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ON THE CONDITIONAL DISTRIBUTIONS OF LOW-DIMENSIONAL
PROJECTIONS FROM HIGH-DIMENSIONAL DATA

BY HANNES LEEB

University of Vienna

We study the conditional distribution of low-dimensional projections
from high-dimensional data, where the conditioning is on other low-
dimensional projections. To fix ideas, consider a random d-vector Z that has
a Lebesgue density and that is standardized so that EZ = 0 and EZZ′ = Id .
Moreover, consider two projections defined by unit-vectors α and β, namely
a response y = α′Z and an explanatory variable x = β ′Z. It has long been
known that the conditional mean of y given x is approximately linear in x,
under some regularity conditions; cf. Hall and Li [Ann. Statist. 21 (1993)
867–889]. However, a corresponding result for the conditional variance has
not been available so far. We here show that the conditional variance of y

given x is approximately constant in x (again, under some regularity condi-
tions). These results hold uniformly in α and for most β’s, provided only that
the dimension of Z is large. In that sense, we see that most linear submodels
of a high-dimensional overall model are approximately correct. Our findings
provide new insights in a variety of modeling scenarios. We discuss several
examples, including sliced inverse regression, sliced average variance esti-
mation, generalized linear models under potential link violation, and sparse
linear modeling.

1. Introduction.

1.1. Informal summary. We analyze a situation where a simple model is used
when the true model is, in fact, much more complex. This situation is particularly
common with many contemporary datasets where the number of potentially im-
portant covariates or the number of parameters exceeds the sample size; examples
in, say, genomics or economics abound. When facing a large number of potentially
important covariates or parameters, and a small sample size, the search for simple
models is typically motivated by either one of two types of assumptions: Paramet-
ric assumptions, which postulate that the true data-generating process is given by a
simple finite-dimensional model; and nonparametric assumptions, which postulate
that the true data-generating process can be approximated, with arbitrary accuracy,
by comparatively simple finite-dimensional models. In either case, the underlying
postulates can be difficult to verify in practice. And this difficulty is often further
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compounded by the relatively small sample size. The results that we obtain here
provide an alternative justification for the use of simple models. We analyze a sce-
nario where most simple submodels are approximately correct, provided only that
the overall model is sufficiently complex, irrespective of whether or not the true
data-generating process is given by, or can be closely approximated by, a finite-
dimensional simple model. This is the main conceptual contribution of this paper.

On a technical level, we extend and refine a method pioneered by Hall and
Li [11]. In that reference, the authors propose a novel approach for studying condi-
tional means of linear projections under weak distributional assumptions; cf. The-
orem 3.2 of [11]. Our technical core contribution is an extension of Hall and Li’s
approach to also cover conditional variances and higher conditional moments, and
a more explicit control of error terms that allows us to prove strong statements
like (1.5) and (1.6), which follow. Note that we deal here with the largest singu-
lar value of conditional covariance matrices of increasing dimension, which turns
out to be considerably more challenging than handling the norm of the conditional
mean vectors that are treated in [11].

The paper is organized as follows: We continue this section with a more detailed
overview of our findings, and with a discussion of some interesting consequences.
In Section 2, we present our main result, namely Theorem 2.1, and give an out-
line of its proof. The proof is based on five basic steps that correspond to five
propositions that are also given in Section 2. The (more technical) proofs of these
propositions are relegated to the supplementary material [13].

1.2. Overview of results. Consider a random d-vector Z that has a Lebesgue
density and that is standardized so that EZ = 0 and EZZ′ = Id . Throughout, we
will study projections of Z of the form α′Z and β ′Z for unit d-vectors α and β . The
conditional mean of α′Z given β ′Z = x will be denoted by E[α′Z‖β ′Z = x]; other
conditional expectations are defined similarly.1 Our main results are concerned
with the conditional mean and with the conditional variance of α′Z given that
β ′Z = x. To introduce these, consider the following two conditions: The vector β

is such that:

(i) for each α, the conditional mean of α′Z given β ′Z = x is linear in x ∈ R;
(ii) for each α, the conditional variance of α′Z given β ′Z = x is constant in

x ∈ R.

Suppose that α is an unknown parameter and that one can observe y and x

given by y = α′Z and x = β ′Z, respectively. If β is such that both (i) and (ii) hold,

1There is a measurable function g : R → R so that E[α′Z‖β ′Z] = g(β ′Z) holds, and we write
E[α′Z‖β ′Z = x] for g(x); the existence of g is guaranteed by, say, Theorem 4.2.8 of [7]. When we
say that E[α′Z‖β ′Z = x] is linear in x [as in condition (i), which follows], we mean that g(x) can be
chosen to be linear. Similar considerations apply, mutatis mutandis, to expressions like E[Z‖β ′Z =
x], E[(α′Z)2‖β ′Z = x] or E[ZZ′‖β ′Z = x].
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then y can be decomposed into the sum of a linear function of x and a remainder-
term, or error-term, whose conditional mean given x is zero and whose conditional
variance given x is constant; in other words, the model

y = γ x + u

applies, where E[u‖x] = 0 and Var[u‖x] = σ 2, and where γ ∈ R and σ 2 ≥ 0 are
unknown parameters that are given by γ = α′β and σ 2 = 1 − (α′β)2, respectively.
(Indeed, (i) implies that E[y‖x] = E[α′Z‖β ′Z] = μ + γ (β ′Z) for some real con-
stants μ and γ . It now follows from EZ = 0 that μ = 0, and EZZ′ = Id implies
that γ = α′β . Moreover, (ii) entails that Var[α′Z‖β ′Z] = σ 2 for some constant σ 2;
hence 1 = Var(y) = Var(α′Z) = E[Var[α′Z‖β ′Z]] + E[(E[α′Z‖β ′Z])2] = σ 2 +
(α′β)2, so that σ 2 is given by σ 2 = 1 − (α′β)2.) These observations continue to
hold also if the vectors α and β are not normalized to unit length, mutatis mutandis.

Conditions (i) and (ii) are satisfied for each β if Z is normally distributed, that
is, Z ∼ N(0, Id). But besides the Gaussian law, the class of distributions that sat-
isfy (i) and (ii) for each β appears to be quite small: Indeed, if Z satisfies (i) for
each β , then the law of Z is spherically symmetric [9]. And if, in addition, also (ii)
holds for some β , then Z is Gaussian [1], Theorem 4.1.4.

Under comparatively mild conditions on the distribution of Z, we here show
that both conditions (i) and (ii) are approximately satisfied for most unit-vectors β ,
namely for a set of unit-vectors β whose size, as measured by the uniform distribu-
tion on the unit-sphere in R

d , goes to one as d → ∞. To state this more formally,
we first describe two preliminary results, namely (1.3) and (1.4), which follow, and
then extend these to our main results in (1.5) and (1.6) below.

