness is measured. At last, our estimator adapts automatically to
unknown independence structure. Note, however, that the range of adaptation with
respect to the parameter P is limited by the set where our procedure is running. It
means that, if P is used in the selection rule, the adaptation is possible only over
the collection {N·,d(·, ·, P), P ∈ P}. In this context the adaptation over full collec-
tion of anisotropic Nikolskii classes is possible only if the selection rule (2.2)–(2.3)
runs P = P.

Remember that ∅̄ = {1, . . . , d} and, therefore, γ∅̄(β,p) = (1 −∑d
j=1

1
βjpj

) ×
(
∑d

j=1
1
βj

)−1. Let P ⊆ P be fixed, and let Hn be the diadic grid in Hn. Let finally

f̂ĥ,P̂ (·) be the estimator obtained by the selection rule (2.2)–(2.3).

THEOREM 3. Let K satisfy Assumption 1 and suppose additionally that for
some integer b ≥ 2, ∫

R

umK(u)du = 0 ∀m = 2,b.(3.1)

Then for any (β,p) ∈ (0,b]d ×[1,∞]d such that γ∅̄(β,p) > 0, any P ∈ P and
any L ∈ (0,∞)d ,

lim sup
n→∞

sup
f ∈Np,d (β,L,P)

(
E

(n)
f

[
ϕ−1

n (β,p, P)‖f̂ĥ,P̂ − f ‖∞
]q)1/q

< ∞.

Some remarks are in order.
10. We want to emphasize that the extra-parameter b can be arbitrary but a priory

chosen. Note also that the condition (3.1) of the theorem is fulfilled with m = 1 as
well since K is symmetric.

20. Note that assumption γ∅̄(β,p) > 0 implies obviously γI(β,p) > 0 for any
I ∈ Id . This together with the definition of the class Np,d(β, L) allows us to assert
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that one can find f = f(β,p) such that f ∈ Np,d(β, L) implies that f ∈ F(f). It
makes possible the application of Theorem 1. The latter result follows from the
embedding theorem for anisotropic Nikolskii classes which is formulated in the
proof of Lemma 4 below.

30. As it was recently proven in Goldenshluger and Lepski (2012), Theo-
rem 3(ii), the assumption γ∅̄(β,p) > 0 is necessary for existence of a uniformly
consistent estimator of the density f in the supremum norm over anisotropic
Nikolskii class Np,d(β, L). Since we consider only P containing ∅̄, this means
that the estimation of the entire density f is always supposed, the condition
γ∅̄(β,p) > 0 is necessary for the application of the selection rule (2.2)–(2.3).

4. Proofs. We start this section with the computation of upper functions for
kernel estimation process being one of main tools in the proof of Theorem 1.

4.1. Upper functions for kernel estimation process. Let s ∈ N
∗, and let Yj ,

j ≥ 1, be R
s -valued i.i.d. random vectors defined on a complete probability space

(�,A,P) and having the density g with respect to the Lebesgue measure. Later on
P

(n)
g denotes the law of Y1, . . . , Yn, n ∈ N

∗, and E
(n)
g is mathematical expectation

with respect to P
(n)
g .

Let M : R → R be a given symmetric function and for any r ∈ (0,1]s set as
previously

Mr(·) =
s∏

l=1

r−1
l M(·/rl), Vr =

s∏
l=1

rl.

Denote also mm = ‖M‖m,m = {1,∞}. For any y ∈ R
s consider the family of

random fields

χr(y) = n−1
n∑

j=1

{
Mr(Yj − y) − E

(n)
g
[
Mr(Yj − y)

]}
,

r ∈ R̃n(s) := {r ∈ (0,1]s :nVr ≥ ln(n)
}
.

For any r ∈ (0,1]s set G(r) = supy∈Rs

∫
Rs |Mr(x − y)|g(x)dx and let Ḡ(r) = 1 ∨

G(r).

PROPOSITION 1. Let M satisfy Assumption 1. Then for any n ≥ 3 and any
p ≥ 1,

E
(n)
g

{
sup

r∈R̃n(s)

[
‖χr‖∞ − γp(s,m∞)

√
Ḡ(r) ln(n)

nVr

]}p

+

≤ c1(p, s)
[
1 ∨ ms

1‖g‖∞
]p/2

n−p/2 + c2(p, s)n−p,

where c1(p, s) = 27p/2+53p+5s+4�(p + 1)πp(s,m∞) and c2(p, s) = 2p+135s .
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The function π : N∗ × R+ :→ R is given by

π(s, a) = (
√

a ∨ a)
(√

2es
[
1 + (3L/2)as−2

]∨ [(2e/3)
(
s
[
1 + (3L/2)as−2]∨ 8

)])
.

In view of trivial inequality,

‖χr‖∞ ≤ γp(s,m∞)

√
Ḡ(r) ln(n)

nVr

+
(
‖χr‖∞ − γp(s,m∞)

√
Ḡ(r) ln(n)

nVr

)
+
,

and we come to the following corollary of Proposition 1.

COROLLARY 1. Let M satisfy Assumption 1. Then for any n ≥ 3 and any
p ≥ 1,(

E
(n)
g

{
sup

r∈R̃n(s)

‖χr‖∞
}p)1/p

≤ [1 ∨ ms
1‖g‖∞

]1/2[
γp(s,m∞) + {c1(p, s) + c2(p, s)

}1/p
n−1/2].

Consider now the following family of random fields: for any y ∈ R
s set

ϒr(y) = n−1
n∑

j=1

∣∣Mr(Yj −y)
∣∣, r ∈ R̃(a)

n (s) := {r ∈ (0,1]s :nVr ≥ a−1 ln(n)
}
,

where we have put a = [2γp(s,m∞)]−2.

PROPOSITION 2. Let M satisfy Assumption 1. Then for any n ≥ 3 and any
p ≥ 1,

E
(n)
g

{
sup

r∈R(a)
n (s)

[
1 ∨ ‖ϒr‖∞ − (3/2)Ḡ(r)

]}p
+

≤ c1(p, s)
[
1 ∨ ms

1‖g‖∞
]p/2

n−p/2 + c2(p, s)n−p;
E

(n)
g

{
sup

r∈R(a)
n (s)

[
Ḡ(r) − 2

(
1 ∨ ∥∥ϒr(·)

∥∥∞)]}p+
≤ c′

1(p, s)
[
1 ∨ ms

1‖g‖∞
]p/2

n−p/2 + c′
2(p, s)n−p,

where c′
1(p, s) = 2pc1(p, s) and c′

2(p, s) = 22p+135s .

