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SHARP ORACLE INEQUALITIES FOR AGGREGATION OF
AFFINE ESTIMATORS1

BY ARNAK S. DALALYAN AND JOSEPH SALMON

and Université Paris Diderot

We consider the problem of combining a (possibly uncountably infinite)
set of affine estimators in nonparametric regression model with heteroscedas-
tic Gaussian noise. Focusing on the exponentially weighted aggregate, we
prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities
in discrete but also in continuous settings. The framework is general enough
to cover the combinations of various procedures such as least square regres-
sion, kernel ridge regression, shrinking estimators and many other estimators
used in the literature on statistical inverse problems. As a consequence, we
show that the proposed aggregate provides an adaptive estimator in the exact
minimax sense without discretizing the range of tuning parameters or split-
ting the set of observations. We also illustrate numerically the good perfor-
mance achieved by the exponentially weighted aggregate.

1. Introduction. There is growing empirical evidence of superiority of ag-
gregated statistical procedures, also referred to as blending, stacked generalization
or ensemble methods, with respect to “pure” ones. Since their introduction in the
1990s, famous aggregation procedures such as Boosting [30], Bagging [7] or Ran-
dom Forest [2] have been successfully used in practice for a large variety of appli-
cations. Moreover, most recent Machine Learning competitions such as the Pascal
VOC or Netflix challenge have been won by procedures combining different types
of classifiers/predictors/estimators. It is therefore of central interest to understand
from a theoretical point of view what kind of aggregation strategies should be used
for getting the best possible combination of the available statistical procedures.

1.1. Historical remarks and motivation. In the statistical literature, to the best
of our knowledge, theoretical foundations of aggregation procedures were first
studied by Nemirovski (Nemirovski [48], Juditsky and Nemirovski [37]) and in-
dependently by a series of papers by Catoni (see [11] for an account) and Yang
[63–65]. For the regression model, a significant progress was achieved by Tsy-
bakov [60] with introducing the notion of optimal rates of aggregation and propos-
ing aggregation-rate-optimal procedures for the tasks of linear, convex and model
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selection aggregation. This point was further developed in [9, 46, 53], especially in
the context of high dimension with sparsity constraints and in [51] for Kullback–
Leibler aggregation. However, it should be noted that the procedures proposed in
[60] that provably achieve the lower bounds in convex and linear aggregation re-
quire full knowledge of design distribution. This limitation was overcome in the
recent work [62].

From a practical point of view, an important limitation of the previously cited
results on aggregation is that they are valid under the assumption that the aggre-
gated procedures are deterministic (or random, but independent of the data used
for aggregation). The generality of those results—almost no restriction on the con-
stituent estimators—compensates to this practical limitation.

In the Gaussian sequence model, a breakthrough was reached by Leung
and Barron [45]. Building on very elegant but not very well-known results by
George [32]2, they established sharp oracle inequalities for the exponentially
weighted aggregate (EWA) for constituent estimators obtained from the data vec-
tor by orthogonally projecting it on some linear subspaces. Dalalyan and Tsy-
bakov [21, 22] showed the result of [45] remains valid under more general (non-
Gaussian) noise distributions and when the constituent estimators are independent
of the data used for the aggregation. A natural question arises whether a simi-
lar result can be proved for a larger family of constituent estimators containing
projection estimators and deterministic ones as specific examples. The main aim
of the present paper is to answer this question by considering families of affine
estimators.

Our interest in affine estimators is motivated by several reasons. First, affine esti-
mators encompass many popular estimators such as smoothing splines, the Pinsker
estimator [28, 49], local polynomial estimators, nonlocal means [8, 56], etc. For in-
stance, it is known that if the underlying (unobserved) signal belongs to a Sobolev
ball, then the (linear) Pinsker estimator is asymptotically minimax up to the opti-
mal constant, while the best projection estimator is only rate-minimax. A second
motivation is that—as proved by Juditsky and Nemirovski [38]—the set of signals
that are well estimated by linear estimators is very rich. It contains, for instance,
sampled smooth functions, sampled modulated smooth functions and sampled har-
monic functions. One can add to this set the family of piecewise constant functions
as well, as demonstrated in [50], with natural application in magnetic resonance
imaging. It is worth noting that oracle inequalities for penalized empirical risk
minimizer were also proved by Golubev [36], and for model selection by Arlot
and Bach [3], Baraud, Giraud and Huet [5].

2Corollary 2 in [32] coincides with Theorem 1 in [45] in the case of exponential weights with

temperature β = 2σ 2; cf. equation (2.2) below for a precise definition of exponential weights. Fur-
thermore, to the best of our knowledge, [32] is the first reference using the Stein lemma for evaluating
the expected risk of the exponentially weighted aggregate.
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In the present work, we establish sharp oracle inequalities in the model of het-
eroscedastic regression, under various conditions on the constituent estimators as-
sumed to be affine functions of the data. Our results provide theoretical guarantees
of optimality, in terms of expected loss, for the exponentially weighted aggregate.
They have the advantage of covering in a unified fashion the particular cases of
frozen estimators considered in [22] and of projection estimators treated in [45].

We focus on the theoretical guarantees expressed in terms of oracle inequali-
ties for the expected squared loss. Interestingly, although several recent papers [3,
5, 35] discuss the paradigm of competing against the best linear procedure from
a given family, none of them provide oracle inequalities with leading constant
equal to one. Furthermore, most existing results involve some constants depend-
ing on different parameters of the setup. In contrast, the oracle inequality that we
prove herein is with leading constant one and admits a simple formulation. It is
established for (suitably symmetrized, if necessary) exponentially weighted ag-
gregates [11, 21, 32] with an arbitrary prior and a temperature parameter which is
not too small. The result is nonasymptotic but leads to an asymptotically optimal
residual term when the sample size, as well as the cardinality of the family of con-
stituent estimators, tends to infinity. In its general form, the residual term is similar
to those obtained in the PAC-Bayes setting [42, 47, 57] in that it is proportional to
the Kullback–Leibler divergence between two probability distributions.

The problem of competing against the best procedure in a given family was
extensively studied in the context of online learning and prediction with expert
advice [16, 39]. A connection between the results on online learning and statistical
oracle inequalities was established by Gerchinovitz [33].

