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OPTIMAL DISCRIMINATING DESIGNS FOR SEVERAL
COMPETING REGRESSION MODELS1

BY DIETRICH BRAESS AND HOLGER DETTE

Ruhr-Universität Bochum

The problem of constructing optimal discriminating designs for a class
of regression models is considered. We investigate a version of the Tp-
optimality criterion as introduced by Atkinson and Fedorov [Biometrika 62
(1975a) 289–303]. The numerical construction of optimal designs is very
hard and challenging, if the number of pairwise comparisons is larger than 2.
It is demonstrated that optimal designs with respect to this type of criteria
can be obtained by solving (nonlinear) vector-valued approximation prob-
lems. We use a characterization of the best approximations to develop an
efficient algorithm for the determination of the optimal discriminating de-
signs. The new procedure is compared with the currently available methods
in several numerical examples, and we demonstrate that the new method can
find optimal discriminating designs in situations where the currently available
procedures fail.

1. Introduction. An important problem in optimal design theory is the con-
struction of efficient designs for model identification in a nonlinear relation of the
form

Y = η(x, θ) + ε.(1.1)

In many cases there exist several plausible models which may be appropriate for
a fit to the given data. A typical example are dose-finding studies, where various
models have been developed for describing the dose–response relation [Pinheiro,
Bretz and Branson (2006)]. Some of these models, which have also been discussed
by Bretz, Pinheiro and Branson (2005), are listed in Table 1. In these and similar
situations the first step of the data analysis consists of the identification of an ap-
propriate model from a given class of competing regression models.

The optimal design problem for model identification has a long history. Early
work can be found in Stigler (1971), who determined designs for discriminating
between two nested univariate polynomials by minimizing the volume of the con-
fidence ellipsoid for the parameters corresponding to the extension of the smaller
model. Several authors have worked on this approach in various other classes of
nested models [Dette and Haller (1998) or Song and Wong (1999) among others].
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TABLE 1
Candidate dose response models as a function of dose x

Model Full model specification

Linear η1(x,ρ(1)) = 60 + 0.56x

Quadratic η2(x,ρ(2)) = 60 + (7/2250)x(600 − x)

Emax η3(x,ρ(3)) = 60 + 294x/(25 + x)

Logistic η4(x,ρ(5)) = 49.62 + 290.51/{1 + exp[(150 − x)/45.51]}

In a pioneering paper, Atkinson and Fedorov (1975b) proposed the T -optimality
criterion to construct designs for discriminating between two competing regres-
sion models. It provides a design such that the sum of squares for a lack of
fit test is large. Atkinson and Fedorov (1975a) extended this approach later for
discriminating a selected model η1 from a class of other regression models, say
{η2, . . . , ηk}, k ≥ 2. This concept does not require competing nested models and
has found considerable attention in the statistical literature; see, for example,
Fedorov (1980), Fedorov and Khabarov (1986) for early and Uciński and Bogacka
(2005), López-Fidalgo, Tommasi and Trandafir (2007), Atkinson (2008a, 2008b),
Tommasi (2009), Wiens (2009) or Dette, Melas and Shpilev (2012) for some more
recent references.

In general, the problem of finding T -optimal designs, either analytically or nu-
merically, is a very hard and challenging one. Although Atkinson and Fedorov
(1975b) indicated some arguments for the convergence of their iterative proce-
dure, there is no evidence that the convergence is sufficiently fast in cases with
more than two pairwise comparisons of regression models such that the procedure
can be used in those applications.

In the present paper we construct optimal discriminating designs for several
competing regression models where none of the models is selected in advance to
be tested against all other ones. Let d denote the number of pairwise compari-
son of interest. In Section 2 we introduce a Tp-optimality criterion, which is a
weighted average of d different T -optimality criteria corresponding to these pairs.
It is demonstrated in Section 3 that the corresponding optimal design problems are
closely related to (nonlinear) vector-valued approximation problems. The support
points of optimal discriminating designs are contained in the set of extreme points
of a best approximation, and the optimal design can be determined with the knowl-
edge of these points. Because we are only aware of the work of Brosowski (1968)
on vector-valued approximation, we consider this problem in Section 4.

Duality theory is then used to determine not only the points of the support, but
also the masses. The theory shows that there exist optimal designs with a support
of at most n + 1 points, where n is the total number of parameters in the compet-
ing regression models. We will illustrate by a simple example that the number of
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support points is usually much smaller. It turns out that this fact occurs in particu-
lar for d ≥ 3 comparisons, and therefore our investigations explain the difficulties
in the computation of T -optimal discriminating designs. For this reason we find
numerical results in the literature mainly for the cases d = 1 and d = 2, and ad-
vanced techniques are required for the determination of Tp-optimal discriminating
designs if d ≥ 3.

In Sections 5 and 6 we use the theoretical results to develop an efficient al-
gorithm for calculating Tp-optimal discriminating designs. The main idea of the
algorithm is very simple and essentially consists of two steps.

(1) The relation to the corresponding vector-valued approximation problem is
used to identify a reference set which contains all support of the Tp-optimal dis-
criminating design. This is done by linearizing the optimization problem. A com-
binatorial argument in connection with dual linear programs determines which
points are included in the support of the optimal design.

(2) A linearization of a saddle point problem that is concealed behind the design
problem is used for a simultaneous update of all weights.

The implementation of these two steps which are usually iterated is more com-
plicated and described in Section 6. Some comments regarding the convergence
and details for the main technical step of the algorithm are given in the supple-
mentary material [Braess and Dette (2013)] to this paper. In Section 7 we provide
several numerical examples and compare our approach with the currently available
methods. In particular, we consider the problem of determining optimal discrimi-
nating designs for the dose response models specified in Table 1. Here the currently
available procedure fails in the case of many pairwise comparisons, while the new
method determines a design with high efficiency in less than 10 iteration steps.

2. Preliminaries. Following Kiefer (1974) we consider designs that are de-
fined as probability measures with finite support on a compact design space X . If
the design ξ has masses w1, . . . ,wν at the distinct points x1, . . . , xν , then obser-
vations are taken at these points with the relative proportions given by the masses.
Let M = {η1, . . . , ηk} denote a class of possible models for the regression func-
tion η in (1.1), where θ(j) denotes the vector of parameters in model ηj that varies
in the set �(j) (j = 1, . . . , k). Atkinson and Fedorov (1975a) proposed to select
one model in M, say η1, to fix its vector of parameters ρ(1) and to determine a
discriminating design by maximizing

min
2≤j≤k

T1,j (ξ),(2.1)

where

T1,j (ξ) := inf
θ(j)∈�(j)

∫
X

[
η1(x, ρ(1)) − ηj (x, θ(j))

]2
dξ(x) (2 ≤ j ≤ k).
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If the competing regression models η1, . . . , ηk are not nested (as in Table 1), it is
not clear which model should be fixed in this approach, and it is useful to have
more “symmetry” in this concept. For illustration consider the case of two com-
peting nonnested models, say ηi(x, θ(i)), ηj (x, θ(j)), and assume that the experi-
menter can fix a parameter for each model, say ρ(1) and ρ(2). In this case for a given
design ξ there exist two T -optimality criteria, say T1,2 and T2,1, corresponding to
the specification of the model η1 or η2, respectively, where

Ti,j (ξ) := inf
θ(j)∈�(j)

	i,j (θ(j), ξ)

(2.2)
= inf

θ(j)∈�(j)

∫
X

[
ηi(x, ρ(i)) − ηj (x, θ(j))

]2
dξ(x)

(i �= j). The first index i in the term 	i,j corresponds to the fixed model ηi(x, ρ(i)),
while the minimum in (2.2) is taken with respect to the parameter of the model
specified by the index j . The parameter associated to the minimum is denoted as

θ∗
(i,j) := argmin

θ(j)∈�(j)

	i,j (θ(j), ξ),(2.3)

where we assume its existence and do not reflect its dependence on the design ξ

and the parameter ρ(i) since this will always be clear from the context. Note that we
use the notation θ∗

(i,j) for the parameter corresponding to the best approximation
of the model ηi (with fixed paramater ρ(i)) by the model ηj .