To introduce the two preliminary results mentioned earlier, we note that (i)
and (ii) together are equivalent to the requirement that E[Z‖β ′Z = x] = βx and
E[ZZ′‖β ′Z = x] = Id + (x2 −1)ββ ′ hold for each x ∈ R. (In other words, the first
two moments of the conditional distribution coincide with what they would be in
the Gaussian case.) From this, it is easy to see that (i) and (ii) are also equivalent
to the requirement that both

∥∥E
[
Z‖β ′Z = x

]∥∥2 − x2 = 0 and(1.1) ∥∥E
[
ZZ′‖β ′Z = x

] − (
Id + (

x2 − 1
)
ββ ′)∥∥ = 0(1.2)

hold for each x ∈ R. Note that we use the notation ‖·‖ to denote both the Euclidean
norm of vectors as in (1.1) and the operator norm of matrices as in (1.2). The left-
hand side of (1.1) can be written as

∥∥E
[
Z‖β ′Z = x

]∥∥2 − x2 = sup
α

∣∣E[
α′Z‖β ′Z = x

] − α′βx
∣∣2,
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with the supremum taken over all unit-vectors α ∈ R
d , as is elementary to verify.2

Hence, the left-hand side of (1.1) is always nonnegative and can be interpreted as
the worst-case deviation of the regression function E[α′Z‖β ′Z = x] from a linear
function at x. The left-hand side of (1.2) can be interpreted in a similar fashion.
For fixed x ∈ R, the condition (1.1) is approximately satisfied for most β’s if d is
large, under the assumptions of Theorem 3.2 in [11] [see also equation (1.5) in that
reference], in the sense that

υ
{
β ∈ R

d :
∥∥E

[
Z‖β ′Z = x

]∥∥2 − x2 > ε
} d→∞−→ 0(1.3)

for each fixed x ∈ R and for each ε > 0, where υ denotes the uniform distribution
on the unit-sphere in R

d . We here show that condition (1.2) is similarly approxi-
mately satisfied for most β’s if d is large, in the sense that

υ
{
β ∈ R

d :
∥∥E

[
ZZ′‖β ′Z = x

] − (
Id + (

x2 − 1
)
ββ ′)∥∥ > ε

} d→∞−→ 0(1.4)

for each x ∈ R and for each ε > 0 under the assumptions of Theorem 2.1 in Sec-
tion 2.

So far, we have seen for fixed x ∈ R and for most β’s that (1.1) and (1.2) are ap-
proximately satisfied, in the sense that (1.3) and (1.4) hold under some conditions.
Our main result is that (1.1) and (1.2) are approximately satisfied for most β’s and
for most x’s: Under the assumptions of Theorem 2.1, there are Borel subsets Bd

of R
d satisfying υ(Bd)

d→∞−→ 1 so that

sup
β∈Bd

P
(∥∥E

[
Z‖β ′Z

]∥∥2 − (
β ′Z

)2
> ε

) d→∞−→ 0 and(1.5)

sup
β∈Bd

P
(∥∥E

[
ZZ′‖β ′Z

] − (
Id + ((

β ′Z
)2 − 1

)
ββ ′)∥∥ > ε

) d→∞−→ 0(1.6)

hold for each ε > 0.
Following a referee’s suggestion, we now compare our findings to the work of

Diaconis and Freedman [5], which is an important precursor to the results of [11]
and hence, a fortiori, also to the results in this paper; see also the discussion sur-
rounding the displays (1.7)–(1.8) in [11]. (Moreover, the recent work of Dümbgen
and Zerial [8] should be mentioned here, where several extensions and generaliza-
tions of the results of [5] are provided.) Under the assumptions of Theorem 2.1,
Proposition 5.2 of [5] entails, for large d , that the (bivariate) joint distribution of
α′Z and β ′Z is approximately normal, with zero means, unit variances, and covari-
ance α′β , for most pairs of unit-vectors α and β (in the sense of weak convergence
in probability with respect to the product measure υ ⊗ υ as d → ∞). Because

2 This easily follows from the fact that E[Z‖β ′Z] (resp., ββ ′Z) is the orthogonal projection of Z

into the space of all measurable (resp., linear) functions of β ′Z in L2(P), and from the relation
between the unconditional and the conditional variance.
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the normal distribution has linear conditional means and constant conditional vari-
ances, this suggests, but does not prove, that

P
(∣∣E[

α′Z‖β ′Z
] − α′ββ ′Z

∣∣2 > ε
) d→∞−→ 0(1.7)

for each ε > 0 and for most pairs of unit-vectors α and β in R
d (in the sense

of convergence in probability as a function of α and β with respect to υ ⊗ υ).
If α is treated as an unknown parameter, and if the observations α′Z and β ′Z are
treated as response and explanatory variable, respectively, then (1.7) entails, for
most α’s and β’s, that the response can be approximated by a linear function of
the explanatory variable plus an error term with zero mean conditional on β ′Z,
provided that d is large. The approximating linear function is α′β(β ′Z). But for
large d , we also have α′β ≈ 0 for most α’s and β’s (with respect to υ ⊗ υ). The
statement in (1.5), on the other hand, is equivalent to

P

(
sup
α

∣∣E[
α′Z‖β ′Z

] − α′ββ ′Z
∣∣2 > ε

)
d→∞−→ 0(1.8)

for each ε > 0 (in probability as a function of β with respect to υ); cf. the discus-
sion following (1.2). The statement in (1.8) is obviously much stronger than that
in (1.7). And it guarantees that the conditional mean of α′Z is approximately lin-
ear in β ′Z, for all α’s and for most β’s; this includes, in particular, the statistically
interesting case where α is parallel, or close to parallel, to β . Finally, as already
observed in [11], “Diaconis and Freedman’s result does not provide clues as to
whether [statements like (1.8)] might be true or false.” Similar observations also
apply to conditional variances, mutatis mutandis.

1.3. Discussion. If the left-hand sides of (1.5) and (1.6) are both small, and
if β ∈ Bd , then the simple linear model, where the response α′Z is explained by
a linear function of the explanatory variable β ′Z plus an error that has zero mean
and constant variance given β ′Z, is approximately correct, irrespective of the unit-
vector α. Here, “approximately correct” means that the expressions on the left-
hand sides of (1.1) and (1.2) are at most ε for a range of values x that contains
the explanatory variable β ′Z with high probability. Under the conditions of Theo-
rem 2.1, a sufficiently large dimension is enough to guarantee that Bd is large and
that the left-hand sides of (1.5) and (1.6) are small.3

The statistical impact of our results is most pronounced in situations where the
sample size is small and the dimension is large. Assume that Theorem 2.1 applies,
and consider a collection of n independent copies of the pair (α′Z,β ′Z) that we