1.2. Notation and examples of linear estimators. Throughout this work, we
focus on the heteroscedastic regression model with Gaussian additive noise. We
assume we are given a vector Y = (y1, . . . , yn)

� ∈ R
n obeying the model

yi = fi + ξi for i = 1, . . . , n,(1.1)

where ξ = (ξ1, . . . , ξn)
� is a centered Gaussian random vector, fi = f(xi) where

f : X → R is an unknown function and x1, . . . , xn ∈ X are deterministic points.
Here, no assumption is made on the set X . Our objective is to recover the vector
f = (f1, . . . , fn)

�, often referred to as signal, based on the data y1, . . . , yn. In
our work, the noise covariance matrix � = E[ξξ�] is assumed to be finite with a
known upper bound on its spectral norm |||�|||. We denote by 〈·|·〉n the empirical
inner product in R

n: 〈u|v〉n = (1/n)
∑n

i=1 uivi . We measure the performance of
an estimator f̂ by its expected empirical quadratic loss: r = E[‖f − f̂‖2

n] where
‖f − f̂‖2

n = 1
n

∑n
i=1(fi − f̂i)

2.

We only focus on the task of aggregating affine estimators f̂λ indexed by some
parameter λ ∈ �. These estimators can be written as affine transforms of the data
Y = (y1, . . . , yn)

� ∈ R
n. Using the convention that all vectors are one-column
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matrices, we have f̂λ = AλY + bλ, where the n × n real matrix Aλ and the vector
bλ ∈ R

n are deterministic. It means the entries of Aλ and bλ may depend on the
points x1, . . . , xn but not on the data Y. Let us describe now different families
of linear and affine estimators successfully used in the statistical literature. Our
results apply to all these families, leading to a procedure that behaves nearly as
well as the best (unknown) one of the family.

Ordinary least squares. Let {Sλ :λ ∈ �} be a set of linear subspaces of R
n.

A well-known family of affine estimators, successfully used in the context of
model selection [6], is the set of orthogonal projections onto Sλ. In the case
of a family of linear regression models with design matrices Xλ, one has Aλ =
Xλ(X

�
λ Xλ)

+X�
λ , where (X�

λ Xλ)
+ stands for the Moore–Penrose pseudo-inverse

of X�
λ Xλ.

Diagonal filters. Other common estimators are the so-called diagonal filters cor-
responding to diagonal matrices A = diag(a1, . . . , an). Examples include the fol-
lowing:

• Ordered projections: ak = 1(k≤λ) for some integer λ [1(·) is the indicator func-
tion]. Those weights are also called truncated SVD (Singular Value Decomposi-
tion) or spectral cutoff. In this case a natural parametrization is � = {1, . . . , n},
indexing the number of elements conserved.

• Block projections: ak = 1(k≤w1) +
∑m−1

j=1 λj1(wj≤k≤wj+1), k = 1, . . . , n, where

λj ∈ {0,1}. Here the natural parametrization is � = {0,1}m−1, indexing subsets
of {1, . . . ,m− 1}.

• Tikhonov–Philipps filter: ak = 1
1+(k/w)α

, where w,α > 0. In this case, � =
(R∗+)2, indexing continuously the smoothing parameters.

• Pinsker filter: ak = (1 − kα

w
)+, where x+ = max(x,0) and (w,α) = λ ∈ � =

(R∗+)2.

Kernel ridge regression. Assume that we have a positive definite kernel k : X ×
X → R and we aim at estimating the true function f in the associated reproducing
kernel Hilbert space (Hk,‖ · ‖k). The kernel ridge estimator is obtained by mini-
mizing the criterion ‖Y− f‖2

n +λ‖f‖2
k w.r.t. f ∈ Hk (see [58], page 118). Denoting

by K the n× n kernel-matrix with element Ki,j = k(xi, xj ), the unique solution f̂
is a linear estimate of the data, f̂ = AλY, with Aλ = K(K + nλIn×n)

−1, where
In×n is the n× n identity matrix.

Multiple Kernel learning. As described in [3], it is possible to handle the case of
several kernels k1, . . . , kM , with associated positive definite matrices K1, . . . ,KM .
For a parameter λ = (λ1, . . . , λM) ∈ � = R

M+ , one can define the estimators f̂λ =
AλY with

Aλ =
(

M∑
m=1

λmKm

)(
M∑

m=1

λmKm + nIn×n

)−1

.(1.2)
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It is worth mentioning that the formulation in equation (1.2) can be linked to the
group Lasso [66] and to the multiple kernel learning introduced in [41]—see [3]
for more details.

Moving averages. If we think of coordinates of f as some values assigned to
the vertices of an undirected graph, satisfying the property that two nodes are con-
nected if the corresponding values of f are close, then it is natural to estimate fi

by averaging out the values Yj for indices j that are connected to i. The resulting
estimator is a linear one with a matrix A = (aij )

n
i,j=1 such that aij = 1Vi

(j)/ni ,
where Vi is the set of neighbors of the node i in the graph and ni is the cardinality
of Vi .

1.3. Organization of the paper. In Section 2 we introduce EWA and state a
PAC-Bayes type bound in expectation assessing optimality properties of EWA
in combining affine estimators. The strengths and limitations of the results are
discussed in Section 3. The extension of these results to the case of grouped
aggregation—in relation with ill-posed inverse problems—is developed in Sec-
tion 4. As a consequence, we provide in Section 5 sharp oracle inequalities in
various setups: ranging from finite to continuous families of constituent estimators
and including sparse scenarii. In Section 6 we apply our main results to prove that
combining Pinsker’s type filters with EWA leads to asymptotically sharp adaptive
procedures over Sobolev ellipsoids. Section 7 is devoted to numerical comparison
of EWA with other classical filters (soft thresholding, blockwise shrinking, etc.)
and illustrates the potential benefits of aggregating. The conclusion is given in Sec-
tion 8, while the proofs of some technical results (Propositions 2–6) are provided
in the supplementary material [20].