If a discriminating design has to be constructed for k competing models, there
exist k(k − 1) expressions of the form (2.2). Let pi,j be given nonnegative weights
satisfying

∑
i �=j pi,j = 1, then a design ξ∗ is called Tp-optimal discriminating for

the class of models M = {η1, . . . , ηk} if it maximizes the functional

T (ξ) := ∑
1≤i �=j≤k

pi,jTi,j (ξ) = ∑
1≤i �=j≤k

pi,j inf
θ(j)∈�(j)

	i,j (θ(j), ξ)(2.4)

[see also Atkinson and Fedorov (1975a)]. Note that the special choice pi,j > 0
(j = 2, . . . , k), pi,j = 0 (i = 2, . . . , k, j = 2, . . . , k; i �= j), refers to the case
where one model (namely η1) has been fixed and is tested against all other ones.
The criterion (2.4) provides a more symmetric formulation of the general dis-
criminating design problem. It has also been investigated by Tommasi and López-
Fidalgo (2010) among others for k = 2 competing regression models. They pro-
posed to maximize a weighted mean of efficiencies which is equivalent to the
criterion (2.4) if the weights pi,j are chosen appropriately.

In order to deal with the general case we denote the set of indices corresponding
to the positive weights in (2.4) as

I := {
(i, j) | pi,j > 0;1 ≤ i �= j ≤ k

}
.

We assume without loss of generality that the set I can be decomposed in p ≤
k subsets of the form {(i, j) ∈ I | 1 ≤ j ≤ k} and define Ii = {j ∈ {1, . . . , k} |
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(i, j) ∈ I} as the set of indices corresponding to those models which are used for
a comparison with model ηi . For each model ηi (i = 1,2, . . . , p), a parameter,
say ρ(i), is fixed due to prior information, and the model ηi(x, ρ(i)) has to be
discriminated from the other ones in the set Ii . Define

λi := #Ii , d :=
p∑

i=1

λi(2.5)

as the cardinality of the sets Ii and I , respectively. Note that d denotes the total
number of pairwise comparisons included in the optimality criterion (2.4). Con-
sider the space Fd = C(X )d of continuous vector-valued functions defined on X ,
and define for a function g = (gij )(i,j)∈I ∈ Fd a norm by

‖g‖ := sup
x∈X

∣∣g(x)
∣∣,(2.6)

where |g(x)|2 := ∑
(i,j)∈I pi,j g

2
ij (x) denotes a weighted Euclidean norm on R

d . In
this framework the distance between two functions f,g ∈ Fd is given by ‖f − g‖.
Next, given the parameters ρ(1), . . . , ρ(p) for the models η1, . . . , ηp , respectively,
due to prior information, define the d-dimensional vector-valued function

η(x) := (
η1(x, ρ(1)), . . . , η1(x, ρ(1))︸ ︷︷ ︸

λ1 times

, . . . , ηp(x, ρ(p)), . . . , ηp(x, ρ(p))︸ ︷︷ ︸
λp times

)T
,(2.7)

where each function ηj (x, ρ(j)) appears λj times in the vector η(x). We also con-
sider a vector of approximating functions

η(x, θ) := ((
ηj (x, θ(1,j))

)
j∈I1︸ ︷︷ ︸

∈R
λ1

, . . . ,
(
ηj (x, θ(p,j))

)
j∈Ip︸ ︷︷ ︸

∈R
λp

)T ∈ Fd .(2.8)

We emphasize again that we use the notation θ(i,j) for the parameter in the
model ηj . This means that different parameters θ(i,j) and θ(k,j) are used if the
model ηj has to be discriminated from the models ηi and ηk (i �= k). The corre-
sponding parameters are collected in the vector

θ = (
(θ(1,j))j∈I1, . . . , (θ(p,j))j∈Ip

)T ∈ � =
p⊗

i=1

⊗
j∈Ii

�(j),(2.9)

and we denote by n := dim� = ∑p
i=1

∑
j∈Ii

dim�(j) the total number of all pa-
rameters involved in the Tp-optimal discriminating design problem. With this no-
tation the optimal design problem can be rewritten as

max
ξ

∑
1≤i �=j≤p

pi,j min
θ(j)∈�(j)

	i,j (θ(j), ξ),(2.10)

and the following examples illustrate this general setting.
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EXAMPLE 2.1. Consider the case k = 3 and assume that all weights pi,j in
the criterion (2.4) are positive. Here no model is preferred, and there are 6 pairwise
comparisons. This yields p = k = 3,

I = {
(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)

}
,

I1 = {2,3}, I2 = {1,3}, I3 = {1,2},
λ1 = λ2 = λ3 = 2 and d = 6. We obtain for the vectors in (2.7) and (2.8)

η(x) = (
η1(x, ρ(1)), η1(x, ρ(1)), η2(x, ρ(2)), η2(x, ρ(2)),

η3(x, ρ(3)), η3(x, ρ(3))
)T

,

η(x, θ) = (
η2(x, θ(1,2)), η3(x, θ(1,3)), η1(x, θ(2,1)), η3(x, θ(2,3)),

η1(x, θ(3,1)), η2(x, θ(3,2))
)T

,

with

θ = (θ(1,2), θ(1,3), θ(2,1), θ(2,3), θ(3,1), θ(3,2))
T

∈ �(2) × �(3) × �(1) × �(3) × �(1) × �(2).

EXAMPLE 2.2. Consider the problem of discriminating between k = 3 nested
polynomial models η1(x, θ(1)) = θ10 + θ11x, η2(x, θ(2)) = θ20 + θ21x + θ22x

2

and η3(x, θ(3)) = θ30 + θ31x + θ32x
2 + θ33x

3. A common strategy to identify
the degree of the polynomial is to test a quadratic against a linear and a cubic
against the quadratic model. In this case we choose only two positive weights
p2,1 and p3,2 in the criterion (2.4) which yields I = {(2,1), (3,2)}, I1 = {1},
I2 = {2}, p = 2, λ1 = λ2 = 1 and d = 2. The functions η and η(·, θ) are given by
η(x) = (η2(x, ρ(2)), η3(x, ρ(3)))

T ,

η(x, θ) = (
η1(x, θ(2,1)), η2(x, θ(3,2))

)T = (
θ10 + θ11x, θ20 + θ21x + θ22x

2)T
,

respectively, where θ = (θ(2,1), θ(3,2))
T ∈ R

5.

3. Characterization of optimal designs. The Tp-optimality of a given de-
sign ξ can be checked by an equivalence theorem (Theorem 3.1) that can be proved
by the same arguments as used by Atkinson and Fedorov (1975a). As usual, the
following properties tacitly are assumed to hold:

(A1) The regression functions ηi(x, θ(i)) are differentiable with respect to the
parameter θ(i) (i = 1, . . . , k).

(A2) Let ξ∗ be a Tp-optimal discriminating design. The parameter θ∗ =
(θ∗

(i,j))
T
(i,j)∈I defined by (2.3) exists, is unique and an interior point of �.

Both assumptions are always satisfied in linear models. Moreover, assump-
tion (A1) is satisfied for many commonly used nonlinear regression models; see
Seber and Wild (1989). It is usually harder to check assumption (A2) because it
depends on the individual Tp-optimal design.
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THEOREM 3.1 (Equivalence theorem). A design ξ is a Tp-optimal discrimi-
nating design for the class of models M if and only if for all x ∈ X ,

ψ(x, ξ) := ∑
(i,j)∈I

pi,j

[
ηi(x, ρi) − ηj

(
x, θ∗

(i,j)

)]2 ≤ T (ξ),(3.1)

where θ∗
(i,j) is defined by (2.3). Moreover, if ξ is a Tp-optimal discriminating de-

sign, then equality holds in (3.1) for all support points of ξ .