3Note that this disentangles the issue of (approximate) model validity and the issue of model
performance: The model is approximately valid if β ∈ Bd , irrespective of α; the performance of
this model, on the other hand, that is, the performance of β ′Z as a predictor for α′Z, depends on
both β and α. Under classical parametric or nonparametric assumptions, a simple model that is
(approximately) correct typically also performs well.
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denote by (α′Zi,β
′Zi), i = 1, . . . , n, with β ∈ Bd . If d is large and n is compara-

tively small, so that the left-hand sides of both (1.5) and (1.6) are still small even
when multiplied by n, then the simple linear model discussed in the preceding
paragraph can also be used to approximately describe the relation between α′Zi

and β ′Zi for each i = 1, . . . , n, irrespective of α.
We stress that additional data may give reason to dismiss the simple linear model

considered in the preceding paragraphs in favor of a more complex one, because
the error suffered from using a model that is only approximately correct will typi-
cally become apparent if n increases to a value that is no longer sufficiently small
relative to d . This is in line with R. A. Fisher’s 1922 observation that “more or
less elaborate forms [of models] will be suitable according to the volume of data;”
cf. [10]. And we stress that our results cannot guarantee that a given simple model,
like that discussed in the preceding paragraphs, is correct. But we can guarantee,
under the assumptions of Theorem 2.1, that most simple models are approximately
correct, in the sense that υ(Bd) is large and in the sense that the left-hand sides
of (1.5) and (1.6) are small, provided only that d is sufficiently large. This also
underscores the need for critical examination of the data and of the model fit, irre-
spective of whether or not d is large. To this end, a very useful diagnostic tool is
introduced by Li in [18], namely a method to estimate, for a given unit-vector β ,
that unit-vector α for which the conditional mean of α′Z given β ′Z is most non-
linear in β ′Z; see also Section 6.1 in that reference.

The results obtained in this paper do not suggest that one should abandon the
search for complex and potentially nonlinear relations in the data. But after such
complex and/or nonlinear relations have been accounted for, or in the case where
none such can be found, our results show how the use of simple linear models
can be justified without imposing strong regularity conditions on the true data-
generating process.

The discussion so far prompts for two extensions of our results that are beyond
the scope of this paper. The first one is to extend our findings to the case of more
than one explanatory variable, that is, the case where the conditioning is not on
β ′Z but on (β ′

1Z,β ′
2Z, . . . , β ′

pZ) for a collection of p mutually orthogonal unit-
vectors β1, . . . , βp . In fact, Hall and Li [11] sketch an extension of their results
to that situation, so that an appropriate generalization of (1.3) holds. We will con-
sider a corresponding generalization of (1.4) and also of the main results in (1.5)
and (1.6) elsewhere. The second extension is to provide explicit upper bounds for
the expressions on the left-hand sides of (1.5) and (1.6) that converge to zero as
d → ∞ at a fast rate; and to provide an explicit lower bound for υ(Bd) that con-
verges to one as d → ∞ also at a fast rate.

1.4. Some consequences.

1.4.1. SIR, SAVE and related methods. Many modern dimension reduction
methods, like those based on inverse conditional moments, rely on conditions
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like (i) and (ii) in Section 1.2. In particular, first-moment-based methods like Sliced
Inverse Regression [16] are based on a linear conditional mean requirement as
in (i). (Besides, this requirement is also used in several important results on gener-
alized least squares under possible link misspecification; see, for example, [19] and
the references cited therein.) And second-moment-based techniques like the Sliced
Average Variance Estimator [4], Principal Hessian Directions [17], or Directional
Regression [15], are based on both a linear conditional mean requirement as in (i),
and on a constant conditional variance requirement as in (ii). Both conditions (i)
and (ii) are also used in recent works such as [2, 3, 6, 14].

Given observations from a potentially rather complex data-generating process,
the dimension-reduction methods mentioned in the preceding paragraph aim at
finding a simpler model that also describes the data. To justify the dimension re-
duction, these methods make assumptions to the effect that requirements like (i)
or (ii) are satisfied, for one particular projection, namely for the projection on
the so-called central subspace. Under such assumptions, the central subspace or,
equivalently, the projection onto it, can be recovered from the data with good ac-
curacy. But as outlined in the Introduction, verifying such assumptions in practice
can be hard, particularly in situations where the sample size is comparatively small.

Our results provide an alternative justification for requirements like (i) and (ii).
In particular, in the setting of Theorem 2.1, we see that both (i) and (ii) are approx-
imately satisfied for most projections β ′Z in the sense of (1.5) and (1.6), provided
only that the underlying dimension is large. For the linear conditional mean con-
dition, we stress that the relation (1.3) has been derived much earlier in [11].

1.4.2. Sparse linear modeling. Consider the linear model with univariate re-
sponse y and a d-vector of explanatory variables w, that is,

y = θ ′w + ε,(1.9)

where θ ∈ R
d is unknown, and where the error ε has zero mean and constant

variance conditional on w. We also assume that y and w are square integrable and
centered so that Ew = 0. The leading case we have in mind is a situation where d ,
that is, the number of available regressors, is as large as, or even much larger than,
the sample size. To deal with such situations, it is common to assume that the true
model (1.9) is equal to, or can be closely approximated by, a “sparse” submodel
that uses only a few explanatory variables, and to use the available data to select
and fit a sparse submodel. Such sparsity assumptions are clearly restrictive. In the
following, we argue that the results in this paper provide weaker, and hence less
restrictive, assumptions that also justify the fitting of sparse submodels.

For illustration, consider now an extremely sparse model where y is regressed
on just one explanatory variable, say, w1, that is,

y = cw1 + e,(1.10)
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where c ∈ R is unknown, and where e has zero mean and constant variance
given w1. To consider various possible justifications of the sparse submodel (1.10),
we first rewrite the overall model (1.9) as

y = (
θ1w1 + E

[
θ ′¬1w¬1‖w1

]) + (
θ ′¬1w¬1 − E

[
θ ′¬1w¬1‖w1

] + ε
)
,

where θ¬1 and w¬1 are obtained from θ and w, respectively, by deleting the first
component.

One possibility to justify the sparse model (1.10) is to impose the extreme spar-
sity assumption that all coefficients of θ¬1 are zero, so that θ ′¬1w¬1 = 0. Then the
relation in the preceding display obviously reduces to y = θ1w1 + ε, and (1.10)
applies with c = θ1 and e = ε. Under this extreme sparsity assumption we obtain,
in particular, that the sparse model (1.10) is equivalent to the overall model (1.9) in
terms of prediction, because E[y‖w1] = E[y‖w]. A slightly relaxed sparsity con-
dition is to assume that the coefficients of θ¬1 are possibly nonzero but otherwise
negligible, that is, θ ′¬1w¬1 ≈ 0, so that the sparse model (1.10) is approximately
valid with c ≈ θ1 and e ≈ ε.