4.2. Proof of Theorem 1. We start the proof of the theorem with auxiliary
results used in the sequel whose proofs are given in Appendix.
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4.2.1. Auxiliary results. Introduce the following notation. For any I ∈ Id , set

shI(·) =
∫

R|I|
KhI(tI − ·)fI(tI)dtI, s∗

hI,ηI
(·) =

∫
R|I|

[KhI � KηI](tI − ·)fI(tI)dtI.

LEMMA 1. For any I ∈ Id and any h,η ∈ (0,1]|I|, one has∥∥s∗
hI,ηI

− sηI

∥∥
I,∞ ≤ kd

1bhI .

For any h ∈ (0,1]d and any P ∈ P, let

An(h, P) =
√

s̄n ln(n)

nV (h, P)
, s̄n = 1 ∨ sup

h∈Hn

sup
I∈Id

∥∥∥∥∫
R|I|
∣∣KhI(tI − ·)∣∣fI(tI)dtI

∥∥∥∥
I,∞

.

Put also ξhI(·) = f̃hI(·) − shI(·), and let

ζ(h, P) = sup
I∈P

‖ξhI‖I,∞, ζn = sup
η∈Hn

sup
P∈P

[
ζ(η, P) − �An(η, P)

]
+.

Set finally,

f̄n = f̃nfn, f̃n = d(f̄n)d
2/4, fn = 2dkd

1
[
max

{
f̄n,k2

1f
}]d−1

.

LEMMA 2. For any p ≥ 1 there exist ci (p, d,K, f), i = 1,2,3,4, such that for
any n ≥ 3:

(i) sup
f ∈F(f)

[
E

(n)
f (ζn)

2q]1/(2q) ≤ c1(2q, d,K, f)n−1/2;

(ii) sup
f ∈F(f)

[
E

(n)
f [s̄n − f̄n]2q

+
]1/(2q) ≤ c2(2q, d,K, f)n−1/2;

(iii) sup
f ∈F(f)

[
E

(n)
f [f̄n − 3s̄n]2q

+
]1/(2q) ≤ c3(2q, d,K, f)n−1/2;

(iv) sup
f ∈F(f)

[
E

(n)
f (f̄n)

p]1/p ≤ c4(p, d,K, f).

The explicit expression of ci (p, d,K, f), i = 1,2,3,4 can be found in the proof
of the lemma.

4.2.2. Proof of Theorem 1. We break the proof on several steps.
10. Let h ∈ Hn and P ∈ P(f ) ∩ P be fixed. We have, in view of triangle in-

equality,

‖f̂ĥ,P̂ − f ‖∞ ≤ ‖f̂ĥ,P̂ − f̂(h,P)(ĥ,P̂)‖∞ + ‖f̂(h,P)(ĥ,P̂) − f̂h,P‖∞
(4.1)

+ ‖f̂h,P − f ‖∞.
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We have

‖f̂ĥ,P̂ − f̂(h,P)(ĥ,P̂)‖∞ ≤ �̂n(h,P) + λÂn(ĥ, P̂).(4.2)

Noting that f̂(h,P)(ĥ,P̂) ≡ f̂(ĥ,P̂)(h,P), we get

‖f̂(h,P)(ĥ,P̂) − f̂h,P‖∞ ≤ �̂n(ĥ, P̂) + λÂn(h,P).(4.3)

To obtain (4.2), (4.3) we have also used that P̂,P ∈ P and ĥ,h ∈ Hn. We get
from (4.2) and (4.3),

‖f̂ĥ,P̂ − f̂(h,P)(ĥ,P̂)‖∞ + ‖f̂(h,P)(ĥ,P̂) − f̂h,P‖∞
≤ [�̂n(ĥ, P̂) + λÂn(ĥ, P̂)

]+ [�̂n(h,P) + λÂn(h,P)
]

≤ 2
[
�̂n(h,P) + λÂn(h,P)

]
.

To get the last inequality we have used the definition of (ĥ, P̂). Thus we obtain
from (4.1) that

‖f̂ĥ,P̂ − f ‖∞ ≤ 2
[
�̂n(h,P) + λÂn(h,P)

]+ ‖f̂h,P − f ‖∞.(4.4)

We remark that (4.4) remains valid for an arbitrary P ∈ P; that is, we did not use
that P ∈ P(f ).

20. Note that for any h,η ∈ Hn and any P ′ ∈ P,

‖f̂(h,P),(η,P ′) − f̂η,P ′‖∞

≤ ∣∣P ′∣∣ sup
I′∈P ′

(
(f̄n)|I

′|(|P ′|−1)) sup
I′∈P ′

∥∥∥∥ ∏
I∈P : I∩I′ 
=∅

f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥∥∥
I′,∞

(4.5)

≤ d(f̄n)d
2/4 sup

I′∈P ′

∥∥∥∥ ∏
I∈P : I∩I′ 
=∅

f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥∥∥
I′,∞

.

Here |P ′| = card(P ′) and the second inequality follows from |P ′| ≤ d + 1 −
supI′∈P ′ |I′|. To get the first bound we have used the trivial inequality: for any
m ∈ N

∗ and any aj , bj : Xj → R, j = 1,m,∥∥∥∥∥
m∏

j=1

aj −
m∏

j=1

bj

∥∥∥∥∥∞
(4.6)

≤ m
(

sup
j=1,m

‖aj − bj‖Xj ,∞
)[

sup
j=1,m

max
(‖aj‖Xj ,∞,‖bj‖Xj ,∞

)]m−1
,

where ‖ · ‖Xj ,∞ and ‖ · ‖∞ denote the supremum norms on Xj and X1 ×· · ·× Xm,
respectively.

