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FIDUCIAL THEORY AND OPTIMAL INFERENCE

BY GUNNAR TARALDSEN AND BO HENRY LINDQVIST

SINTEF Information and Communication Technology
and Norwegian University of Science and Technology

It is shown that the fiducial distribution in a group model, or more gener-
ally a quasigroup model, determines the optimal equivariant frequentist infer-
ence procedures. The proof does not rely on existence of invariant measures,
and generalizes results corresponding to the choice of the right Haar measure
as a Bayesian prior. Classical and more recent examples show that fiducial
arguments can be used to give good candidates for exact or approximate con-
fidence distributions. It is here suggested that the fiducial algorithm can be
considered as an alternative to the Bayesian algorithm for the construction of
good frequentist inference procedures more generally.

1. Introduction. Fiducial theory was introduced by Fisher (1930) to avoid
the problems related to the choice of a prior distribution. Fiducial inference has
not gained much popularity as such, but the related theory has been historically
influential [Efron (1998)], and is still important in the current flow of statisti-
cal developments [E, Hannig and Iyer (2008), Efron (2006), Fraser et al. (2010),
Ghosh, Reid and Fraser (2010), Wang, Hannig and Iyer (2012)]. Fisher’s own
view on fiducial inference evolved over the years as can be inferred from a read-
ing of his initial [Fisher (1930, 1935)] and more final formulation of the theory
[Fisher (1973)]. He was in particular very positive to the developments by Fraser
(1961a, 1961b, 1962, 1963), and we most certainly share this point of view. Fraser
(1968, 1979) develops the theory and uses the label structural inference for this.
A strongly related theory was presented under the label of functional models by
Bunke (1975) and Dawid and Stone (1982). The term fiducial will here be used
more generally so that it includes structural, functional, and the original fiducial
arguments given by Fisher.

The original idea of Fisher was to obtain the fiducial distribution directly from
the cumulative distribution, but this line of argument runs into problems when sim-
ilar arguments are tried in the multivariate case. The definition used here is based
on the solution of a fiducial equation, and is in this sense similar to the approaches
of Fraser (1968), Dawid and Stone (1982) and Hannig (2009, 2013). A more pre-
cise definition of the term fiducial model as used here is given in Section 2 in
Definition 1. A brief review of alternative, but strongly related definitions found in
the literature is given in the final Section 4.
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Let l = γ (θ, a) denote the realized loss for an action a ∈ �A given the model
parameter θ ∈ ��. Let �X be the sample space equipped with the σ -field EX

of events. The risk ρ of a decision rule δ :�X → �A is by definition equal to
the expected value ρ = Eθγ (θ, δ(X)). This is determined by the statistical model
given by the family {(�X, EX,Pθ

X) | θ ∈ ��} of probability spaces.
Consider now the more special case where �X = �� = �A = G, possibly after

a suitable change of variables. Assume that G is a measurable quasigroup with
a unit e, and product (g1, g2) �→ g1g2 written like ordinary multiplication [Smith
(2007)]. This includes the more common case of a group, but it is more general
since the associative law is not assumed to hold. Assume furthermore that X ∼ θU

conditionally on � = θ and that the law of (U | � = θ) does not depend on θ .
This gives an example of a fiducial model for the statistical model as defined

more generally on page 326. The fiducial distribution is obtained by solving the
fiducial equation x = θu for θ when u is sampled from Pθ

U . Existence and unique-
ness is ensured since G is a quasi-group. A variable �x is uniquely determined by
x = �xU . The fiducial distribution is then the conditional law of �x given � = θ .

Assume that the loss is invariant in the sense that γ (θ, a) = γ (gθ, ga), and that
the decision rule is equivariant in the sense that δ(gx) = gδ(x). The assumptions
ensure the validity of the following calculation:

ρ = Eθγ
(
θ, δ(X)

)
Risk(1a)

= Eθγ
(
θ, δ(θU)

)
Fiducial model for Pθ

X(1b)

= Eθγ
(
θ, θδ(U)

)
Equivariance of δ(1c)

= Eθγ
(
e, δ(U)

)
Invariance of γ(1d)

= Eθγ
(
�x,�xδ(U)

)
Invariance of γ(1e)

= Eθγ
(
�x, δ

(
�xU

))
Equivariance of δ(1f)

= Eθγ
(
�x, δ(x)

)
Fiducial equation.(1g)

A variation of the above argument gives that �x can be replaced by xU−1
r in the

conclusion. In the group case the law of �x will coincide with the law of xU−1
r ,

but in general not since the defining equation e = UU−1
r of the right inverse U−1

r

does not provide the solution of the fiducial equation. It follows from this that an
optimal equivariant rule, if it exists, is determined by the fiducial distribution of �x

or by the distribution of xU−1
r from the right inverse. The first part of the claims

in the abstract has hence been established.
It is hoped that the reader can appreciate the simplicity and consequence of the

calculation given in equation (1), but it could also be considered to be essentially
Greek. The required theory of decisions and fiducial theory will be explained in
some more detail in Section 2, and examples are presented in Section 3. The pre-
sentation is essentially as given in standard textbooks [Berger (1985), Lehmann
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and Casella (1998), Lehmann and Romano (2005), Schervish (1995), Stuart, Ord
and Arnold (1999)], but with the simplifications given by a fiducial model. The
monographs by Eaton (1989) and Wijsman (1990) are recommended as excellent
sources for theory and examples beyond the standard textbooks.

The presentation in the following will be mostly restricted to the group case,
but it will be more general than the previous in the sense that the assumption of
equality of the involved spaces will be abandoned. It will be more general than
standard theory since, as above, the arguments will not depend on existence of
invariant measures.

