
The Annals of Statistics
2013, Vol. 41, No. 2, 604–640
DOI: 10.1214/13-AOS1088
© Institute of Mathematical Statistics, 2013

LOW RANK ESTIMATION OF SMOOTH KERNELS ON GRAPHS

BY VLADIMIR KOLTCHINSKII1 AND PEDRO RANGEL2

Georgia Institute of Technology

Let (V,A) be a weighted graph with a finite vertex set V , with a
symmetric matrix of nonnegative weights A and with Laplacian �. Let
S∗ :V × V �→ R be a symmetric kernel defined on the vertex set V . Con-
sider n i.i.d. observations (Xj ,X′

j , Yj ), j = 1, . . . , n, where Xj ,X′
j are

independent random vertices sampled from the uniform distribution in V

and Yj ∈ R is a real valued response variable such that E(Yj |Xj ,X′
j ) =

S∗(Xj ,X′
j ), j = 1, . . . , n. The goal is to estimate the kernel S∗ based on the

data (X1,X′
1, Y1), . . . , (Xn,X′

n,Yn) and under the assumption that S∗ is low
rank and, at the same time, smooth on the graph (the smoothness being char-
acterized by discrete Sobolev norms defined in terms of the graph Laplacian).
We obtain several results for such problems including minimax lower bounds
on the L2-error and upper bounds for penalized least squares estimators both
with nonconvex and with convex penalties.

1. Introduction. We study a problem of estimation of a symmetric kernel
S∗ :V × V �→ R defined on a large weighted graph with a vertex set V and
m := card(V ) based on a finite number of noisy linear measurements of S∗. For
simplicity, assume that these are the measurements of randomly picked entries of
m×m matrix (S∗(u, v))u,v∈V , which is a standard sampling model in matrix com-
pletion. More precisely, let (Xj ,X

′
j , Yj ), j = 1, . . . , n be n independent copies of

a random triple (X,X′, Y ), where X,X′ are independent random vertices sampled
from the uniform distribution � in V , and Y ∈ R is a “measurement” of the kernel
S∗ at a random location (X,X′) in the sense that E(Y |X,X′) = S∗(X,X′). In what
follows, we assume that, for some constant a > 0, |Y | ≤ a a.s., which implies that
|S∗(u, v)| ≤ a,u, v ∈ V . The target kernel S∗ is to be estimated based on its i.i.d.
measurements (Xj ,X

′
j , Yj ), j = 1, . . . , n. We would like to study this problem in

the case when the target kernel S∗ is, on the one hand, “low rank” [i.e., rank(S∗)
is relatively small compared to m], and on the other hand, it is “smooth” in the
sense that its “Sobolev-type norm” is not too large. Discrete versions of Sobolev
norms can be defined for functions and kernels on weighted graphs in terms of
their graph Laplacians. The problem of estimation of smooth low-rank kernels
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is of importance in a number of applications, such as learning kernels represent-
ing and predicting similarities between objects, various classification problems in
large complex networks (e.g., edge sign prediction) as well as matrix completion
problems in the design of recommender systems (collaborative filtering). Our main
motivation, however, is mostly theoretical: we would like to explore to which ex-
tent taking into account smoothness of the target kernel could improve the existing
methods of low rank recovery.

We introduce some notation used throughout the paper. Let SV be the lin-
ear space of symmetric kernels S :V × V �→ R, S(u, v) = S(v,u), u, v ∈ V (or,
equivalently, symmetric m × m matrices with real entries). Given S ∈ SV , we use
the notation rank(S) for the rank of S and tr(S) for its trace. For two functions
f,g :V �→ R, (f ⊗ g)(u, v) := f (u)g(v). Suppose that S =∑r

j=1 μj(ψj ⊗ ψj)

is the spectral representation of S with r = rank(S), μ1, . . . ,μr being nonzero
eigenvalues of S repeated with their multiplicities and ψ1, . . . ,ψr being the cor-
responding orthonormal eigenfunctions (obviously, there are multiple choices of
ψj s in the case of repeated eigenvalues). We will define sign(S) as sign(S) :=∑r

j=1 sign(μj )(ψj ⊗ ψj) and the support of S as supp(S) := l.s.{ψ1, . . . ,ψr}.3
For 1 ≤ p < ∞, define the Schatten p-norm of S as ‖S‖p := (tr(|S|p))1/p =
(
∑r

j=1 |μj |p)1/p, where |S| := √
S2. For p = 1, ‖ · ‖1 is also called the nuclear

norm and, for p = 2, ‖ · ‖2 is called the Hilbert–Schmidt or Frobenius norm. This
norm is induced by the Hilbert–Schmidt inner product which will be denoted by
〈·, ·〉. The operator norm of S is defined as ‖S‖ := maxj |μj |.4

Let �2 := � ⊗ � be the distribution of random couple (X,X′). The L2(�
2)-

norm of kernel S,

‖S‖2
L2(�

2)
=
∫
V ×V

∣∣S(u, v)
∣∣2�2(du, dv) = E

∣∣S(X,X′)∣∣2,
is naturally related to the sampling model studied in the paper, and it will be used
to measure the estimation error. Denote by 〈·, ·〉L2(�

2) the corresponding inner
product. Since � is the uniform distribution in V , ‖S‖2

L2(�
2)

= m−2‖S‖2
2 and

〈S1, S2〉L2(�
2) = m−2〈S1, S2〉. In what follows, it will be often more convenient

to use these rescaled versions rather than the actual Hilbert–Schmidt norm or in-
ner product.

We will denote by {ev :v ∈ V } the canonical orthonormal basis of the space R
V .

Based on this basis, one can construct matrices Eu,v = Ev,u = 1
2(eu ⊗ ev + ev ⊗

eu). If v1, . . . , vm is an arbitrary ordering of the vertices in V , then {Evj ,vj
: j =

1, . . . ,m} ∪ {√2Evi,vj
: 1 ≤ i < j ≤ m} is an orthonormal basis of the space SV of

symmetric matrices with Hilbert–Schmidt inner product.

3“l.s.” means “the linear span.”
4With some abuse of notation, we also denote occasionally the canonical Euclidean inner product

in R
V by 〈·, ·〉 and the corresponding Euclidean norm by ‖ · ‖.



606 V. KOLTCHINSKII AND P. RANGEL

In standard matrix completion problems, V is a finite set with no further struc-
ture (i.e., the set of edges of the graph or the weight matrix are not specified). In
the noiseless matrix completion problems, the target matrix S∗ is to be recovered
from the measurements (Xj ,X

′
j , Yj ), j = 1, . . . , n, where Yj = S∗(Xj ,X

′
j ). The

following method is based on nuclear norm minimization over the space of all
matrices that “agree” with the data

Ŝ := argmin
{‖S‖1 :S ∈ SV , S

(
Xj,X

′
j

)= Yj , j = 1, . . . , n
}
,(1.1)

It has been studied in detail in the recent literature; see [3, 4, 7, 14] and references
therein. Clearly, there are low rank matrices S∗ that cannot be recovered based
on a random sample of n entries unless n is comparable with the total number of
the entries of the matrix. For instance, for given u, v ∈ V , let S∗ = Eu,v . Then,
rank(S∗) ≤ 2. However, the probability that the only two nonzero entries of S∗ are
not present in the sample is (1 − 2

m2 )n, and it is close to 1 when n = o(m2). In
this case, the matrix S∗ cannot be recovered. So-called low coherence assumptions
have been developed to define classes of “generic” matrices that are not “low rank”
and “sparse” at the same time and for which noiseless low rank recovery is possible
with a relatively small number of measurements. For a linear subspace L ⊂ R

V ,
let L⊥ be the orthogonal complement of L and let PL be the orthogonal projector
onto the subspace L. Denote L := supp(S∗), r = rank(S∗). A coherence coefficient
is a constant ν ≥ 1 such that

‖PLev‖2 ≤ νr

m
, v ∈ V and

(1.2) ∣∣〈sign(S∗)eu, ev

〉∣∣2 ≤ νr

m2 , u, v ∈ V

(it is easy to see that ν cannot be smaller than 1).
The following highly nontrivial result is essentially due to Candes and Tao [4]

(a version stated here is due to Gross [7] and it is an improvement of the initial
result of Candes and Tao). It shows that target matrices of “low coherence” (for
which ν is a relatively small constant) can be recovered exactly using the nuclear
norm minimization algorithm (1.1) provided that the number of observed entries
is of the order mr (up to a log factor).

THEOREM 1. Suppose conditions (1.2) hold for some ν ≥ 1. Then, there ex-
ists a numerical constant C > 0 such that, for all n ≥ Cνrm log2 m, Ŝ = S∗ with
probability at least 1 − m−2.

In the case of noisy matrix completion, a matrix version of LASSO is based
on a trade-off between fitting the target matrix to the data using least squares and
minimizing the nuclear norm

Ŝ := argmin
S∈SV

[
n−1

n∑
j=1

(
Yj − S

(
Xj,X

′
j

))2 + ε‖S‖1

]
.(1.3)
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This method and its modifications have been studied by a number of authors; see
[2, 9, 10, 13, 15]. The following low-rank oracle inequality was proved in [10]
(Theorem 4) for a “linearized version” of the matrix LASSO estimator Ŝ. As-
sume that, for some constant a > 0, |Y | ≤ a a.s. Let t > 0 and suppose that

ε ≥ 4a(

√
t+log(2m)

nm
∨ 2(t+log(2m))

n
). Then, there exists a constant C > 0 such that

with probability at least 1 − e−t

‖Ŝ − S∗‖2
L2(�

2)
≤ inf

S∈SV

[‖S − S∗‖2
L2(�

2)
+ Cm2ε2 rank(S)

]
.

In particular, ‖Ŝ − S∗‖2
L2(�

2)
≤ Cm2ε2 rank(S∗). Very recently, the last bound

was proved in [8] for the matrix LASSO estimator (1.3) itself in the case
when the domain of optimization problem is {S :‖S‖L∞ ≤ a}, where ‖S‖L∞ :=
maxu,v∈V |S(u, v)|; in fact, both [10] and [8] dealt with the case of rectangular
matrices.

In the current paper, we are more interested in the case when the target kernel S∗
is defined on the set V of vertices of a weighted graph G = (V ,A) with a symmet-
ric matrix A := (a(u, v))u,v∈V of nonnegative weights. This allows one to define
the notion of graph Laplacian and to introduce discrete Sobolev norms characteriz-
ing smoothness of functions on V as well as symmetric kernels on V × V . Denote
deg(u) :=∑

v∈V a(u, v), u ∈ V. It is common in graph theory to call deg(u) the
degree of vertex u. Let D be the diagonal m × m matrix (kernel) with the degrees
of vertices on the diagonal (it is assumed that the vertices of the graph have been
ordered in an arbitrary, but fixed way). The Laplacian of the weighted graph G is
defined as � := D − A. Denote 〈·, ·〉 the canonical Euclidean inner product in the
m-dimensional space R

V of functions f :V �→ R and let ‖ ·‖ be the corresponding
norm. It is easy to see that

〈�f,f 〉 = 1

2

∑
u,v∈V

a(u, v)
(
f (u) − f (v)

)2
,

implying that � : RV �→ R
V is a symmetric nonnegatively definite linear transfor-

mation. In a special case of a usual graph (V ,E) with vertex set V and edge set E,
one defines A(u, v) = 1 if and only if u ∼ v (i.e., vertices u and v are connected
with an edge) and A(u, v) = 0 otherwise. In this case, deg(u) is the number of
edges incident to the vertex u and 〈�f,f 〉 =∑

u∼v(f (u) − f (v))2. The notion
of graph Laplacian allows one to define discrete Sobolev norms ‖�q/2f ‖, q > 0
for functions on the vertex set of the graph and thus to describe their smoothness
on the graph. Given a symmetric kernel S :V × V �→ R, one can also describe its
smoothness in terms of the norms ‖�q/2S‖2. Suppose S has the following spectral
representation: S =∑m

j=1 μj(ψj ⊗ ψj), where μj , j = 1, . . . ,m are the eigenval-
ues of S (repeated with their multiplicities) and ψj , j = 1, . . . ,m are the corre-
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sponding orthonormal eigenfunctions in R
V , then

∥∥�q/2S
∥∥2

2 = tr
(
�q/2S2�q/2)= tr

(
�qS2)= m∑

j=1

μ2
j

〈
�qψj ,ψj

〉

=
m∑

j=1

μ2
j

∥∥�q/2ψj

∥∥2
.

Basically, it means that the smoothness of the kernel S depends on the smooth-
ness of its eigenfunctions. In what follows, we will often use rescaled versions of
Sobolev norms,∥∥�q/2f

∥∥
L2(�)= m−1/2∥∥�q/2f

∥∥2
,

∥∥�q/2S
∥∥
L2(�

2) = m−1∥∥�q/2S
∥∥

2.