An alternative justification of (1.10) is to impose the assumption that, given w1,
the conditional mean of θ ′¬1w¬1 is linear in w1 and the conditional variance
of θ ′¬1w¬1 is constant in w1. In that case, the relation in the preceding dis-
play also reduces to (1.10), but now with c = Cov[θ ′w,w1]/Var[w1] = θ1 +∑d

i=2 θi Cov[w1,wi]/Var[w1], and e = θ ′¬1w¬1 − E[θ ′¬1w¬1‖w1] + ε. Under this
alternative assumption, the model (1.10) is valid but typically less accurate in terms
of prediction than the overall model (1.9), because, typically, E[y‖w1] �= E[y‖w]
and hence Var[y‖w1] > Var[y‖w]. As before, these assumptions can be relaxed
by requiring that the conditional mean is approximately linear and the conditional
variance is approximately constant.

In the preceding two paragraphs, we have considered two types of justifications
for fitting the submodel (1.10). Type (a): Exact or approximate sparsity assump-
tions. And type (b): Exact or approximate linear conditional mean and constant
conditional variance assumptions. In practice, verifying either of these assump-
tions for a given submodel can be difficult. This raises the question as to which
set of assumptions, that is, (a) or (b), is more restrictive. To this end, we first note
that (a) obviously implies (b). For the more detailed comparison that we give in
the following, we assume that the law of w is nondegenerate so that w can be writ-
ten as w = MZ for a d-vector Z satisfying EZ = 0 and EZZ′ = Id . The d × d

matrix M is a square root of the variance/covariance matrix of w, which is nonde-
generate by assumption; which can be assumed to be symmetric; and which need
not be known in practice. Then θ ′¬1w¬1 and w1 can be written as θ ′¬1w¬1 = a′◦Z
and w1 = b′◦Z with a′◦ = (0, θ2, . . . , θd)M and b′◦ = (1,0, . . . ,0)M .

The type (a) condition that θ¬1 = 0 entails that a◦ is equal to zero; the collec-
tion of θ ’s that satisfy this condition is the 1-dimensional subset of the parame-
ter space R

d that is spanned by M−1b◦ = (1,0, . . . ,0)′ (this collection depends
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on b◦). More generally, for y as in (1.9) and for each vector b, the simple model
with response y and with explanatory variable b′Z, that is, y = c(b′Z) + e, can
be justified by the type (a) condition that θ is parallel to M−1b. And, for each
vector b, the approximate type (a) condition, that θ is approximately parallel to
M−1b, is satisfied if θ belongs to an appropriately small neighborhood of the span
of M−1b.

To study type (b) conditions on the conditional moments of θ ′¬1w¬1 given w1
or, equivalently, on the conditional moments of a′◦Z given b′◦Z, we may replace
the vectors a◦ and b◦ by standardized versions α◦ and β◦ that have length one, for
example, α◦ = a◦/‖a◦‖. (Indeed, the conditional mean of a′◦Z given b′◦Z is linear,
or approximately linear, in b′◦Z, if and only if the same is true for the conditional
mean of α′◦Z given β ′◦Z; and a similar statement applies for the conditional vari-
ances, mutatis mutandis.) If Theorem 2.1 applies and if d is large, then for most
β’s and uniformly in α, the conditional mean of α′Z given β ′Z is approximately
linear and the conditional variance of α′Z given β ′Z is approximately constant,
in the sense of (1.5) and (1.6). In terms of the original parameter θ , we note that
uniformity in α corresponds to uniformity in θ ∈ R

d \ {0}.

2. Main result and outline of proof. Our main result is that (1.3)–(1.4) and
also (1.5)–(1.6) hold, for sets Bd with limd→∞ υ(Bd) = 1. We will establish this
under the basic condition that Z has a Lebesgue density and is standardized so that
EZ = 0 and EZZ′ = Id for each d . For the method of proof that we employ, we
also rely on two technical conditions, which follow.

CONDITION (t1). For fixed k ∈ N and for each d , set Sk = (Z′
iZj/d)ki,j=1,

where the Zi’s are i.i.d. copies of Z.

(a) We have E[(√d‖Sk − Ik‖)2k+1] = O(1) as d → ∞. Moreover, let H be a
monomial in the elements of Sk − Ik of degree h ≤ 2k. If H has a linear factor,
then dh/2

EH = o(1). And if H consists only of quadratic factors in the elements
of Sk − Ik above the diagonal, then dh/2

EH = 1 + o(1).
(b) Consider two monomials G and H of degree g and h, respectively, in the

elements of Sk −Ik . If G is given by Z′
1Z2Z

′
2Z3 · · ·Z′

g−1ZgZ
′
gZ1/d

g , if H depends
at least on those Zi’s with i ≤ g, and if 2 ≤ h < g ≤ k, then dg

EGH = o(1).

CONDITION (t2). For fixed k ∈ N, for each d , and for any orthogonal d × d

matrix R, the marginal density of the last d − k + 1 components of RZ is bounded

by
( d
k−1

)1/2
Bd−k+1 for some constant B that does not depend on d or R.

Conditions (t1) and (t2) are always satisfied, for any fixed k, if the components
of Z are independent, with bounded marginal densities and bounded marginal
moments of sufficiently high order; cf. Example A.1 in the supplementary mate-
rial [13]. Also, if E[(√d‖Sk − Ik‖)2k+1] = O(1), then condition (t1)(a) is satisfied
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if the elements of
√

d(Sk − Ik) jointly converge to a Gaussian; cf. Example A.2 in
the supplementary material [13]. However, these conditions are more general than
that and allow, in particular, for situations where the components of Z are depen-
dent and/or where the elements of

√
d(Sk − Ik) do not converge in distribution.

Also note that both conditions are orthogonally invariant: If Z satisfies any one of
them, then the same is true for any orthogonal transformation of Z.

The first requirement of condition (t1)(a) entails that dh/2
EH = O(1) for

any monomial H in the elements of Sk − Ik of degree up to 2k + 1. Condi-
tion (t1)(b) strengthens parts of condition (t1)(a) in the following sense: Consider
monomials G and H as in condition (t1)(b). If condition (t1)(a) is satisfied, then
EGH = o(d−(g+h)/2) (because GH is a monomial of degree g + h that has a lin-
ear factor). Condition (t1)(b) requires that EGH converges to zero at the faster rate
o(d−g). Condition (t2) ensures that the distribution of Z is not “too concentrated”
in certain directions, and is used together with (t1)(a) to guarantee uniform integra-
bility of d/Z′Z and related quantities (see Proposition E.1 in the supplementary
material [13]). Also, our conditions should be compared to those used in [11].4

We can now state the main result of this paper.

THEOREM 2.1. For each d , consider a random d-vector Z that has a
Lebesgue density and that is standardized such that EZ = 0 and EZZ′ = Id .
If conditions (t1)(a) and (t2) are satisfied with k = 2, then there are Borel sets
Bd ⊆ R

d satisfying limd→∞ υ(Bd) = 1, such that (1.5) holds for each ε > 0. If
condition (t1) and condition (t2) are satisfied with k = 4, then the sets Bd can be
chosen so that also (1.6) holds for each ε > 0. [Moreover, for each x ∈ R and each
ε > 0, the relation (1.3) obtains under conditions (t1)(a) and (t2) with k = 2, and
the relation (1.4) holds under conditions (t1) and (t2) with k = 4.]