2. Aggregation of estimators: Main results. In this section we describe
the statistical framework for aggregating estimators and we introduce the expo-
nentially weighted aggregate. The task of aggregation consists in estimating f
by a suitable combination of the elements of a family of constituent estimators

F� = (f̂λ)λ∈� ∈ R
n. The target objective of the aggregation is to build an aggre-

gate f̂aggr that mimics the performance of the best constituent estimator, called
oracle (because of its dependence on the unknown function f). In what follows,
we assume that � is a measurable subset of R

M , for some M ∈ N.
The theoretical tool commonly used for evaluating the quality of an aggregation

procedure is the oracle inequality (OI), generally written

E
[‖f̂aggr − f‖2

n

]≤ Cn inf
λ∈�

E
[‖f̂λ − f‖2

n

]+Rn,(2.1)

with residual term Rn tending to zero as n → ∞, and leading constant Cn being
bounded. The OIs with leading constant one are of central theoretical interest since
they allow to bound the excess risk and to assess the aggregation-rate-optimality.
They are often referred to as sharp OI.
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2.1. Exponentially weighted aggregate (EWA). Let rλ = E[‖f̂λ − f‖2
n] denote

the risk of the estimator f̂λ, for any λ ∈ �, and let r̂λ be an estimator of rλ. The
precise form of r̂λ strongly depends on the nature of the constituent estimators. For
any probability distribution π over � and for any β > 0, we define the probability
measure of exponential weights, π̂ , by

π̂(dλ) = θ(λ)π(dλ) with θ(λ) = exp(−nr̂λ/β)∫
� exp(−nr̂ω/β)π(dω)

.(2.2)

The corresponding exponentially weighted aggregate, henceforth denoted by
f̂EWA, is the expectation of f̂λ w.r.t. the probability measure π̂ :

f̂EWA =
∫
�

f̂λ π̂(dλ).(2.3)

We will frequently use the terminology of Bayesian statistics: the measure π is
called prior, the measure π̂ is called posterior and the aggregate f̂EWA is then the
posterior mean. The parameter β will be referred to as the temperature parameter.
In the framework of aggregating statistical procedures, the use of such an aggregate
can be traced back to George [32].

The interpretation of the weights θ(λ) is simple: they up-weight estimators all
the more that their performance, measured in terms of the risk estimate r̂λ, is good.
The temperature parameter reflects the confidence we have in this criterion: if
the temperature is small (β ≈ 0), the distribution concentrates on the estimators
achieving the smallest value for r̂λ, assigning almost zero weights to the other esti-
mators. On the other hand, if β →+∞, then the probability distribution over � is
simply the prior π , and the data do not influence our confidence in the estimators.

2.2. Main results. In this paper we only focus on affine estimators

f̂λ = AλY + bλ,(2.4)

where the n × n real matrix Aλ and the vector bλ ∈ R
n are deterministic. Fur-

thermore, we will assume that an unbiased estimator �̂ of the noise covariance
matrix � is available. It is well known (cf. Appendix for details) that the risk of
the estimator (2.4) is given by

rλ = E
[‖f̂λ − f‖2

n

]= ∥∥(Aλ − In×n)f + bλ

∥∥2
n + Tr(Aλ�A�

λ )

n
(2.5)

and that r̂unb
λ , defined by

r̂unb
λ = ‖Y − f̂λ‖2

n + 2

n
Tr(�̂Aλ)− 1

n
Tr[�̂],(2.6)
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is an unbiased estimator of rλ. Along with r̂unb
λ , we will use another estimator of

the risk that we call the adjusted risk estimate and define by

r̂
adj
λ = ‖Y − f̂λ‖2

n + 2

n
Tr(�̂Aλ) − 1

n
Tr[�̂]︸ ︷︷ ︸

r̂unb
λ

+1

n
Y�(Aλ −A2

λ

)
Y.(2.7)

One can notice that the adjusted risk estimate r̂
adj
λ coincides with the unbiased risk

estimate r̂unb
λ if and only if the matrix Aλ is an orthogonal projector.

To state our main results, we denote by P� the set of all probability measures
on � and by K(p,p′) the Kullback–Leibler divergence between two probability
measures p,p′ ∈ P�:

K
(
p,p′)=

⎧⎨⎩
∫
�

log
(

dp

dp′ (λ)

)
p(dλ), if p is absolutely continuous w.r.t. p′,

+∞, otherwise.

We write S1  S2 (resp., S1 � S2) for two symmetric matrices S1 and S2, when
S2 − S1 (resp., S1 − S2) is semi-definite positive.

THEOREM 1. Let all the matrices Aλ be symmetric and �̂ be unbiased and
independent of Y.

(i) Assume that for all λ,λ′ ∈ �, it holds that AλAλ′ = Aλ′Aλ, Aλ� +�Aλ �
0 and bλ = 0. If β ≥ 8|||�|||, then the aggregate f̂EWA defined by equations (2.2),
(2.3) and the unbiased risk estimate r̂λ = r̂unb

λ (2.6) satisfies

E
[‖f̂EWA − f‖2

n

]≤ inf
p∈P�

{∫
�

E
[‖f̂λ − f‖2

n

]
p(dλ) + β

n
K(p,π)

}
.(2.8)

(ii) Assume that, for all λ ∈ �, Aλ  In×n and Aλbλ = 0. If β ≥ 4|||�|||, then
the aggregate f̂EWA defined by equations (2.2), (2.3) and the adjusted risk estimate
r̂λ = r̂

adj
λ (2.7) satisfies

E
[‖f̂EWA − f‖2

n

]≤ inf
p∈P�

{∫
�

E
[‖f̂λ − f‖2

n

]
p(dλ) + β

n
K(p,π)

+ 1

n

∫
�

(
f�
(
Aλ −A2

λ

)
f + Tr

[
�
(
Aλ −A2

λ

)])
p(dλ)

}
.

The simplest setting in which all the conditions of part (i) of Theorem 1 are
fulfilled is when the matrices Aλ and � are all diagonal, or diagonalizable in a
common base. This result, as we will see in Section 6, leads to a new estimator
which is adaptive, in the exact minimax sense, over the collection of all Sobolev
ellipsoids. It also suggests a new method for efficiently combining varying-block-
shrinkage estimators, as described in Section 5.4.
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However, part (i) of Theorem 1 leaves open the issue of aggregating affine es-
timators defined via noncommuting matrices. In particular, it does not allow us
to evaluate the MSE of EWA when each Aλ is a convex or linear combination
of a fixed family of projection matrices on nonorthogonal linear subspaces. These
kinds of situations may be handled via the result of part (ii) of Theorem 1. One
can observe that in the particular case of a finite collection of projection estimators
(i.e., Aλ = A2

λ and bλ = 0 for every λ), the result of part (ii) offers an extension
of [45], Corollary 6, to the case of general noise covariances ([45] deals only with
i.i.d. noise).