It will be convenient for our purposes to fix q > 0 and to define a nonnega-
tively definite symmetric kernel W := �q . We will characterize the smoothness
of a kernel S ∈ SV by the squared Sobolev-type norm ‖W 1/2S‖2

L2(�
2)

. The ker-
nel W will be fixed throughout the paper, and its spectral properties are cru-
cial in our analysis.5 Assume that W has the following spectral representation
W =∑m

k=1 λk(φk ⊗ φk), where 0 ≤ λ1 ≤ · · · ≤ λm are the eigenvalues repeated
with their multiplicities, and φ1, . . . , φm are the corresponding orthonormal eigen-
functions (of course, there is a multiple choice of φk in the case of repeated eigen-
values). Let k0 := min{k ≤ m :λk > 0}. We will assume in what follows that, for
some constant c ≥ 1, λk+1 ≤ cλk for all k ≥ k0. It will be also convenient to set
λk := +∞, k > m.

Let ρ := ‖W 1/2S∗‖L2(�
2) and r := rank(S∗). It is easy to show (see the proof

of Theorem 4 below) that kernel S∗ can be approximated by the following kernel:
S∗,l :=∑l

i,j=1〈S∗φi,φj 〉(φi ⊗ φj ) with the approximation error

‖S∗ − S∗,l‖2
L2(�

2)
≤ 2ρ2

λl+1
.(1.4)

Note that the kernel S∗,l can be viewed as an l × l matrix (represented in the basis
of eigenfunctions {φj }) and rank(S∗,l) ≤ r ∧ l, so, one needs ∼ (r ∧ l)l parameters
to characterize such matrices. Thus, one can expect, that such a kernel can be
estimated, based on n linear measurements, with the squared L2(�

2)-error of the

order a2(r∧l)l
n

. Taking into account the bound on the approximation error (1.4) and
optimizing with respect to l = 1, . . . ,m, it would be also natural to expect the
following error rate in the problem of estimation of the target kernel S∗ :

min
1≤l≤m

[
a2(r ∧ l)l

n
∨ ρ2

λl+1

]
.(1.5)

5In fact, the relationship of W to the graph and its Laplacian will be of little importance allowing,
possibly, other interpretations of the problem.



LOW RANK ESTIMATION OF SMOOTH KERNELS 609

We will show that such a rate is attained (up to constants and log factors) for
a version of least squares method with a nonconvex complexity penalty; see
Section 3. This method is not computationally tractable, so, we also study an-
other method, based on convex penalization with a combination of nuclear norm
and squared Sobolev type norm, and show that the rates are attained for such
a method, too, provided that the target matrix satisfies a version low coherence
assumption with respect to the basis of eigenfunctions of W . More precisely,
we will prove error bounds involving so called coherence function ϕ(S∗;λ) :=
〈Psupp(S∗),

∑
λj≤λ(φj ⊗ φj )〉, that characterizes the relationship between the ker-

nel W defining the smoothness and the target kernel S∗; see Section 4 for more
details; see also [11] for similar results in the case of “linearized least squares” es-
timator with double penalization. Finally, we prove minimax lower bounds on the

error rate that are roughly of the order max1≤l≤m[a2(r∧l)l
n

∧ ρ2

λl
] (subject to some

extra conditions and with additional terms; see Section 2). In typical situations,
this expression is, up to a constant, of the same order as the upper bound (1.5). For
instance, if λl � l2β for some β > 1/2, then the minimax error rate of estimation
of the target kernel S∗ is of the order((

a2ρ1/βr

n

)2β/(2β+1)

∧
(

a2ρ2/β

n

)β/(β+1)

∧ a2rm

n

)
∨ a2

n

(up to log factors). When m is sufficiently large, the term a2rm
n

will be dropped
from the minimum, and we end up with a nonparametric convergence rate con-
trolled by the smoothness parameter β and the rank r of the target matrix S∗ (the
dependence on m in the first two terms of the minimum is only in the log factors).

The focus of the paper is on the matrix completion problems with uniform ran-
dom design, but it is very straightforward to extend the results of the following
sections to sampling models with more general design distributions discussed in
the literature on low rank recovery (such as, e.g., the models of random linear
measurements studied in [9, 10]). It is also not hard to replace the range a of the
response variable Y by the standard deviation of the noise in the upper and lower
bounds obtained below. This is often done in the literature on low-rank recovery,
and it can be easily extended to the framework discussed in the paper by modifying
our proofs. We have not discussed this in the paper due to the lack of space.

2. Minimax lower bounds. In this section, we derive minimax lower bounds
on the L2(�

2)-error of an arbitrary estimator Ŝ of the target kernel S∗ under
the assumptions that the response variable Y is bounded by a constant a > 0,
the rank of S∗ is bounded by r ≤ m and its Sobolev norm ‖W 1/2S∗‖L2(�

2) is
bounded by ρ > 0. More precisely, given r = 1, . . . ,m and ρ > 0, denote by
Sr,ρ the set of all symmetric kernels S :V × V �→ R such that rank(S) ≤ r and
‖W 1/2S‖L2(�

2) ≤ ρ. Given r, ρ and a > 0, let Pr,ρ,a be the set of all probability
distributions of (X,X′, Y ) such that (X,X′) is uniformly distributed in V × V ,
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|Y | ≤ a a.s. and E(Y |X,X′) = S∗(X,X′), where S∗ ∈ Sr,ρ . For P ∈ Pr,ρ,a , denote
SP (X,X′) := EP (Y |X,X′).

Recall that {φj , j = 1, . . . ,m} are the eigenfunctions of W orthonormal in the
space (RV , 〈·, ·〉). Then φ̄j := √

mφj , j = 1, . . . ,m are orthonormal in L2(�).
We will obtain minimax lower bounds for classes of distributions Pr,ρ,a in two

different cases. Define Qp := max1≤j≤m ‖φ̄j‖2
Lp(�). In the first case, we assume

that, for some (relatively large) value of p ≥ 2, the quantity Qp is not too large.
Roughly, it means that most of the components of vectors φj ∈ R

V are uniformly
small, say, φj (v) � m−1/2, v ∈ V, j = 1, . . . ,m. In other words, the m × m matrix
(φj (v))j=1,...,m;v∈V is “dense,” so we refer to this case as a “dense case.” The
opposite case is when this matrix is “sparse.” Its “sparsity” will be characterized
by the quantity

d := max
v∈V

card
{
j :φj (v) �= 0

}
,

which, in this case, should be relatively small. A typical example is the case
when basis of eigenfunctions {φj , j = 1, . . . ,m} coincides with the canonical basis
{ev :v ∈ V } of R

V (then, d = 1).
Denote l0 := k0 ∧ 32. In the dense case, the following theorem holds.

THEOREM 2. Define

δ(1)
n (r, ρ, a) := max

l0≤l≤m

[
a2(r ∧ l)l

n
∧ ρ2

λl

∧ 1

p − 1

1

Q2
p

a2(r ∧ l)

l

1

m4/p

]
.

There exist constants c1, c2 > 0 such that

inf
Ŝn

sup
P∈Pr,ρ,a

PP

{‖Ŝn − SP ‖2
L2(�

2)
≥ c1δ

(1)
n (r, ρ, a)

}≥ c2,

where the infimum is taken over all the estimators Ŝn based on n i.i.d. copies of
(X,X′, Y ).

In fact, it will follow from the proof that, if λk0 ≤ nρ2

a2(r∧k0)k0
(i.e., the smallest

nonzero eigenvalue of W is not too large), then the maximum in the definition of
δ
(1)
n (r, ρ, a) can be extended to all l = 1, . . . ,m.

COROLLARY 1. Let

δ(2)
n (r, ρ, a) := max

l0≤l≤m

[
a2(r ∧ l)l

n
∧ ρ2

λl

∧ 1

Q2
logm

a2(r ∧ l)

l

1

logm

]
.

There exist constants c1, c2 > 0 such that

inf
Ŝn

sup
P∈Pr,ρ,a

PP

{‖Ŝn − SP ‖2
L2(�

2)
≥ c1δ

(2)
n (r, ρ, a)

}≥ c2.
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PROOF. Take p = logm in the statement of Theorem 2 and observe that
m4/p = e4 and 1

p−1 ≥ 1
logm

. �

REMARK. It is easy to check that e−2Q∞ ≤ Qlogm ≤ Q∞.

It is obvious that one can replace the quantity δ
(1)
n (r, ρ, a) in Theorem 2 [or the

quantity δ
(2)
n (r, ρ, a) in Corollary 1] by the following smaller quantity:

δ(3)
n (r, ρ, a) := max

l0≤l≤L

[
a2(r ∧ l)l

n
∧ ρ2

λl

]
,

where L := [ 1
Qpm2/p

√
n

p−1 ] ∧ m. Moreover, denote

l̄ := max
{
l = l0, . . . ,m : (r ∨ l)lλl ≤ ρ2n

a2

}
.

It is straightforward to check that

max
l0≤l≤m

[
a2(r ∧ l)l

n
∧ ρ2

λl

]
= a2(r ∧ l̄)l̄

n
∨ ρ2

λl̄+1

and, if l̄ ≤ L, then δ
(3)
n (r, ρ, a) = a2(r∧l̄)l̄

n
∨ ρ2

λl̄+1
.

EXAMPLE. Suppose that, for some β > 1/2, λl � l2β, l = 1, . . . ,m (in par-
ticular, it means that λl �= 0 and l0 = k0 = 1). Then, an easy computation shows
that

l̄ = (ľ ∧ m) ∨ 1, ľ �
(

ρ2

a2

n

r

)1/(2β+1)

∧
(

ρ2n

a2

)1/(2β+2)

.

Let p = logm and take L := [ 1
e2Qp

√
n

log(m/e)
] ∧ m. The condition l̄ ≤ L is sat-

isfied, for instance, when either e2Qp

√
log(m/e)(

ρ2

a2r
)1/(2β+1) ≤ c′n1/2−1/(2β+1),

or e2Qp

√
log(m/e)(

ρ
a
)1/(β+1) ≤ c′n1/2−1/(2β+2), where c′ > 0 is a small enough

constant (this, essentially, means that n is sufficiently large). Under either of these
conditions, we get the following expression for a minimax lower bound:((

a2ρ1/βr

n

)2β/(2β+1)

∧
(

a2ρ2/β

n

)β/(β+1)

∧ a2rm

n

)
∨ a2

n
.(2.1)

We now turn to the sparse case.

THEOREM 3. Let

δ(4)
n (r, ρ, a) := max

l0≤l≤m

[
a2(r ∧ l)l

n
∧ ρ2

λl

∧ a2

d logm

l2

m2

]
.
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There exist constants c1, c2 > 0 such that

inf
Ŝn

sup
P∈Pr,ρ,a

PP

{‖Ŝn − SP ‖2
L2(�

2)
≥ c1δ

(4)
n (r, ρ, a)

}≥ c2.

It will be clear from the upper bounds of Section 3 (see the remark after Theo-
rem 4) that, at least in a special case when {φj } coincides with the canonical basis

of R
V , the additional term a2

d logm
l2

m2 is correct (up to a log factor). At the same
time, most likely, the “third terms” of the bounds of Theorem 2 (in the dense case)
and Theorem 3 (in the sparse case) have not reached their final form yet. A more
sophisticated construction of “well separated” subsets of Pr,ρ,a might be needed
to achieve this goal. The main difficulty in the proof given below is related to the
fact that we have to impose constraints, on the one hand, on the entries of the target
matrix represented in the canonical basis and, on the other hand, on the Soblolev
type norm ‖W 1/2S‖L2(�

2) (for which it is convenient to use the representation in
the basis of eigenfunctions of W ). Due to this fact, we are using the last represen-
tation in our construction, and we have to use an argument based on the properties
of Rademacher sums to ensure that the entries of the matrix represented in the
canonical basis are uniformly bounded by a. This is the reason why the “third
terms” occur in the bounds of Theorems 2 and 3. In this case, when the constraints
are only on the norm ‖W 1/2S‖L2(�

2) and on the variance of the noise and there
are no constraints on ‖S‖L∞ , it is much easier to prove the lower bound of the

order maxl0≤l≤m[σ 2(r∧l)l
n

∧ ρ2

λl
] without any additional terms. Note, however, that

the condition ‖S∗‖L∞ ≤ a is of importance in the following sections to obtain the
upper bounds for penalized least squares estimators that match the lower bounds
up to log factors.

PROOF OF THEOREM 2. The proof relies on several well-known facts stated
below. In what follows, K(μ‖ν) := −Eμ log dν

dμ
denotes Kullback–Leibler diver-

gence between two probability measures μ,ν defined on the same space and such
that ν � μ (i.e., ν is absolutely continuous with respect to μ). We will denote by
P ⊗n the n-fold product measure P ⊗n := P ⊗P · · ·⊗P . The following proposition
is a version of Theorem 2.5 in [17].