Introduce the following notation: for any h,η ∈ Hn and any I ∈ Id , we set

ξ∗
hI,ηI

(·) = f̃hI,ηI(·) − s∗
hI,ηI

(·).
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We have in view of (4.6) (here and later the product and the supremum over empty
set are assumed equal to one and to zero resp.),∥∥∥∥∏

I∈P
f̃hI∩I′ ,ηI∩I′ − ∏

I∈P
s∗
hI∩I′ ,ηI∩I′

∥∥∥∥
I′,∞

(4.7)
≤ d

[
max

{
f̄n,k2

1f
}]d−1 sup

I∈P

∥∥ξ∗
hI∩I′ ,ηI∩I′

∥∥
I∩I′,∞.

We remark that for any I ∈ Id , any h,η ∈ (0,1]d and any zI ∈ R
|I|,

ξ∗
hI,ηI

(zI) =
∫

R|I|
Kηi

(zI − uI)ξhI(uI)duI

and, therefore, ∥∥ξ∗
hI,ηI

∥∥
I,∞ ≤ k|I|

1 ‖ξhI‖I,∞ ≤ kd
1‖ξhI‖I,∞,

since k1 ≥ 1 in view of Assumption 1. It yields together with (4.7),∥∥∥∥∏
I∈P

f̃hI∩I′ ,ηI∩I′ − ∏
I∈P

s∗
hI∩I′ ,ηI∩I′

∥∥∥∥
I′,∞

(4.8)
≤ dkd

1
[
max

{
f̄n,k2

1f
}]d−1 sup

I∈P
‖ξhI∩I′ ‖I∩I′,∞.

Note also that for any η ∈ Hn and I′ ∈ Id ,

sηI′ (·) =
∫

RI′
KηI′ (tI′ − ·)fI′(tI′)dtI′ =

∫
RI′

KηI′ (tI′ − ·)
[∏

I∈P
fI∩I′(tI∩I′)

]
dtI′

= ∏
I∈P

sηI∩I′ (·).

Here we have used that P ∈ P(f ). Using once again (4.6), we obtain∥∥∥∥∏
I∈P

s∗
hI∩I′ ,ηI∩I′ − ∏

I∈P
sηI∩I′

∥∥∥∥
I′,∞

≤ d
[
k2

1f
]d−1 sup

I∈P

∥∥s∗
hI∩I′ ,ηI∩I′ − sηI∩I′

∥∥
I∩I′,∞,

and, therefore, in view of Lemma 1,∥∥∥∥∏
I∈P

s∗
hI∩I′ ,ηI∩I′ − sηI′

∥∥∥∥
I′,∞

≤ dkd
1
[
k2

1f
]d−1 sup

I∈P
‖bhI∩I′ ‖I∩I′,∞.(4.9)

Thus, we obtain from (4.8) and (4.9),∥∥∥∥ ∏
I∈P : I∩I′ 
=∅

f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥∥∥
I′,∞

≤ fn

[
sup
I∈P

‖ξhI∩I′ ‖I∩I′,∞ + sup
I∈P

‖bhI∩I′ ‖I∩I′,∞
]
+ ‖ξηI′ ‖I′,∞,
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where, remember, fn = 2dkd
1 [max{f̄n,k2

1f}]d−1.
Therefore, we get from (4.5) for any h,η ∈ Hn and P ′ ∈ P,

‖f̂(h,P),(η,P ′) − f̂η,P ′‖∞
(4.10)

≤ f̄n

{
ζ
(
h,P � P ′)+ sup

I∈P�P ′
‖bhI‖I,∞

}
+ f̃nζ

(
η, P ′).

Here, remember, f̃n = d(f̄n)d
2/4 and f̄n = f̃nfn. Taking into account that

An

(
h, P � P ′)≤ An(h, P) ∧ An

(
h, P ′) ∀h ∈ Hn,∀P, P ′ ∈ P,

we get from (4.10)

‖f̂(h,P),(η,P ′) − f̂η,P ′‖∞
(4.11)

≤ f̄n

{
�An(h,P) + sup

I∈P�P ′
‖bhI‖I,∞ + ζn

}
+ f̃nζ

(
η, P ′).

Remembering that λ = f̃n�, we obtain from (4.11)

�̂n(h,P) ≤ f̄n
{
�An(h,P) + B(h,P) + ζn

}
+ f̃n

{
ζn + � sup

η∈Hn

sup
P∈P

[
An(η, P) − Ân(η, P)

]
+
}
,

where, remember, B(h, P) = supP ′∈P supI∈P�P ′ ‖bhI‖I,∞. Here we have also used

that Hn ⊆ Hn and P ⊆ P. Taking into account that f̄n ≥ f̃n, since fn ≥ 1, we finally
get

�̂n(h,P) ≤ f̄n

{
�An(h,P) + B(h,P) + 2ζn

(4.12)
+ � sup

η∈Hn

sup
P∈P

[
An(η, P) − Ân(η, P)

]
+
}
.

Note that the definition of Hn implies that[
An(η, P)−Ân(η, P)

]
+ ≤ a∗[√s̄n−

√
f̄n]+ ≤ a∗[s̄n− f̄n]+ ∀η ∈ Hn,∀P ∈ P.

To get the last inequality we have also used that f̄n ≥ 1 and s̄n ≥ 1 by definition.
Putting Rn = a∗�[s̄n − f̄n]+ we obtain in view of (4.12),

�̂n(h,P) ≤ f̄n
{
�An(h,P) + B(h,P) + 2ζn + Rn

}
.(4.13)

Note also that the definition of Hn implies that[
Ân(η, P) − √

3An(η, P)
]
+ ≤ a∗[

√
f̄n −√3s̄n]+ ≤ a∗[f̄n − 3s̄n]+

∀η ∈ Hn,∀P ∈ P.
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Thus, denoting Rn = a∗�[f̄n − 3s̄n]+, we obtain using (4.13),

�̂n(h,P) + λÂn(h,P)
(4.14)

≤ f̄n
{
3�An(h,P) + B(h,P) + 2ζn + Rn + Rn

}
,

where we have used also
√

3 < 2.
30. Note that in view of P ∈ P(f ) and (4.6),

‖f̂h,P − f ‖∞ =
∥∥∥∥∏

I∈P
f̃hI(xI) − ∏

I∈P
fI(xI)

∥∥∥∥∞
≤ d

[
max

{
f̄n,k2

1f
}]d−1 sup

I∈P

∥∥f̃hI(xI) − fI(xI)
∥∥

I,∞
(4.15)

≤ d
[
max

{
f̄n,k2

1f
}]d−1[

B(h,P) + ζ(h,P)
]

≤ f̄n
[
B(h,P) + �An(h,P) + ζn

]
.