The equivalence theorem asserts that there is no gap between the solution of the
max min problem (2.10) and the corresponding min max problem. The following
result shows that the Tp-optimal design problem is intimately related to a nonlinear
vector-valued approximation problem with respect to the norm (2.6).

THEOREM 3.2. Let η, η(·, θ) and T (ξ) be defined by (2.8), (2.9) and (2.4),
respectively, then

sup
ξ

T (ξ) = inf
θ∈�

∥∥η − η(·, θ)
∥∥2

,(3.2)

that is, with ψ defined in the equivalence theorem

sup
ξ

inf
θ∈�

∫
X

ψ(x, ξ) dξ = inf
θ∈�

sup
ξ

∫
X

ψ(x, ξ) dξ.(3.3)

If ξ∗ maximizes T (ξ), then the vector θ∗ = (θ∗
(i,j))(i,j)∈I defined in (2.3) satisfies∥∥η(x) − η

(
x, θ∗)∥∥ = inf

θ∈�

∥∥η(x) − η(x, θ)
∥∥ = T

(
ξ∗)

.(3.4)

Moreover, the support of the Tp-optimal discriminating design ξ∗ for the class M
satisfies

supp
(
ξ∗) ⊂ A := {

x ∈ X |∣∣η(x) − η
(
x, θ∗)∣∣ = ∥∥η − η

(·, θ∗)∥∥}
.(3.5)

PROOF. We have for any design ξ̃ the relation

inf
θ∈�

∫
X

ψ(x, ξ) dξ̃ ≤ inf
θ∈�

sup
ξ

∫
X

ψ(x, ξ) dξ,

and the left-hand side of (3.3) cannot be larger than the right-hand side, that is,
T (ξ̃ ) ≤ infθ∈� ‖η − η(·, θ)‖2. Since ξ̃ is an arbitrary design, the bound holds also
for supξ T (ξ). This means in terms of (3.2) supξ T (ξ) ≤ infθ∈� ‖η − η(·, θ)‖2.

Now the characterization of Tp-optimality in Theorem 3.1 and the definition of
θ∗ = (θ∗

(i,j))(i,j)∈I in Theorem 3.1 yield

T
(
ξ∗) ≤ inf

θ∈�

∥∥η − η(·, θ)
∥∥2 ≤ ∥∥η − η

(·, θ∗)∥∥2

= sup
x∈X

∑
(i,j)∈I

pi,j

[
ηi(x, ρ(i)) − ηj

(
x, θ∗

(i,j)

)]2 ≤ T
(
ξ∗)

,
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which proves the first part of Theorem 3.2. The statement on the support points of
ξ∗ follows directly from these considerations. �

Equality (3.4) means that the parameter θ∗ defined in (2.3) corresponds to the
best approximation of the function η in (2.7) by functions of the form (2.8) with re-
spect to the norm (2.6). If this nonlinear approximation problem has been solved,
and the parameter θ̄ = ((θ̄(i,j))j∈I1, . . . , (θ̄(p,j))j∈Ip) corresponds to a best ap-
proximation, that is, ∥∥η − η(·, θ̄)

∥∥2 = min
θ∈�

∥∥η − η(·, θ)
∥∥2

,(3.6)

it follows from Theorem 3.2 that the support of the Tp-optimal discriminating
design is contained in the set A defined in (3.5). In linear models and in many of
the commonly used nonlinear regression models θ∗ and θ̄ are uniquely determined.

EXAMPLE 3.3. In Example 2.1 we considered discriminating design prob-
lems for 3 rival models η1, η2, η3 and all weights in the optimality criterion are pos-
itive. By Theorem 3.2 the support of the Tp-optimal discriminating design problem
can be found by solving the nonlinear vector-valued approximation problem

inf
θ∈�

∥∥η − η(·, θ)
∥∥2 = inf

{
sup
x∈X

∑
1≤i �=j≤3

pi,j

∣∣ηi(x, ρ(i)) − ηj (x, θ(i,j))
∣∣2∣∣∣

θ(i,j) ∈ �(j);1 ≤ i �= j ≤ 3
}
.

The following result is an approach in this framework for the calculation of the
masses of the Tp-optimal discriminating design.

COROLLARY 3.4. Assume that a parameter θ̄ defined in (3.6) exists and is an
interior point of �, and let ∇θ(i,j)

denote the gradient of ηj with respect to θ(i,j).

(a) If a design ξ is a Tp-optimal discriminating design for the class M, then∫
A

(
ηi(x, ρ(i)) − ηj (x, θ̄(i,j))

)∇θ(i,j)
ηj (x, θ(i,j))|θ(i,j)=θ̄(i,j)

dξ(x) = 0(3.7)

holds for all (i, j) ∈ I .
(b) Conversely, if all competing models are linear, and the design ξ satis-

fies (3.7) such that supp(ξ) ⊂ A, then ξ is a Tp-optimal discriminating design
for the class M.

PROOF. If condition (3.7) is not satisfied, there is a direction in the parameter
space � in which the criterion decreases. Thus (3.7) is a necessary condition. From
Theorem 3.2 we know that the best approximation gives rise to a Tp-optimal de-
sign, and it follows from a uniqueness argument that the condition is also sufficient
in this case. �
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4. Chebyshev approximation of d-variate functions. By Theorem 3.2,
a Tp-optimal discriminating design is associated to an approximation problem in
the space of continuous d-variate functions on the compact design space X where
d is the number of comparisons as specified by (2.5). This relation can be used for
the computation of Tp-optimal designs and for the evaluation of the efficiency of
computed designs.

In this section we will investigate these approximation problems in more detail
for the case of linear models. We restrict the presentation to linear models because
we want to emphasize that the main difficulties already appear in linear models if
d ≥ 3. The extension to nonlinear regression models is straightforward and will be
provided in Section 6.3.

The general theory here and in the previous section provides only the informa-
tion that a Tp-optimal discriminating design exists with n+1 or less support points
where n = dim�. We will demonstrate in Section 4.2 that the number of support
points is often much smaller than n + 1. This is the reason for the difficulties in
the numerical construction, even if only linear models are involved. In contrast to
other methods [see, e.g., López-Fidalgo, Tommasi and Trandafir (2007)] the con-
struction via the approximation problem has the advantage that the points of the
support of the Tp-optimal discriminating design are directly calculated.

4.1. Characterization of best approximations. We will avoid double indices
for vectors and vector-valued functions throughout this section in order to avoid
confusion with matrices. We write θ = (θ1, θ2, . . . , θn)

T instead of (θ(i,j))
T
(i,j)∈I

and (f1, . . . , fd)T instead of the vector η(x) defined in (2.7). The approximation
problem is considered for a given d-variate function f = (f1, . . . , fd)T ∈ Fd =
C(X )d . It is not necessary that some components of f are equal as it occurs in the
function (2.7).

In the case of linear models, equation (2.8) defines an n-dimensional linear sub-
space

V =
{
v =

n∑
m=1

θmvm

∣∣∣∣θ = (θ1, θ2, . . . , θn) ∈ R
n

}
⊂ Fd,(4.1)

where v1, v2, . . . , vn ∈ Fd denotes a basis of V , and n is the dimension of the
parameter space � in (2.9). Note that f (x) and v(x) are d-dimensional vectors
for x ∈ X and v ∈ V . Theorem 3.2 relates the Tp-optimal discriminating design
problem to the problem of determining the best Chebyshev approximation u∗ of
the function f by elements of the subspace V , that is,∥∥f − u∗∥∥ = min

v∈V
‖f − v‖.