PROPOSITION 1. Let P be a finite set of distributions of (X,X′, Y ) such that
the following assumptions hold:

(1) there exists P0 ∈ P such that for all P ∈ P , P � P0;
(2) there exists α ∈ (0,1/8) such that∑

P∈P
K
(
P ⊗n

0 ‖P ⊗n)≤ α
(
card(P) − 1

)
log
(
card(P) − 1

);
(3) for all P1,P2 ∈ P , ‖SP1 − SP2‖2

L2(�
2)

≥ 4s2 > 0.
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Then, there exists a constant β > 0 such that

inf
Ŝn

max
P∈P

PP

{‖Ŝn − SP ‖2
L2(�

2)
≥ s2}≥ β > 0.(2.2)

We will also use Varshamov–Gilbert bound (see [17], Lemma 2.9, page 104),
Sauer’s lemma (see [9], page 39) and the following elementary bound for
Rademacher sums ([5], page 21): for all p ≥ 2,

E
1/p

∣∣∣∣∣
N∑

j=1

εj tj

∣∣∣∣∣
p

≤
√

p − 1

(
N∑

j=1

t2
j

)1/2

, (t1, . . . , tN ) ∈ R
N,(2.3)

where ε1, . . . , εN are i.i.d. Rademacher random variables (i.e., εj = +1 with prob-
ability 1/2 and εj = −1 with the same probability).

We will start the proof with constructing a “well separated” subset P of the
class of distributions Pr,ρ,a that will allow us to use Proposition 1. Fix l ≤ m,
l ≥ 32 and κ > 0. Denote l′ = [l/2], l′′ = l − l′. First assume that r ≤ l′′. De-
note Rσ := κ((σij ) : i = 1, . . . , l′, j = 1, . . . , r), where σij = +1 or σij = −1. Let
Rl′,r = {Rσ :σ ∈ {−1,1}l′×r} (so, Rl′,r is the class of all l′ × r matrices with en-
tries +κ or −κ). Given R ∈ Rl′,r , let

R̃ := (R R · · · R Ol′,l∗ )

be the l′ × l′′ matrix that consists of [l′′/r] blocks R and the last block Ol′,l∗ ,
where l∗ := l′′ − [l′′/r]r and Ok1,k2 is the k1 × k2 zero matrix. Finally, define the
following symmetric m × m matrix:

R♦ :=
⎛
⎜⎝

Ol′,l′ R̃ Ol′,m−l

R̃T Ol′′,l′′ Ol′′,m−l

Om−l,l′ Om−l,l′′ Om−l,m−l

⎞
⎟⎠ .

Now, given σ ∈ {−1,1}l′×r , define a symmetric kernel Kσ :V × V �→ R,

Kσ :=
m∑

i,j=1

(
R♦

σ

)
ij (φi ⊗ φj ).

It is easy to see that

Kσ(u, v) = K ′
σ (u, v) + K ′

σ (v, u),
(2.4)

K ′
σ (u, v) = κ

l′∑
i=1

r∑
j=1

σijφi(u)

[l′′/r]−1∑
k=0

φl′+rk+j (v).

Let � := {σ ∈ {−1,1}l′×r : maxu,v∈V |Kσ(u, v)| ≤ a}. We will show that, if κ

is sufficiently small (its precise value to be specified later), then the set � contains
at least three quarters of the points of the combinatorial cube {−1,1}l′×r . To this
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end, define ξ := maxu,v∈V |Kε(u, v)|, where ε ∈ {−1,1}l′×r is a random vector
with i.i.d. Rademacher components. Assume, in addition, that ε and (X,X′) are
independent. It is enough to show that ξ ≤ a with probability at least 3/4. We have

P{ξ ≥ a} ≤ ∑
u,v∈V

P
{∣∣Kε(u, v)

∣∣≥ a
}

= m2
EP
{∣∣Kε

(
X,X′)∣∣≥ a|X,X′}(2.5)

= m2
P
{∣∣Kε

(
X,X′)∣∣≥ a

}≤ m2
E|Kε(X,X′)|p

ap
.

We will use bound (2.3) to control E(|Kε(X,X′)|p|X,X′) [recall that Kε(u, v),

u, v ∈ V is a Rademacher sum]. Denote

τ 2(u, v) :=
l′∑

i=1

r∑
j=1

φ2
i (u)

([l′′/r]−1∑
k=0

φl′+rk+j (v)

)2

.

Observe that τ 2(u, v) ≤ l′′
r
q(l′, u)q(l′′, v) ≤ q(l, u)q(l, v) l

r
, where q(l, u) :=∑l

j=1 φ2
j (u), u ∈ V, and we used the bound

([l′′/r]−1∑
k=0

φl′+rk+j (v)

)2

≤ l′′

r

[l′′/r]−1∑
k=0

φ2
l′+rk+j (v).(2.6)

Thus, applying (2.3) to the Rademacher sum K ′
ε , we get

E
∣∣Kε(u, v)

∣∣p ≤ 2p−1(
E
∣∣K ′

ε(u, v)
∣∣p + E

∣∣K ′
ε(v, u)

∣∣p)
≤ 2p(p − 1)p/2κp(τ 2(u, v) ∨ τ 2(v, u)

)p/2

≤ 2p(p − 1)p/2κpqp/2(l, u)qp/2(l, v)

(
l

r

)p/2

.

Given p ∈ [2,+∞], denote Qp(l) := ‖m
l
q(l, ·)‖Lp/2(�) = ‖1

l

∑l
j=1 φ̄2

j ‖Lp/2(�) for
l = 1, . . . ,m. This yields

E
∣∣Kε

(
X,X′)∣∣p = EE

(∣∣Kε

(
X,X′)∣∣p|X,X′)

≤ 2p(p − 1)p/2κp

(
l

r

)p/2

E
(
qp/2(l,X)qp/2(l,X′))

= 2p(p − 1)p/2κp

(
l

r

)p/2(
Eqp/2(l,X)

)2

= 2p(p − 1)p/2κp

(
l

r

)p/2( l

m

)p

Qp
p(l).
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Substituting the last bound into (2.5), we get

P{ξ ≥ a} ≤ m2
E|Kε(X,X′)|p

ap
≤ m22p(p − 1)p/2 κp

ap

(
l

r

)p/2( l

m

)p

Qp
p(l).

Now, to get P{ξ ≥ a} ≤ 1/4, it is enough to take

κ ≤ 2−(1+2/p)(p − 1)−1/2 1

Qp(l)

m

l

a
√

r√
l

1

m2/p
.(2.7)

Next observe that

card(�) ≥ 3

4
2l′r >

[l′r/2]∑
k=0

(
l′r
k

)
.

It follows from Sauer’s lemma that there exists a subset J ⊂ {(i, j) : 1 ≤ i ≤
l′,1 ≤ j ≤ r} with card(J ) = [l′r/2] + 1 and such that πJ (�) = {−1,1}J , where
πJ : {−1,1}l′×r �→ {−1,1}J , πJ (σij : i = 1, . . . , l′, j = 1, . . . , r) = (σij : (i, j) ∈
J ). Since l ≥ 32, we have l′r ≥ 16 and card(J ) ≥ 8. We can now apply
Varshamov–Gilbert bound to the combinatorial cube {−1,1}J to prove that there
exists a subset E ⊂ {−1,1}J such that card(E) ≥ 2l′r/16 + 1 and, for all σ ′, σ ′′ ∈
E,σ ′ �= σ ′′, ∑(i,j)∈J I (σ ′

ij �= σ ′′
ij ) ≥ l′r

16 . It is now possible to choose a subset �′
of � such that card(�′) = card(E) and πJ (�′) = E. Then, we have card(�′) ≥
2l′r/16 + 1 and

l′∑
i=1

r∑
j=1

I
(
σ ′

ij �= σ ′′
ij

)≥ l′r
16

(2.8)

for all σ ′, σ ′′ ∈ �′, σ ′ �= σ ′′.
We are now in a position to define the set of distributions P . For σ ∈ �′, denote

by Pσ the distribution of (X,X′, Y ) such that (X,X′) is uniform in V ×V and the
conditional distribution of Y given (X,X′) is defined as follows:

PPσ

{
Y = δa|X,X′}= pσ

(
X,X′)= 1/2 + δKσ

(
X,X′)/8a, δ ∈ {−1,+1}.

Since |Kσ(X,X′)| ≤ a for all σ ∈ �′, we have pσ (X,X′) ∈ [3/8,5/8], σ ∈ �.
Denote P := {Pσ :σ ∈ �′}. For P = Pσ ∈ P , we have

SP (u, v) = E
(
Y |X = u,X′ = v

)= 1
4Kσ(u, v).

Note that rank(SP ) = rank(Kσ ) = rank(R♦
σ ) ≤ r ; see the definitions of Kσ and

R♦
σ . Moreover, we have

∥∥W 1/2Kσ

∥∥2
2 =

∥∥∥∥∥W 1/2
m∑

i,j=1

(
R♦

σ

)
ij (φi ⊗ φj )

∥∥∥∥∥
2

2

=
l∑

i,j=1

λi

(
R♦

σ

)2
ij ≤ λl‖Kσ‖2

2



616 V. KOLTCHINSKII AND P. RANGEL

and

‖Kσ‖2
2 =

∥∥∥∥∥κ
l′∑

i=1

r∑
j=1

σij

[l′′/r]−1∑
k=0

φi ⊗ φl′+rk+j

+ κ

r∑
i=1

l′∑
j=1

σji

[l′′/r]−1∑
k=0

φl′+rk+i ⊗ φj

∥∥∥∥∥
2

2

≤ 2κ2l′r
[
l′′/r

]≤ κ2l2.

Therefore, ‖W 1/2Kσ‖2
L2(�

2)
≤ λlκ

2 l2

m2 , so, we have

∥∥W 1/2SPσ

∥∥= 1
16

∥∥W 1/2Kσ

∥∥2
L2(�

2) ≤ ρ2,(2.9)

provided that

κ ≤ m

l

4ρ√
λl

.(2.10)

We can conclude that, for all P ∈ P , SP ∈ Sr,ρ provided that κ satisfies condi-
tions (2.7) and (2.10). Since also |Y | ≤ a, we have that P ⊂ Pr,ρ,a .

Next we check that P satisfies the conditions of Proposition 1. It is easy to see
that, for all σ,σ ′ ∈ �′Pσ ′ � Pσ and

K(Pσ‖Pσ ′)

= E

(
pσ

(
X,X′) log

pσ (X,X′)
pσ ′(X,X′)

+ (1 − pσ

(
X,X′)) log

1 − pσ (X,X′)
1 − pσ ′(X,X′)

)
.

Using the elementary inequality − log(1 + u) ≤ −u + u2, |u| ≤ 1/2 and the fact
that pσ (X,X′) ∈ [3/8,5/8], σ ∈ �, we get that

K(Pσ‖Pσ ′) ≤ 6

82a2 ‖Kσ − Kσ ′‖L2(�
2) ≤ 1

10a2m2 ‖Kσ − Kσ ′‖2
2, σ, σ ′ ∈ �′.

A simple computation based on the definition of Kσ ,Kσ ′ easily yields that

‖Kσ − Kσ ′‖2
2 ≤ 8κ2l′r

[
l′′/r

]≤ 8κ2l′l′′ ≤ 4κ2l2.

Thus, for the n-fold product-measures P ⊗n
σ ,P ⊗n

σ ′ , we get

K
(
P ⊗n

σ ‖P ⊗n
σ ′
)= nK(Pσ‖Pσ ′) ≤ 4nκ2

10a2

l2

m2 .

For a fixed σ ∈ �′, this yields

1

card(�′) − 1

∑
σ ′∈�′

K
(
P ⊗n

σ ‖P ⊗n
σ ′
)≤ 4nκ2

10a2

l2

m2 ≤ 1

10

l′r
16

(2.11)

≤ 1

10
log
(
card

(
�′)− 1

)
,
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provided that

κ ≤ 1

16
a
m

l

√
rl

n
.(2.12)

It remains to use (2.8) and the definition of kernels Kσ to bound from below the
squared distance ‖Kσ − Kσ ′‖2

L2(�
2)

for σ,σ ′ ∈ �′, σ �= σ ′,

‖Kσ − Kσ ′‖2
L2(�

2)
= m−2‖Kσ − Kσ ′‖2

2 ≥ 4m−2κ2 l′r
16

[
l′′/r

]≥ 1

64
κ2 l2

m2 .

Since SPσ = 1
4Kσ , this implies that

‖SP − SP ′‖2
L2(�

2)
≥ 2−10κ2 l2

m2 , P ,P ′ ∈ P,P �= P ′.(2.13)

In view of (2.7), (2.12) and (2.10), we now take

κ := 1

16
a
m

l

√
rl

n
∧ m

l

4ρ√
λl

∧ 2−(1+2/p)(p − 1)−1/2 1

Qp(l)

m

l

a
√

r√
l

1

m2/p
.