2. Optimal inference. Consider the case where the loss of an action a ∈ �A

is of the form l = γ (θ, a) corresponding to a statistical model {Pθ
X | θ ∈ ��}. It is

here assumed that the model parameter � is a σ -finite random quantity and this and
all other random quantities are defined based on the underlying conditional proba-
bility space (�, E ,P) as explained by Taraldsen and Lindqvist (2010). This means
in particular that Pθ

X(B) = P(X ∈ B | � = θ), and X :� → �X , � :� → �� are
measurable functions. It means also that all expectations that occur are defined
by integration over �. As an example E(φ(Z) | T = t) = ∫

φ(Z(ω))Pt (dω) by
definition. It is here assumed that φ :�Z → R, Z :� → �Z , and T :� → �T are
measurable. The conditional law Pt is well defined if PT is σ -finite. The conse-
quence E(φ(Z) | T = t) = ∫

φ(z)Pt
Z(dz) is a theorem.

The law P� of � is not assumed known and is not needed in the arguments
which follow. The reason for the assumption of existence of �, X, and indeed any
random quantity involved in the arguments, as functions defined on the conditional
probability space (�,P, E ) is as in the formulation of probability theory given
by Kolmogorov (1956): any collection of random quantities gives a new random
quantity with a well-defined law, and measurable functions of random quantities
give new random quantities. The theory is completely based on the underlying
abstract space �.

A group invariant problem is given by a group G that has a transformation group
action on the sample space �X , the model parameter space ��, and the action
space �A. The problem is group invariant if Pθ

gX = Pgθ
X and γ (gθ, ga) = γ (θ, a).

An inference rule δ with a corresponding action A = δ(X) is equivariant if
δ(gx) = gδ(x). The restriction to the class of equivariant actions can be inter-
preted as a consistency requirement: an observation x from Pθ

X corresponds to an

observation gx from Pgθ
X . The two corresponding problems are formally identical

and the use of an equivariant action ensures consistency.
The problem considered here is to determine an equivariant δ such that the risk

ρ = Eθγ
(
�,δ(X)

) = E
(
γ

(
�,δ(X)

) | � = θ
)

(2)

is minimized. It will be assumed that G = �� with the action given by the group
multiplication gθ directly. The orbit of x in �X is defined by Gx = {gx | g ∈ G},
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and likewise for orbits in �� and �A. The action of G is free on �X if the mapping
g �→ gx is injective for all x. The group action is transitive on �X if Gx = �X .
If the group action is both transitive and free, then it is said to be regular and the
corresponding space is then a principal homogeneous space for G. It follows in
particular that the model parameter space �� is a principal homogeneous space
for G, but there has also been an identification of the identity element e in ��.

Let U be a random quantity such that P(U ∈ A | � = θ) = P(X ∈ A | � = e)

holds identically for all A and θ . It follows then that

(X | � = θ) ∼ (θU | � = θ)(3)

since the group invariance of the statistical model justifies Pθ
X = Pe

θX = Pθ
θU . This

construction proves that (U,χ) with

χ(u, θ) = θu(4)

is a fiducial model for Pθ
X . The concept of a fiducial model is defined as follows.

DEFINITION 1 (Fiducial model). Let � be a σ -finite random quantity. A fidu-
cial model (U, ζ ) is given by a random quantity U and a measurable function
ζ :�U ×�� → �Z . This is a fiducial model for the statistical model {Pθ

Z | θ ∈ ��}
if (

ζ(U,�) | � = θ
) ∼ (Z | � = θ).(5)

The notation (W1 | � = θ) ∼ (W2 | � = θ) means that Pθ
W1

= Pθ
W2

so Defi-

nition 1 can be compared with equation (3). It is allowed in the above that Pθ
U

does depend on θ . Interesting examples where this occurs are discussed by Fraser
(1979) in the form of dependence on shape parameters in addition to pure group
parameters. In the following it will, however, be assumed throughout that the fidu-
cial model is conventional in the sense that Pθ

U does not depend on θ .
It is important to notice that many different fiducial models are possible for

a given statistical model. A fiducial model provides a different basis for statisti-
cal inference than a statistical model. The choice of a particular fiducial model
can be compared with the choice of a Bayesian prior together with a statistical
model. Fiducial inference is then initially different from frequentist and Bayesian
inference since the inferential basis is given by a fiducial model which is assumed
known. Fiducial inference as such will not be considered here, but the correspond-
ing fiducial algorithms will be used as vehicles for the construction of frequentist
procedures.

A fiducial model (U, ζ ) is simple if the fiducial equation ζ(u, θ) = z has a
unique solution θz(u) when solved for θ for all u, z. In the simple and conven-
tional case the fiducial distribution is defined as the distribution of �z = θz(U)

conditional on � = θ .
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DEFINITION 2 (Fiducial distribution in the simple and conventional case). Let
(U, ζ ) be a conventional simple fiducial model. Define the random quantity �z by
z = ζ(U,�z). The fiducial distribution is the conditional law of �z given � = θ .

The fiducial model (U,χ) given by equation (4) is simple if and only if �X

is a principal homogeneous space for G. In this case, by the choice of a unit el-
ement in �X , the identification G = �� = �X can be done. It follows then that
θx(u) = xu−1 is the unique solution of x = θu, and the fiducial distribution is the
conditional distribution of �x = xU−1 as it appears in equation (1g).

The remainder of this section will be on the analysis of the group model by
means of the constructed fiducial model given by equation (4) in the case where
�X is not assumed to be a principal homogeneous space for G. The aim is to
determine an equivariant inference rule δ so that the risk given by equation (2) is
minimized. A definition of a fiducial distribution will also be presented for this
group case. The resulting distribution coincides with the distribution described
with many more examples, explicit calculation of densities, and illustrative figures
by Fraser (1968, 1979).