In the remainder of this section, we give an outline of the proof of Theorem 2.1.
The proof is comprised of five main steps corresponding to the five propositions
that follow.

As the first step, it will be convenient to replace the usual reference measure
on R

d , that is, Lebesgue measure, by the d-variate standard Gaussian measure,
that is, N(0, Id). The effect of this change of measure on conditional densities and
on conditional expectations involving Z is described by the next result.

PROPOSITION 2.2. Fix d ≥ 1, and consider a random d-vector Z with
Lebesgue density f . Let V ∼ N(0, Id), and write φ(·) for the Lebesgue den-
sity of V . Moreover, for a fixed unit-vector β ∈ R

d and for each x ∈ R, set

4 The results in [11] are stated under high-level assumptions that are less specific but harder to
verify; see, for example, conditions (3.21), (3.28) and (3.29) of Theorem 3.2 in that paper. The only
specific example that is actually shown in [11] to satisfy all three of these high-level conditions is the
normal distribution; cf. Example 4.2 and Remark 4.2 in that paper.
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Wx|β = xβ + (Id − ββ ′)V . Then the function h(·|β) defined by

h(x|β) = E

[
f (Wx|β)

φ(Wx|β)

]

for x ∈ R is a density of β ′Z with respect to the univariate standard Gaussian
measure [i.e., h(x|β)φ1(x) is a Lebesgue density of β ′Z if φ1 denotes the N(0,1)-
density]. Moreover, if 
 : Rd → R is such that 
(Z) is integrable, then a condi-
tional expectation E[
(Z)‖β ′Z = x] of 
(Z) given β ′Z satisfies

E
[

(Z)‖β ′Z = x

]
h(x|β) = E

[



(
Wx|β)f (Wx|β)

φ(Wx|β)

]

whenever x ∈ R is such that h(x|β) < ∞.

This result allows us, for fixed x ∈ R, to study the marginal density of β ′Z at x

as well as conditional expectations involving Z given β ′Z = x, by considering
unconditional means involving the random variable Wx|β , which has a N(xβ, Id −
ββ ′)-distribution.

Now, in order to derive (1.3), we follow [11] and use the following argument
(which can be traced back to Hoeffding [12]; see also [8]): Set μx|β = E[Z‖β ′Z =
x], and let b be a random vector in R

d with distribution υ , that is, such that b is
uniformly distributed on the unit-sphere, that is, on the set of unit-vectors in R

d .
Then (1.3) is equivalent to the statement that ‖μx|b‖2 − x2 converges to zero in
probability as a function of b, and this will follow if

E
[(‖μx|b‖2 − x2)

h2(x|b)
]

and E
[(

h(x|b) − 1
)2]

both converge to zero as d → ∞, where the expectations are taken with respect
to b. [Note that μx|b and h(x|b) are measurable in view of Corollary B.2. Also note
that both integrands in the preceding display are nonnegative.] We now compute
E[(h(x|b) − 1)2] as∫

β

(
E

[
f (Wx|β)

φ(Wx|β)

])2

− 2E

[
f (Wx|β)

φ(Wx|β)

]
+ 1υ(dβ)

(2.1)

= E

[
f (W1)

φ(W1)

f (W2)

φ(W2)

]
− 2E

[
f (W1)

φ(W1)

]
+ 1,

where the Wi ’s are defined as Wi = xb + (Id − bb′)Vi , i = 1,2, with V1 and V2
i.i.d. N(0, Id) and independent of b. Note that W1 and W2 are dependent because
both share the same random unit-vector b. If (2.1) converges to zero or, equiva-
lently, if h(x|b) → 1 in L2(b) as d → ∞, then h(x|b) < ∞ with probability one
for sufficiently large d . For such d , we see that the second statement of Propo-
sition 2.2 applies for υ-almost all β , such that E[(‖μx|b‖2 − x2)h2(x|b)] can be
written as

E

[(
W ′

1W2 − x2)f (W1)

φ(W1)

f (W2)

φ(W2)

]
,(2.2)
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by arguing as in the derivation of (2.1), as is easy to see. With this, we see that (1.3)
holds if both (2.1) and (2.2) go to zero as d → ∞. And if (2.1) and (2.2) converge
to zero uniformly in x over compact subsets of R, that is, if the suprema of (2.1)
and (2.2) over x satisfying |x| ≤ M converge to zero as d → ∞ for each M > 0,
then it is not difficult to also derive (1.5) by employing standard arguments; for
details, see Lemma B.4(i) in the supplementary material [13].

To establish (1.4), we employ a similar strategy and write �x|β as shorthand
for the d × d matrix �x|β = E[ZZ′‖β ′Z = x] − (Id + (x2 − 1)ββ ′). With b again
uniform on the unit-sphere, the goal is to show convergence of the largest singular
value ‖�x|b‖ to zero in probability with respect to b. But this follows if

trace�k
x|b

p−→ 0

as d → ∞ for some even integer k (where, again, Corollary B.2 guarantees mea-
surability). This, and hence also (1.4), will follow if

E
[
trace�k

x|bhk(x|b)
]

converges to zero as d → ∞ for some even integer k and if, in addition, also (2.1)
converges to zero. (We shall find, at the end of the section, that the expression in
the preceding display converges to zero for k = 4 but typically not for k = 2.) To
analyze the expectation in the preceding display, define the function �x|β(z) as
�x|β(z) = zz′ − (Id + (x2 − 1)ββ ′) for z ∈ R

d . We now argue as in the preceding
paragraph: Assume that (2.1) converges to zero, and assume that d is sufficiently
large so that h(x|β) < ∞ for υ-almost all β . For such d , use Proposition 2.2 to see
that E[trace�k

x|bhk(x|b)] equals

E

[
trace�x|b(W1) · · ·�x|b(Wk)

f (W1)

φ(W1)
· · · f (Wk)

φ(Wk)

]
,

where, similarly to before, Wi = xb + (Id − bb′)Vi with the Vi , 1 ≤ i ≤ k, i.i.d.
N(0, Id) independent of b. Instead of computing the trace in the preceding display
directly, we find it convenient to break it into smaller, more manageable, pieces.
Indeed, we find that the expression in the preceding display can be written as the
weighted sum of the terms

k∑
j=1

(
k

j

)
(−1)jE

[(
W ′

1W2 · · ·W ′
jW1 − d + 1 − x2j )f (W1)

φ(W1)
· · · f (Wk)

φ(Wk)

]
,

(2.3)