With this choice of κ , P := {Pσ :σ ∈ �′} ⊂ Pr,a,ρ . In view of (2.13) and (2.11),
we can use Proposition 1 to get

inf
Ŝ

sup
P∈Pr,a,ρ

PP

{‖Ŝ − SP ‖2
L2(�

2)
≥ c1δn

}
(2.14)

≥ inf
Ŝ

sup
P∈P

PP

{‖Ŝ − SP ‖2
L2(�

2)
≥ c1δn

}≥ c2,

where δn := a2rl
n

∧ ρ2

λl
∧ 1

p−1
1

Q2
p(l)

a2r
l

1
m4/p and c1, c2 > 0 are constants.

In the case when r > l′′, bound (2.14) still holds with

δn := a2l2

n
∧ ρ2

λl

∧ 1

p − 1

a2

Q2
p(l)

1

m4/p
.

The proof is an easy modification of the argument in the case when r ≤ l′′. For
r > l′′, the construction becomes simpler: namely, we define

R� :=
⎛
⎝ Ol′,l′ R Ol′,m−l

RT Ol′′,l′′ Ol′′,m−l

Om−l,l′ Om−l,l′′ Om−l,m−l

⎞
⎠ ,

where R ∈ Rl′,l′′ , and, based on this, redefine kernels Kσ ,σ ∈ {−1,1}l′×l′′ . The
proof then goes through with minor simplifications.

Thus, in both cases r > l′′ and r ≤ l′′, (2.14) holds with

δn = δn(l) := a2(r ∧ l)l

n
∧ ρ2

λl

∧ 1

p − 1

1

Q2
p(l)

a2(r ∧ l)

l

1

m4/p
.
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This is true under the assumption that l ≥ 32. Note also that Qp(l) ≤
max1≤j≤m ‖φ̄j‖2

Lp(�) = Qp . Thus, we can replace Q2
p(l) by the upper bound Q2

p

in the definition of δn(l).
We can now choose l ∈ {32, . . . ,m} that maximizes δn(l) to get bound (2.14)

with δn := min32≤l≤m δn(l). This completes the proof in the case when k0 ≥ 32
and l0 = 32. If k0 < 32, it is easy to use the condition λl+1 ≤ cλl, l ≥ k0 and to
show that min32≤l≤m δn(l) ≤ c′ mink0≤l≤m δn(l), where c′ is a constant depending
only on c. This completes the proof in the remaining case. �

PROOF OF THEOREM 3. The only modification of the previous proof is to

replace bound (2.6) by (
∑[l′′/r]−1

k=0 φl′+rk+j (v))2 ≤ d
∑[l′′/r]−1

k=0 φ2
l′+rk+j (v). Then,

the outcome of the next several lines of the proof is that P{ξ ≥ a} ≤ 1/4 provided
that [instead of (2.7)]

κ ≤ 2−(1+2/p)(p − 1)−1/2 1

Qp(l)

m

l

a√
d

1

m2/p
.

As a result, at the end of the proof, we get that (2.14) holds with

δn = δn(l) := a2(r ∧ l)l

n
∧ ρ2

λl

∧ 1

p − 1

1

Q2
p(l)

a2

d

1

m4/p
.

It remains to observe that Qp(l) ≤ m
l

, which follows from the fact that

l∑
j=1

φ2
j (v) =

l∑
j=1

〈φj , ev〉2 ≤
m∑

j=1

〈φj , ev〉2 = 1, v ∈ V,

and to take p = logm to complete the proof. �

3. Least squares estimators with nonconvex penalties. In this section, we
derive upper bounds on the squared L2(�

2)-error of the following least squares
estimator of the target matrix S∗:

Ŝl := Ŝr,l,a := argmin
S∈S̄r (l;a)

1

n

n∑
j=1

(
Yj − S

(
Xj,X

′
j

))2
,(3.1)

where S̄r (l;a) := {Sa :S ∈ Sr (l;a)}, l = 1, . . . ,m,

Sr (l;a) :=
{
S :S ∈ SV , rank(S) ≤ r,‖S‖L2(�

2) ≤ a,S =
l∑

i,j=1

sij (φi ⊗ φj )

}
.

Here Sa denotes a truncation of kernel S :Sa(u, v) = S(u, v) if |S(u, v)| ≤ a,
Sa(u, v) = a if S(u, v) > a and Sa(u, v) = −a if S(u, v) < −a. Note that the
kernels in the class Sr (l;a) are symmetric and rank(S) ≤ r ∧ l, S ∈ Sr (l;a). Note
also that the sets Sr (l;a), S̄r (l;a) and optimization problem (3.1) are not convex.
We will prove the following result under the assumption that |Y | ≤ a a.s. Recall
the definition of the class of kernels Sr,ρ in Section 2.
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THEOREM 4. There exist constants C > 0,A > 0 such that, for all t > 0, with
probability at least 1 − e−t ,

‖Ŝl − S∗‖2
L2(�

2)
≤ 2 inf

S∈S̄r (l;a)
‖S − S∗‖2

L2(�
2)

(3.2)

+ C

(
a2(r ∧ l)l

n
log
(

Anm

(r ∧ l)l

)
+ a2t

n

)
.

In particular, for some constants C,A > 0, for S∗ ∈ Sr,ρ and for all t > 0, with
probability at least 1 − e−t ,

‖Ŝl − S∗‖2
L2(�

2)
≤ C

[
a2(r ∧ l)l

n
log
(

Anm

(r ∧ l)l

)
∨ ρ2

λl+1
∨ a2t

n

]
.(3.3)

PROOF. Without loss of generality, assume that a = 1; this would imply the
general case by a simple rescaling of the problem. We will use a version of
well-known bounds for least squares estimators over uniformly bounded func-
tion classes in terms of Rademacher complexities. Specifically, consider the fol-
lowing least squares estimator: ĝ := argming∈G n−1∑n

j=1(Yj − g(Xj ))
2, where

(X1, Y1), . . . , (Xn,Yn) are i.i.d. copies of a random couple (X,Y ) in T × R,
(T , T ) being a measurable space, |Y | ≤ 1 a.s., G being a class of measurable
functions on T uniformly bounded by 1. The goal is to estimate the regres-
sion function g∗(x) := E(Y |X = x). Define localized Rademacher complexity
ψn(δ) := E supg1,g2∈G,‖g1−g2‖2

L2(�)≤δ |Rn(g1 − g2)|, where � is the distribution

of X and Rn(g) := n−1∑n
j=1 εjg(Xj ) is the Rademacher process, {εj } being

a sequence of i.i.d. Rademacher random variables independent of {Xj }. Denote

ψ
�
n(δ) := supσ≥δ

ψn(σ )
σ

and ψ
�
n(ε) := inf{δ > 0 :ψ�

n(δ) ≤ ε}. The next result easily
follows from Theorem 5.2 in [9]:

PROPOSITION 2. There exist constants c1, c2 > 0 such that, for all t > 0, with
probability at least 1 − e−t ,

‖ĝ − g∗‖2
L2(�) ≤ 2 inf

g∈G
‖g − g∗‖2

L2(�) + c1

(
ψ�

n(c2) + t

n

)
.

We will apply this proposition to prove Theorem 4. In what follows in the proof,
denote Ŝ := Ŝl . In our case, T = V × V , (X,X′) plays the role of X, and �2

plays the role of �. Let G := S̄r (l;1), g∗ = S∗ and ĝ = Ŝ. First, we need to
upper bound the Rademacher complexity ψn(δ) for the class G . Let Sr,m(R) be
the set of all symmetric m × m matrices S with rank(S) ≤ r and ‖S‖2 ≤ R. The
ε-covering number N(Sr,m(R); ‖ · ‖2; ε) of the set Sr,m(R) with respect to the
Hilbert–Schmidt distance (i.e., the minimal number of balls of radius ε needed to
cover this set) can be bounded as follows:

N
(
Sr,m(R); ‖ · ‖2; ε)≤

(
18R

ε

)(m+1)r

.(3.4)
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Such bounds are well known (see, e.g., [9], Lemma 9.3 and references therein;
the proof of this lemma can be easily modified to obtain (3.4)). Bound (3.4)
will be used to control the covering numbers of the set of kernels Sr (l;1). This
set can be easily identified with a subset of the set Sr∧l,l(m) [since kernels
S ∈ Sr (l;1) can be viewed as symmetric l × l matrices of rank at most r ∧ l with
‖S‖L2(�

2) ≤ 1 and ‖S‖2 = m‖S‖L2(�
2) ≤ m]. Therefore, we get the following

bound: N(Sr (l;1); ‖ · ‖2; ε) ≤ (18m
ε

)(l+1)(r∧l). Since ‖S1
1 − S1

2‖2
2 ≤ ‖S1 − S2‖2

2
(truncation of the entries reduces the Hilbert–Schmidt distance), we also have
N(S̄r (l;1); ‖ · ‖2; ε) ≤ (18m

ε
)(l+1)(r∧l). Since ‖EXj ,X′

j
‖2 ≤ 1, ‖S1 − S2‖2

L2(�n) =
n−1∑n

j=1〈S1 −S2,EXj ,X′
j
〉2 ≤ ‖S1 −S2‖2

2. Therefore, we get the following bound

on the L2(�n)-covering numbers of the set S̄r (l;1) :N(S̄r (l;1);L2(�n); ε) ≤
(18m

ε
)(l+1)(r∧l). Here �n denotes the empirical distribution based on observations

(X1,X
′
1), . . . , (Xn,X

′
n). The last bound allows us to use inequality (3.17) in [9] to

control the localized Rademacher complexity ψn(δ) of the class G as follows:

ψn(δ) = E sup
S1,S2∈S̄r (l;1),‖S1−S2‖2

L2(�2)
≤δ

∣∣∣∣∣n−1
n∑

j=1

εj

(
S1
(
Xj,X

′
j

)− S2
(
Xj,X

′
j

))∣∣∣∣∣
(3.5)

≤ C1

[√
δl(r ∧ l)

n

√
log
(

Am√
δ

)
∨ l(r ∧ l)

n
log
(

Am√
δ

)]

with some constant A,C1 > 0. This easily yields ψ
�
n(c2) ≤ C2

(r∧l)l
n

log( Anm
(r∧l)l

)

with some constants A,C2 > 0. Proposition 2 now implies bound (3.2).
To prove bound (3.3), it is enough to observe that, for S∗ ∈ Sr,ρ ,

inf
S∈S̄r (l;1)

‖S − S∗‖2
L2(�

2)
≤ 2ρ2

λl+1
.(3.6)

Indeed, since S∗ ∈ Sr,ρ , we can approximate this kernel by Sl := ∑l
i,j=1〈S∗φi,

φj 〉(φi ⊗ φj ). For the error of this approximation, we have

‖Sl − S∗‖2
L2(�

2)

= m−2‖Sl − S∗‖2
2 = m−2

∑
i∨j>l

〈S∗φi,φj 〉2

≤ m−2 1

λl+1

∑
i>l

m∑
j=1

λi〈S∗φi,φj 〉2 + m−2 1

λl+1

m∑
i=1

∑
j>l

λj 〈S∗φi,φj 〉2 ≤ 2ρ2

λl+1
,

which implies ‖S1
l −S∗‖2

L2(�) ≤ ‖Sl −S∗‖2
L2(�

2)
≤ 2ρ2

λl+1
(since the entries of matrix

S∗ are bounded by 1 and truncation of the entries reduces the Hilbert–Schmidt
distance). We also have rank(Sl) ≤ rank(S∗) ≤ r and

‖Sl‖L2(�
2) = m−1‖Sl‖2 ≤ m−1‖S∗‖2 = ‖S∗‖L2(�

2) ≤ ‖S∗‖L∞ ≤ 1.
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Therefore, S1
l ∈ S̄r (l;1) and bound (3.6) follows. Bound (3.3) is a consequence

of (3.2) and (3.6). �

REMARK. Note that, in the case when the basis of eigenfunctions {φj } coin-
cides with the canonical basis of space R

V , the following bound holds trivially:

‖Ŝl − S∗‖2
L2(�

2)
≤ 4a2l2

m2 + 2ρ2

λl+1
.(3.7)

This follows from the fact that the entries of both matrices Ŝl and Sl are bounded
by a, and their nonzero entries are only in the first l rows and the first l columns, so,
‖Ŝl − Sl‖2

L2(�
2)

≤ 4a2l2

m2 . Combining this with (3.3) and minimizing the resulting
bound with respect to l yields the following upper bound (up to a constant) that
holds for the optimal choice of l:

min
1≤l≤m

[(
a2(r ∧ l)l

n
log
(

Anm

(r ∧ l)l

)
∧ a2l2

m2

)
∨ ρ2

λl+1

]
∨ a2t

n
.