As stated in (2.6), the norm ‖ · ‖ refers to the maximum-norm on C(X )d , ‖g‖ :=
supx∈X |g(x)|, where the weighted Euclidean norm | · | and the corresponding inner
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product in R
d are defined by

|r|2 :=
d∑

l=1

pl|rl|2, 〈r̃ , r〉 :=
d∑

l=1

plr̃lrl, r, r̃ ∈ R
d(4.2)

[here the weights pl correspond to the weights pi,j used in the definition (2.6)]. Be-
cause the family V defined in (4.1) is a linear space, the classical Kolmogorov cri-
terion [see Meinardus (1967)] can be generalized to the problem of vector-valued
approximation. The result is easily obtained from the cited literature if products of
real or complex numbers in the proof of the classical theorem are replaced by the
Euclidean inner products of d-vectors. The nonlinear character of the procedures
for determining best approximations does not matter at this point.

LEMMA 4.1 (Kolmogorov criterion for vector-valued approximation). Let u ∈
V and

A := {
x ∈ X |∣∣ε(x)

∣∣ = ‖ε‖}
(4.3)

be the set of extreme points of the error function ε := f − u. The d-variate func-
tion u is a best approximation to f in V if and only if for all v ∈ V ,

min
x∈A

〈
ε(x), v(x)

〉 ≤ 0.(4.4)

Assume that u is a best approximation of the function f . Condition (4.4) in the
Kolmogorov criterion means that the system of inequalities〈

ε(x), v0(x)
〉
> 0 ∀x ∈ A

is not solvable. Let v1, v2, . . . , vn be a basis of V . Using the representation

v(x) =
n∑

m=1

αmvm(x)(4.5)

and setting rm(x) := 〈ε(x), vm(x)〉 we obtain the unsolvable system
n∑

m=1

αmrm(x) > 0 ∀x ∈ A(4.6)

for the vector α = (α1, α2, . . . , αn)
T ∈ R

n. The numbers rm(x) are considered as
the components of a vector r(x), and by the theorem on linear inequalities [see
Cheney (1966), page 19] it follows that the system (4.6) is not solvable if and
only if the origin in R

n is contained in the convex hull of the vectors {r(x) =
(r1(x), . . . , rn(x))T , x ∈ A}. By Carathéodory’s theorem there are ν ≤ n+1 points
x1, . . . , xν ∈ A and numbers w1, . . . ,wν ≥ 0 such that

∑ν
i=1 wi = 1 and

ν∑
i=1

wir(xi) =
ν∑

i=1

wi

〈
ε(xi), v(xi)

〉 = 0 ∀v ∈ V.(4.7)
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THEOREM 4.2 (Characterization theorem). Let u ∈ V and A be the set of
extreme points of ε = f − u. The following statements are equivalent:

(i) u is a best approximation to f in V .
(ii) There exist ν ≤ n + 1 points x1, x2, . . . , xν ∈ A such that for all v ∈ V

min
1≤i≤ν

〈
ε(xi), v(xi)

〉 ≤ 0.(4.8)

(iii) There exist ν ≤ n + 1 points x1, x2, . . . , xν ∈ A and ν weights w1,
w2, . . . ,wν ≥ 0,

∑ν
i=1 wi = 1 such that the functional


(g) := 1

‖ε‖
ν∑

i=1

wi

〈
ε(xi), g(xi)

〉
(4.9)

satisfies


(ε) = ‖ε‖, ‖
‖ = 1 and V ⊂ ker(
),(4.10)

where ker(
) = {v ∈ V | 
(v) = 0} denotes the kernel of the linear functional 
.

PROOF. The equivalence of (i) and (ii) follows from the Kolmogorov criterion.
To verify the equivalence with condition (iii), let u∗ be a best approximation and
ε∗ = f − u∗. Define the functional (4.9) with the parameters xi and wi from (4.7).
By the Cauchy–Schwarz inequality we obtain 〈ε∗(xi), g(xi)〉 ≤ |ε∗(xi)||g(xi)| ≤
‖ε∗‖‖g‖ with equality if g = ε∗. Since

∑
i wi = 1, it follows that 
(g) ≤ ‖g‖,

again with equality if g = ε∗, and the properties in (4.10) are verified.
Finally, assume that u ∈ V , and a functional with the properties (4.10) exists.

We have for any v ∈ V

‖f − v‖ = ‖
‖‖f − v‖ ≥ 
(f − v) = 
(f − u) + 
(u − v) = ‖f − u‖ + 0,

and u is a best approximation. �

The extreme points x1, x2, . . . , xν and the masses w1,w2, . . . ,wν in Theo-
rem 4.2 define the Tp-optimal discriminating design. This follows from part (iii)
of the theorem that is closely related to condition (3.7) in Corollary 3.4. In-
deed, assume that (iii) in the theorem is satisfied, and consider a design ξ∗ with
weights w1,w2, . . . ,wν at the points x1, x2, . . . , xν . It follows for all v ∈ V that
‖ε∗‖
(v) = ∫

A〈f (x) − u∗(x), v(x)〉dξ∗(x) = 0, and by inserting the elements
v1, v2, . . . , vn of the basis of V we obtain precisely condition (3.7). Consequently,
there exists a Tp-optimal discriminating design with at most n + 1 support points.
As we will see in Lemma 5.3, functions satisfying only some of the properties in
Theorem 4.2(iii) will also play an important role.
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4.2. The number of support points—the generic case. By the characterization
theorem there exists an optimal design with at most n + 1 support points. If the
number of points in the set A equals n + 1, then the masses w1,w2, . . . ,wn+1
of an optimal design can be calculated by the n equations (3.7) together with the
normalization

∫
A dξ(x) = 1. In most real-life problems, however, the number of

support points is substantially smaller than n + 1, and we obtain from (3.7) more
equations than unknown masses. In this case the problem is ill-conditioned and the
numerical computation of the masses will be more sophisticated. The following
example illustrates the statement on the support.

EXAMPLE 4.3. We reconsider Example 2.2 for the polynomial regression
models. The weights p2,1 and p3,2 are chosen as positive numbers. Since all func-
tions are polynomials, we may assume X = [−1,+1] without loss of generality.
A quadratic polynomial f1 is approximated by linear polynomials in the first com-
ponent, and a cubic polynomial f2 is approximated by quadratic polynomials in
the second component. Therefore, V = P1 × P2, where Pk denotes the set of poly-
nomials of degree ≤ k.

We note that the character of the approximation problem does not change if we
subtract a linear polynomial from f1 and a quadratic polynomial from f2. There-
fore we can assume that f (x) = (ρ2x

2, ρ3x
3)T . Symmetry arguments show that

the best approximating functions will be polynomials with the same symmetry,
and we obtain the reduced approximation problem

min
θ1,θ2∈R

sup
x∈[−1,1]

(
p2,1

∣∣ρ2x
2 − θ1

∣∣2 + p3,2
∣∣ρ3x

3 − θ2x
∣∣2)

.

We now fix the given parameters as ρ2 = ρ3 = 1 and the weights in the Tp-
optimality criterion as p2,1 = p3,2 = 1/2. The best approximation is given by
u∗(x) = (1/2, x)T , that is, the first component is the best approximation of the
univariate function f1, and the second component interpolates f2 at the extreme
points of f1 − u∗

1. The function ψ(x) = |f (x) − u∗(x)|2 = (x6 − x4 + 1/4)/2
is depicted in the left part of Figure 1. The support of the Tp-optimal discrimi-
nating design ξ∗ is a subset of the set of extreme points A = {−1,0,+1} of the
function |f − u∗|2. The linear functional 
 in Theorem 4.2 is easily determined as

(g) = √

2[1
4g(−1)− 1

2g(0)+ 1
4g(1)]. The characterization theorem, Theorem 4.2,

yields the associated Tp-optimal discriminating design

ξ∗ =
(−1 0 1

1
4

1
2

1
4

)
,(4.11)

where the first line provides the support and the second one the associated masses.
The degeneracy is now obvious. The dimension of the set V ⊂ F2 is n = 5, but the
solution of the corresponding approximation problem has only 3 extreme points.
This degeneracy is counter intuitive. When univariate functions are approximated
by polynomials in P2, then by Chebyshev’s theorem there are at least 4 extreme
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FIG. 1. Error functions ψ(x) = |f (x) − u∗(x)|2 in the equivalence theorem for Example 4.3. Left
panel: ρ2 = ρ3 = 1; right panel: ρ2 = 1, ρ3 = 4.

points. Although our approximation problem with 2-variate functions contains
more functions and more parameters, the number of extreme points is smaller.