Here we have also used that P ≡ P � P . We obtain from (4.4), (4.14) and (4.15),

‖f̂ĥ,P̂ − f ‖∞ ≤ f̄n
[
3B(h,P) + 7�An(h,P) + 5ζn + 2Rn + 2Rn

]
,

and, therefore, for any h ∈ Hn, P ∈ P(f ) ∩ P and q ≥ 1(
E

(n)
f ‖f̂ĥ,P̂ − f ‖∞

)1/q ≤ Eq

[
3B(h,P) + 7�An(h,P)

]
(4.16)

+ E2q

[
5y1,n + 2�a∗(y2,n + y3,n)

]
,

where we have put for p ≥ 1,

Ep = [E(n)
f (f̄n)

p]1/p
, y1,n = [E(n)

f (ζn)
2q]1/(2q)

,

y2,n = [E(n)
f [s̄n − f̄n]2q

+
]1/(2q)

, y3,n = [E(n)
f [f̄n − 3s̄n]2q

+
]1/(2q)

.

Taking into account that the left-hand side of (4.16) is independent of the choice h
and P and that the quantity s̄n ≤ 1 ∨ [k1f], we get(

E
(n)
f ‖f̂ĥ,P̂ − f ‖∞

)1/q

≤ 7�Eq

(
inf

h∈Hn

inf
P∈P(f )∩P

[
B(h,P) + An(h,P)

])
+ E2q

[
5y1,n + 2�a∗(y2,n + y3,n)

]
= C1(q, d,K, f)Rn(f ) + E2q

[
5y1,n + 2�a∗(y2,n + y3,n)

]
,

where we have put C1(q, d,K, f) = 7�Eq

√
1 ∨ [k1f].

This inequality together with bounds found in Lemma 2 lead to the assertion of
the theorem.

4.3. Proof of Theorem 2. The proof of Theorem 2 is relatively standard and
based on the general result established in Kerkyacharian, Lepski and Picard (2007),
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Proposition 7. For convenience we formulate this result, not in full generality,
but its version reduced to the considered problem. Let (β,p, P) ∈ (0,∞)d ×
[1,∞]d × P such that ϒ(β,p, P) > 0 and L ∈ (0,∞)d be fixed.

LEMMA 3. Assume that there exist f0 ∈ Np,d(β, L, P), ρn > 0, n ∈ N
∗ and

a finite set Jn such that for any sufficiently large n ∈ N
∗, one can find {f (j), j ∈

Jn} ⊂ Np,d(β, L, P) satisfying∥∥f (j) − f0
∥∥∞ = ρn ∀j ∈ Jn;(4.17)

lim sup
n→∞

E
(n)
f0

[
1

|Jn|
∑
j∈Jn

dP
(n)

f (j)

dP
(n)
f0

(
X(n))− 1

]2
=: C < ∞.(4.18)

Then for r ≥ 1,

lim inf
n→∞ inf

f̃

sup
f ∈Np,d (β,L,P)

ρ−1
n

(
E

(n)
f ‖f̃ − f ‖r∞

)1/r ≥ 2−1[1 −
√

C/(C + 4)
]
,

where infimum is taken over all possible estimators.

PROOF OF THE THEOREM. Set N (x) =∏d
i=1([2π ]−1/2 exp−{x2

i /2}), and let
f0(x) = σ−d N (x/σ), where σ > 0 is chosen in such a way that

f0 ∈ Np,d(β, L/2).(4.19)

The product structure of f0 together with (4.19) allows us to assert that f0 ∈
Np,d(β, L/2, P) for any P ∈ P. Let I∗ ∈ {1, . . . , d} be defined from the relation

ϒ(β,p, P) := inf
I∈P

γI(β,p) = γI∗(β,p),

and for notational convenience, the elements of I∗ will be denoted by i1, . . . , im
and m = |I∗|.

Let g : R → R be compactly supported on (−1/2,1/2) function, satisfying g ∈⋂
i∈I∗ Npi,1(βi,1/2), and such that

∫
g = 0. Suppose also that |g(0)| = ‖g‖∞.

Let An → 0 and δl,n → 0, l = 1,m, n → ∞, be sequences whose choice will be
done later and set Jn := [1, . . . ,M1,n] × · · · × [1, . . . ,Mm,n] ⊂ N

m, where Ml,n =
�δ−1/2

l,n �, l = 1,m.

For any j = (j1, . . . , jm) ∈ Jn define Gj(xI) = An

∏m
l=1 g(δ−1

i,n [xil − x
(j)
il

]). Here

for any j ∈ Jn, we put x
(j)
il

= jlδl,n. The choice of g implies

GjGj′ ≡ 0 ∀j, j′ ∈ Jn, j 
= j′.(4.20)

Note also that the system of equations

Anδ
−βik

k,n

(
m∏

l=1

δl,n

)1/pik

= Lik

ck

, k = 1,m(4.21)
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implies that Gj ∈ NpI,d(βI, LI/2) for any j ∈ Jn. Here we have denoted ck =
(‖g‖pik

)m−1.

Introduce the family of functions {f (j), j ∈ Jn} as follows:

f (j)(x) =
d∏

i /∈I∗

([
2πσ 2]−1/2 exp−{x2

i /2σ 2})

×
(

d∏
i∈I∗

[
2πσ 2]−1/2 exp−{x2

i /2σ 2}+ Gj(xI)

)
.

First we remark that An → 0, n → ∞, implies that f (j) > 0 for all sufficiently
large n. Next, the assumption

∫
g = 0 implies that

∫
f (j) = 1. Thus, f (j) is a prob-

ability density for any j ∈ Jn for all sufficiently large n. At last the choice of f0
together with (4.21) allows us to assert that f (j) ∈ Np,d(β, L, P) for any j ∈ Jn.

Thus, we conclude that Lemma 3 is applicable to the family {f (j), j ∈ Jn}. We
remark also that ∥∥f (j) − f0

∥∥∞ = c∗
1An ∀j ∈ Jn,(4.22)

where we have put c∗
1 = |g(0)|m(2πσ 2)(m−d)/2. Here we have also used that

|g(0)| = ‖g‖∞. We conclude that assumption (4.17) is fulfilled with ρn = c∗
1An.