It is not hard to check that, typically, this expression is of the same order (up to log
factors) as the lower bound of Theorem 3 for d = 1.

Next we consider a penalized version of least squares estimator which is adap-
tive to unknown parameters of the problem (such as the rank of the target matrix
and the optimal value of parameter l which minimizes the error bound of Theo-
rem 4). We still assume that |Y | ≤ a a.s. for some known constant a > 0. Define

(r̂, l̂) := argmin
r,l=1,...,m

{
n−1

n∑
j=1

(
Yj − Ŝr,l,a

(
Xj,X

′
j

))2
(3.8)

+ K
a2(r ∧ l)l

n
log
(

Anm

(r ∧ l)l

)}

and let Ŝ := Ŝ
r̂,l̂,a

. Here K > 0 and A > 0 are fixed constants.

The following theorem provides an oracle inequality for the estimator Ŝ.

THEOREM 5. There exists a choice of constants K > 0, A > 0 in (3.8) and
C > 0 in the inequality below such that for all t > 0 with probability at least
1 − e−t

‖Ŝ − S∗‖2
L2(�

2)

≤ 2 min
1≤r≤m,1≤l≤m

[
inf

S∈S̄r (l;a)
‖S − S∗‖2

L2(�
2)

(3.9)

+ C

(
a2(r ∧ l)l

n
log
(

Anm

(r ∧ l)l

)
+ a2(t + logm)

n

)]
.
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PROOF. As in the proof of the previous theorem, we can assume that a = 1;
the general case follows by rescaling. We will use oracle inequalities in ab-
stract penalized empirical risk minimization problems; see [9], Theorem 6.5.
We only sketch the proof here skipping the details that are standard. As in
the proof of Theorem 4, first consider i.i.d. copies (X1, Y1), . . . , (Xn,Yn) of
a random couple (X,Y ) in T × R, where (T , T ) is a measurable space and
|Y | ≤ 1 a.s. Let {Gk :k ∈ I } be a finite family of classes of measurable func-
tions from T into [−1,1]. Consider the corresponding family of least squares es-
timators ĝk := argming∈Gk

n−1∑n
j=1(Yj − g(Xj ))

2, k ∈ I. Suppose the following
upper bounds on localized Rademacher complexities for classes Gk, k ∈ I hold:
E supg1,g2∈Gk,‖g1−g2‖2

L2(�)≤δ |Rn(g1 − g2)| ≤ ψn,k(δ), δ > 0, where ψn,k are non-

decreasing functions of δ that do not depend on the distribution of (X,Y ). Let

k̂ := argmin
k∈I

[
n−1

n∑
j=1

(
Yj − ĝk(Xj )

)2 + K

(
ψ

�
n,k(c1) + tk

n

)]
,(3.10)

and K,c1 are constants and {tk, k ∈ I } are positive numbers. Define the following
penalized least squares estimator of the regression function g∗ : ĝ := ĝ

k̂
.

The next result is well known; it can be deduced, for instance, from Theorem 6.5
in [9].

PROPOSITION 3. There exists constants K,c1 > 0 in the definition (3.10) of
k̂ and a constant K1 > 0 such that, for all tk > 0, with probability at least 1 −∑

k∈I e−tk

‖ĝ − g∗‖2
L2(�) ≤ 2 inf

k∈I

[
inf

g∈Gk

‖g − g∗‖2
L2(�) + K1

(
ψ

�
n,k(c) + tk

n

)]
.

We apply this result to the estimator Ŝ = Ŝ
r̂,l̂,1, where (r̂, l̂) is defined by (3.8)

(with a = 1). In this case, T = V × V , (X,X′) plays the role of X, g∗ = S∗,
I = {(r, l) : 1 ≤ r, l ≤ m}, Gr,l = S̄r (l;1). In view of (3.5), we can use the following
bounds on localized Rademacher complexities for these function classes:

ψn,r,l(δ) := C1

[√
δl(r ∧ l)

n

√
log
(

Am√
δ

)
∨ l(r ∧ l)

n
log
(

Am√
δ

)]

with some constant C1, and we have ψ
�
n,r,l(c1) ≤ C2

(r∧l)l
n

log( Anm
(r∧l)l

) with some
constant C2 > 0. Define tr,l := t + 2 logm, (r, l) ∈ I . This yields the bound∑

(r,l)∈I e−tr,l ≤ e−t . These considerations and Proposition 3 imply the claim of
the theorem. �

It follows from Theorem 5 that, for some constant C > 0 and for all t > 0,

sup
P∈Pr,ρ,a

PP

{
‖Ŝ − SP ‖2

L2(�
2)

≥ C

(
�n(r, ρ, a) ∨ a2t

n

)}
≤ e−t ,(3.11)
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where �n(r, ρ, a) := min1≤l≤m[a2(r∧l)l
n

log( Anm
(r∧l)l

) ∨ ρ2

λl+1
]. Denoting

l̃ := min
{
l = 1, . . . ,m : (r ∨ l)lλl+1 log

(
Anm

(r ∧ l)l

)
≥ ρ2n

a2

}
,

it is easy to see that �n(r, ρ, a) = a2(r∧l̃)l̃
n

log( Anm

(r∧l̃)l̃
) ∨ ρ2

λ
l̃
.

EXAMPLE. Suppose that, for some β > 1/2, λl � l2β, l = 1, . . . ,m. Under
this assumption, it is easy to show that the upper bound on the squared L2(�

2)-
error of the estimator Ŝ is of the order((

a2ρ1/βr

n
log

Anm

r

)2β/(2β+1)

∧
(

a2ρ2/β log(Anm)

n

)β/β+1

∧ a2rm log(Anm)

n

)
∨ a2t

n

(in fact, the log factors can be written in a slightly better, but more complicated
way). Up to the log factors, this is the same error rate as in the lower bounds of
Section 2; see (2.1).

4. Least squares with convex penalization: Combining nuclear norm and
squared Sobolev norm. Our main goal in this section is to study the following
penalized least squares estimator with a combination of two convex penalties:

Ŝε,ε̄ := argmin
S∈D

[
1

n

n∑
j=1

(
Yj − S

(
Xj,X

′
j

))2 + ε‖S‖1 + ε̄
∥∥W 1/2S

∥∥2
L2(�

2)

]
,(4.1)

where D ⊂ SV is a closed convex set of symmetric kernels such that, for all S ∈ D,
‖S‖L∞ := maxu,v∈V |S(u, v)| ≤ a, and ε, ε̄ > 0 are regularization parameters. The
first penalty involved in (4.1) is based on the nuclear norm ‖S‖1, and it is used
to “promote” low-rank solutions. The second penalty is based on a “Sobolev type
norm” ‖W 1/2S‖2

L2(�
2)

. It is used to “promote” the smoothness of the solution on
the graph.

We will derive an upper bound on the error ‖Ŝε,ε̄ − S∗‖2
L2(�

2)
of estimator Ŝε,ε̄

in terms of spectral characteristics of the target kernel S∗ and matrix W . As be-
fore, W is a nonnegatively definite symmetric kernel with spectral representation
W =∑m

k=1 λk(φk ⊗ φk), where 0 ≤ λ1 ≤ · · · ≤ λm are the eigenvalues of W re-
peated with their multiplicities and φ1, . . . , φm are the corresponding orthonormal
eigenfunctions. We will also use the decomposition of identity associated with W :
E(λ) :=∑λj≤λ(φj ⊗ φj ), λ ≥ 0. Clearly, λ �→ E(λ) is a nondecreasing projector-
valued function. Despite the fact that the eigenfunctions {φk} are not uniquely de-
fined in the case when W has multiple eigenvalues, the decomposition of identity
{E(λ),λ ≥ 0} is uniquely defined (in fact, it can be rewritten in terms of spectral
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projectors of W ). The distribution of the eigenvalues of W is characterized by the
following spectral function:

F(λ) := tr
(
E(λ)

)= ∥∥E(λ)
∥∥2

2 =
m∑

j=1

I (λj ≤ λ), λ ≥ 0.

Denote k0 := F(0)+1 (in other words, k0 is the smallest k such that λk > 0). It was
assumed in the Introduction that there exists a constant c ≥ 1 such that λk+1 ≤ cλk

for all k ≥ k0.
In what follows, we use a regularized majorant of spectral function F . Let

F̄ : R+ �→ R+ be a nondecreasing function such that F(λ) ≤ F̄ (λ), λ ≥ 0, the func-

tion λ �→ F̄ (λ)
λ

is nonincreasing and, for some γ ∈ (0,1),
∫ ∞
λ

F̄ (s)

s2 ds ≤ 1

γ

F̄ (λ)

λ
, λ > 0.

Without loss of generality, we assume in what follows that F̄ (λ) = m,λ ≥ λm

[otherwise, one can take the function F̄ (λ) ∧ m instead]. The conditions on F̄ are
satisfied if for some γ ∈ (0,1), the function F̄ (λ)

λ1−γ is nonincreasing: in this case,
F̄ (λ)

λ
is also nonincreasing and

∫ ∞
λ

F̄ (s)

s2 ds =
∫ ∞
λ

F̄ (s)

s1−γ

ds

s1+γ
≤ F̄ (λ)

λ1−γ

∫ ∞
λ

ds

s1+γ
= 1

γ

F̄ (λ)

λ
.

Consider a kernel S ∈ SV (an oracle) with spectral representation: S =∑r
k=1 μk(ψk ⊗ ψk), where r = rank(S) ≥ 1, μk are nonzero eigenvalues of S

(possibly repeated) and ψk are the corresponding orthonormal eigenfunctions. De-
note L = supp(S) = l.s.(ψ1, . . . ,ψr). The following coherence function will be
used to characterize the relationship between the kernels S and W :

ϕ(S;λ) := 〈PL,E(λ)
〉 := ∑

λj≤λ

‖PLφj‖2, λ ≥ 0.(4.2)

It is immediate from this definition that ϕ(S,λ) ≤ F(λ) ≤ F̄ (λ), λ ≥ 0. Note also
that ϕ(S;λ) is a nondecreasing function of λ and ϕ(S,λ) = ∑m

j=1 ‖PLφj‖2 =
r, λ ≥ λm [for λ < λm, ϕ(S;λ) can be interpreted as a “partial rank” of S]. As
in the case of spectral function S, we need a regularized majorant for the coher-
ence function ϕ(S;λ). Denote by � = �S,W the set of all nondecreasing functions
ϕ : R+ �→ R+ such that λ �→ ϕ(λ)

F̄ (λ)
is nonincreasing and ϕ(S;λ) ≤ ϕ(λ), λ ≥ 0. It

is easy to see that the class of functions �S,W contains the smallest function (uni-
formly in λ ≥ 0) that will be denoted by ϕ̄(S;λ) and it is given by the following
expression:

ϕ̄(S;λ) := sup
σ≤λ

F̄ (σ ) sup
σ ′≥σ

ϕ(S;σ ′)
F̄ (σ ′)

.
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It easily follows from this definition that ϕ̄(S, λ) = r, λ ≥ λm. Note that since the
function ϕ̄(S,λ)

F̄ (λ)
is nonincreasing and it is equal to r

m
for λ ≥ λm, we have

ϕ̄(S;λ) ≥ r

m
F̄ (λ) ≥ r

m
F(λ), λ ≥ 0.(4.3)

Given t > 0, λ̃ ∈ (0, λk0], let tn,m := t +3 log(2 log2 n+ 1
2 log2

λm

λ̃
+2). Suppose

that, for some D > 0,

ε ≥ Da

(√
log(2m)

nm
∨ log(2m)

n

)
.(4.4)

THEOREM 6. There exists constants C,D depending only on c, γ such that,
for all ε̄ ∈ [0, λ̃−1] with probability at least 1 − e−t ,

‖Ŝε,ε̄ − S∗‖2
L2(�

2)

≤ inf
S∈D

[‖S − S∗‖2
L2(�

2)
+ Cm2ε2ϕ̄

(
S; ε̄−1)+ ε̄

∥∥W 1/2S
∥∥2
L2(�

2)

]
(4.5)

+ C
a2tn,m

n
.

REMARKS. (1) Under the additional assumption that m log(2m) ≤ n, one can

take ε = Da

√
log(2m)

nm
. In this case, the main part of the random error term in the

right-hand side of bound (4.5) becomes

Cm2ε2ϕ̄
(
S; ε̄−1)+ ε̄

∥∥W 1/2S
∥∥2
L2(�

2)

= C′ a2ϕ̄(S; ε̄−1)m log(2m)

n
+ ε̄
∥∥W 1/2S

∥∥2
L2(�

2).