E

[(
m∏

i=1

W ′
ji−1+1Wji−1+2 · · ·W ′

ji−1Wji
− x2(jm−m)

)
f (W1)

φ(W1)
· · · f (Wk)

φ(Wk)

]

for m ≥ 1 and indices j0, . . . , jm satisfying j0 = 0, jm < k, and ji−1 + 1 < ji

whenever 0 < i ≤ m. In addition, we find that the weights in this weighted sum
depend only on k and on x, and that the weights are continuous in x ∈ R; cf.
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Lemma B.3 for details. [Note that, in (2.3), we write W ′
1W2 · · ·W ′

jW1 as shorthand

for trace
∏j

i=1 WiW
′
i , and we also use notation like W ′

1W2 · · ·W ′
j−1Wj as short-

hand for
∏j−1

i=1 W ′
iWi+1.] Hence, (1.4) holds if the expression in (2.1) and those

in (2.3) go to zero as d → ∞, the latter for some even integer k, and for any m

and j0, . . . , jm as indicated. Moreover, (1.6) holds provided that the expressions
in (2.1) and (2.3) all converge to zero uniformly in x over compact subsets of R;
details are given in Lemma B.4(ii) in the supplementary material [13].

To understand the large-d-behavior of the quantities in (2.1), (2.2), and (2.3),
we need to understand the joint distribution of the Wj ’s, which is described by the
next result.

PROPOSITION 2.3. For d and k satisfying 1 ≤ k < d , the joint distribution
of W1, . . . ,Wk has a density with respect to Lebesgue measure that we denote by
ϕx(w1, . . . ,wk), and this density satisfies

ϕx(w1, . . . ,wk)

φ(w1) · · ·φ(wk)
= (d/2)−k/2
(d/2)


((d − k)/2)
detS−1/2

k

(
1 − x2

d
ι′S−1

k ι

)(d−k−2)/2

e(k/2)x2

if Sk is invertible with x2ι′S−1
k ι < d , and ϕx(w1, . . . ,wk) = 0 otherwise, where

Sk = (w′
iwj/d)ki,j=1 denotes the k × k matrix of scaled inner products of the wi ’s,

and ι = (1, . . . ,1)′ denotes an appropriate vector of ones.

Using Proposition 2.3, we can rewrite the quantities of interest in (2.1), (2.2),
and (2.3) as follows: For example, (2.2) equals∫∫ (

w′
1w2 − x2)f (w1)

φ(w1)

f (w2)

φ(w2)
ϕx(w1,w2) dw1 dw2

=
∫∫ (

w′
1w2 − x2) ϕx(w1,w2)

φ(w1)φ(w2)
f (w1)f (w2) dw1 dw2(2.4)

= E

[(
Z′

1Z2 − x2) ϕx(Z1,Z2)

φ(Z1)φ(Z2)

]
,

where Z1 and Z2 are i.i.d. copies of Z. In a similar fashion, the quantities in (2.3)
can be written as

k∑
j=1

(
k

j

)
(−1)jE

[(
Z′

1Z2 · · ·Z′
jZ1 − d + 1 − x2j ) ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

]
,

(2.5)

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji
− x2(jm−m)

)
ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

]

for Zi , i = 1, . . . , k, i.i.d. as Z. And finally (2.1) reduces to

E

[
ϕx(Z1,Z2)

φ(Z1)φ(Z2)

]
− 2E

[
ϕx(Z1)

φ(Z1)

]
+ 1.(2.6)
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Recall that our goal is to show that the expressions in (2.4)–(2.6) converge to
zero as d → ∞, uniformly in x over compact subsets of R. We show, in fact, a
slightly stronger statement, motivated by the obvious conjecture that the expected
value of density ratios in (2.4)–(2.6), like ϕx(Z1,Z2)/(φ(Z1)φ(Z2)), converges to
one, and also by the observation that the expression in (2.4) is a special case of
the second expression in (2.5) with k replaced by 2. For an even integer k and for
each l = 1, . . . , k, for each m ≥ 0 and for any indices j0, . . . , jm that satisfy j0 = 0,
jm ≤ l, and ji−1 + 1 < ji whenever 0 < i ≤ m, consider the expressions

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji

)
ϕx(Z1, . . . ,Zl)

φ(Z1) · · ·φ(Zl)

]
− x2(jm−m)(2.7)

and also the expression

∑k
j=1

(
k

j

)
(−1)jE

[(
Z′

1Z2 · · ·Z′
jZ1 − d

) ϕx(Z1,...,Zk)
φ(Z1)···φ(Zk)

]
− (

1 − x2)k
.(2.8)

Convergence to zero of the expressions in (2.7) corresponding to k = 2 (uniformly
over compacts in x) entails convergence to zero of (2.4) and (2.6) (uniformly over
compacts in x). And if both (2.7) and (2.8) converge to zero for some even in-
teger k (uniformly over compacts), then the expressions in (2.5) corresponding to
that same k also converge to zero (uniformly over compacts). [Convergence to zero
of (2.4) follows from convergence to zero of (2.7) with m = 1, jm = 2 and l = 2
together with convergence to zero of (2.7) with m = 0 and l = 2. Convergence
to zero of (2.6) follows from convergence to zero of (2.7) with m = 0 and l = 1
together with convergence to zero of (2.7) with m = 0 and l = 2. For the first ex-
pression in (2.5), convergence to zero follows from convergence to zero of (2.7)
with m = 0 and l = k and from convergence to zero of (2.8), in view of the bi-
nomial theorem. Similarly, for the second expression in (2.5), convergence to zero
follows from convergence to zero of (2.7) and of convergence to zero of the special
case of (2.7) where m = 0 and l = k.]

The expressions in (2.7)–(2.8) both involve expected values of a polynomial in
Z′

iZj for some pairs (i, j), multiplied by ϕx(Z1, . . . ,Zl)/(φ(Z1) · · ·φ(Zl)), l =
1, . . . , k. To proceed, we need the polynomial approximation to ϕx(Z1, . . . ,Zl)/

(φ(Z1) · · ·φ(Zl)) that is provided by the next result.

PROPOSITION 2.4. Fix M > 0 and x satisfying |x| ≤ M . Moreover, consider
integers k and d that satisfy k ≥ 1 and d > max{3k,2(k + 1)M2}, and d-vectors
w1, . . . ,wk that are such that the k × k matrix Sk = (w′

iwj/d)ki,j=1 satisfies ‖Sk −
Ik‖ < 1/(2k). Then ϕx(w1, . . . ,wk) is such that

ϕx(w1, . . . ,wk)

φ(w1) · · ·φ(wk)
= ψx(Sk − Ik) + �,

where ψx(Sk − Ik) is a polynomial of degree up to k in the elements of Sk − Ik .
The coefficients of the polynomial ψx(·) depend on k, x and d , and are bounded,
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in absolute value and uniformly in x ∈ [−M,M], by a constant C, and � satisfies
|�| < D‖Sk − Ik‖k+1, for some constants C = C(k,M) and D = D(k,M) that
depend only on k and on M . Moreover, both ψx(Sk − Ik) and � are invariant
under permutations of the wi ’s so that, in particular, ψx(Sk − Ik) is unchanged
when Sk is replaced by the matrix (w′

π(i)wπ(j)/d)ki,j=1 for any permutation π of
k elements. [The coefficients of ψx(·) and the bounds C and D can be obtained
explicitly upon inspection of the proof.]