Note also that the second component is determined by interpolation and not by a
direct optimization. The same designs are obtained whenever p2,1ρ

2
2 ≥ p3,2ρ

2
3 . If

this condition does not hold, we may have 4 extreme points, as shown in the right
part of Figure 1 for the choice ρ2 = 1; ρ3 = 4. The solution is also degenerate.
Here, the location of the support points depends on the value of ρ3. In the men-
tioned case we obtain (subject to rounding) the Tp-optimal discriminating design
with masses 0.18, 0.32, 0.32, 0.18 at the points −1, −0.48, 0.48 and 1.

The previous example shows that the cardinality of the support depends on the
given parameters ρ(1), ρ(2), . . . , ρ(p). The following definition helps one to under-
stand which cardinality is found in most cases.

DEFINITION 4.4. Let ξ∗ be a Tp-optimal discriminating design for the given
data ρ(1), ρ(2), . . . , ρ(p) with ν ≤ n + 1 support points. The design ξ∗ is called
a generic point if for all parameters in some neighborhood of ρ(1), ρ(2), . . . , ρ(p)

the corresponding Tp-optimal discriminating designs have the same number ν of
support points.

Our numerical experience leads to the following:

CONJECTURE 4.5. If a Tp-optimal discriminating design is a generic point,
then its support consists of

max
(i,j)∈I

dim�(j) + 1

points.
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It has been observed in the literature that the number of points in the support
can be smaller than n+ 1 [see, e.g., Dette and Titoff (2009)], but computations for
d ≤ 2 do not give the correct impression how large the reduction can be.

5. Linearization and duality. The equivalence theorem (Theorem 3.1) and
Theorem 3.2 show that the maximization of T (ξ) is related to a minimization prob-
lem. This duality is also reflected in the characterization theorem (Theorem 4.2).
We will now consider Newton’s iteration for the computation of best approxima-
tions.

In each step of the iteration an approximating function u in the family V is im-
proved simultaneously with a reference set S = {x1, x2, . . . , xν} that is considered
as an approximation of the set A of extreme points which contains the support of
Tp-optimal discriminating designs. Thus we focus on the minimization problem,
but we will obtain the associated weights {w1,w2, . . . ,wν} by duality considera-
tions. Note that in this section we regard duality in connection with the linearized
problems and the involved linear programs.

Given a guess u for the approximating function and a finite reference set S , the
quadratic term of the correction v in the binomial formula is temporarily ignored.
As usual, let ε := f − u. We replace the optimization problem

max
xi∈S

∣∣f (xi) − u(xi) − v(xi)
∣∣2

(5.1)
= max

xi∈S

{∣∣ε(xi)
∣∣2 − 2

〈
ε(xi), v(xi)

〉 + ∣∣v(xi)
∣∣2} → min

v∈V
!

by the linear program

max
xi∈S

{∣∣ε(xi)
∣∣2 − 2

〈
ε(xi), v(xi)

〉} → min
v∈V

!.(5.2)

While the left-hand side of (5.1) is obviously bounded from below, this is not
always true for the optimization problem (5.2). The boundedness, however, is es-
sential for the algorithm.

DEFINITION 5.1. A function u ∈ V is called dual feasible for the reference
set S , if the left-hand side of (5.2) is bounded from below.

The notation of dual feasibility will be clear from the dual linear program (5.4)
and Lemma 5.2 below. We will also see in Lemma 5.3 that only the dual feasible
functions are associated to a design ξ in the sense of (2.2).

The minimization of a linearized functional on a finite set S = {xi}νi=1 with
ν ≥ n + 1 as in (5.2) will be the basis of our algorithm. For a given error function
ε = f − u and a reference set with ν points x1, x2, . . . , xν we may use represen-
tation (4.5) and rewrite the primal problem (5.2) as a linear program for the n + 1
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variables E,α1, α2, . . . , αn:

E → min!,
(5.3)

2
n∑

m=1

αm

〈
ε(xi), vm(xi)

〉 + E ≥ ∣∣ε(xi)
∣∣2, i = 1,2, . . . , ν.

Obviously, there exists a feasible point for this linear program, since the inequali-
ties are satisfied by α1 = α2 = · · · = αn = 0 and E = ‖ε‖2.

The dual program to (5.3) contains the equations for the ν weights w1,
w2, . . . ,wν with the adjoint matrix, where we can drop the factor 2 for the sake of
simplicity,

ν∑
i=0

wi

∣∣ε(xi)
∣∣2 → max!,

ν∑
i=1

wi

〈
ε(xi), v(xi)

〉 = 0 ∀v ∈ V,(5.4)

ν∑
i=1

wi = 1, wi ≥ 0, i = 1,2, . . . , ν.

The following result of duality theory will play an important role [for a proof see
Papadimitriou and Steiglitz (1998)].

LEMMA 5.2. The linear program (5.4) has a feasible point and a solution
if and only if the objective function in the linear program (5.3) is bounded from
below, that is,

min
v∈V

max
0≤i≤n

〈
ε(xi), v(xi)

〉 ≥ 0.

If the linear program (5.4) has a feasible point, there is a solution with at most
n+ 1 positive weights. We obtain a linear functional 
 of the form (4.9) with these
parameters where ‖
‖ = 1 and V ⊂ ker(
). We have 
(ε) < ‖ε‖, whenever u is
not a best approximation. Since the values of the primal program (5.3) and the
dual program (5.4) coincide, we also have

E =
ν∑

i=1

wi

∣∣ε(xi)
∣∣2.

The final result of this section shows that the evaluation of the functional T

defined in (2.4) for a given design ξ is strongly related to dual feasibility.

LEMMA 5.3. Let u ∈ V and S = {xi}νi=1. The following statements are equiv-
alent:
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(i) The function u is dual feasible for the reference set S .
(ii) There exist nonnegative weights wi, i = 1,2, . . . , ν, such that

ν∑
i=1

wi

〈
ε(xi), v(xi)

〉 = 0

holds for all v ∈ V .
(iii) There exists a design ξ supported on S such that

u = argmin
v∈V

∫
X

∣∣f (x) − v(x)
∣∣2 dξ(x).

PROOF. The equivalence of (i) and (ii) is a direct consequence of Lemma 5.2.
Note that for t ∈ R and v ∈ V ,

ν∑
i=1

wi

∣∣(f − u − tv)(xi)
∣∣2

(5.5)

=
ν∑

i=1

wi

(∣∣ε(xi)
∣∣2 − 2t

〈
ε(xi), v(xi)

〉 + t2∣∣v(xi)
∣∣2)

.

If (ii) holds with the weights wi , then expression (5.5) attains its minimum at
v = 0. Hence, u is the solution of the minimization of

∫
X |f (x) − u(x)|2 dξ(x) for

the design ξ with the support S and the masses w1, . . . ,wν from condition (ii).
If (ii) does not hold, then the minimum of (5.5) is not obtained at t = 0 for one
v ∈ V . Therefore the minimum is not attained at u. �

6. The algorithm. Each step of our iterative procedure consists of two parts.
The first part deals with the improvement of the approximating function and the
reference set. It focuses on the approximation problem. The second part is con-
cerned with the computation of the associated masses. The dual linear program is
embedded in a saddle point problem. Thus computations for the primal problem
and the dual problem may alternate during the iteration. The small number of sup-
port points of Tp-optimal discriminating designs (as described in Conjecture 4.5)
has impact on both parts.