An important situation covered by part (ii) of Theorem 1, but not by part (i),
concerns the case when signals of interest f are smooth or sparse in a basis Bsig
which is different from the basis Bnoise orthogonalizing the covariance matrix �.
In such a context, one may be interested in considering matrices Aλ that are diag-
onalizable in the basis Bsig which, in general, do not commute with �.

REMARK 1. While the results in [45] yield a sharp oracle inequality in the
case of projection matrices Aλ, they are of no help in the case when the matrices
Aλ are nearly idempotent and not exactly. Assertion (ii) of Theorem 1 fills this gap
by showing that if maxλ Tr[Aλ −A2

λ] ≤ δ, then E[‖f̂EWA − f‖2
n] is bounded by

inf
p∈P�

{∫
�

E
[‖f̂λ − f‖2

n

]
p(dλ) + β

n
K(p,π)

}
+ δ

(‖f‖2
n + n−1|||�|||).

REMARK 2. We have focused only on Gaussian errors to emphasize that it
is possible to efficiently aggregate almost any family of affine estimators. We
believe that by a suitable adaptation of the approach developed in [22], claims
of Theorem 1 can be generalized—at least when ξi are independent with known
variances—to some other common noise distributions.

The results presented so far concern the situation when the matrices Aλ are
symmetric. However, using the last part of Theorem 1, it is possible to propose
an estimator of f that is almost as accurate as the best affine estimator AλY + bλ

even if the matrices Aλ are not symmetric. Interestingly, the estimator enjoying
this property is not obtained by aggregating the original estimators f̂λ = AλY+bλ

but the “symmetrized” estimators f̃λ = ÃλY+bλ, where Ãλ = Aλ +A�
λ −A�

λ Aλ.
Besides symmetry, an advantage of the matrices Ãλ, as compared to the Aλ’s, is
that they automatically satisfy the contraction condition Ãλ  In×n required by
part (ii) of Theorem 1. We will refer to this method as Symmetrized Exponentially
Weighted Aggregates (or SEWA) [19].

THEOREM 2. Assume that the matrices Aλ and the vectors bλ satisfy Aλbλ =
A�

λ bλ = 0 for every λ ∈ �. Assume in addition that �̂ is an unbiased estima-
tor of � and is independent of Y. Let f̃SEWA denote the exponentially weighted
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aggregate of the (symmetrized) estimators f̃λ = (Aλ + A�
λ − A�

λ Aλ)Y + bλ with
the weights (2.2) defined via the risk estimate r̂unb

λ . Then, under the conditions
β ≥ 4|||�||| and

π

{
λ ∈ � : Tr(�̂Aλ) ≤ Tr

(
�̂A�

λ Aλ

)}= 1 a.s.(C)

it holds that

E
[‖f̃SEWA − f‖2

n

]≤ inf
p∈P�

{∫
�

E
[‖f̂λ − f‖2

n

]
p(dλ) + β

n
K(p,π)

}
.(2.9)

To understand the scope of condition (C), let us present several cases of widely
used linear estimators for which this condition is satisfied:

• The simplest class of matrices Aλ for which condition (C) holds true are orthog-
onal projections. Indeed, if Aλ is a projection matrix, it satisfies A�

λ Aλ = Aλ

and, therefore, Tr(�̂Aλ) = Tr(�̂A�
λ Aλ).

• When the matrix �̂ is diagonal, then a sufficient condition for (C) is aii ≤∑n
j=1 a2

ji . Consequently, (C) holds true for matrices having only zeros on the
main diagonal. For instance, the kNN filter in which the weight of the observa-
tion Yi is replaced by zero, that is, aij = 1j∈{ji,1,...,ji,k}/k satisfies this condition.

• Under a little bit more stringent assumption of homoscedasticity, that is, when
�̂ = σ̂ 2In×n, if the matrices Aλ are such that all the nonzero elements of
each row are equal and sum up to one (or a quantity larger than one), then
Tr(Aλ) = Tr(A�

λ Aλ) and (C) is fulfilled. A notable example of linear estima-
tors that satisfy this condition are Nadaraya–Watson estimators with rectangular
kernel and nearest neighbor filters.

3. Discussion. Before elaborating on the main results stated in the previous
section, by extending them to inverse problems and by deriving adaptive proce-
dures, let us discuss some aspects of the presented OIs.

3.1. Assumptions on �. In some rare situations, the matrix � is known and
it is natural to use �̂ = � as an unbiased estimator. Besides this not very realistic
situation, there are at least two contexts in which it is reasonable to assume that an
unbiased estimator of �, independent of Y, is available.

The first case corresponds to problems in which a signal can be recorded several
times by the same device, or once but by several identical devices. For instance,
this is the case when an object is photographed many times by the same digital
camera during a short time period. Let Z1, . . . ,ZN be the available signals, which
can be considered as i.i.d. copies of an n-dimensional Gaussian vector with mean
f and covariance matrix �Z . Then, defining Y = (Z1 + · · · + ZN)/N and �̂Z =
(N − 1)−1(Z1Z�

1 + · · · + ZNZ�
N − NYY�), we find ourselves within the frame-

work covered by previous theorems. Indeed, Y ∼ Nn(f,�Y ) with �Y = �Z/N
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and �̂Y = �̂Z/N is an unbiased estimate of �Y , independent of Y. Note that our
theory applies in this setting for every integer N ≥ 2.

The second case is when the dominating part of the noise comes from the device
which is used for recording the signal. In this case, the practitioner can use the
device in order to record a known signal, g. In digital image processing, g can be a
black picture. This will provide a noisy signal Z drawn from Gaussian distribution
Nn(g,�), independent of Y which is the signal of interest. Setting �̂ = (Z −
g)(Z − g)�, one ends up with an unbiased estimator of �, which is independent
of Y.