When studying the expected values in (2.7)–(2.8), Proposition 2.4 suggests that
the density ratio ϕx(Z1, . . . ,Zk)/(φ(Z1) · · ·φ(Zk)) can be approximated by the
polynomial ψx(Sk − Ik). The resulting approximations to (2.7) and (2.8) are

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji

)
ψx(Sl − Il)

]
− x2(jm−m)(2.9)

and
k∑

j=1

(
k

j

)
(−1)jE

[(
Z′

1Z2 · · ·Z′
jZ1 − d

)
ψx(Sk − Ik)

] − (
1 − x2)k

,(2.10)

respectively. For these approximations to be useful, we need to show that the dif-
ference of (2.7) and (2.9), and also the difference of (2.8) and (2.10), converges
to zero as d → ∞, uniformly in x over compact subsets of R. The technical diffi-
culty here is that expressions like, for example, Z′

1Z2 · · ·Z′
jZ1 − d in (2.10) have

zero mean but do not converge to zero in probability. To deal with this, we rely on
conditions (t1)(a) and (t2).

PROPOSITION 2.5. For each d , consider a random d-vector Z that has a
Lebesgue density, that is standardized such that EZ = 0 and EZZ′ = Id , and that
satisfies conditions (t1)(a) and (t2) for some fixed integer k. Let H(Sk − Ik) be
a (fixed) monomial in the elements of Sk − Ik whose degree, denoted by deg(H),
satisfies 0 ≤ deg(H) ≤ k. Then

E

[
d(k+deg(H))/2∣∣H(Sk − Ik)

∣∣∣∣∣∣ ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)
− ψx(Sk − Ik)

∣∣∣∣
]

converges to zero as d → ∞, uniformly in x over compact subsets of R.

If Proposition 2.5 applies, then it is not difficult to see that the difference be-
tween (2.7) and (2.9), and also the difference between (2.8) and (2.10), converges
to zero, uniformly in x over compact subsets of R, as required. For example, con-
sider the difference of (2.8) and (2.10), which both involve k expected values in-
dexed by j = 1, . . . , k, and focus on the difference of those expected values cor-
responding to the index j . Also, recall that k is an even integer, so that k > 1.
For j = 1, we simply use Proposition 2.5 with the monomial (Sk − Ik)1,1, and
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note that |Z′
1Z1 − d| = d|(Sk − Ik)1,1| < d(k+1)/2|(Sk − Ik)1,1|. For j > 1, we first

write |Z′
1Z2 · · ·Z′

jZ1| as

dj
∣∣(Sk − Ik)1,2 · · · (Sk − Ik)j,1

∣∣ ≤ d(j+k)/2∣∣(Sk − Ik)1,2 · · · (Sk − Ik)j,1
∣∣.

Now use Proposition 2.5 twice, first with the monomial (Sk − Ik)1,2 · · · (Sk − Ik)j,1
of degree j ≤ k, and then with the degree-zero monomial, and note that d ≤
d(k+0)/2 here, to see that the difference of expected values corresponding to the
index j > 1 also converges to zero, uniformly in x over compact subsets of R. The
difference of (2.7) and (2.9) is treated similarly.

To show that the expressions in (2.9) and (2.10) converge to zero, the following
observation will be useful: If the Zi’s in (2.9) and (2.10) are replaced by indepen-
dent standard normal vectors Vi (and if Sl and Sk are replaced by the corresponding
Gram matrices of the Vi’s), then the resulting expressions both converge to zero
as d → ∞, uniformly in x over compact subsets of R. To establish convergence
to zero of (2.9)–(2.10), uniformly on compacts in x, it therefore is sufficient to
study the differences between the expressions in (2.9)–(2.10) and the same expres-
sions with the Zi’s replaced by Vi ’s that are i.i.d. standard normal, and to show
that these differences converge to zero as d → ∞, uniformly in x over compacts
subsets of R. (To derive the last observation, we first note that (2.7) and (2.8), with
the Zi’s replaced by the Vi’s, are both equal to zero. Indeed, with this replacement,
the expectation in (2.7) is equal to E[∏m

i=1 W ′
ji−1+1Wji−1+2 · · ·W ′

ji−1Wji
], because

φ(v1) · · ·φ(vl) is the joint density of V1, . . . , Vl , and because ϕx(w1, . . . ,wl) is the
joint density of W1, . . . ,Wl . Conditional on b, the Wi ’s are conditionally i.i.d., with
E[Wi‖b] = xb and E[WiW

′
i‖b] = Id + (x2 −1)bb′. In view of this, it is elementary

to verify that (2.7) with the Zi’s replaced by the Vi ’s is equal to zero. A similar
argument applies, mutatis mutandis, to (2.8). Next, we note that Proposition 2.5
applies if Z is replaced by a standard normal vector V [that conditions (t1)(a)
and (t2) hold when Z is replaced by V follows either from Example A.1 or upon
a simple direct computation]. When replacing Z by V throughout, this entails that
(2.9) and (2.10) converge to the same limit as (2.7) and (2.8), that is, to zero, uni-
formly over compacts in x.)

To put this idea to work, expand ψx(Sk − Ik) into a weighted sum of monomials
(in the elements of Sk −Ik), where the weight of each monomial in the sum is given
by the coefficient of that monomial in ψx(Sk − Ik); similarly, ψx(Sl − Il) can also
be written as a weighted sum of such monomials for each l ≤ k. We see that the
integrand in (2.9) for m = 0, that is, ψx(Sl − Il), can be written as the weighted
sum of monomials in the elements of Sk − Ik . Similarly, for Z as in Theorem 2.1,
the integrand in (2.9) for m > 0 can be written as the weighted sum of expressions
of the form

ddeg(G)(G − E[G])H(2.11)
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for two monomials G and H in the elements of Sk −Ik of degree k or less, where G

is given by the monomial

m∏
i=1

(Sk − Ik)ji−1+1,ji−1+2 · · · (Sk − Ik)ji−1,ji
(2.12)

of degree jm − m, for some m > 0 and indices j0, . . . , jm that satisfy j0 = 0,
jm ≤ k, and ji−1 +1 < ji whenever 0 < i ≤ m. In this weighted expansion of (2.9),
note that the weight of (2.11) depends on x, on H (through its degrees) and also
on d , in such a way that the weight is bounded in x and d as long as x is restricted
to a compact set (cf. Proposition 2.4). Lastly, consider the integrand in (2.10), for Z

as in Theorem 2.1. Arguing as before, we can write that integrand as the weighted
sum of expression of the form (2.11), where here G is given by the monomial

(Sk − Ik)1,2 · · · (Sk − Ik)j−1,j (Sk − Ik)j,1(2.13)

of degree j for some j satisfying 1 ≤ j ≤ k. And, again, in this weighted sum,
the weight of each term depends on x and on H (through its degrees), and that
weight is bounded in x and d over compacts in x. (Note that, under the assump-
tions of Theorem 2.1, it is elementary to verify that E[G] = 0 whenever G is
given by (2.12) and also whenever G is given by (2.13) with j = 1, and that
ddeg(G)

E[G] = d if G is given by (2.13) with j > 1.)