Let us now proceed with the verification of condition (4.18) of Lemma 3. Note
first that

dP
(n)

f (j)

dP
(n)
f0

(
X(n))= n∏

k=1

f (j)(Xk)

f0(Xk)

and, therefore,

[
1

|Jn|
∑
j∈Jn

dP
(n)

f (j)

dP
(n)
f0

(
X(n))]2

(4.23)

= 1

|Jn|2
{∑

j∈Jn

n∏
k=1

[
f (j)(Xk)

f0(Xk)

]2

+ ∑
j,j′∈Jn :

j
=j′

n∏
k=1

f (j)(Xk)f
(j′)(Xk)

f 2
0 (Xk)

}
.

Since Xk, k = 1, n are i.i.d. random vectors, we have for any j 
= j′,

E
(n)
f0

{
n∏

k=1

f (j)(Xk)f
(j′)(Xk)

f 2
0 (Xk)

}

=
{∫

R|I∗|

[
1 + Gj(xI∗)

fI∗,0(xI∗)

][
1 + Gj′(xI∗)

fI∗,0(xI∗)

]
fI∗,0(xI∗)dxI∗

}n

= 1.
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To get the last equality we have used (4.20) and the fact that
∫
R|I∗| Gj(xI∗)dxI∗ = 0

since
∫

g = 0.
The latter result together with (4.23) yields

En := E
(n)
f0

[
1

|Jn|
∑
j∈Jn

dP
(n)

f (j)

dP
(n)
f0

(
X(n))− 1

]2

= 1

|Jn|2
∑
j∈Jn

{∫
R|I∗|

[
1 + Gj(xI∗)

fI∗,0(xI∗)

]2

fI∗,0(xI∗)dxI∗
}n

− |Jn|−1(4.24)

= 1

|Jn|2
∑
j∈Jn

{
1 +

∫
Rm

[ G2
j (y)

fI∗,0(y)

]
dy

}n

− |Jn|−1.

Since Gj(y) = 0 for any y /∈ [0,
√

δ1,n] × · × [0,
√

δm,n] =: Yn, we have for
all n large enough infy∈Yn fI∗,0(y) ≥ 2−1(2πσ 2)−m. It yields together with (4.23),
putting c∗

2 = 2(2πσ 2)m‖g‖2m
2 ,

En ≤ |Jn|−1

(
1 + c∗

2A
2
n

m∏
l=1

δl,n

)n

.

If we choose An and δl,n, l = 1,m satisfying

c∗
2nA2

n

m∏
l=1

δl,n ≤ (1/4) ln

(
m∏

l=1

δ−1
l,n

)
≤ ln

(|Jn|)(4.25)

for all n ≥ 1 large enough, then En ≤ 1, and therefore, condition (4.18) is fulfilled
with C = 1.

Thus, we have to choose An and δl,n, l = 1,m satisfying (4.21) and (4.25). Let
t > 0 be the number whose choice will be done later. Consider instead (4.25) the
equation

nA2
n

m∏
l=1

δl,n = t2 ln(n),(4.26)

and solve (4.21) and (4.26). Straightforward computations yield

An = R(εt)(1−∑m
l=1 1/(βil

pil
))/(1−∑m

l=1(1/pil
−1/2)1/βil

),

δl,n = A
1/βil

−2/(βil
pil

)
n (tε)2/(βil

pil
)(cl/Ll)

1/βil ,

where we have put R = (
∏m

l=1(cl/Ll)
1/(2βil

))1/(1−∑m
l=1(1/pil

−1/2)(1/βil
)). Moreover

we have in view of (4.26)(
m∏

l=1

δl,n

)−1/2

= R(εt)−a, a =
∑m

l=1 1/βil

1 −∑m
l=1(1/pil − 1/2)(1/βil )
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and, therefore, (1/4) ln(
∏m

l=1 δ−1
l,n ) � (a/2) ln(n), n → ∞. Hence, choosing t as an

arbitrary number satisfying t2 < (2c∗
2)

−1a we guarantee that (4.26) implies (4.25)
for all n large enough.

Thus we conclude that Lemma 3 is applicable with

ρn = c∗
1An = c∗

1R

(
t ln(n)

n

)(1−∑m
l=1 1/(βil

pil
))/(2(1−∑m

l=1[1/pil
−1/2](1/βil

)))

.

It remains to note that the definition of I ∗ implies that ϒ(β,p, P) =
1−∑m

l=1 1/(βil
pil

)∑m
l=1 1/βil

. We remark that

ϒ(β,p, P)

2ϒ(β,p, P) + 1
= 1 −∑m

l=1 1/(βilpil )

2(1 −∑m
l=1[1/pil − 1/2](1/βil ))

,

and the assertion of the theorem follows. �

4.4. Proof of Theorem 3. The proof of the theorem is based on the application
of Theorem 1 and on Lemma 4 below that allows us to bound from above the
quantity B(h, P). The assertion of the lemma, whose proof is postponed to the
Appendix, is based on the embedding theorem for anisotropic Nikolskii classes.
For any function g : Rs → R and any η ∈ (0,∞)s , set

Bη,g(z) =
∫

Rs
Kη(t − z)g(t)dt − g(z), z ∈ R

s .

LEMMA 4. Let K satisfy Assumption 1 and (3.1). Let (α, r) ∈ (0,b]s ×[1,∞]s
be such that κ = 1 −∑s

l=1(αlrl)
−1 > 0, and let Q ∈ (0,∞)s . Then there exists

c = c(s, r,b) > 0 such that

sup
g∈Nr,s (α,Q)

‖Bη,g‖∞ ≤ cks
1

s∑
i=1

Qiη
αi

i , ∀η ∈ (0,∞)s.

Here α = (α1, . . . ,αs), αi = καiκ
−1
i and κi = 1 −∑s

l=1(r
−1
l − r−1

i )α−1
l .

PROOF OF THEOREM 3. Let (β,p, P) ∈ (0,b]d × [1,∞]d × P and L ∈
(0,∞)d be fixed. For any I ∈ Id and any i ∈ I define

β i(I) = τ(I)βiτ
−1
i (I), τ (I) = 1 −∑

l∈I

(βlpl)
−1,

τi(I) = 1 −∑
l∈I

(
p−1

l − p−1
i
)
β−1

l ,

and note that the condition γ∅̄(β,p) > 0 implies that τ(I) > 0 for any I ∈ Id .
Let us first prove the following simple fact. Denote Ci(I) = {J ⊆ I : i ∈ J}, i ∈ I.