3.2. OI in expectation versus OI with high probability. All the results stated
in this work provide sharp nonasymptotic bounds on the expected risk of EWA. It
would be insightful to complement this study by risk bounds that hold true with
high probability. However, it was recently proved in [17] that EWA is deviation
suboptimal: there exist a family of constituent estimators and a constant C > 0
such that the difference between the risk of EWA and that of the best constituent
estimator is larger than C/

√
n with probability at least 0.06. Nevertheless, several

empirical studies (see, e.g., [18]) demonstrated that EWA has often a smaller risk
than some of its competitors, such as the empirical star procedure [4], which are
provably optimal in the sense of OIs with high probability. Furthermore, numerical
experiments carried out in Section 7 show that the standard-deviation of the risk
of EWA is of the order of 1/n. This suggests that under some conditions on the
constituent estimators it might be possible to establish OIs for EWA that are similar
to (2.8) but hold true with high probability. A step in proving this kind of result
was done in [43], Theorem C, for the model of regression with random design.

3.3. Relation to previous work and limits of our results. The OI of the previous
section requires various conditions on the constituent estimators f̂λ = AλY + bλ.
One may wonder how general these conditions are and is it possible to extend
these OIs to more general f̂λ’s. Although this work does not answer this question,
we can sketch some elements of response.

First of all, we stress that the conditions of the present paper relax significantly
those of previous results existing in statistical literature. For instance, Kneip [40]
considered only linear estimators, that is, bλ ≡ 0 and, more importantly, only or-
dered sets of commuting matrices Aλ. The ordering assumption is dropped in Le-
ung and Barron [45], in the case of projection matrices. Note that neither of these
assumptions is satisfied for the families of Pinsker and Tikhonov–Philipps estima-
tors. The present work strengthens existing results in considering more general,
affine estimators extending both projection matrices and ordered commuting ma-
trices.

Despite the advances achieved in this work, there are still interesting cases that
are not covered by our theory. We now introduce a family of estimators commonly
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used in image processing that do not satisfy our assumptions. In recent years, non-
local means (NLM) became quite popular in image processing [8]. This method
of signal denoising, shown to be tied in with EWA [56], removes noise by exploit-
ing signals self-similarities. We briefly define the NLM procedure in the case of
one-dimensional signals.

Assume that a vector Y = (y1, . . . , yn)
� given by (1.1) is observed with

fi = f(i/n), i = 1, . . . , n, for some function f : [0,1] → R. For a fixed “patch-
size” k ∈ {1, . . . , n}, let us define f[i] = (fi, fi+1, . . . , fi+k−1)

� and Y[i] =
(yi, yi+1, . . . , yi+k−1)

� for every i = 1, . . . , n − k + 1. The vectors f[i] and Y[i]
are, respectively, called true patch and noisy patch. The NLM consists in regarding
the noisy patches Y[i] as constituent estimators for estimating the true patch f[i0]
by applying EWA. One easily checks that the constituent estimators Y[i] are affine
in Y[i0], that is, Y[i] = AiY[i0] + bi with Ai and bi independent of Y[i0]. Indeed, if
the distance between i and i0 is larger than k, then Y[i] is independent of Y[i0] and,
therefore, Ai = 0 and bi = Y[i]. If |i − i0| < k, then the matrix Ai is a suitably
chosen shift matrix and bi is the projection of Y[i] onto the orthogonal comple-
ment of the image of Ai . Unfortunately, these matrices {Ai} and vectors {bi} do
not fit our framework, that is, the assumption Aibi = A�

i bi = 0 is not satisfied.
Finally, our proof technique is specific to affine estimators. Its extension to es-

timators defined as a more complex function of the data will certainly require
additional tools and is a challenging problem for future research. Yet, it seems
unlikely to get sharp OIs with optimal remainder term for a fairly general family
of constituent estimators (without data-splitting), since this generality inherently
increases the risk of overfitting.

4. Ill-posed inverse problems and group-weighting. As explained in [12,
13], the model of heteroscedastic regression is well suited for describing inverse
problems. In fact, let T be a known linear operator on some Hilbert space H, with
inner product 〈·|·〉H. For some h ∈ H, let Y be the random process indexed by
g ∈ H such that

Y = T h+ εξ ⇐⇒ (
Y(g) = 〈T h|g〉H + εξ(g),∀g ∈ H

)
,(4.1)

where ε > 0 is the noise magnitude and ξ is a white Gaussian noise on H, that is,
for any g1, . . . , gk ∈ H the vector (Y (g1), . . . , Y (gk)) is Gaussian with zero mean
and covariance matrix {〈gi |gj 〉H}. The problem is then the following: estimate the
element h assuming the value of Y can be measured for any given g. It is customary
to use as g the eigenvectors of the adjoint T ∗ of T . Under the condition that the
operator T ∗T is compact, the SVD yields T φk = bkψk and T ∗ψk = bkφk , for k ∈
N, where bk are the singular values, {ψk} is an orthonormal basis in Range(T ) ⊂ H
and {φk} is the corresponding orthonormal basis in H. In view of (4.1), it holds that

Y(ψk) = 〈h|φk〉Hbk + εξ(ψk), k ∈ N.(4.2)
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Since in practice only a finite number of measurements can be computed, it is
natural to assume that the values Y(ψk) are available only for k smaller than
some integer n. Under the assumption that bk �= 0, the last equation is equiva-
lent to (1.1) with fi = 〈h|φi〉H and � = diag(σ 2

i , i = 1,2, . . .) for σi = εb−1
i . Ex-

amples of inverse problems to which this statistical model has been successfully
applied are derivative estimation, deconvolution with known kernel, computerized
tomography—see [12] and the references therein for more applications.

For very mildly ill-posed inverse problems, that is, when the singular values bk

of T tend to zero not faster than any negative power of k, the approach presented
in Section 2 will lead to satisfactory results. Indeed, by choosing β = 8|||�||| or
β = 4|||�|||, the remainder term in (2.8) and (2.9) becomes—up to a logarithmic
factor—proportional to max1≤k≤n b−2

k /n, which is the optimal rate in the case of
very mild ill-posedness.