The iteration starts with a set of parameters θ(i,j) and a reference set of about
n+ 1 points which divide the interval X into subdomains of equal size. Of course,
any prior information may be used for getting a better initial guess.

6.1. Newton’s method and its adaptation. The improvement of the approxi-
mation on a given reference set will be done iteratively by Newton’s method. In
order to avoid the introduction of an additional symbol, we focus on one step of
the iteration for the given input u0, the corresponding error function ε0 = f − u0,
and the reference set S0. The simplest Newton step,
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Given u0 and S0, find a solution of the linear program (5.3) for u = u0, set
v = ∑

m αmvm.
Take u1 = u0 + v as the result of the Newton step,

looks natural; however, it can be only the basis of our algorithm. We take three
actions. For convenience, we use the notation ‖g‖S := supx∈S |g(x)|.

(1) Newton steps on subspaces. Referring to the notation in Section 2 we write
the space of approximating functions as a sum of d subspaces

V = ⊕
(i,j)∈I

V(i,j),(6.1)

where V(i,j) contains those functions in V that correspond to {ηj (·, θ(i,j)) | θ(i,j) ∈
�(j)}. The linear program that is obtained from (5.3) by the restriction of the func-
tions

∑
m αmvm to the subspace V(i,j) will be denoted as (5.3)(i,j).

The improvement of the approximation on the reference set will be done itera-
tively by Newton’s method. The linearization (5.2), however, will be considered for
the subspaces V(i,j) and not for V . In other words, the d linear programs (5.3)(i,j)

are performed separately. It follows from Conjecture 4.5 that we have dual feasibil-
ity only on lower dimensional spaces. Indeed, the splitting (6.1) creates dual fea-
sible problems, or the defect is one-dimensional, and the regularization described
in item (3) below is the correct remedy. Moreover, another improvement without
the splitting will be provided in combination with the evaluation of the masses in
part 2 of the iteration step. [Note that we have the same splitting in the evaluation
of θ∗ according to (2.3).]

(2) The damped Newton method. The Newton correction v will be multi-
plied by a damping factor t . By definition of the Newton method we have
maxxi∈S0{|ε0(xi)|2 − 2〈ε0(xi), v(xi)〉} < ‖ε0‖2

S0
if we have not yet obtained the

solution of the actual minimum problem. Since∣∣(f − u0 − tv)(xi)
∣∣2 = ∣∣ε0(xi)

∣∣2 − 2t
〈
ε0(xi), v(xi)

〉 + O
(
t2)

,

it follows that ‖f − u0 − tv)‖2
S0

< ‖ε0‖2
S0

for sufficiently small positive factors t ;
and thus an improvement is generated. Let

T := {
1,2−1,2−2,2−3,2−4, . . . ,2−7,0

}
,

and determine

t = argmin
t∈T

‖f − u0 − tv‖S0 .(6.2)

The standard set of damping factors 1,2−1,2−2, . . . has been augmented by the
element 0, and therefore the new approximation is at least as good as the old one.
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(3) Regularization by adding a bound. By definition the objective function E is
not bounded from below in the linear program (5.3)(i,j) if u0 is not feasible with
respect to V(i,j). Therefore, we add the restriction E ≥ 0 to the linear programs.

At the end of this part of the iteration step we have an improved approximation u1.
Extreme points of f − u1 that are not yet obtained in S0 are added to this set.
A decision on the augmentation of the reference set is easy when the error curve
is shown on the monitory of the computer. Furthermore, we mark the points in
S0 to which a positive mass was given by the dual linear program associated to
(5.3)(i,j) for one pair (i, j) ∈ I . The points in the reference set are relabel such
that x1, x2, . . . , xμ are the marked ones.

6.2. Computation of best designs. The adapted Newton step in the first part of
the iteration step has provided an improved error curve ε1 = f − u1 and simulta-
neously a set of marked points, say {x1, x2, . . . , xμ}. Let ξ be a design with this
support and masses {w1,w2, . . . ,wμ} that are not yet known. We look for a cor-
rection v with the representation (4.5) such that u1 + v is associated to T (ξ) in the
spirit of (2.2), that is, we have to minimize

μ∑
i=1

wi

∣∣∣∣∣ε1(xi) −
n∑

k=1

αkvk(xi)

∣∣∣∣∣
2

= αT Aα − 2wT Rα + bT w,(6.3)

where the elements of the matrices A = (Ajk)j,k=1,...,n, R = (Rik)
j=1,...,n
i=1,...,μ and the

vector b = (bi, . . . , bn)
T are defined by

Ajk := ∑
i

wi

〈
vj (xi), vk(xi)

〉
,

Rik := 〈
ε1(xi), vk(xi)

〉
,(6.4)

bi := ∣∣ε(xi)
∣∣2.

The optimal design among all designs supported at {x1, . . . , xμ} is determined by
the solution of the saddle point problem

max
w

min
α

{
α′Aα − 2w′Rα + b′w

}
,(6.5)

where we will ignore the dependence of the matrix A on w for a moment. Rea-
sonable weights in (6.4) will be specified below. The inner optimization problem
in (6.5) is solved by

Aα = RT w,(6.6)

and we arrive at the quadratic program

max
w

{−wT RA−1RT w + bT w|eT w = 1,wi ≥ 0
}
,(6.7)
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where e := (1,1, . . . ,1)T is a μ-vector. In order to check whether all masses are
positive, we compute an approximate solution w̃ by solving the linear program

ν∑
i=1

∣∣(RA−1RT w̃
)
i

∣∣ → min!,
(6.8)

ν∑
i=1

w̃i = 1, w̃i ≥ 0, i = 1,2, . . . ,μ.

We observed in our numerical calculations that all masses are positive, when-
ever at least 2 points have been marked in part 1 of the procedure. After removing
points with zero mass w̃i , if necessary, we can ignore the restrictions wi ≥ 0, and
problem (6.7) is solved by the linear saddle point equation⎛

⎝ A −RT

−R e

eT

⎞
⎠

⎛
⎝ α

w

λ

⎞
⎠ =

⎛
⎝ 0

−1
2b

1

⎞
⎠ .(6.9)

Now we are in a position to specify which masses are inserted in (6.4) when the
matrix A is calculated. We start with equal masses wi = 1/μ for i = 1,2, . . . ,μ

when we build the matrix for the linear program (6.8). The masses w̃i from the
linear program are then used in the definition of the matrix A for the saddle point
equation (6.9). The solution of (6.9) yields the masses for the improved design ξ .
By definition, these masses are used when the criterion T (ξ) is evaluated.

The evaluation of T (ξ) according to (2.4) provides also corrections of the pa-
rameters. Let u2 = u1 + v be the associated function in V . By definition the sum
of weighted squares

∑
i |ε(xi)|2 is smaller for u2 than for u1. If the errors are

nearly equilibrated, it follows that maxi |ε(xi)| will also be smaller for u2 than
for u1. Therefore, we look for a damping factor t such that the norm of the error
‖f − (u1 + tv)‖ is as small as possible. The details of the damping procedure are
the same as in the damped Newton method described in Section 6.1.

The value of T (ξ) is a lower bound for the degree of approximation and pro-
vides a lower bound of the Tp-efficiency

EffTp(ξ) := T (ξ)

supη T (η)
≥ T (ξ)

‖ε‖2 .(6.10)

In particular, we have a stopping criterion for the algorithm. The iteration will be
stopped if the guaranteed Tp-efficiency is sufficiently close to 1.

6.3. Adaptation to nonlinear models. When the models η1, η2, . . . , ηk depend
nonlinearly on the parameters, the approximating function u(x, θ) depends in a
(possibly) nonlinear way on the parameter θ . The gradient space defined by{

η(·, θ̃ ) +
n∑

k=1

αk

∂

∂θk

η(·, θ)

∣∣∣∣
θ=θ̃

, α ∈ R
n

}
(6.11)
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is a linear subspace and all the procedures described for linear spaces can be ap-
plied to this gradient space. Only the computation of T (ξ) for given ξ requires
more effort. The minimization in its definition of T (ξ) can be done by Newton’s
method. The linearization uses those formulas that are related to the minimization
in the gradient space. Thus the algorithm can also deal with nonlinear models.