A first observation is that the calculations given by equations (1a)–(1d) are valid
and the risk is given by ρ = E(γ (e, δ(U)) | � = θ). The construction of the fidu-
cial model has hence given a simple proof that gives that the risk does not depend
on the model parameter since Pθ

U does not depend on θ .
Let Y = φ(X) be an invariant statistic in the sense that φ(θx) = φ(x) for all

θ, x. This is equivalent with the requirement that φ is constant on all orbits in
the sample space �X . The fiducial model in equation (4) gives that Y = φ(X) ∼
φ(�U) = φ(U) conditionally on � = θ . The conclusion is that Pθ

Y does not de-
pend on θ and has a known distribution. This proves that an invariant statistic Y is
ancillary.

Assume furthermore that Y = φ(X) is a maximal invariant statistic. This means
that the family of level sets of φ coincides with the family of orbits in �X . Let x be
given and assume that y = φ(x) = φ(u). The maximality ensures that x ∈ Gu =
��u, so x = θxu for some θx . This θx will be unique if G acts freely on �X ,
but here it will more generally be assumed that θx is determined by the choice of
a measurable selection. The measurable selection theorem [Castaing and Valadier
(1977)] ensures existence under mild conditions. The fiducial distribution of the
corresponding variable �x can be described as follows.

DEFINITION 3 (Fiducial distribution in the group case). Let u be a sample
from the distribution of (U | � = θ,φ(U) = φ(x)) where φ is a maximal invariant.
Let θx be a measurable selection solution of x = θxu. This θx is a sample from a
fiducial distribution.

The solution θx exists since y = φ(x) = φ(u) ensures that x and u are on the
same orbit. Definition 3 is a special case of Definition 2 if �X is a principal ho-
mogeneous space for G, and the definitions are hence consistent. It is possible to



328 G. TARALDSEN AND B. H. LINDQVIST

define a fiducial distribution for more general cases. One version is as presented
by Hannig (2009), but there are also other possibilities available. This will not be
discussed further here since the given definitions of the fiducial distribution are
sufficient for the purposes in this paper.

Let Y = φ(X) be a maximal invariant statistic. The calculation that gave equa-
tion (1d) can now be continued to give

ρ =
∫ [

Eθ,yγ
(
e, δ(U)

)]
Pθ

Y (dy).(6)

The expression [·] does only depend on y. The optimal rule δ, if it exists, is found
by minimization for each given y. Assume that x is such that y = φ(x). It follows
then that

Eθ,yγ
(
e, δ(U)

) = Eθ,yγ
(
�x,�xδ(U)

) = Eθ,yγ
(
�x, δ(x)

)
(7)

and the optimal rule δ is determined by the fiducial distribution of �x . The variable
�x is defined as a measurable selection solution of x = �xU . This result can be
summarized as the main technical result in this paper.

THEOREM 1. The risk of an equivariant rule in a group invariant problem is
determined by a fiducial distribution if the model parameter space is a principal
homogeneous space for the group.

It should be noted that the statement assumes existence of a fiducial distribution
as described above, but uniqueness of a fiducial distribution is not assumed. Opti-
mal inference procedures are determined by the fiducial distribution regardless of
the choice of a measurable selection for the determination of a fiducial distribution.
The optimal δ is found, if it exists, as the minimizer δ(x) of the expression

Eθ,yγ
(
�x, δ(x)

)
,(8)

where the conditional distribution of �x is a fiducial distribution.
Theorem 1 generalizes directly to the larger class of randomized equivari-

ant actions. This is obtained by a replacement of the equivariant action δ(X)

by the randomized equivariant action δ(X,V ) = δ(θU,V ) in the calculations.
It is here assumed that U and V are conditionally independent in the sense that
Pθ

U,V (du, dv) = Pθ
U (du)Pθ

V (dv), and both conditional distributions do not depend
on θ . The equivariance is defined by the identity δ(gX,V ) = gδ(X,V ).

A randomized action corresponds to the assignment of a probability measure on
the action space �A. The set of randomized actions is hence always a convex set,
and this gives theoretical advantages to the problem of minimization of the risk.
If, however, the loss function l(θ, a) is convex on �A for each θ , then the Jensen
inequality gives that it is sufficient to consider nonrandom actions [Lehmann and
Casella (1998), page 48].
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Theorem 1 generalizes also directly to the case where G is only assumed to act
transitively on ��. The construction is as above, and starts with fixing a θ0 and
the construction of a random variable U such that Pθ

U = Pθ0
X . All the arguments

given above can then be repeated with G playing the role of a new and possibly
larger parameter space. The result is then first a fiducial distribution on G, but this
is pushed forward to a fiducial distribution on �� by the mapping g �→ gθ0.

It is known that the fiducial coincides with the posterior from a right Haar prior,
and for these cases Theorem 1 is a known result with the posterior used in the
formulation instead. There are, however, groups where no Haar prior exists, and
in this case Theorem 1 and its extensions given by the above comments is a novel
result. The derivation given in the Introduction also gives a similar result in the
more general case of a quasi-group, and the existence of invariant measures is then
also not automatic.

3. Examples. The examples presented next are chosen to illustrate the con-
cepts. Many more examples and thorough discussions are found in the previously
quoted textbooks and monographs. A complete treatment of the given examples—
including in particular simulation studies of the resulting procedures—will not be
pursued since this would tend to take attention away from the main issue. The
purpose is simply to indicate the usefulness of fiducial theory.

3.1. The Bernoulli distribution. A random sample of size n from the Bernoulli
distribution provides an example where the results related to Theorem 1 cannot
be applied directly. Fiducial theory can, nonetheless, be used to obtain optimal
inference.