(2) Note also that Theorem 6 holds in the case when ε̄ = 0. In this case, our
method coincides with nuclear norm penalized least squares (matrix LASSO) and
ϕ̄(S; ε̄−1) = rank(S), so the bound of Theorem 6 becomes

‖Ŝε,0 − S∗‖2
L2(�

2)
≤ inf

S∈D

[‖S − S∗‖2
L2(�

2)
+ Cm2ε2 rank(S)

]+ C
a2tn,m

n
.(4.6)

Similar oracle inequalities were proved in [10] for a linearized least squares
method with nuclear norm penalty.

Using simple aggregation techniques, it is easy to construct an adaptive estima-
tor for which the oracle inequality of Theorem 6 holds with the optimal value of
ε̄ that minimizes the right-hand side of the bound. To this end, divide the sample
(X1,X

′
1, Y1), . . . , (Xn,X

′
n, Yn) into two parts,(

Xj,X
′
j , Yj

)
, j = 1, . . . , n′ and(

Xn′+j ,X
′
n′+j , Yn′+j

)
, j = 1, . . . , n − n′,
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where n′ := [n/2] + 1. The first part of the sample will be used to compute the
estimators Ŝl := Ŝε,ε̄l

, εl := λ−1
l , l = k0, . . . ,m + 1 [they are defined by (4.1), but

they are based only on the first n′ observations]. The second part of the sample is
used for model selection

l̂ := argmin
l=k0,...,m+1

1

n − n′
n−n′∑
j=1

(
Yn′+j − Ŝl

(
Xn′+j ,X

′
n′+j

))2
.

Finally, let Ŝ := Ŝ
l̂
.

THEOREM 7. Under the assumptions and notation of Theorem 6, with proba-
bility at least 1 − e−t ,

‖Ŝ − S∗‖2
L2(�

2)

≤ inf
S∈D

[
2‖S − S∗‖2

L2(�
2)

(4.7)
+ C inf

ε̄∈[0,λ−1
k0

]
(
m2ε2ϕ̄

(
S; ε̄−1)+ ε̄

∥∥W 1/2S
∥∥2
L2(�

2)

)]

+ C
a2(log(m + 1) + tn,m)

n
.

PROOF. The idea of aggregation result behind this theorem is rather well
known; see [12], Chapter 8. The proof can be deduced, for instance, from Proposi-
tion 2 used in Section 3. Specifically, this proposition has to be applied in the case
when G is a finite class of functions bounded by 1. Let N := card(G). Then, for
some numerical constant C1 > 0

ψn(δ) ≤ C1

[
δ

√
logN

n
∨ logN

n

]

(see, e.g., [9], Theorem 3.5), and Proposition 2 easily implies that, for all t > 0,
with probability at least 1 − e−t

‖ĝ − g∗‖2
L2(�) ≤ 2 inf

g∈G
‖g − g∗‖2

L2(�) + C2
logN + t

n
,(4.8)

where C2 > 0 is a constant. We will assume that a = 1 (in the general case, the
result would follow by rescaling) and use bound (4.8), conditionally on the first
part of the sample, in the case when G := {ĝl : l = k0, . . . ,m + 1}. Then, given
(Xj ,X

′
j , Yj ), j = 1, . . . , n′, with probability at least 1 − e−t ,

‖Ŝ − S∗‖2
L2(�

2)
≤ 2 min

k0≤l≤m+1
‖Ŝl − S∗‖2

L2(�) + C2
log(m + 1) + t

n
.(4.9)
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By Theorem 6 [with t replaced by t + log(m + 1)] and the union bound, we get
that, with probability at least 1 − e−t , for all l = k0, . . . ,m + 1,

‖Ŝl − S∗‖2
L2(�

2)

≤ inf
S∈D

[‖S − S∗‖2
L2(�

2)
+ C3m

2ε2ϕ̄
(
S; ε̄−1

l

)+ ε̄l

∥∥W 1/2S
∥∥2
L2(�

2)

]
(4.10)

+ C3
log(m + 1) + tn,m

n

with some constant C3 > 0. Therefore, the minimal error of estimators Ŝl ,
mink0≤l≤m+1 ‖Ŝl − S∗‖2

L2(�), can be bounded with the same probability by the
minimum over l = k0, . . . ,m+ 1 of the expression in the right-hand side of (4.10).
Moreover, using monotonicity of the function λ �→ ϕ(S;λ) and the condition that
λl+1 ≤ cλl, l = k0, . . . ,m − 1, it is easy to replace the minimum over l by the infi-
mum over ε̄. Combining the resulting bound with (4.9) and adjusting the constants
yields the claim. �

Using more sophisticated aggregation methods (e.g., such as the methods stud-
ied in [6]) it is possible to construct an estimator Ŝ for which the oracle inequality
similar to (4.7) holds with constant 1 in front of the approximation error term
‖S − S∗‖2

L2(�
2)

.
To understand better the meaning of function ϕ̄ involved in the statements of

Theorems 6 and 7, it makes sense to relate it to the low coherence assumptions
discussed in the Introduction. Indeed, suppose that, for some ν = ν(S) ≥ 1,

‖PLφk‖2 ≤ νr

m
, k = 1, . . . ,m.(4.11)

This is a part of standard low coherence assumptions on matrix S with respect to
the orthonormal basis {φk}; see (1.2). Clearly, it implies that6

ϕ̄(S;λ) ≤ νrF̄ (λ)

m
, λ ≥ 0.(4.12)

Suppose that n ≥ m log(2m) and ε = Da

√
log(2m)

nm
. If condition (4.12) holds for the

target kernel S∗ with r = rank(S∗) and some ν ≥ 1, then Theorem 6 implies that
with probability at least 1 − e−t ,

‖Ŝε,ε̄ − S∗‖2
L2(�

2)
≤ C

a2νrF̄ (ε̄−1) log(2m)

n
+ ε̄
∥∥W 1/2S∗

∥∥2
L2(�

2)

+ C
a2tn,m

n
,

6Compare (4.12) with (4.3).
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and Theorem 7 implies that with the same probability,

‖Ŝ − S∗‖2
L2(�

2)
≤ C inf

ε̄∈[0,λ−1
k0

]

(
a2νrF̄ (ε̄−1) log(2m)

n
+ ε̄
∥∥W 1/2S∗

∥∥2
L2(�

2)

)

+ C
a2(log(m + 1) + tn,m)

n
.

EXAMPLE. If λk � k2β for some β > 1/2, then it is easy to check that F̄ (λ) �
λ1/2β . Under the assumption that ‖W 1/2S∗‖2

L2(�
2)

≤ ρ2, we get the bound

‖Ŝ − S∗‖2
L2(�

2)

≤ C

(((
a2ρ1/βνr log(2m)

n

)2β/(2β+1)

∧ a2rm

n

)
(4.13)

∨ a2(log(m + 1) + tn,m)

n

)
.

Under the following slightly modified version of low coherence assumption (4.12),

ϕ̄(S;λ) ≤ ν(r ∧ F̄ (λ))F̄ (λ)

m
, λ ≥ 0,(4.14)

one can almost recover upper bounds of Section 3,

‖Ŝ − S∗‖2
L2(�

2)

≤ C

(((
νa2ρ1/βr log(2m)

n

)2β/(2β+1)

∧
(

νa2ρ2/β log(2m)

n

)β/(β+1)

∧ a2rm

n

)

∨ a2(log(m + 1) + tn,m)

n

)
.

The main difference with what was proved in Section 3 is that now the low coher-
ence constant ν is involved in the bounds, so the methods discussed in this section
yield correct (up to log factors) error rates provided that the target kernel S∗ has
“low coherence” with respect to the basis of eigenfunctions of W .

PROOF OF THEOREM 6. Bound (4.5) will be proved for a fixed oracle S ∈ D

and an arbitrary function ϕ ∈ �S,W with ϕ(λ) = r, λ ≥ λm instead of ϕ̄. It then
can be applied to the function ϕ̄ (which is the smallest function in �S,W ). Without
loss of generality, we assume that a = 1; the general case then follows by a simple
rescaling. Finally, we will denote Ŝ := Ŝε,ε̄ throughout the proof.
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Define the following orthogonal projectors PL, P ⊥
L in the space SV with

Hilbert–Schmidt inner product: PL(A) := A − PL⊥APL⊥, P ⊥
L (A) = PL⊥APL⊥,

A ∈ SV . We will use a well known representation of subdifferential of convex
function S �→ ‖S‖1:

∂‖S‖1 = {sign(S) + P ⊥
L (M) :M ∈ SV ,‖M‖ ≤ 1

}
,

where L = supp(S); see [9], Appendix A.4 and references therein. Denote

Ln(S) := 1

n

n∑
j=1

(
Yj − S

(
Xj,X

′
j

))2 + ε‖S‖1 + ε̄
∥∥W 1/2S

∥∥2
L2(�

2),

so that Ŝ := argminS∈D Ln(S). An arbitrary matrix A ∈ ∂Ln(Ŝ) can be represented
as

A = 2

n

n∑
i=1

Ŝ
(
Xi,X

′
i

)
EXi,X

′
i
− 2

n

n∑
i=1

YiEXi,X
′
i
+ εV̂ + 2

ε̄

m2 WŜ,(4.15)

where V̂ ∈ ∂‖Ŝ‖1. Since Ŝ is a minimizer of Ln(S), there exists a matrix A ∈
∂Ln(Ŝ) such that −A belongs to the normal cone of D at the point Ŝ; see [1],
Chapter 2, Corollary 6. This implies that 〈A, Ŝ − S〉 ≤ 0 and, in view of (4.15),

2Pn

(
Ŝ(Ŝ − S)

)−
〈

2

n

n∑
i=1

YiEXi,X
′
i
, Ŝ − S

〉
+ ε〈V̂ , Ŝ − S〉

(4.16)

+ 2
ε̄

m2 〈WŜ, Ŝ − S〉 ≤ 0.

Here and in what follows Pn denotes the empirical distribution based on the sample
(X1,X

′
1, Y1), . . . , (Xn,X

′
n, Yn). The corresponding true distribution of (X,X′, Y )

will be denoted by P . It easily follows from (4.16) that

2〈Ŝ − S∗, Ŝ − S〉L2(Pn) − 2〈�, Ŝ − S〉
+ ε〈V̂ , Ŝ − S〉 + 2ε̄

〈
W 1/2Ŝ,W 1/2(Ŝ − S)

〉
L2(�

2) ≤ 0,

where � := 1
n

∑n
j=1 ξjEXj ,X′

j
, ξj := Yj −S∗(Xj ,X

′
j ). We can now rewrite the last

bound as

2〈Ŝ − S∗, Ŝ − S〉L2(P ) + ε〈V̂ , Ŝ − S〉 + 2ε̄
〈
W 1/2(Ŝ − S),W 1/2(Ŝ − S)

〉
L2(�

2)

≤ −2ε̄
〈
W 1/2S,W 1/2(Ŝ − S)

〉
L2(�

2) + 2〈�, Ŝ − S〉
+ 2(P − Pn)

(
(Ŝ − S∗)(Ŝ − S)

)
and use a simple identity

2〈Ŝ − S∗, Ŝ − S〉L2(P ) = 2〈Ŝ − S∗, Ŝ − S〉L2(�
2)

= ‖Ŝ − S∗‖2
L2(�

2)
+ ‖Ŝ − S‖2

L2(�
2)

− ‖S − S∗‖2
L2(�

2)
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to get the following bound:

‖Ŝ − S∗‖2
L2(�

2)
+ ‖Ŝ − S‖2

L2(�
2)

+ 2ε̄
∥∥W 1/2(Ŝ − S)

∥∥2
L2(�

2) + ε〈V̂ , Ŝ − S〉
≤ ‖S − S∗‖2

L2(�
2)

− 2ε̄
〈
W 1/2S,W 1/2(Ŝ − S)

〉
L2(�

2)(4.17)

+ 2〈�, Ŝ − S〉 + 2(P − Pn)(S − S∗)(Ŝ − S)

+ 2(P − Pn)(Ŝ − S)2.

For an arbitrary V ∈ ∂‖S‖1, V = sign(S) + P ⊥
L (M), where M is a matrix with

‖M‖ ≤ 1. It follows from the trace duality property that there exists an M with
‖M‖ ≤ 1 [to be specific, M = sign(P ⊥

L (Ŝ))] such that

〈
P ⊥

L (M), Ŝ − S
〉= 〈M, P ⊥

L (Ŝ − S)
〉= 〈M, P ⊥

L (Ŝ)
〉= ∥∥P ⊥

L (Ŝ)
∥∥

1,

where the first equality is based on the fact that P ⊥
L is a self-adjoint operator and

the second equality is based on the fact that S has support L. Using this equation
and monotonicity of subdifferentials of convex functions, we get 〈sign(S), Ŝ −
S〉 + ‖P ⊥

L (Ŝ)‖1 = 〈V, Ŝ − S〉 ≤ 〈V̂ , Ŝ − S〉. Substituting this into the left-hand
side of (4.17), it is easy to get

‖Ŝ − S∗‖2
L2(�

2)
+ ‖Ŝ − S‖2

L2(�
2)

+ ε
∥∥P ⊥

L (Ŝ)
∥∥

1 + 2ε̄
∥∥W 1/2(Ŝ − S)

∥∥2
L2(�

2)

≤ ‖S − S∗‖2
L2(�

2)
− ε
〈
sign(S), Ŝ − S

〉
(4.18)

− 2ε̄
〈
W 1/2S,W 1/2(Ŝ − S)

〉
L2(�

2)

+ 2〈�, Ŝ − S〉 + 2(P − Pn)(S − S∗)(Ŝ − S)

+ 2(P − Pn)(Ŝ − S)2.