7. Numerical results. We confirm the efficiency of the new algorithm by nu-
merical results for three examples with linear and nonlinear regression functions.
A fourth example can be found in Appendix C of the supplementary material
[Braess and Dette (2013)]. We also provide a comparison with the algorithm pro-
posed by Atkinson and Fedorov (1975b). Each iteration step is performed in the
examples in less than 1 or 2 seconds on a five years old personal computer. The
quotient T (ξj )/‖εj‖2 in the tables shows the lower bound for the efficiency de-
fined in (6.10). When we distinguish between part 1 and part 2 of the iteration
step, an index is added to the iteration count. In particular, we distiguish the er-
ror functions εj,1 and εj,2 obtained in part 1 and part 2 of the iteration. The ra-
tio T (ξj )/‖εj,2‖2 in the tables shows the lower bound for the efficiency defined
in (6.10).

EXAMPLE 7.1. We consider once more Example 2.2, fix p2,1 = p3,2 = 1
2 , set

f (x) = (
η2(x, ρ(2)), η3(x, ρ(3))

)T = (
1 + x + x2,1 + x + x2 + x3)T

and start the algorithm with u0 = (0,0)T , that is, θ(2,1) = (0,0), θ(3,2) = (0,0,0).
The initial guess u0 implies that the functions obtained during the iteration do not
have the symmetry properties discussed in Example 4.3.

The results of the new algorithm are displayed in Table 2. After 8 iteration steps
we obtain a discriminating design with at least 99% efficiency. In the first part of

TABLE 2
The results of the new algorithm for Example 7.1

Part 1 Part 2

j ‖εj,1‖2 ‖εj,2‖2 T (ξj )
T (ξj )

‖εj,2‖2 Support Reference set

0 12.5 S = {−1,−0.5,

−0.1,0,0.1,0.5,1}
1 2.3513
2 0.6092
3 0.3391 0.2434 0.0146 0.0600 {−1,0.3,1} S ← S ∪ {0.3}
4 0.2012 0.1556 0.1144 0.7350 {−1,0.2,1} S ← S ∪ {0.2}
5 0.1401 0.1287 0.1029 0.8002 {−1,−0.3,1} S ← S ∪ {−0.3}
6 0.1268 0.1265 0.1225 0.9685 {−1,0.1,1}
7 0.1261 0.1260 0.1244 0.9872 {−1,−0.05,1} S ← S ∪ {−0.05}
8 0.1259 0.1258 0.1246 0.9906 {−1,0,04} S ← S ∪ {0.04}
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FIG. 2. Error curve |f − u|2 in the first three iteration steps for Example 7.1.

the iteration the lower bound is very small and of no use, but it is increasing rapidly
during the iteration. In Figure 2 we display the shape of the error function in the
first 3 iterations. We observe that the location of the extreme points changes sub-
stantially in the first steps of the algorithm. A comparison with Figure 1 shows that
afterwards there are no substantial changes of the shape. The resulting discrimi-
nating design puts the masses 0.241, 0.501 and 0.258 at the points −1, 0.04 and 1,
respectively. The parameters may be compared with the exact optimal ones 1

4 , 1
2

and 1
4 at the points given in (4.11). The parameters corresponding to the solution

of the nonlinear approximation problem defined by the right-hand side of (3.2) are
given by θ(2,1) = (1.501,1.002), θ(3,2) = (0.996,1.976,0.958).

For the sake of comparison we also present in the left part of Table 3 the corre-
sponding results for the first 16 iterations of the algorithm proposed by Atkinson

TABLE 3
The results of the algorithm proposed by Atkinson and Fedorov (1975b) in Example 7.1 (left part)

and Example 7.2 (right part)

j ‖ψ‖ T (ξj )
T (ξj )
‖ψ‖ ‖ψ‖ T (ξj )

T (ξj )
‖ψ‖

1 0.2172 0.1041 0.4791 0.0104 0.0033 0.3150
2 0.3995 0.0743 0.1860 0.0133 0.0034 0.2560
3 0.3189 0.0778 0.2440 0.0241 0.0045 0.1880
4 0.1539 0.1216 0.7903 0.0099 0.0055 0.5583
5 0.1974 0.1195 0.6055 0.0131 0.0055 0.4199
6 0.2337 0.1137 0.4868 0.0094 0.0063 0.6682
7 0.2045 0.1143 0.5592 0.0093 0.0060 0.6471
8 0.1347 0.1240 0.9206 0.0121 0.0062 0.5161
9 0.1732 0.1217 0.7029 0.0079 0.0065 0.8228

10 0.2055 0.1186 0.5773 0.0104 0.0064 0.6153
11 0.1791 0.1199 0.6694 0.0099 0.0064 0.6502
12 0.1356 0.1243 0.9165 0.0091 0.0065 0.7166
13 0.1651 0.1200 0.7267 0.0081 0.0066 0.8223
14 0.1640 0.1229 0.7493 0.0088 0.0065 0.7371
15 0.1714 0.1213 0.7078 0.0097 0.0065 0.6686
16 0.1362 0.1243 0.9130 0.0070 0.0067 0.9550
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and Fedorov (1975b). This method starts with an initial guess, say ξ0, and com-
putes successively new designs ξ1, ξ2, . . . as follows:

(1) At stage s a point xs+1 ∈ X is determined such that ψ(xs+1, ξs) =
supx∈X ψ(x, ξs), where the function ψ is defined in (3.1).

(2) The updated design ξs+1 is defined by ξs+1 = (1−αs)ξs +αsδxs+1, where δx

is the Dirac measure at point x, and (αs)s∈N0 is any sequence of positive numbers
satisfying αs → 0; ∑∞

s=0 αs = ∞; ∑∞
s=0 α2

s < ∞.

This procedure provides the design

ξ =
( −1 −0.2 −0.1 0 0.1 1

0.23 0.18 0.12 0.1 0.17 0.20

)
in 12 iteration steps, and its efficiency is at least 92%. The final design contains
an unnecessarily large support, although several design points with low weight
have been removed during the computations. Note that neither the sup-norm of
the function ψ is decreasing, nor the lower bound T (ξ)/‖ψ‖ is increasing. In
particular if the iteration is continued, the lower bound for the efficiency of the
calculated design is decreasing again. This effect is at first compensated after
the 16th iteration, where the bound for the efficiency is 91% (but not 92% as
after the 12th iteration). This “oscillating behavior” was also observed in other
examples and seems to be typical for the frequently used algorithm proposed by
Atkinson and Fedorov (1975b).

EXAMPLE 7.2. In order to demonstrate that the algorithm can be used when
dealing with nonlinear regression models, we consider two rival models η1(x, θ) =
θ11x

x+θ12
, η2(x, θ) = θ21(1 − e−θ22x), where ρ(1) = (2.0,1.0) and ρ(2) = (2.5,0.5).

The weights in the criterion (2.4) are p1,2 = p2,1 = 1/2. The corresponding re-
sults are depicted in Table 4 and the Newton method is started with θ(1,2) = (1,1),

TABLE 4
The results of the new algorithm for Example 7.2

Part 1 Part 2

j ‖εj,1‖2 ‖εj,2‖2 T (ξj )
T (ξj )

‖εj,2‖2 Support Reference set

0 1.25301 S ← {1,2,4,6,8,10}
1 0.040044
2 0.012839 0.008738 0.005404 0.6184 {0.7,4.5,10} S ← S ∪ {0.7,4.5}
3 0.006957 0.006827 0.006757 0.9897 {0.5,3.6,10} S ← S ∪ {0.5,3.6}
4 0.006805 0.006797 0.006786 0.9996 {0.5,3.4,10} S ← S ∪ {3.4}
5 0.006793 0.006789 0.006786 0.9999
6 0.006788 0.006787 0.006786 0.9999
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FIG. 3. The function ψ in the equivalence theorem (Theorem 3.1) for Example 7.2.