The largest possible group G equals {e, g1} corresponding to the group of per-
mutations of the set {0,1}. The action on �� = (0,1) is determined by g1p =
1 − p, and the set of orbits in the parameter space is uncountable. The conclu-
sion is that conditioning on the maximal invariant as in the arguments leading to
Theorem 1 does not provide any essential simplification of the problem.

This example is, however, very important from the point of view that fiducial
distributions can still provide optimal procedures. Blank (1956) has constructed a
randomized most powerful unbiased confidence interval, and this is related to a
fiducial distribution [Anscombe (1948), Stevens (1950, 1957)].

The empirical mean is the unbiased estimator of p with minimum variance. It
can, however, be argued that neither unbiasedness nor minimum variance are nat-
ural concepts in this particular case. The parameter space �� can alternatively be
identified with the circular arc {(√p,

√
q) | p,q > 0,p +q = 1} in the (

√
p,

√
q)-

plane. This has the advantage that the Fisher information metric distance between
two distributions in this parametric family equals the distance along the arc [Amari
(1985), Atkinson and Mitchell (1981), Radhakrishna Rao (1945)]. The distance
squared provides a loss that is invariant with respect to G. A natural task is to
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investigate on existence of an optimal equivariant estimator of p with respect to
the distance squared on the arc. A reasonable candidate arises from the previously
referenced fiducial distribution, but this will not be discussed further here.

3.2. The octonions. The purpose here is to give an example which does not
involve a group and where the argument given in equation (1) provides a fiducial
distribution that can be used for the determination of the possibility of an optimal
decision rule. The octonions is here used as an example since it is one of the more
interesting examples of a group-like structure where the associative law fails. It has
also a natural invariant loss that can be used in the arguments that follow. A more
familiar example without associativity can be constructed for the original model
of Fisher for the correlation coefficient, but we have not been able to identify a
natural invariant loss in that case.

The Cayley–Dickson construction defines a multiplication (a, b)(c, d) = (ac −
d∗b, da + bc∗) and an involution (a, b)∗ = (a∗,−b) on A × A where A is an al-
gebra with an involution. Starting with the real numbers R this gives the complex
numbers C. Repeated application of the construction gives then next the quater-
nions H and then next the octonions O. The octonions is hence equal to the 8-
dimensional vector space R8 equipped with a particular multiplication operation
so that O is an algebra [Baez (2002)].

The number 1 is the unit for multiplication, and every nonzero element x has a
multiplicative inverse x−1 with 1 = xx−1 = x−1x. The usual norm on R8 is also
given by the product and involution as ‖x‖2 = x∗x = xx∗, and the identity ‖xy‖ =
‖x‖‖y‖ holds. It follows in particular that x−1 = x∗/‖x‖2. The multiplication is
not associative, but the algebra O is alternative: the subalgebra generated by any
two elements is associative.

Consider next a fiducial model (U,χ) where x = χ(u, θ) = θu is given by the
product in O, and where the conditional law Pθ

U is specified and does not depend
on θ . Assume that �X = �U = �� = �A = G where G is a subset of O that
contains 1, the product of any two elements, and the inverse of any element. The
particular examples where G is the nonzero octonions or where G is the octonions
with unit norm provide examples where G is not a group since the associative law
fails. This is then a fiducial model for a statistical model {Pθ

X | θ ∈ ��} where
(X | � = θ) ∼ (θU | � = θ). The corresponding fiducial distribution is the condi-
tional distribution of �x = xU−1 given � = θ . Consider the case where the loss of
an action a is given by γ (θ, a) = ‖θ − a‖2/‖θ‖2. This loss is invariant, so the cal-
culation in equation (1) gives that the risk of an equivariant decision rule is given
by Eθγ (�x, δ(x)).

Existence of an optimal estimator depends on Pθ
U or equivalently on �x , and

this will not be discussed further here. It can, however, be noted that any optimal
equivariant decision rule is determined by δ(x) = xδ(1), and δ(1) is the minimizer
of Eθγ (�1, δ(1)). A rule on this form will be equivariant if δ(1) belongs to the set
{a ∈ G | (g1g2)a = g1(g2a) ∀g1, g2 ∈ G}.
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There are many other examples of binary operations that are not associative.
A generic family of examples are produced by a relationship x = χ(u, θ) that has
the property (∗): it gives a one–one correspondence between the domains of any
two of the variables when the value of the third is fixed. Corresponding fiducial
models based on χ defines the class of simple pivotal models in accordance with
the terminology of Dawid and Stone (1982), page 1057. Concrete elementary ex-
amples are provided by x = u − θ , x = uθ−1, and x = uθ on suitable domains.

The property (∗) is conserved by a change of variables by one–one transfor-
mations resulting in φx(x̃) = χ(φu(ũ), φθ (θ̃)). For the given elementary exam-
ples, there exists a change of variables so that the result is a relation x̃ = ũθ̃

given by a group multiplication. This is not possible in general. Simple counter
examples arises for the Fisherian simple pivotal models determined by the relation
u = F(x | θ) where F is a suitable cumulative distribution function. The prototyp-
ical example used by Fisher [(1930), page 534] when he introduced the fiducial
distribution is given by the sample correlation coefficient from a bivariate normal
distribution. In this case, a reduction to a group model as for the given elementary
examples is not possible.

In the general case starting from the property (∗) there exists, however, a change
of variables that results in a relation given by a quasi-group with a unit: a loop. The
important conclusion of this short discussion is that the theory of simple pivotal
models is linked naturally to the theory of loops. The nonzero octonions provides
an example of a loop which is not reducible to a group by a change of variables.