We need to bound the right-hand side of (4.18). We start with deriving a bound
on 〈sign(S), Ŝ − S〉, expressed in terms of function ϕ. Note that, for all λ > 0,

〈
sign(S), Ŝ − S

〉= m∑
k=1

〈
sign(S)φk, (Ŝ − S)φk

〉

= ∑
λk≤λ

〈
sign(S)φk, (Ŝ − S)φk

〉

+ ∑
λk>λ

〈
sign(S)φk√

λk

,
√

λk(Ŝ − S)φk

〉
,
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which easily implies∣∣〈sign(S), Ŝ − S
〉∣∣

≤
(∑

λk≤λ

∥∥sign(S)φk

∥∥2
)1/2(∑

λk≤λ

∥∥(Ŝ − S)φk

∥∥2
)1/2

(4.19)

+
(∑

λk>λ

‖ sign(S)φk‖2

λk

)1/2(∑
λk>λ

λk

∥∥(Ŝ − S)φk

∥∥2
)1/2

≤
(∑

λk≤λ

‖PLφk‖2
)1/2

‖Ŝ − S‖2 +
(∑

λk>λ

‖PLφk‖2

λk

)1/2∥∥W 1/2(Ŝ − S)
∥∥

2.

We will now use the following elementary lemma.

LEMMA 1. Let cγ := c+γ
γ

. For all λ > 0,

∑
λk>λ

‖PLφk‖2

λk

≤ cγ

ϕ(λ)

λ
and

∑
λk>λ

1

λk

≤ cγ

F̄ (λ)

λ
.

PROOF. Denote Hk := ∑l
j=1 ‖PLφj‖2, k = 1, . . . ,m. Suppose that λ ∈

[λl, λl+1] for some l = k0 − 1, . . . ,m − 1. We will use the properties of func-

tions ϕ ∈ �S,W and F̄ . In particular, recall that the functions ϕ(λ)

F̄ (λ)
and F̄ (λ)

λ
are

nonincreasing. Using these properties and the condition that λk+1 ≤ cλk, k ≥ k0
we get

∑
λk>λ

‖PLφk‖2

λk

=
m−1∑

k=l+1

Hk

(
1

λk

− 1

λk+1

)
+ Hm

λm

− Hl

λl+1

≤
m−1∑

k=l+1

ϕ(λk)

(
1

λk

− 1

λk+1

)
+ ϕ(λm)

λm

≤ c

m−1∑
k=l+1

ϕ(λk+1)

λ2
k+1

(λk+1 − λk) + ϕ(λm)

λm

≤ c

∫ ∞
λ

ϕ(s)

s2 ds + ϕ(λ)

λ
≤ c

∫ ∞
λ

ϕ(s)

F̄ (s)

F̄ (s)

s2 ds + ϕ(λ)

λ

≤ c
ϕ(λ)

F̄ (λ)

∫ ∞
λ

F̄ (s)

s2 ds + ϕ(λ)

λ
≤ c

γ

ϕ(λ)

F̄ (λ)

F̄ (λ)

λ
+ ϕ(λ)

λ

= c + γ

γ

ϕ(λ)

λ
,
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which proves the first bound. To prove the second bound, replace in the inequalities
above ‖PLφk‖2 by 1 and ϕ(λ) by F̄ (λ). In the case when λ ≥ λm, both bounds are
trivial since their left-hand sides are equal to zero. �

It follows from from (4.19) and the first bound of Lemma 1 that∣∣〈sign(S), Ŝ − S
〉∣∣

≤√ϕ(λ)‖Ŝ − S‖2 +
√

cγ

ϕ(λ)

λ

∥∥W 1/2(Ŝ − S)
∥∥

2(4.20)

= m
√

ϕ(λ)‖Ŝ − S‖L2(�
2) + m

√
cγ

ϕ(λ)

λ

∥∥W 1/2(Ŝ − S)
∥∥
L2(�

2).

This implies the following bound:

ε
∣∣〈sign(S), Ŝ − S

〉∣∣
≤ ϕ(λ)m2ε2 + 1

4
‖Ŝ − S‖2

L2(�
2)

+ cγ

ϕ(λ)

λ

m2ε2

ε̄
(4.21)

+ ε̄

4

∥∥W 1/2(Ŝ − S)
∥∥2
L2(�

2),

where we used twice an elementary inequality ab ≤ a2 + 1
4b2, a, b > 0. We will

apply this bound for λ = ε̄−1 to get the following inequality:

ε
∣∣〈sign(S), Ŝ − S

〉∣∣
≤ (cγ + 1)ϕ

(
ε̄−1)m2ε2 + 1

4
‖Ŝ − S‖2

L2(�
2)

(4.22)

+ ε̄

4

∥∥W 1/2(Ŝ − S)
∥∥2
L2(�

2).

To bound the next term in the right-hand side of (4.18), note that

ε̄
∣∣〈W 1/2S,W 1/2(Ŝ − S)

〉
L2(�

2)

∣∣
(4.23)

≤ ε̄
∥∥W 1/2S

∥∥2
L2(�

2) + ε̄

4

∥∥W 1/2(Ŝ − S)
∥∥2
L2(�

2).

The main part of the proof deals with bounding the stochastic term

2〈�, Ŝ − S〉 + 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

on the right-hand side of (4.18). To this end, define (for fixed S,S∗)

fA(y,u, v) := (y − S∗(u, v)
)
(A − S)(u, v) − (S − S∗)(u, v)(A − S)(u, v)

− (A − S)2(u, v)

= (
y − S(u, v)

)
(A − S)(u, v) − (A − S)2(u, v),
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and consider the following empirical process:

αn(δ1, δ2, δ3) := sup
{∣∣(Pn − P)(fA)

∣∣ :A ∈ T (δ1, δ2, δ3)
}
,

where

T (δ1, δ2, δ3)

:= {A ∈ D :‖A − S‖L2(�
2) ≤ δ1,

∥∥P ⊥
L A
∥∥

1 ≤ δ2,
∥∥W 1/2(A − S)

∥∥
L2(�

2) ≤ δ3
}
.

Clearly, we have

2〈�, Ŝ − S〉 + 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

(4.24)
≤ 2αn

(‖Ŝ − S‖L2(�
2),
∥∥P ⊥

L Ŝ
∥∥

1,
∥∥W 1/2(Ŝ − S)

∥∥
L2(�

2)

)
,

and it remains to provide an upper bound on αn(δ1, δ2, δ3) that is uniform in
some intervals of the parameters δ1, δ2, δ3 (such that either the norms ‖Ŝ −
S‖L2(�

2),‖P ⊥
L Ŝ‖1,‖W 1/2(Ŝ − S)‖L2(�

2) belong to these intervals with a high
probability, or bound of the theorem trivially holds). Note that the functions
fA are uniformly bounded by a numerical constant (under the assumptions
that a = 1, |Y | ≤ a and all the kernels are also bounded by a) and we have
Pf 2

A ≤ c1‖A − S‖2
L2(�) with some numerical constant c1 > 0. Using Tala-

grand’s concentration inequality for empirical processes we conclude that for
fixed δ1, δ2, δ3 with probability at least 1 − e−t and with some constant c2 > 0

αn(δ1, δ2, δ3) ≤ 2Eαn(δ1, δ2, δ3) + c2(δ1

√
t
n

+ t
n
). We will make this bound uni-

form in δk ∈ [δ−
k , δ+

k ], δ−
k < δ+

k , k = 1,2,3 (these intervals will be chosen later).

Define δ
j
k := δ+

k 2−j , j = 0, . . . , [log2(δ
+
k /δ−

k )] + 1, k = 1,2,3 and let t̄ := t +∑3
k=1 log([log2(δ

+
k /δ−

k )] + 2). By the union bound, with probability at least

1 − e−t and for all jk = 0, . . . , [log2(δ
+
k /δ−

k )] + 1, k = 1,2,3, αn(δ
j1
1 , δ

j2
2 , δ

j3
3 ) ≤

2Eαn(δ
j1
1 , δ

j2
2 , δ

j3
3 ) + c2(δ

j1
1

√
t̄
n

+ t̄
n
). By monotonicity of αn and of the right-hand

side of the bound with respect to each of the variables δ1, δ2, δ3, we conclude
that with the same probability and with some numerical constant c3 > 0, for all
δk ∈ [δ−

k , δ+
k ], k = 1,2,3,

αn(δ1, δ2, δ3) ≤ 2Eαn(2δ1,2δ2,2δ3) + c3

(
δ1

√
t̄

n
+ t̄

n

)
.(4.25)

To bound the expectation Eαn(2δ1,2δ2,2δ3) on the right-hand side of (4.25),
note that, by the definition of function fA,

Eαn(δ1, δ2, δ3)

≤ E sup
{∣∣(Pn − P)(y − S)(A − S)

∣∣ :A ∈ T (δ1, δ2, δ3)
}

(4.26)

+ E sup
{∣∣(Pn − P)(A − S)2∣∣ :A ∈ T (δ1, δ2, δ3)

}
.
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A standard application of symmetrization inequality followed by contraction in-
equality for Rademacher sums (see, e.g., [9], Chapter 2) yields

E sup
{∣∣(Pn − P)(A − S)2∣∣ :A ∈ T (δ1, δ2, δ3)

}
(4.27)

≤ 16E sup
{∣∣Rn(A − S)

∣∣ :A ∈ T (δ1, δ2, δ3)
}
.

It easily follows from (4.26) and (4.27) that

Eαn(δ1, δ2, δ3) ≤ E sup
{∣∣〈�1,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}
(4.28)

+ 16E sup
{∣∣〈�2,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}
,

where �1 := 1
n

∑n
j=1(Yj −S(Xj ,X

′
j ))EXj ,X′

j
−E(Y −S(X,X′))EX,X′ and �2 :=

1
n

∑n
j=1 εjEXj ,X′

j
, {εj } being i.i.d. Rademacher random variables independent

of (X1,X
′
1, Y1), . . . , (Xn,X

′
n, Yn). We will upper bound the expectations on the

right-hand side of (4.28), which reduces to bounding E sup{|〈�i,A − S〉| :A ∈
T (δ1, δ2, δ3)} for each of the random matrices �1,�2. For i = 1,2 and A ∈
T (δ1, δ2, δ3), we have∣∣〈�i,A − S〉∣∣≤ ∣∣〈�i, PL(A − S)

〉∣∣+ ∣∣〈�i, P ⊥
L (A)

〉∣∣
≤ ∣∣〈PL�i,A − S〉∣∣+ ‖�i‖

∥∥P ⊥
L (A)

∥∥
1(4.29)

≤ ∣∣〈PL�i,A − S〉∣∣+ δ2‖�i‖.
To bound ‖�i‖, we use the following simple corollary of a well-known noncom-
mutative Bernstein inequality (see, e.g., [16]) obtained by integrating exponen-
tial tails of this inequality: let Z be a random symmetric matrix with EZ = 0,
σ 2

Z := ‖EZ2‖ and ‖Z‖ ≤ U for some U > 0 and let Z1, . . . ,Zn be n i.i.d. copies
of Z. Then

E

∥∥∥∥∥1

n

n∑
j=1

Zj

∥∥∥∥∥≤ 4
(
σZ

√
log(2m)

n
∨ U

log(2m)

n

)
.(4.30)

It is applied to i.i.d. random matrices

Zj := (Yj − S
(
Xj,X

′
j

))
EXj ,X′

j
− E

(
Y − S

(
X,X′))EX,X′

in the case of matrix �1 and to i.i.d. random matrices Zj := εjEXj ,X′
j

in the
case of matrix �2. In both cases, ‖Zj‖ ≤ 4 and, by a simple computation,
σ 2

Zj
:= ‖EZ2

j‖ ≤ 4/m (see, e.g., [9], Section 9.4), bound (4.30) implies that, for
i = 1,2,

E‖�i‖ ≤ 16
[√

log(2m)

nm
∨ log(2m)

n

]
=: ε∗.(4.31)

To control the term |〈PL�i,A − S〉| in bound (4.29), we will use the following
lemma.
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LEMMA 2. For all δ > 0,

E sup
‖M‖2≤δ,‖W 1/2M‖2≤1

∣∣〈PL�i,M〉∣∣≤ 4
√

2
√

cγ + 1

√
1

nm
δ

√
ϕ
(
δ−2
)
.