θ(2,1) = (2,0.5) and S = {1,2,4,6,8,10}. The degree of approximation is close
to the optimum already after 6 iteration steps, and the guaranteed efficiency is
99.9%. The resulting design has masses 0.311, 0.415 and 0.274 at the points 0.5,
3.4 and 10.0, respectively, while the parameters of the solution of the approxima-
tion problem on the right-hand side of (3.2) are given (subject to rounding) by the
parameters θ̄(1,2) = (3.008,1.809), and θ̄(2,1) = (1.721,0.865).

The determination of the parameter θ∗ that minimizes T (ξ) as defined in (2.3) is
done by Newton’s method. It yields the best θ in a neighborhood of the computed
solution. Therefore, we have also performed an extensive global search for the
minimum and found a minimum that equals the result of Newton’s method up to
rounding errors. Now, the plot of the corresponding function ψ in the equivalence
theorem (Theorem 3.1) is shown in Figure 3. We see that the design is in fact
Tp-optimal discriminating. Note that the support of the resulting design consists
of 3 points in accordance with Conjecture 4.5. The corresponding results for the
algorithm proposed by Atkinson and Fedorov (1975b) are displayed in the right
part of Table 3. The algorithm needs 16 iterations in order to find a design with
masses 0.32, 0.03, 0.21, 0.12, 0.06, 0.27 at the (unnecessarily large set of) points
0.5, 3.0, 3.3, 3.4, 3.8, 10. Here the lower bound of the efficiency is only 95.5%
if we take the best information from the previous steps. The new algorithm is
obviously much faster.

EXAMPLE 7.3. We consider Tp-optimal discriminating designs for the four
competing dose–response models listed in Table 1 in the Introduction and the de-
sign space X = [0,500]. Here, d = 6 comparisons and n = 15 parameters are
involved. Moreover, the model η4 is nonlinear. We use the weights pi,j = 1/6 if
i > j and pi,j = 0 otherwise in the criterion (2.4).

The corresponding results are displayed in Table 5, which shows that only 9 it-
eration steps are required in order to obtain a design with at least 99.9% efficiency.
The resulting Tp-optimal discriminating design puts masses 0.255, 0.212, 0.358,
0.175 at the points 0, 78, 245 and 500, respectively.

We finally note that we were not able to find a design with a guaran-
teed efficiency of 80% using the algorithm proposed by Atkinson and Fedorov
(1975b).
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TABLE 5
The results of the new algorithm for Example 7.3

Part 1 Part 2

j ‖εj,1‖2 ‖εj,2‖2 T (ξj )
T (ξj )

‖εj,2‖2 Support Reference set

0 16,661 S ← {0,30,60,90, . . . ,450,500}
1 12,646
2 9727 8923 275 0.0309 {0,50,290,450} S ← S ∪ {50,290}
3 8246 6901 764 0.1108 {0,60,290,450}
4 5835 5081 2462 0.4846 {0,70,260,500} S ← S ∪ {70,260}
5 4543 4170 3016 0.7233 {0,80,250,500} S ← S ∪ {80,250}
6 4048 3619 3168 0.8754 {0,80,240,500} S ← {0,70,80,240,

250,500}
7 3446 3270 3194 0.9989
8 3201 3199 3195 0.9980 {0,78,240,500} S ← S ∪ {78}
9 3197 3196 3195 0.9998

8. Concluding remarks. Our main theoretical result relates Tp-optimal dis-
criminating designs to an approximation problem for vector-valued functions
(Theorem 3.2). By duality theory we show that there exist Tp-optimal designs
with at most n + 1 support points, where n is the number of parameters in the
approximation problem (which coincides with the total number of parameters of
all regression functions used in the comparisons). These results are sufficient if we
are interested only one or two comparisons among the rival models. In this case
the computations can be done by an exchange-type algorithm that was already pro-
posed by Atkinson and Fedorov (1975b). This procedure is still the common tool
for dealing with design problems whenever d = 1 or d = 2.

The situation is different and the construction of Tp-optimal discriminating de-
signs becomes extremely difficult and challenging if three or more comparisons are
involved. The number of support points can now be much smaller than n+1, where
n is the total number of parameters of the models involved in the Tp-optimality
criterion. Although a reduction of this number was already observed in the case
d = 2, the amount of the reduction and its impact become clear only when opti-
mal discriminating design problems with d ≥ 3 pairwise comparisons are studied.
For example, we have n = 15 parameters in the dose-finding problems listed in
Table 1, but the support of the Tp-optimal discriminating design consists of only 4
points.

Therefore, there are substantial differences between our new algorithm and
the generalization of the method by Atkinson and Fedorov (1975b) beyond the
case d = 1. Our algorithm is based on the related approximation problem (The-
orem 3.2), and additionally we also add combinatorial aspects [addition (iii) in
Section 6.1], which accelerate the speed of convergence. Dual linear programs as-
sociated to small subproblems determine the support of the resulting design and
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prevent the algorithm from providing designs with too many support points. The
masses are simultaneously computed by a stabilized version of the equations in
Corollary 3.4, while the commonly used algorithms in each iteration step involve
an update of the mass at only one point and a renormalization.

Our numerical examples in Section 7 and in the supplementary material [Braess
and Dette (2013)] show that the new algorithm is able to solve Tp-optimal dis-
criminating design problems of higher dimensions in situations where the classical
methods fail.

Acknowledgments. We are very grateful to the referees and the Associate
Editor for their constructive comments on an earlier version of this manuscript. In
particular, one referee encouraged us to include examples with a larger number of
pairwise comparisons. By these investigations we gained more insight in the opti-
mization problem, which led to a further improvement of the proposed algorithm.
We also want to thank Stefan Skowronek for providing a code for the numerical
calculations and Martina Stein, who typed parts of this manuscript with consider-
able technical expertise.

SUPPLEMENTARY MATERIAL

Optimal discriminating designs for several competing regression models
(DOI: 10.1214/13-AOS1103SUPP; .pdf). Technical details and more examples.
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UCIŃSKI, D. and BOGACKA, B. (2005). T -optimum designs for discrimination between two mul-

tiresponse dynamic models. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 3–18. MR2136636
WIENS, D. P. (2009). Robust discrimination designs. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 805–

829. MR2750096

FAKULTÄT FÜR MATHEMATIK

RUHR-UNIVERSITÄT BOCHUM

44780 BOCHUM

GERMANY

E-MAIL: dietrich.braess@rub.de
holger.dette@rub.de

http://www.ams.org/mathscinet-getitem?mr=0618870
http://www.ams.org/mathscinet-getitem?mr=0836446
http://www.ams.org/mathscinet-getitem?mr=0356386
http://www.ams.org/mathscinet-getitem?mr=2325274
http://www.ams.org/mathscinet-getitem?mr=1637890
http://www.ams.org/mathscinet-getitem?mr=0986070
http://www.ams.org/mathscinet-getitem?mr=1678893
http://www.ams.org/mathscinet-getitem?mr=2558355
http://www.ams.org/mathscinet-getitem?mr=2558465
http://www.ams.org/mathscinet-getitem?mr=2136636
http://www.ams.org/mathscinet-getitem?mr=2750096
mailto:dietrich.braess@rub.de
mailto:holger.dette@rub.de

	Introduction
	Preliminaries
	Characterization of optimal designs
	Chebyshev approximation of d-variate functions
	Characterization of best approximations
	The number of support points-the generic case

	Linearization and duality
	The algorithm
	Newton's method and its adaptation
	Computation of best designs
	Adaptation to nonlinear models

	Numerical results
	Concluding remarks
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