3.3. Hilbert space. One purpose of this example is to demonstrate existence
of a case where Theorem 1 can be used, but where an invariant measure does not
exist.

Let �� = �A = G and �X = �U = Gn where G is a complex or real Hilbert
space. The Hilbert space G is a group where the addition of vectors is the group
operation, and an invariant loss is given by the squared distance between vectors
as γ (θ, a) = ‖θ − a‖2. A conventional fiducial model (χ,U) is given by xi =
χi(u, θ) = θ +ui for i = 1, . . . , n and a specification of a distribution Pθ

U that does
not depend on θ . A maximal invariant is given by y = (x2 − x1, . . . , xn − x1).
The fiducial distribution is given as the distribution of �x = x1 − U1 from the
conditional law (U | � = θ, (U2 − U1, . . . ,Un − U1) = y). The optimal estimator
of θ is given as δ(x) = x1 − E(U1 | � = θ, (U2 − U1, . . . ,Un − U1) = y).

It will be demonstrated in the next subsection that it is not necessary to assume
independence of {Ui} in the previous argument, and this assumption has indeed
not been mentioned above. More important is the fact that a right Haar prior does
not exist in the case where G is an infinite-dimensional Hilbert space. An explicit
example is given by G = l2(N) = {(ai) | ‖a‖2 = ∑∞

i=1 |ai |2 < ∞}.
The previous example has an infinite-dimensional parameter space, and this

feature is quite common in applications as exemplified by nonparametric statis-
tics. The example does also include data that are infinite dimensional, and this can
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be considered to be unrealistic in applications. There are, however, applications
where it is nonetheless convenient to assume that the observations are also infinite
dimensional. An important source of examples is given by the statistical signal
processing literature [Van Trees (2003)]. Explicitly, it can be convenient to assume
that a signal is observed not only at discretely sampled points, but for all points.
Similarly, it can be convenient to assume that a complete infinite sequence of sam-
pled points is observed, even though only a finite number of samples are actually
observed. In both cases this can lead to a sample space that is not finite dimen-
sional. A related and very common convenience is to assume that observations are
given by real numbers, even though the majority of concrete examples actually
only involves a finite set of observable values due to limited instrument resolu-
tion [Taraldsen (2006)]. Explicit consideration of the limit from discretized data
to continuous data gives, incidentally, a most promising route for the definition of
fiducial distributions more generally than considered in Section 2 as demonstrated
recently by Hannig (2013).

If one observes the real random variables X1, . . . ,Xn independently normally
distributed with unknown mean θ = (μ1, . . . ,μn) and variance 1, it is customary
to estimate μi by Xi . If the loss is the sum of squares of the errors, this estimator is
admissible for n ≤ 2, but inadmissible for n > 3 [Stein (1956)]. The optimal esti-
mator derived above coincides with the customary estimator. This exemplifies that
the optimal estimator can be inadmissible. The optimality is only ensured within
the class of equivariant estimators. Equivariance can be a most natural demand, but
this depends on the particular concrete modeling case at hand. In certain situations
[Efron and Morris (1977)] it can be natural to give away the equivariance demand
in order to obtain more precise estimates. In other cases, especially in the context
of physics, the equivariance demand can be closer to the foundation of the subject
matter and will be an absolute demand.

3.4. Uniform distribution. A particular case of the previous Hilbert space ex-
ample is given by assuming G = R and where Pθ

U corresponds to a random sample
of size n from the uniform distribution on (0,1). This gives then a fiducial model
for a random sample from the uniform distribution on (θ, θ + 1). A fiducial distri-
bution and a corresponding optimal estimator of θ follows from the Hilbert space
argument. An alternative and more geometrically tractable argument follows as
explained next from the use of the sufficient statistic given by the maximum and
minimum observation.

Let xi = θ + ui where the joint distribution of (u1, u2) conditional on � = θ

is given by the density f (u | θ) = n(n − 1)(u2 − u1)
n−2 on {(u1, u2) | 0 < u1 <

u2 < 1}. This is then a fiducial group model for the sufficient statistic given by the
smallest and largest observation from a random sample from the uniform distribu-
tion on (θ, θ + 1). The model is also a special case of the Hilbert space example
with n = 2 and where {Ui} are conditionally dependent given � = θ . Reduction
by sufficiency has here simplified the problem, but the fiducial equation is still
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over determined so a further reduction by the maximal invariant y = x2 − x1 is
necessary. The resulting conditional distribution (U1 | � = θ,U2 − U1 = y) be-
comes the uniform distribution on (0,1 − y), and the fiducial distribution of �x

becomes the uniform distribution on (x2 − 1, x1). This is also a confidence dis-
tribution for θ . The optimal estimator for θ given the invariant loss |θ − a|2 is
δ(x) = (x1 + x2)/2 − 1/2.

We choose to add a few comments on this model and estimator since it has some
unusual features. A first observation is that the Fisher information metric fails to
exist due to nonexistence of the required derivative. The corresponding distance
between two distributions can, however, still be defined through the length of the
parametric curve θ �→ √

f (· | θ) in the Hilbert space of square integrable functions.
This curve is continuous, but the length from θ1 to θ2 is infinite: it is larger than
2
√

n
√|θ2 − θ1| for any integer n.

The squared distance |θ1 − θ2|2 is the squared distance from the Fisher infor-
mation metric for any location family where the density is smooth. Based on this
we consider the invariant loss |θ −a|2 to be a natural choice also in the nonsmooth
example considered here.