Then

β i(I) = inf
J∈Ci(I)

β i(J) ∀i ∈ I.(4.27)
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Indeed, we remark that τi(J) = 1−∑l∈J(p
−1
l −p−1

i )β−1
l = τ(J)+p−1

i
∑

l∈J β−1
l

and, therefore,

β i(J) = βiτ(J)

τ (J) + p−1
i β−1(J)

, β−1(J) =∑
l∈J

β−1
l .

We obviously have τ(J) ≥ τ(I) and β−1(J) ≤ β−1(I) for any J ⊆ I. It remains to
note that x �→ x/(x + a) is increasing on R+ for any a > 0, and (4.27) follows.

Let P ′ ∈ P be an arbitrary partition. Since f ∈ Np,d(β, L) we have fJ ∈
NpJ,|J|(βJ, LJ), and therefore, in view of Lemma 4 we have for any h ∈ (0,1]d
and J ∈ P � P ′,

bhJ ≤ c
(|J|,pJ,b

)
k|J|

1

∑
i∈J

Lih
β i(J)

i ≤ c1
∑
i∈I

Lih
β i(I)
i .

To get the last inequality we use (4.27), h ∈ (0,1]d and we have put c1 =
kd

1 supJ∈Id
c(|J|,pJ,b)k|J|

1 .
Noting that the right-hand side of the latter inequality is independent on J, we

obtain

B(h, P) ≤ c1 sup
I∈P

∑
i∈I

Lih
β i(I)
i =: B̃(h, P), h ∈ (0,1]d .

It remains to choose multi-bandwidth h. To do it it suffices to solve for any I ∈ P
the following system of equations:

Ljh
βj(I)
j = Lih

β i(I)
i =

√
ln(n)

nVhI

, i, j ∈ I.

The solution is given by

hi = L−1/β i(I)
i

(
L(I) ln(n)

n

)γI(β,p)/(β i(I)[2+γI(β,p)])
, L(I) =∏

i∈I

L1/βi(I)
i .

Here we have also used that 1/γI(β,p) =∑i∈I 1/β i(I).
It is easy to see that the obtained solution belongs to Hn, and let h∗ be its

projection on Hn, which is, remember, the diadic greed of Hn. It remains to note
that B̃(h, P) and B̃(h∗, P) as well as V (h, P) and V (h∗, P) differ from each other
by numerical constants only, and therefore, the assertion of the theorem follows
now from Theorem 1. �

APPENDIX

A.1. Proof of Proposition 1. 10. Note that M(z) = M(|z|); since M is sym-
metric this implies

χr(y) = n−1
n∑

j=1

[
Mr

( �ρ(Yj , y)
)− E

(n)
g

{
Mr

( �ρ(Yj , y)
)}]

,
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where �ρ : Rs × R
s → R

s is given by �ρ(z, z′) = (|z1 − z′
1|, . . . , |zs − z′

s |).
We conclude that considered family of random fields obeys the structural as-

sumption introduced in Section 4.4 of Lepski (2012), with d = s, X
d
1 = X̄

d
1 = R

s

and ρl : R × R → R, given by |z − z′| for any l = 1, s. It implies in particular
that R

s is equipped with the metric �s generated by the supremum norm, that is,
�s = maxl=1,s ρl . We remark also that in our case K(u) = ∏s

l=1 M(ul), u ∈ R
s,

g ≡ 1 and γl = 1, l = 1, s.
To get the assertion of Proposition 1 we will apply Theorem 9 in Lepski (2012)

on Rn(s) := [1/n,1]s . Note that obviously R̃n ⊆ Rn(s). Thus we have to check
the assumptions of the latter theorem and to match the notation used in the present
paper and in Lepski (2012).

First we note that since M satisfies Assumption 1, Assumption 9(i) is obviously
fulfilled with L1 = (3s/2)(m∞)s−1L. Moreover Assumption 9(ii) holds because
g ≡ 1.

Thus, Assumption 9 is checked.
Consider the collection of closed cubs B1/2(j) = {z ∈ R

s :�s(z, j) ≤ 1}, j ∈ Z
s,

and let Ej(δ), δ > 0 denote the metric entropy of B1/2(j) measured in the metric �s .
Obviously {B1/2(j), j ∈ Z

d} is a countable cover of R
s , and each member of this

collection is totally bounded (even compact) subset of R
s . It is easily seen that

card
({

k ∈ Z
s : B1/2(j) ∩ B1/2(k) 
= ∅

})≤ 3s, ∀j ∈ Z
s .

Using the terminology of Lepski (2012) we can say that {B1/2(j), j ∈ Z
d} is 3s -

totally bounded cover of R
s . Moreover, Ej(δ) = s[ln(1/δ)]+ for any δ > 0 and

any j ∈ Z
s . All together, the above allows us to assert that Assumption 7(i) is

fulfilled with I = Z
s, Xj = B1/2(j), N = 1.5s and R = 1. It remains to note that

Assumption 7(ii) is automatically fulfilled in our case since g ≡ 1.
Also we note that for any j,k ∈ Z

s satisfying B1/2(j) ∩ B1/2(k) = ∅ one has

inf
x∈B1/2(j)

inf
y∈B1/2,(k)

�s(x, y) ≥ 1

and therefore, Assumption 11 is checked with t = 1. At last we have for any n ≥ 1,

sup
r∈Rn(s)

sup
u/∈(0,1]s

∣∣∣∣∣
s∏

l=1

M(ul/rl)

∣∣∣∣∣= 0,

since supp(M) ⊆ [−1/2,1/2]. Hence, condition (4.24) of Theorem 9 is fulfilled
as well, which completes the verification of the assumptions of the theorem.

20. Let us match the notation. First, in our case n1 = n2 = n. Since Yj , j ≥
1, are identically distributed, the quantity denoted Fn2(r, x̄

(d)) is given now by
G(r, y) = ∫

Rs |Mr(x − y)|g(x)dx and therefore, is independent on n. Here we
have taken into account that x̄(d) ∈ X

d = R
s .