PROOF. For all symmetric m × m matrices M ,

〈PL�i,M〉 =
m∑

k,j=1

〈PL�i,φk ⊗ φj 〉〈M,φk ⊗ φj 〉.

Assuming that

‖M‖2
2 =

m∑
k,j=1

∣∣〈M,φk ⊗ φj 〉
∣∣2 ≤ δ2 and

∥∥W 1/2M
∥∥2

2 =
m∑

k,j=1

λk

∣∣〈M,φk ⊗ φj 〉
∣∣2 ≤ 1,

it is easy to conclude that
∑m

k,j=1
|〈M,φk⊗φj 〉|2

λ−1
k ∧δ2 ≤ 2. It follows

∣∣〈PL�i,M〉∣∣
≤
(

m∑
k,j=1

(
λ−1

k ∧ δ2)∣∣〈PL�,φk ⊗ φj 〉
∣∣2)1/2( m∑

k,j=1

|〈M,φk ⊗ φj 〉|2
λ−1

k ∧ δ2

)1/2

(4.32)

≤ √
2

(
m∑

k,j=1

(
λ−1

k ∧ δ2)∣∣〈PL�,φk ⊗ φj 〉
∣∣2)1/2

.

Consider the following inner product:

〈M1,M2〉w :=
m∑

k,j=1

(
λ−1

k ∧ δ2)〈M1, φk ⊗ φj 〉〈M2, φk ⊗ φj 〉,

and let ‖ · ‖w be the corresponding norm. We will provide an upper bound
on E‖PL�i‖w = E(

∑m
k,j=1(λ

−1
k ∧ δ2)|〈PL�,φk ⊗ φj 〉|2)1/2. Recall that �i =

n−1∑n
j=1 ζjEXj ,X′

j
− E(ζEX,X′), where ζj = Yj − S(Xj ,X

′
j ) for i = 1 and

ζj = εj for i = 2. Note that in the first case |ζj | ≤ 2, and in the second case
|ζj | ≤ 1. Therefore,

E‖PL�i‖w ≤ E
1/2‖PL�i‖2

w ≤
√

Eζ 2‖PLEX,X′‖2
w

n
(4.33)

≤ 2

√
E‖PLEX,X′‖2

w

n
.
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It remains to bound E‖PLEX,X′‖2
w ,

E
∥∥PL(EX,X′)

∥∥2
w

= E

m∑
k,j=1

(
λ−1

k ∧ δ2)∣∣〈PL(EX,X′), φk ⊗ φj

〉∣∣2

=
m∑

k,j=1

(
λ−1

k ∧ δ2)m−2
∑

u,v∈V

∣∣〈Eu,v, PL(φk ⊗ φj )
〉∣∣2

≤ m−2
m∑

k,j=1

(
λ−1

k ∧ δ2)∥∥PL(φk ⊗ φj )
∥∥2

2(4.34)

≤ 2m−2
m∑

k,j=1

(
λ−1

k ∧ δ2)(‖PLφk‖2 + ‖PLφj‖2)

= 2m−1
m∑

k=1

(
λ−1

k ∧ δ2)‖PLφk‖2 + 2m−2
m∑

k=1

(
λ−1

k ∧ δ2)‖PL‖2
2

= 2m−1
m∑

k=1

(
λ−1

k ∧ δ2)‖PLφk‖2 + 2m−2r

m∑
k=1

(
λ−1

k ∧ δ2).
Note that

m∑
k=1

(
λ−1

k ∧ δ2)‖PLφk‖2 ≤ δ2
∑

λk≤δ−2

‖PLφk‖2 + ∑
λk>δ−2

λ−1
k ‖PLφk‖2.(4.35)

Using the first bound of Lemma 1, we get from (4.35) that

m∑
k=1

(
λ−1

k ∧ δ2)‖PLφk‖2 ≤ δ2ϕ
(
δ−2)+ cγ δ2ϕ

(
δ−2)

(4.36)
= (cγ + 1)δ2ϕ

(
δ−2).

We also have
∑m

k=1(λ
−1
k ∧δ2) ≤∑λk≤δ−2 δ2 +∑λk>δ−2 λ−1

k , which, by the second
bound of Lemma 1, implies that

m∑
k=1

(
λ−1

k ∧ δ2)≤ δ2F̄
(
δ−2)+ cγ δ2F̄

(
δ−2)≤ (cγ + 1)δ2F̄

(
δ−2).(4.37)

Using bounds (4.34), (4.36) and (4.37) and the fact that ϕ(λ) ≥ r
m

F̄ (λ), we get

E
∥∥PL(EX,X′)

∥∥2
w ≤ 2m−1(cγ + 1)δ2ϕ

(
δ−2)+ 2m−2r(cγ + 1)δ2F̄

(
δ−2)

(4.38)
≤ 4m−1(cγ + 1)δ2ϕ

(
δ−2).
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The proof follows from (4.32), (4.33) and (4.38). �

Let δ := δ1
δ3

. Using Lemma 2, we get

E sup
{∣∣〈PL�i,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}
≤ E sup

{∣∣〈PL�i,A − S〉∣∣ :‖A − S‖L2(�
2) ≤ δ1,

∥∥W 1/2(A − S)
∥∥
L2(�

2) ≤ δ3
}

= E sup
{∣∣〈PL�i,A − S〉∣∣ :‖A − S‖2 ≤ δ1m,

∥∥W 1/2(A − S)
∥∥

2 ≤ δ3m
}

≤ δ3mE sup
{∣∣〈PL�i,A − S〉∣∣ :‖A − S‖2 ≤ δ,

∥∥W 1/2(A − S)
∥∥
L2(�

2) ≤ 1
}

≤ 4
√

2δ3m
√

cγ + 1

√
1

nm
δ

√
ϕ
(
δ−2
)= 4

√
2
√

cγ + 1
√

m

n
δ1

√
ϕ
(
δ−2
)
.

In the case when δ2 ≥ ε̄, we get

E sup
{∣∣〈PL�i,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}≤ 4
√

2
√

cγ + 1δ1

√
mϕ(ε̄−1)

n
.

In the opposite case, when δ2 < ε̄, we use the fact that the function ϕ(λ)
λ

= ϕ(λ)

F̄ (λ)

F̄ (λ)
λ

is nonincreasing. This implies that δ2ϕ(δ−2) ≤ ε̄ϕ(ε̄−1), and we get

E sup
{∣∣〈PL�i,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}
≤ 4

√
2
√

cγ + 1
√

m

n
δ1

√
ϕ
(
δ−2
)= 4

√
2
√

cγ + 1
√

m

n
δ3

√
δ2ϕ

(
δ−2
)

≤ 4
√

2
√

cγ + 1
√

m

n
δ3

√
ε̄ϕ
(
ε̄−1

)= 4
√

2
√

cγ + 1
√

ε̄δ3

√
mϕ(ε̄−1)

n
.

We can conclude that

E sup
{∣∣〈PL�i,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}

≤ 4
√

2
√

cγ + 1δ1

√
mϕ(ε̄−1)

n
+ 4

√
2
√

cγ + 1
√

ε̄δ3

√
mϕ(ε̄−1)

n
.

This bound will be combined with (4.29) and (4.31) to get that, for i = 1,2,

E sup
{∣∣〈�i,A − S〉∣∣ :A ∈ T (δ1, δ2, δ3)

}

≤ ε∗δ2 + 4
√

2
√

cγ + 1δ1

√
mϕ(ε̄−1)

n
+ 4

√
2
√

cγ + 1
√

ε̄δ3

√
mϕ(ε̄−1)

n
.

In view of (4.28), this yields the bound

Eαn(δ1, δ2, δ3) ≤ C ′ε∗δ2 + C′δ1

√
mϕ(ε̄−1)

n
+ C′√ε̄δ3

√
mϕ(ε̄−1)

n
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that holds with some constant C′ > 0 for all δ1, δ2, δ3 > 0. Using (4.25), we con-
clude that for some constants C and for all δk ∈ [δ−

k , δ+
k ], k = 1,2,3,

αn(δ1, δ2, δ3) ≤ C

[
δ1

√
mϕ(ε̄−1)

n
+ δ1

√
t̄

n
+ t̄

n
+ ε∗δ2 + √

ε̄δ3

√
mϕ(ε̄−1)

n

]

that holds with probability at least 1 − e−t . This yields the following upper bound
on the stochastic term in (4.18) [see also (4.24)]:

2〈�, Ŝ − S〉 + 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

≤ 2C

[
‖Ŝ − S‖L2(�

2)

√
mϕ(ε̄−1)

n
+ ‖Ŝ − S‖L2(�

2)

√
t̄

n
+ t̄

n
(4.39)

+ ε∗‖PLŜ‖1 + √
ε̄
∥∥W 1/2(Ŝ − S)

∥∥
L2(�

2)

√
mϕ(ε̄−1)

n

]

that holds provided that

‖Ŝ − S‖L2(�
2) ∈ [δ−

1 , δ+
1

]
,

∥∥P ⊥
L Ŝ
∥∥

1 ∈ [δ−
2 , δ+

2

]
,

(4.40) ∥∥W 1/2(Ŝ − S)
∥∥
L2(�

2) ∈ [δ−
3 , δ+

3

]
.

We substitute bound (4.39) in (4.18) and further bound some of its terms as fol-
lows:

2C‖Ŝ − S‖L2(�
2)

√
mϕ(ε̄−1)

n
≤ 1

8
‖Ŝ − S‖2

L2(�
2)

+ 8C2 mϕ(ε̄−1)

n
,

2C‖Ŝ − S‖L2(�
2)

√
t̄

n
≤ 1

8
‖Ŝ − S‖2

L2(�
2)

+ 8C2 t̄

n

and

2C
√

ε̄
∥∥W 1/2(Ŝ − S)

∥∥
L2(�

2)

√
mϕ(ε̄−1)

n

≤ 1

4
ε̄
∥∥W 1/2(Ŝ − S)

∥∥2
L2(�

2) + 4C2 mϕ(ε̄−1)

n
.

We will also use (4.22) to control the term ε|〈sign(S), Ŝ − S〉| in (4.18) and (4.23)
to control the term ε̄|〈W 1/2S,W 1/2(Ŝ − S)〉|. If condition (4.4) holds with D ≥
32C, then ε ≥ 2Cε∗. By a simple algebra, it follows from (4.18) that

‖Ŝ − S∗‖2
L2(�

2)
≤ ‖S − S∗‖2

L2(�
2)

+ C1m
2ε2ϕ

(
ε̄−1)+ C1

mϕ(ε̄−1)

n

+ ε̄
∥∥W 1/2S

∥∥2
L2(�

2) + t̄

n
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with some constant C1 > 0. Since, under condition (4.4) with a = 1, m2ε2 ≥
D2 m log(2m)

n
≥ D2 m

n
, we can conclude that

‖Ŝ − S∗‖2
L2(�

2)
(4.41)

≤ ‖S − S∗‖2
L2(�

2)
+ C2m

2ε2ϕ
(
ε̄−1)+ ε̄

∥∥W 1/2S
∥∥2
L2(�

2) + t̄

n

with some constant C2 > 0.
We still have to choose the values of δ−

k , δ+
k and to handle the case when con-

ditions (4.40) do not hold. First note that due to the assumption that ‖S‖L∞ ≤
1, S ∈ D, we have ‖Ŝ − S‖L2(�) ≤ 2, ‖P ⊥

L Ŝ‖1 ≤ ‖Ŝ‖1 ≤ √
m‖Ŝ‖2 ≤ m3/2 and

‖W 1/2(Ŝ − S)‖L2(�
2) ≤ 2

√
λm. Thus, we can set δ+

1 := 2, δ+
2 := m3/2, δ+

3 :=
2
√

λm, which guarantees that the upper bounds of (4.40) are satisfied. We will

also set δ−
1 = δ−

2 := n−1/2, δ−
3 :=

√
λ̃
n
. In the case when one of the lower bounds

of (4.40) does not hold, we can still use inequality (4.39), but we have to replace
each of the norms ‖Ŝ −S‖L2(�),‖P ⊥

L Ŝ‖1,‖W 1/2(Ŝ −S)‖L2(�
2) which are smaller

than the corresponding δ−
k by the quantity δ−

k . Then it is straightforward to check
that inequality (4.41) still holds for some value of constant C2 > 0. With the above
choice of δ−

k , δ+
k , we have t̄ ≤ t + 3 log(2 log2 n + 1

2 log2
λm

λ̃
+ 2) = tn,m. This

completes the proof. �
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