The optimal estimator δ found above is unbiased and has hence minimum vari-
ance in the class of unbiased and equivariant estimators. Nonetheless, according to
Lehmann and Casella [(1998), page 87], there exists no uniformly minimum vari-
ance unbiased estimator of θ . The statistic (X1,X2) is a minimal sufficient statis-
tic, but it is not complete. The estimator δ is, however, the uniformly minimum
variance unbiased estimator in the larger parametric family which also includes a
scale parameter [Johnson, Kotz and Balakrishnan (1994), Vol. 2, page 292]. This
later reference is also a very good source for further references and peculiarities
regarding the uniform law.

3.5. Exponential. The following example is a scale example, and can be re-
duced to be a special case of the Hilbert space location problem by the logarithmic
transformation. A direct solution is equally elementary and is presented to illus-
trate the derivation of an optimal estimator. The explicit formula for the estimator
is possibly a novelty.

Assume that Y1, . . . , Yn is a random sample of size n from the exponential dis-
tribution with scale parameter β . A fiducial model is given by Yi = βVi where the
law Pβ

V is as for a random sample from the standard exponential distribution. The
arithmetic mean X = Y is a minimal sufficient statistic. A corresponding fiducial
model is given by X = βV = βU where Pβ

U is the law of a gamma variable with
scale equal to 1/n and shape equal to n. This follows from well-known properties
of the gamma distribution. The model is both simple and conventional, and the
fiducial distribution for an observation x = y is hence the conditional distribution
of �x = x/U . The conclusion is that the fiducial distribution is the inverse-gamma
with scale xn and shape n.
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A direct—but more lengthy—calculation of the Bayesian posterior correspond-
ing to the right Haar prior dβ/β gives a posterior that coincides with the fiducial
distribution found here. It is well known more generally that the Bayesian pos-
terior from a right Haar prior in a group model coincides with the fiducial. The
calculation demonstrates then that a fiducial model and the solution of the fiducial
equation gives an alternative and in many cases simpler route for the calculation of
the Bayesian posterior. The multivariate normal gives another example where the
fiducial calculation is done in a few lines, but the corresponding Bayesian calcula-
tion is much more cumbersome.

An added advantage of the fiducial calculation is that it shows directly that the
corresponding fiducial distribution is a confidence distribution. This is not easily
obtained from the Bayesian calculation. The confidence distribution can alterna-
tively be found by the likelihood ratio test, and this has the advantage of giving
proof of optimality and corresponding optimal choices of confidence interval end-
points. An alternative approach is to also derive optimal intervals based on Theo-
rem 1 as exemplified by Berger (1985).

An alternative fiducial calculation can be done without the reduction to the
complete sufficient statistic. A maximal invariant φ is given by φ(y) = y/‖y‖.
The conditional law (V | � = θ,φ(V ) = φ(y)) will be concentrated on the ray
Gy = {αφ(y) | α > 0} with a distribution from a density for α proportional to
fV (αφ(y))αn−1. The assumption of a random sample from the standard exponen-
tial gives a particularly simple fV , and the fiducial is found explicitly as before.
The alternative calculation has the advantage that it can be used in the more general
case where reduction by sufficiency is not available.

Consider now the problem of estimation of θ = β with a loss given by γ (θ, a) =
|ln θ − lna|2. This loss is a natural generalization of the squared error loss, but
with the ordinary distance replaced by the distance |ln θ − lna| which is the dis-
tance given by the Fisher information metric in the case of the given scale model.
In this case, G = �X = �� = �A = R+ with multiplication as the group oper-
ation. The loss is equivariant, and it follows that the optimal rule δ based on the
sufficient statistic X is given as the minimizer of ρ = Eθ |ln�x − ln δ(x)|2. This
gives that the optimal rule is determined from ln δ(x) = Eθ ln�x . Evaluation of
the corresponding integral gives an explicit formula for the optimal rule. It is

δ(x) = x exp
(
lnn − ψ(n)

)
,(9)

where ψ is the digamma function. The estimator given by equation (9) is possibly
known in some contexts, but we have not found this explicit expression in any of
the textbooks in the list of references or elsewhere.

3.6. Gamma distribution. Assume that Y1, . . . , Yn is a random sample of size
n from the gamma distribution with scale parameter β and shape parameter α. The
model parameter is θ = (α,β). This gives an example as in Section 3.1 where the
results related to Theorem 1 cannot be applied directly. Fiducial theory can be used
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to obtain candidates for good frequentist inference procedures as indicated next.
Particular results include an exact joint confidence distribution for (α,β), an exact
confidence distribution for α, and a recipe which produces estimators for functions
of (α,β) that depends on the choice of a loss.

A fiducial model is given by Yi = βF−1(Ui;α), where the law Pθ
U corresponds

to a random sample of size n from the uniform distribution on the unit interval
(0,1), and F−1(u,α) is the inverse cumulative distribution function of a gamma
variable with shape α and scale 1.

Let X = (Y , Ỹ /Y ) where Y and Ỹ are the arithmetic and geometric means.
The Bartlett statistic W = Ỹ /Y depends only on α, and is independent of Y as a
consequence of the Basu theorem. A corresponding fiducial model (χ,U) for Pθ

X

is given by χ1(u, θ) = βF−1(u;α) and χ2(u, θ) = ˜F−1(u;α)/F−1(u;α). It can
be noted that (χ2,U) gives separately a fiducial model for Pα

W . The corresponding
fiducial distribution for α is hence a confidence distribution.

An alternative fiducial model (η2,V2) for Pα
W is given by inversion of the cu-

mulative distribution function for W . An alternative to F−1(u;α) is given by in-
version for a gamma variable with shape nα and scale 1/n. The combination gives
an alternative fiducial model (η,V ) for Pθ

X with the property that x = η(v, θ) de-
fines a one–one correspondence between any two variables when the third is kept
fixed. The law Pθ

V is the uniform law on the unit square (0,1)2. Coordinate trans-
formations can be used to identify G = �� = �V = �X as sets with a quasigroup
structure with a unit.