It is easily seen that

Gn := sup
r∈[1/n,1]s

∥∥G(r, ·)∥∥∞ ≤ min
[
ms

1‖g‖∞,ms∞ns].(A.1)
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This yields, in particular, that Fn2 = Gn ≤ ms
1‖g‖∞ for any n ≥ 1.

Choosing in Theorem 9 q = p,v = 2p + 2, z = 1 and remembering that x̄(d) =
y, we have

Û (v,z,p)(n, r, x̄(d))≤ γp(s,m∞)

√
Ḡ(r) ln(n)

nVr

for any x̄(d) = y ∈ R
s and any r ∈ R̃n(s) ⊆ Rn(s). To get this assertion we have

used that Gn ≤ (m∞n)s in view of (A.1).
At last, taking into account that the right-hand side of the latter inequality is

independent on y, we deduce from Theorem 9 that for any p ≥ 1,

E
(n)
g

{
sup

r∈R̃n(s)

[
‖χr‖∞ − γp(s,m∞)

√
Ḡ(r) ln(n)

nVr

]}p

+

≤ c1(p, s)
[
1 ∨ ms

1‖g‖∞
]p/2

n−p/2 + c2(p, s)n−p,

where c1(p, s) = 27p/2+53p+5s+4�(p + 1)πp(s,m∞) and c2(p, s) = 2p+135s .
Here we have also used that Gn ≤ ms

1‖g‖∞ in view of (A.1), which implies
F̂n2 ≤ 1 ∨ ms

1‖g‖∞.

A.2. Proof of Proposition 2. First, noting that γp(s,m∞)
√

a = 1/2 we ob-
tain from Proposition 1 that

E
(n)
g

{
sup

r∈R̃(a)
n (s)

(
‖χr‖∞ − 1

2

√
Ḡ(r)

)}p

+
≤ cn,(A.2)

where we have put for brevity cn = c1(p, s)[1∨ms
1‖g‖∞]p/2n−p/2 +c2(p, s)n−p .

Next, putting χ̄r (y) = ϒr(y) − E
n
gϒr(y) we have in view of (A.2)

E
(n)
g

{
sup

r∈R̃(a)
n (s)

(
‖χ̄r‖∞ − 1

2

√
Ḡ(r)

)}p

+
≤ cn.(A.3)

To get the latter result we remarked that if M satisfies Assumption 1, then |M|
satisfies it as well and, therefore, Proposition 1 is applicable to the process χ̄r (·).
It remains to note that the function Ḡ(·) is the same for both processes χr(·) and
χ̄r (·). We also note that

G(r) = sup
y∈Rs

{
E

(n)
g ϒr(y)

}
and, therefore, for any r ∈ (0,1]s , one has

Ḡ(r) = 1 ∨ ∥∥E(n)
g ϒr

∥∥∞ ≤ 1 ∨ ‖ϒr‖∞ + ‖χ̄r‖∞,(A.4)

where we have used the obvious inequality |‖x‖ ∨ ‖z‖ − ‖y‖ ∨ ‖z‖| ≤ ‖x − y‖
being true for any normed vector space.
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Hence, putting ζn(a) = sup
r∈R(a)

n (s)
[‖χ̄r‖∞ − 1

2

√
Ḡ(r)]+, we obtain for any r ∈

R(a)
n (s)

Ḡ(r) ≤ 1
2

√
Ḡ(r) + 1 ∨ ‖ϒr‖∞ + ζn(a).

It yields [Ḡ(r) − 2(1 ∨ ‖ϒr‖∞)]+ ≤ 2ζn(a), and we have in view of (A.3)

E
(n)
g

{
sup

r∈R(a)
n (s)

[
Ḡ(r) − 2

(
1 ∨ ‖ϒr‖∞

)]}p
+ ≤ 2pcn.

Similar to (A.4) we have

1 ∨ ‖ϒr‖∞ ≤ Ḡ(r) + ‖χ̄r‖∞ ≤ (3/2)Ḡ(r) + ζn(a)

and therefore, [1 ∨ ‖ϒr‖∞ − (3/2)Ḡ(r)]+ ≤ ζn(a). Thus we get from (A.3)

E
(n)
g

{
sup

r∈R(a)
n (s)

[
1 ∨ ‖ϒr‖∞ − (3/2)Ḡ(r)

]}p
+ ≤ cn.

A.3. Proof of Lemma 1. We have in view of Fubini’s theorem for any xI ∈ R
I

s∗
hI,ηI

(xI)

=
∫

R|I|
[KhI � KηI](tI − xI)fI(tI)dtI

=
∫

R|I|

[∫
R|I|

KηI(yI)KhI(tI − xI − yI)dyI

]
fI(tI)dtI

=
∫

R|I|
KηI(zI − xI)

[∫
R|I|

KhI(tI − zI)fI(tI)dtI

]
dzI

= shI(xI) +
∫

R|I|
KηI(zI − xI)

[∫
R|I|

KhI(tI − zI)
{
fI(tI) − fI(zI)

}
dtI

]
dzI.

Therefore, ‖s∗
hI,ηI

− sηI‖I,∞ ≤ bhI

∫
R|I| |KηI(yI)|dyI ≤ kd

1bhI .

A.4. Proof of Lemma 2. The proof of the lemma is completely based on
application of Propositions 1–2 and Corollary 1.

PROOF OF (i). Remember that ζ(h, P) = supI∈P ‖ξhI‖I,∞ and

ζn = sup
η∈Hn

sup
P∈P

[
ζ(η, P) − �An(η, P)

]
+.

Then we have[
E

(n)
f (ζn)

2q]1/(2q)

= ∑
P∈P

∑
I∈P

(
E

(n)
f

{
sup

ηI∈H(ai)
n (|I|)

[
‖ξηI‖I,∞(A.5)

− γ2q

(|I|,k∞
)√ s̄n ln(n)

nVηI

]}2q

+

)1/(2q)

,
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where we have put H(ai)
n (|I|) = {ηI ∈ (0,1]|I| :nVηI ≥ a

−1
I ln(n)} and aI =

[2γ2q(I,k∞)]−2.

To get the latter result we have used first, that An(η, P) = supI∈P

√
s̄n ln(n)
nVηI

and

the trivial inequality [supi xi − supi yi]+ ≤ supi[xi − yi]+. Next we have used
that � = supP∈P supI∈P γ2q(|I|,k∞). At last we have used that η ∈ Hn implies

ηI ∈ H(ai)
n (|I|) for any I ∈ Id in view of the definition of a∗.