However, even for mildly ill-posed inverse problems, the approach developed
in the previous section becomes obsolete since the remainder blows up when n

increases to infinity. Furthermore, this is not an artifact of our theoretical results,
but rather a drawback of the aggregation strategy adopted in the previous section.
Indeed, the posterior probability measure π̂ defined by (2.2) can be seen as the
solution of the entropy-penalized empirical risk minimization problem:

π̂n = arg inf
p

{∫
�

r̂λp(dλ) + β

n
K(p,π)

}
,(4.3)

where the inf is taken over the set of all probability distributions. It means the
same regularization parameter β is employed for estimating both the coefficients
fi = 〈h|φi〉H corrupted by noise of small magnitude and those corrupted by large
noise. Since we place ourselves in the setting of known operator T and, therefore,
known noise levels, such a uniform treatment of all coefficients is unreasonable.
It is more natural to upweight the regularization term in the case of large noise
downweighting the data fidelity term and, conversely, to downweight the regular-
ization in the case of small noise. This motivates our interest in the grouped EWA
(or GEWA).

Let us consider a partition B1, . . . ,BJ of the set {1, . . . , n}: Bj = {Tj +
1, . . . , Tj+1}, for some integers 0 = T1 < T2 < · · · < TJ+1 = n. To each element
Bj of this partition, we associate the data sub-vector Yj = (Yi : i ∈ Bj) and the
sub-vector of true function fj = (fi : i ∈ Bj). As in previous sections, we are con-
cerned by the aggregation of affine estimators f̂λ = AλY + bλ, but here we will
assume the matrices Aλ are block-diagonal:

Aλ =

⎡⎢⎢⎢⎢⎣
A1

λ 0 . . . 0

0 A2
λ . . . 0

...
...

. . .
...

0 0 . . . AJ
λ

⎤⎥⎥⎥⎥⎦ with A
j
λ ∈ R

(Tj+1−Tj )×(Tj+1−Tj ).
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Similarly, we define f̂jλ and bj
λ as the sub-vectors of f̂λ and bλ, respectively,

corresponding to the indices belonging to Bj . We will also assume that the
noise covariance matrix � and its unbiased estimate �̂ are block-diagonal with
(Tj+1 − Tj )× (Tj+1 − Tj ) blocks �j and �̂j , respectively. This notation implies,

in particular, that f̂jλ = A
j
λYj + bj

λ for every j = 1, . . . , J . Moreover, the unbiased
risk estimate r̂unb

λ of f̂λ can be decomposed into the sum of unbiased risk estimates

r̂
j,unb
λ of f̂jλ, namely, r̂unb

λ =∑J
j=1 r̂

j,unb
λ , where

r̂
j,unb
λ = ∥∥Yj − f̂jλ

∥∥+ 2

n
Tr
(
�̂jA

j
λ

)− 1

n
Tr
[
�̂j ], j = 1, . . . , J.

To state the analogues of Theorems 1 and 2, we introduce the following settings.

Setting 1: For all λ,λ′ ∈ � and j ∈ {1, . . . , J }, A
j
λ are symmetric and satisfy

A
j
λA

j

λ′ = A
j

λ′A
j
λ, A

j
λ�

j + �jA
j
λ � 0 and bj

λ = 0. For a temperature vector β =
(β1, . . . , βJ )� and a prior π , we define GEWA as f̂jGEWA = ∫

� f̂jλπ̂
j (dλ), where

π̂ j (dλ) = θj (λ)π(dλ) with

θj (λ) = exp(−nr̂
j,unb
λ /βj )∫

� exp(−nr̂
j,unb
ω /βj )π(dω)

.(4.4)

Setting 2: For every j = 1, . . . , J and for every λ belonging to a set of π -
measure one, the matrices Aλ satisfy a.s. the inequality Tr(�̂jA

j
λ) ≤

Tr(�̂j (A
j
λ)

�A
j
λ) while the vectors bλ are such that A

j
λbj

λ = (A
j
λ)

�bj
λ = 0. In this

case, for a temperature vector β = (β1, . . . , βJ )� and a prior π , we define GEWA
as f̂jGEWA = ∫

� f̃jλπ̂
j (dλ), where f̃jλ = (A

j
λ + (A

j
λ)

� − (A
j
λ)

�A
j
λ)Y

j + bj
λ and π̂ j

is defined by (4.4). Note that this setting is the grouped version of the SEWA.

THEOREM 3. Assume that �̂ is unbiased and independent of Y. Under set-
ting 1, if βj ≥ 8|||�j ||| for all j = 1, . . . , J , then

E
[‖f̂GEWA − f‖2

n

]≤ J∑
j=1

inf
pj

{∫
�

E
∥∥f̂jλ − fj

∥∥2
npj (dλ) + βj

n
K(pj ,π)

}
.(4.5)

Under setting 2, this inequality holds true if βj ≥ 4|||�j ||| for every j = 1, . . . , J .

As we shall see in Section 6, this theorem allows us to propose an estimator
of the unknown signal which is adaptive w.r.t. the smoothness properties of the
underlying signal and achieves the minimax rates and constants over the Sobolev
ellipsoids provided that the operator T is mildly ill-posed, that is, its singular val-
ues decrease at most polynomially.
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5. Examples of sharp oracle inequalities. In this section we discuss conse-
quences of the main result for specific choices of prior measures. For conveying
the main messages of this section it is enough to focus on settings 1 and 2 in the
case of only one group (J = 1).

5.1. Discrete oracle inequality. In order to demonstrate that inequality (4.5)
can be reformulated in terms of an OI as defined by (2.1), let us consider the case
when the prior π is discrete, that is, π(�0) = 1 for a countable set �0 ⊂ �, and
w.l.o.g �0 = N. Then, the following result holds true.

PROPOSITION 1. Let �̂ be unbiased, independent of Y and π be supported
by N. Under setting 1 with J = 1 and β = β1 ≥ 8|||�|||, the aggregate f̂GEWA sat-
isfies the inequality

E
[‖f̂GEWA − f‖2

n

]≤ inf
�∈N : π�>0

(
E
[‖f̂� − f‖2

n

]+ β log(1/π�)

n

)
.(5.1)

Furthermore, (5.1) holds true under setting 2 for β ≥ 4|||�|||.
PROOF. It suffices to apply Theorem 3 and to upper-bound the right-hand side

by the minimum over all Dirac measures p = δ� such that π� > 0. �

This inequality can be compared to Corollary 2 in [5], Section 4.3. Our result
has the advantage of having factor one in front of the expectation of the left-hand
side, while in [5] a constant much larger than 1 appears. However, it should be
noted that the assumptions on the (estimated) noise covariance matrix are much
weaker in [5].