Both fiducial models (χ,U) and (η,V ) are simple and conventional and deter-
mine a fiducial distribution. For concreteness let �x be the fiducial corresponding
to (η,V ). The quasigroup structure ensures that �x gives a joint exact confidence
distribution for (α,β).

Consider the problem of estimation of a function τ = h(α,β) of the model
parameter θ = (α,β). It can be allowed that h is vector valued, but assume that
each component is positive. Three examples that are included are then given by
τ = α, τ = β , and τ = (α,β). A possible loss in these three cases is given by
squared error loss on a logarithmic scale. A candidate estimator δ is then given
naturally by

δ(x) = exp
(
Eθ lnh

(
�x))

.(10)

This can be evaluated by Monte Carlo simulation from Pθ
V which is the uniform

distribution on the unit square [0,1]2. Another possibility is given by squared dis-
tance loss defined by the Fisher information metric on �� in the case h(θ) =
(α,β).

4. Discussion. The foundations of Bayesian and frequentist modeling and in-
ference are well established both in terms of mathematical theory and interpreta-
tion. We do not think that the same can be said about fiducial theory, but some
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readers may object to this. A brief discussion of alternative formulations and nam-
ing conventions found in the literature seems hence to be in place.

Definition 1 identifies a fiducial model with a pair (U, ζ ). The fiducial model
is by definition conventional if Pθ

U does not depend on θ . In this case we suggest
to denote U as the Monte Carlo variable and the measurable function ζ as the
fiducial relation. The corresponding equation z = ζ(u, θ) is the fiducial equation,
but it may also equivalently be denoted as the fiducial relation. A fiducial model
(U, ζ ) is hence defined by a Monte Carlo variable U and a fiducial relation ζ .

If u is a sample from the Monte Carlo distribution Pθ
U , then z = ζ(u, θ) is a

sample from the statistical model as in Definition 1. The inversion method gives
the prototypical example with ζ(u, θ) = F−1

Z (u | θ) and Pθ
U equal to the uniform

law on the interval [0,1]. This gives the link to the original definition of Fisher,
and also a justification of the choice of the term Monte Carlo variable since this
represents a standard method for simulation from a statistical model on a computer.

The ingredients above given by the pair (U, ζ ) are also the starting point for
Dempster–Shafer theory [Dempster (1968), Shafer (1982)]. Martin, Zhang and Liu
(2010) refer to U as the auxiliary variable and the probability measure μ as the piv-
otal measure, where U ∼ μ. The equation Z = ζ(U,�) is denoted the a-equation.
The whole set-up is referred to as an inferential model, and this is identified as
something which is not equivalent to a statistical model. Except for differences in
naming conventions it can be concluded that an inferential model is essentially the
same as a conventional fiducial model as summarized in the previous paragraphs.
The Dempster–Shafer calculus gives an alternative route for inference based on a
fiducial model, but this is not discussed further here.

The discussion of fiducial theory we have presented is close to the presentation
given by Dawid and Stone (1982). Dawid and Stone [(1982), page 1055] use the
term fiducial model for the combination of �z = θz(U) and U ∼ Pθ

U , and use
the term functional model to describe the more general relation Z = ζ(U,�). We
chose to avoid the term functional model since the term functional data analysis
is now the name of a branch of statistics. Dawid and Stone (1982) denote the
variable U as the error variable, and uses the symbol E instead. This corresponds
to the naming convention used by Fraser (1968). Fraser [(1968), page 50] uses the
terms structural model and structural equation in the case where group theory is
an essential ingredient. Hannig (2009) uses the term structural equation in stead
of the term fiducial equation as used by us. We have avoided the term structural
here since there is an active and well-developed different theory which goes under
the label of structural equations modeling. Our preference for the term fiducial as
used here is mainly based on economy of language, and since this gives the direct
link to the original papers of Fisher.

The mathematically inclined reader may claim that Definition 1 is not precise.
This, and the fact that this definition is a novelty compared with previous writers,
motivate us to state in more detail the assumptions that are taken as implicitly given
from the context in the statement of Definition 1. The main difference is that every
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concept is based on an underlying abstract conditional probability space (�, E ,P)

as stated initially in Section 2. The fiducial relation ζ is a measurable function
ζ :�U × �� → �Z . This means, as usual, that (ζ ∈ A) = {(u, θ) | ζ(u, θ) ∈ A}
is a measurable set in the product σ -algebra of �U × �� whenever A is a mea-
surable set in �Z . A consequence is that ζ(U,�) is a random element in �Z

defined by the mapping ω �→ ζ(U(ω),�(ω)). This is measurable since it is as-
sumed that � :� → �� and U :� → �U are measurable. The conditional law
Pθ

U of the Monte Carlo variable U is known and does not depend on θ in the case
of a conventional fiducial model. If the considerations were limited to the case
where (�, E ,P) is a probability space, then this would imply Pθ

U = PU . This fails
generally as explained in more detail by Taraldsen and Lindqvist (2010) since Pθ

U

is a probability measure, but PU is unbounded if P is unbounded. The reason for
allowing unbounded measures is the need to include improper priors P�. This has
proved fruitful in related ongoing research by the authors. It gives in particular
natural conditions that imply equality of Bayesian posteriors and fiducial distribu-
tions. In specific modeling cases the spaces �U , �Z , ��, the fiducial relation ζ ,
and the conditional law Pθ

U are all explicitly given. This is as demonstrated by the
examples in Section 3. The other ingredients mentioned above are not given explic-
itly since they rely on the underlying unspecified space �. This is as in the ordinary
formulation of probability theory by Kolmogorov (1956) where the whole theory
is built upon the underlying abstract space �. Existence must be proved in each
specific modeling case, but follows trivially in many cases from the construction
of a suitable product space.