Note that for any for any I ∈ Id and any ηI ∈ (0,1]|I|

s̄ ≥ 1 ∨
∥∥∥∥∫

RI

∣∣KηI(tI − ·)∣∣fI(tI)dtI

∥∥∥∥
I,∞

=: F̄I(η).

We conclude that Proposition 1 is applicable with χr = ξηI , M = K, p = 2q , s =
|I|, a = ai, Ḡ = F̄I, and assertion (i) follows with

c1(2q, d,K, f) = ∑
P∈P

∑
I∈P

[
c1
(
2q, |I|)[1 ∨ k|I|

1 f
]q + c2

(
2q, |I|)].

�

PROOF OF (ii). Put for any h ∈ Hn and I ∈ Id

sI(hi) =
∥∥∥∥∫

RI

∣∣KhI(tI − ·)∣∣fI(tI)dtI

∥∥∥∥
I,∞

,

fI,n(hi) =
∥∥∥∥∥n−1

n∑
i=1

∣∣KhI(XI,i − ·)∣∣∥∥∥∥∥
I,∞

.

We have similar to (A.5) [s̄n − f̄n]+ ≤ supI∈Id
sup

hI∈H(ai)
n (|I|)[sI(hI) − 2fI,n(hI)]+

and hence[
E

(n)
f [s̄n − f̄n]2q

+
]1/(2q) ≤ ∑

I∈Id

(
E

(n)
f

{
sup

hI∈H(ai)
n (|I|)

[
sI(hI) − 2fI,n(hI)

]}2q

+
)1/(2q)

.

Assertion (ii) follows now from the second statement of Proposition 2 with

c2(2q, d,K, f) = ∑
I∈Id

[
c′

1
(
2q, |I|)[1 ∨ k|I|

1 f
]q + c′

2
(
2q, |I|)].

�

PROOF OF (iii). We have [f̄n − 3s̄n]+ ≤ 2supI∈Id
sup

hI∈H(ai)
n (|I|)[fI,n(hI) −

(3/2)sI(hI)]+ and hence[
E

(n)
f [f̄n − 3s̄n]2q

+
]1/(2q)

≤ 2
∑
I∈Id

(
E

(n)
f

{
sup

hI∈H(ai)
n (|I|)

[
fI,n(hI) − (3/2)sI(hI)

]}2q

+
)1/(2q)

.
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Assertion (iii) follows now from the first assertion of Proposition 2 with

c3(2q, d,K, f) = 2
∑
I∈Id

[
c1
(
2q, |I|)[1∨k|I|

1 f
]q + c2

(
2q, |I|)]. �

PROOF OF (iv). Note that

f̄n := 2d2kd
1(f̄n)d

2/4[max
{
f̄n,k2

1f
}]d−1

(A.6)
≤ β

[
(fn)d

2/4+d−1 + (1 + k2
1f
)d−1

(fn)d
2/4 + (fn)d−1 + (1 + k2

1f
)d−1]

,

where we have used k1 ≥ 1 and put β = 2d2kd
12d2/4+d−1. Thus, to get asser-

tion (iv), it suffices to bound from above Ef (fn)p,p ≥ 1. We obviously have

fn ≤ ∑
I∈Id

sup
hI∈H(ai)

n (|I|)

∥∥∥∥∥n−1
n∑

i=1

∣∣KhI(XI,i − ·)∣∣∥∥∥∥∥
I,∞

,

and using Corollary 1 we get for p ≥ 1,[
E

(n)
f (fn)p

]1/p

(A.7)
≤ ∑

I∈Id

[
1 ∨ k|I|

1 f
]1/2[

γp

(|I|,k∞
)+ {c1

(
p, |I|)+ c2

(
p, |I|)}1/p]

.

Assertion (iv) follows now from (A.6) and (A.7). �

A.5. Proof of Lemma 4. The proof of the lemma is based on the embedding
theorem for anisotropic Nikolskii classes which we formulate below.

Let (α, r) ∈ (0,∞)s × [1,∞]s be such that κ = 1 −∑s
l=1(αlrl)

−1 > 0, and let
Q ∈ (0,∞)s . Then there exists c > 0 completely determined by α, r and s such
that

Nr,s(α,Q) ⊆ N∞,s(α, cQ),(A.8)

where α = (α1, . . . ,αs), αj = καjκ
−1
j and κj = 1 −∑s

l=1(r
−1
l − r−1

j )α−1
l .

The inclusion (A.8) is a particular case of Theorem 6.9 in Nikol’skiı̆ (1977),
with p′ = ∞. We remark that N∞,s(α, Q) is anisotropic Hölder class of functions.

Let Ei , i = 1, s be the family of s×s matrices where Ei = (e1, . . . , ei ,0, . . . ,0),
and let E0 be zero matrix. Putting K(u) = ∏s

l=1 K(ul), ul ∈ R, we get for any
η ∈ (0,∞)s and any z ∈ R

s ,∣∣Bη,g(z)
∣∣= ∣∣∣∣∫

Rs
K(u)

[
g(z + uη) − g(z)

]
du

∣∣∣∣
≤

s∑
i=1

∣∣∣∣∫
Rs

K(u)
[
g(z + ηEiu) − g(z + ηEi−1u)

]
du

∣∣∣∣.



1032 O. LEPSKI

We note that the all components of the vectors z+ηEiu and z+ηEi−1u except ith
coordinate coincide. Hence using Taylor’s expansion we obtain any η ∈ (0,∞)s

and z ∈ R
s in view of (A.8)∣∣∣∣∫

Rs
K(u)

[
g(z + ηEiu) − g(z + ηEi−1u)

]
du

∣∣∣∣
≤ cQiη

αi

i ks−1
1

∫
R

∣∣K(u)
∣∣|u|αi du ≤ ks

1cQiη
αi

i .

To get the last inequality we have taken into account (3.1) and used that K is sup-
ported on [−1/2,1/2]. It is worth mentioning that c as a function of α is bounded
on any bounded domain of (0,∞)s . Since the right-hand side of the latter inequal-
ity is independent of z we come to the assertion of the lemma.
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