5.2. Continuous oracle inequality. It may be useful in practice to combine
a family of affine estimators indexed by an open subset of R

M for some M ∈ N

(e.g., to build an estimator nearly as accurate as the best kernel estimator with fixed
kernel and varying bandwidth). To state an oracle inequality in such a “continuous”
setup, let us denote by d2(λ, ∂�) the largest real τ > 0 such that the ball centered
at λ of radius τ—hereafter denoted by Bλ(τ )—is included in �. Let Leb(·) be the
Lebesgue measure in R

M .

PROPOSITION 2. Let �̂ be unbiased, independent of Y. Let � ⊂ R
M be an

open and bounded set and let π be the uniform distribution on �. Assume that
the mapping λ �→ rλ is Lipschitz continuous, that is, |rλ′ − rλ| ≤ Lr‖λ′ − λ‖2,
∀λ,λ′ ∈ �. Under setting 1 with J = 1 and β = β1 ≥ 8|||�|||, the aggregate f̂GEWA
satisfies the inequality

E‖f̂GEWA − f‖2
n ≤ inf

λ∈�

{
E
[‖f̂λ − f‖2

n

]+ βM

n
log

( √
M

2 min(n−1, d2(λ, ∂�))

)}
(5.2)

+ Lr + β log(Leb(�))

n
.
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Furthermore, (5.2) holds true under setting 2 for every β ≥ 4|||�|||.
PROOF. It suffices to apply assertion (i) of Theorem 1 and to upper-bound

the right-hand side in inequality (2.8) by the minimum over all measures hav-
ing as density pλ∗,τ∗(λ) = 1Bλ∗ (τ∗)(λ)/Leb(Bλ∗(τ ∗)). Choosing τ ∗ = min(n−1,

d2(λ
∗, ∂�)) such that Bλ∗(τ ∗) ⊂ �, the measure pλ∗,τ∗(λ) dλ is absolutely con-

tinuous w.r.t. the uniform prior π and the Kullback–Leibler divergence between
these two measures equals log{Leb(�)/Leb(Bλ∗(τ ∗))}. Using Leb(Bλ∗(τ ∗)) ≥
(2τ ∗/

√
M)M and the Lipschitz condition, we get the desired inequality. �

Note that it is not very stringent to require the risk function rλ to be Lips-
chitz continuous, especially since this condition needs not be satisfied uniformly
in f. Let us consider the ridge regression: for a given design matrix X ∈ R

n×p ,
Aλ = X(X�X + γnλIn×n)

−1X� and bλ = 0 with λ ∈ [λ∗, λ∗], γn being a given
normalization factor typically set to n or

√
n, λ∗ > 0 and λ∗ ∈ [λ∗,∞]. One

can easily check the Lipschitz property of the risk function with Lr = Lr(f ) =
4λ−1∗ ‖f‖2

n + (2/n)Tr(�).

5.3. Sparsity oracle inequality. The continuous oracle inequality stated in the
previous subsection is well adapted to the problems in which the dimension M

of � is small w.r.t. the sample size n (or, more precisely, the signal to noise ratio
n/|||�|||). When this is not the case, the choice of the prior should be done more
carefully. For instance, consider � ⊂ R

M with large M under the sparsity scenario:
there is a sparse vector λ∗ ∈ � such that the risk of f̂λ∗ is small. Then, it is natural
to choose a prior that favors sparse λ’s. This can be done in the same vein as
in [21–24], by means of the heavy tailed prior,

π(dλ) ∝
M∏

m=1

1

(1 + |λm/τ |2)2 1�(λ),(5.3)

where τ > 0 is a tuning parameter.

PROPOSITION 3. Let �̂ be unbiased, independent of Y. Let � = R
M and let π

be defined by (5.3). Assume that the mapping λ �→ rλ is continuously differentiable
and, for some M × M matrix M, satisfies

rλ − rλ′ − ∇r�λ′
(
λ− λ′)≤ (

λ − λ′)�M
(
λ − λ′) ∀λ,λ′ ∈ �.(5.4)

Under setting 1 if β ≥ 8|||�|||, then the aggregate f̂EWA = f̂GEWA satisfies

E
[‖f̂GEWA − f‖2

n

]≤ inf
λ∈RM

{
E‖f̂λ − f‖2

n + 4β

n

M∑
m=1

log
(

1 + |λm|
τ

)}
(5.5)

+ Tr(M)τ 2.

Moreover, (5.5) holds true under setting 2 if β ≥ 4|||�|||.
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Let us discuss here some consequences of this sparsity oracle inequality. First
of all, consider the case of (linearly) combining frozen estimators, that is, when
f̂λ =∑M

j=1 λjϕj with some known functions ϕj . Then, it is clear that rλ − rλ′ −
∇r�

λ′ (λ − λ′) = 2(λ − λ′)��(λ − λ′), where � is the Gram matrix defined by
�i,j = 〈ϕi |ϕj 〉n. So the condition in Proposition 3 consists in bounding the Gram
matrix of the atoms ϕj . Let us remark that in this case—see, for instance, [22,
23]—Tr(M) is on the order of M and the choice τ = √

β/(nM) ensures that the
last term in the right-hand side of equation (5.5) decreases at the parametric rate
1/n. This is the choice we recommend for practical applications.

As a second example, let us consider the case of a large number of linear es-
timators ĝ1 = G1Y, . . . , ĝM = GMY satisfying conditions of setting 1 and such
that maxm=1,...,M |||Gm||| ≤ 1. Assume we aim at proposing an estimator mim-
icking the behavior of the best possible convex combination of a pair of esti-
mators chosen among ĝ1, . . . , ĝM . This task can be accomplished in our frame-
work by setting � = R

M and f̂λ = λ1ĝ1 + · · · + λM ĝM , where λ = (λ1, . . . , λM).
Remark that if {ĝm} satisfies conditions of setting 1, so does {f̂λ}. Moreover,
the mapping λ �→ rλ is quadratic with Hessian matrix ∇2rλ given by the en-
tries 2〈Gmf|Gm′f〉n + 2

n
Tr(Gm′�Gm), m,m′ = 1, . . . ,M . It implies that inequal-

ity (5.4) holds with M =∇2rλ/2. Therefore, denoting by σ 2
i the ith diagonal entry

of � and setting σ = (σ1, . . . , σn), we get Tr(M) ≤ |||∑M
m=1 G2

m|||[‖f‖2
n +‖σ‖2

n] ≤
M[‖f‖2

n + ‖σ‖2
n]. Applying Proposition 3 with τ =√

β/(nM), we get

E
[‖f̂EWA − f‖2

n

]≤ inf
α,m,m′ E

[∥∥αĝm + (1 − α)ĝm′ − f
∥∥2
n

]
(5.6)