Optimal inference for the scale, the location, and the location-scale problems
were investigated using fiducial theory by Pitman (1939). His presentation is most
readable and is a good alternative to the presentations found in standard textbooks.
It can, however, be noted that he concludes that the confidence and the fiducial
theories are essentially the same. This is in contrast to the views of Neyman and
Fisher. They seemed to agree that in principle the fiducial distribution as described
by Fisher is not connected to the concept of confidence intervals as described by
Neyman and co-workers. The content and aims of these two theories are different.
It seems clear that Fisher never intended to get confidence intervals as the result of
his fiducial arguments.

It is true that the fiducial distributions found in the location-scale problems, and
more general group problem as in Theorem 1, are confidence distributions, but
we do consider the concepts to be essentially different in general. The interpreta-
tion of the fiducial distribution, according to Fisher [(1973), pages 54 and 59] is
identical with the interpretation of the Bayesian posterior: it represents the state
of knowledge regarding the model parameter as a result of the model assumptions
and the observation in the experiment. It follows then in particular that the fiducial
distribution of a function φ(θ) of the model parameter θ equals the distribution of
φ(�x) where �x has the fiducial distribution. This property does not hold for con-
fidence distributions in general. In addition, the fiducial distribution for a simple
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fiducial model as in Definition 2 is not a confidence distribution in general [Dawid
and Stone (1982)].

The possibly most famous fiducial distribution is the fiducial distribution of
the difference of means μ1 − μ2 corresponding to two independent samples from
two different normal distributions. This fiducial distribution gives Fisher’s solu-
tion to the Behrens–Fisher problem, but it can be shown by simulation that it is
not a confidence distribution in the sense of having exact coverage probabilities.
A more general class of confidence distributions is defined by requiring not exact
but conservative coverage probabilities. This is in conformity with the definition
of confidence sets in general. Exactness is often misguidedly taken as a measure
of goodness, but it is not. Power of the associated tests gives one natural measure
of goodness. Examples demonstrate that this more general concept of a confidence
distribution does not coincide with fiducial distributions in general, but it seems
to be an open question whether the Behrens–Fisher fiducial distribution is a con-
fidence distribution in this more extended sense. Numerical simulations indicate
that the claim holds [Barnard (1984), Robinson (1976), page 269].

The more general problem of obtaining a confidence interval for the linear com-
bination of several means from different normal distributions is of considerable
practical importance [ISO/IEC (2008)]. The ISO recommended solution is in terms
of a Welch–Satterthwaite solution, but a continuation of the arguments given by
Barnard (1984) leads to the conclusion that the fiducial solution is a most compet-
itive alternative solution.

The main virtue of the location-scale models in the context here is that they
illustrate very well the reduction given by a maximal invariant in cases where a re-
duction by sufficiency is not possible. This is also true for the multivariate models
treated by Fraser (1979). In this case the multivariate normal can be reduced by
sufficiency, but more general models can again be treated by a reduction through
maximal invariants. It seems that optimal, or good, inference procedures in these
multivariate cases deserves further study guided by fiducial theory. A recent ex-
ample of this is given by E, Hannig and Iyer (2008), but there are a multitude of
different possible examples as indicated by Fraser (1979). The suggestion given by
Theorem 1 is that not only confidence intervals, but also other kinds of inference
such as estimation should be considered.

Eaton [(1989), pages 89–91] considers the estimation of the covariance matrix
from a multivariate normal sample. He gives two possible candidates to use as a
loss γ (θ, a). This exemplifies that in the multivariate cases, and in more com-
plicated group cases, it can be difficult to decide upon which equivariant loss
to use. It can even be difficult to come up with a good candidate. In our exam-
ples, it has been indicated that the squared distance from the Fisher information
metric is a natural choice. This will be invariant under mild conditions. For a
statistical model f (x | θ)μ(dx), the distance is defined via the length of paths
t �→ x(t) = √

f (· | θ(t)) in the Hilbert space L2(μ). The nonparametric case given
by a parameter space equal to all densities with respect to μ gives the distance
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d(f, g) = cos−1(
∫ √

fg dμ). The other end of the scale is given by a smooth finite-
dimensional parametric model. In this case, the previous leads to the Fisher infor-
mation metric: ds2 = (1/4)gij dθ i dθj where gij = Eθ

X(∂i lnf (X | θ))(∂j lnf (X |
θ)). In either case, it gives the model parameter space as a manifold equipped with
a distance derived intrinsically from the statistical model.

The focus of fiducial theory has initially and currently most often been on the
fiducial distribution by itself and the related possibility of construction of approxi-
mate or exact confidence intervals. The relation to other kinds of optimal inference
such as estimation or prediction was considered by Hora and Buehler (1966, 1967).
The proofs they presented rely on the existence of an invariant measure, and it was
clear that the fiducial in the case they considered corresponded to a Bayesian pos-
terior from the right Haar prior. Since then it has been established in a variety of
problems that the Bayesian algorithm can be used quite generally to obtain good
or optimal frequentist procedures. The calculation given in equation (1) can be
taken as a strong indication that the fiducial algorithm can be used similarly to
not only obtain confidence intervals, but also possibly good or optimal frequentist
procedures more generally. This statement is too general to be provable, but we
consider nonetheless this to be the main content and message in this paper. The
point of view in this paper does not rely on any particular interpretation of the
fiducial. It is here simply viewed as a very convenient vehicle for the derivation of
good, and sometimes optimal as in Theorem 1, frequentist inference procedures.
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