PROPOSITION 2.6. For each d ≥ 1, assume that Z is as in Theorem 2.1. Fix
an integer k ≥ 1, and let G and H be two (fixed) monomials in the elements of
Sk − Ik of degree k or less, define G∗ and H ∗ as G and H , respectively, but with
the Z1, . . . ,Zk replaced by i.i.d. standard Gaussian d-vectors, and consider

E
[
ddeg(G)(G − E[G])H ] − E

[
ddeg(G∗)(G∗ − E

[
G∗])

H ∗]
.(2.14)

(i) Assume that condition (t1)(a) applies with the integer k as chosen here, and
that k ≤ 4. Then E[H ] − E[H ∗] and also the expression in (2.14) converge to zero
as d → ∞ for each monomial G as in (2.12).

(ii) Assume that condition (t1) is satisfied with the integer k as chosen here.
Let G be given by the monomial in (2.13) for some j , 1 ≤ j ≤ k. Then the expres-
sion in (2.14) converges to zero as d → ∞, unless either (a) H = (Sk − Ik)a,a

for some a satisfying 1 ≤ a ≤ j , (b) H = (Sk − Ik)a,b with 1 ≤ a < b ≤ j , or (c)
H = ((Sk − Ik)a,b)

2 with 1 ≤ a < b ≤ j . In case (a), the expression in (2.14) is
equal to Var[Z′

1Z1]/d −2; in case (b), it is equal to E[(Z′
1Z2)

3]/d; and in case (c),
it equals Var[(Z′

1Z2)
2]/d2 − 2(1 + 3/d).

To complete the proof of Theorem 2.1, let Z be as in the theorem. We first as-
sume that conditions (t1)(a) and (t2) are satisfied with k = 2. The relation (1.3)
holds for each x and ε, if we can show that the expression in (2.9) converges
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to zero for each collection of indices l, m, j0, . . . , jm so that 1 ≤ l ≤ 2, m ≥ 0,
j0 = 0, jm ≤ l, and ji−1 + 1 < ji for each i = 1, . . . ,m. Moreover, (1.5) holds for
each ε > 0, if convergence zero of (2.9) is uniform in x over compacts. To this end,
consider the difference of the expression in (2.9) and of the same expression with
the Zi’s replaced by Vi ’s that are i.i.d. standard normal d-vectors. Expanding the
polynomial ψx into a weighted sum of monomials, the difference in question can
be written as a weighted sum of expressions of the form E[H ] − E[H ∗] in case
m = 0, and as a weighted sum of expressions of the form (2.14) in case m > 0,
where the weight is given by the coefficient of the monomial H in ψx , and where
G is of the form (2.12) [the monomials H , G∗ and H ∗ are as in Proposition 2.6(i)].
By Proposition 2.4, we see that the coefficients of ψx are bounded uniformly in d

and uniformly in x over compacts. And by Proposition 2.6(i), we see that expres-
sions of the form E[H ] − E[H ∗] or of the form (2.14) with G as in (2.12) all
converge to zero. Therefore, (2.9) converges to zero, uniformly in x over compacts
subsets of R.

Finally, we assume that conditions (t1) and (t2) hold with k = 4. To derive (1.4)
for fixed x and ε, we show that the expressions in (2.9) and (2.10) converge to zero
[with the indices l, m, j0, . . . , jm in (2.9) now so that 1 ≤ l ≤ 4, m ≥ 0, j0 = 0,
jm ≤ l, and ji−1 + 1 < ji for each i = 1, . . . ,m]. And (1.6) holds for each ε > 0
if convergence in (2.9) and (2.10) is uniform in x over compact sets. Now con-
vergence to zero of (2.9) (with k = 4 here), uniformly over compacts, follows by
arguing as in the preceding paragraph, mutatis mutandis. To deal with (2.10), con-
sider the difference of (2.10) and of the same expression with the Zi’s replaced
by i.i.d. standard Gaussian Vi’s. Again, this can be written as a weighted sum of
expressions of the form (2.14), with G now as in (2.13), where the weights are
bounded uniformly in d and uniformly in x over compacts in view of Proposi-
tion 2.4. And by Proposition 2.6(ii), we see that (2.14) converges to zero except
for those H ’s that correspond to the cases (a), (b) and (c) in Proposition 2.6(ii).
Write Ha , Hb, and Hc for the collection of all monomials H where the case (a),
(b), or (c) of Proposition 2.6(ii) occurs, respectively. For each H ∈ Ha , the value
of (2.14) is given Var[Z′

1Z1]/d − 2 and hence does not depend on H in view
of Proposition 2.6(ii). And for each H ∈ Ha , the coefficient of H in the polyno-
mial ψx(Sk − Ik) also does not depend on H in view of Proposition 2.4, because
the monomials in Ha can be obtained from each other by permutations (or re-
labelings) of Zi’s. Consider now the difference of (2.10) and the same expression
with the Zi’s replaced by i.i.d. standard Gaussians. The combined contribution of
the monomials in Ha to that difference is given by

k∑
j=1

(
k

j

)
(−1)j j = −k

k−1∑
j=0

(
k − 1

j

)
(−1)j

multiplied by a constant (namely by Var[Z′
1Z1]/d − 2 times the common coeffi-

cient of the monomials from Ha in ψx(Sk − Ik)). Similarly, the monomials in Hb
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contribute
k∑

j=1

(
k

j

)
(−1)j

(
j

2

)
=

k−2∑
j=0

(
k − 2

j

)
(−1)j

multiplied by a constant. And the combined contribution of the monomials in Hc

is also given by the expression in the preceding display multiplied by another con-
stant. Because we have k = 4 here, the expressions in the last two displays are
both equal to zero. Except for the more technical arguments that we collect in
the supplementary material [13], this concludes the proof of Theorem 2.1.

SUPPLEMENTARY MATERIAL

Appendix: Proofs for Section 2 (DOI: 10.1214/12-AOS1081SUPP; .pdf). The
Appendix contains several more technical arguments that are used in Section 2
including, in particular, Examples A.1 and A.2, as well as the proofs of Proposi-
tions 2.2 through 2.6.
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