+ 8β

n
log

(
1 +

[
Mn

β

]1/2)
+ β

n

[‖f‖2
n + ‖σ‖2

n

]
,

where the inf is taken over all α ∈ [0,1] and m,m′ ∈ {1, . . . ,M}. This inequality
is derived from (5.5) by upper-bounding the infλ∈RM by the infimum over λ’s
having at most two nonzero coefficients, λm0

and λm′
0
, that are nonnegative and

sum to one: λm0
+ λm′

0
= 1. To get (5.6), one simply notes that only two terms

of the sum
∑

m log(1 + |λm|τ−1) are nonzero and each of them is not larger than
log(1 + τ−1). Thus, one can achieve using EWA the best possible risk over the
convex combinations of a pair of linear estimators—selected from a large (but
finite) family—at the price of a residual term that decreases at the parametric rate
up to a log factor.

5.4. Oracle inequalities for varying-block-shrinkage estimators. Let us con-
sider now the problem of aggregation of two-block shrinkage estimators. This
means that the constituent estimators have the following form: for λ = (a, b, k) ∈
[0,1]2 × {1, . . . , n} := �, f̂λ = AλY where Aλ = diag(a1(i ≤ k) + b1(i > k), i =
1, . . . , n). Let us choose the prior π as uniform on �.
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PROPOSITION 4. Let f̂EWA be the exponentially weighted aggregate having as
constituent estimators two-block shrinkage estimators AλY. If � is diagonal, then
for any λ ∈ � and for any β ≥ 8|||�|||,

E
[‖f̂EWA − f‖2

n

]≤ E
[‖f̂λ − f‖2

n

]+ β

n

{
1 + log

(
n2‖f‖2

n + nTr(�)

12β

)}
.(5.7)

In the case � = In×n, this result is comparable to [44], page 20, Theorem 2.49,
which states that in the homoscedastic regression model (� = In×n), EWA acting
on two-block positive-part James–Stein estimators satisfies, for any λ ∈ � such
that 3 ≤ k ≤ n− 3 and for β = 8, the oracle inequality

E
[‖f̂Leung − f‖2

n

]≤ E
[‖f̂λ − f‖2

n

]+ 9

n
+ 8

n
min
K>0

{
K ∨

(
log

n− 6

K
− 1

)}
.(5.8)

6. Application to minimax adaptive estimation. Pinsker proved in his cel-
ebrated paper [49] that in the model (1.1) the minimax risk over ellipsoids can be
asymptotically attained by a linear estimator. Let us denote by θk(f) = 〈f|ϕk〉n the
coefficients of the (orthogonal) discrete cosine3 (DCT) transform of f, hereafter
denoted by Df. Pinsker’s result—restricted to Sobolev ellipsoids F D(α,R) = {f ∈
R

n :
∑n

k=1 k2αθk(f)2 ≤ R}— states that, as n →∞, the equivalences

inf
f̂

sup
f∈F D (α,R)

E
[‖f̂ − f‖2

n

]∼ inf
A

sup
f∈F D (α,R)

E
[‖AY − f‖2

n

]
(6.1)

∼ inf
w>0

sup
f∈F D (α,R)

E
[‖Aα,wY − f‖2

n

]
(6.2)

hold [61], Theorem 3.2, where the first inf is taken over all possible estimators f̂
and Aα,w = D� diag((1 − kα/w)+;k = 1, . . . , n)D is the Pinsker filter in the dis-
crete cosine basis. In simple words, this implies that the (asymptotically) min-
imax estimator can be chosen from the quite narrow class of linear estimators
with Pinsker’s filter. However, it should be emphasized that the minimax linear
estimator depends on the parameters α and R, that are generally unknown. An
(adaptive) estimator, that does not depend on (α,R) and is asymptotically mini-
max over a large scale of Sobolev ellipsoids, has been proposed by Efromovich and
Pinsker [29]. The next result, that is, a direct consequence of Theorem 1, shows
that EWA with linear constituent estimators is also asymptotically sharp adaptive
over Sobolev ellipsoids.

PROPOSITION 5. Let λ = (α,w) ∈ � = R
2+ and consider the prior

π(dλ) = 2n
−α/(2α+1)
σ

(1 + n
−α/(2α+1)
σ w)3

e−α dα dw,(6.3)

3The results of this section hold true not only for the discrete cosine transform, but also for any

linear transform D such that D D� = D�D = n−1In×n.
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where nσ = n/σ 2. Then, in model (1.1) with homoscedastic errors, the aggregate
f̂EWA based on the temperature β = 8σ 2 and the constituent estimators f̂α,w =
Aα,wY (with Aα,w being the Pinsker filter) is adaptive in the exact minimax sense4

on the family of classes {F D(α,R) :α > 0,R > 0}.
It is worth noting that the exact minimax adaptivity property of our esti-

mator f̂EWA is achieved without any tuning parameter. All previously proposed
methods that are provably adaptive in an exact minimax sense depend on some
parameters such as the lengths of blocks for blockwise Stein [14] and Efromovich–
Pinsker [28] estimators or the step of discretization and the maximal value of band-
width [13]. Another nice property of the estimator f̂EWA is that it does not require
any pilot estimator based on the data splitting device [31].

We now turn to the setup of heteroscedastic regression, which corresponds to
ill-posed inverse problems as described in Section 4. To achieve adaptivity in the
exact minimax sense, we make use of f̂GEWA, the grouped version of the exponen-
tially weighted aggregate. We assume hereafter that the matrix � is diagonal with
diagonal entries σ 2

1 , . . . , σ 2
n satisfying the following property:

∃σ∗, γ > 0 such that σ 2
k = σ 2∗ k2γ (1 + ok(1)

)
as k →∞.(6.4)

This kind of problems arises when T is a differential operator or the Radon trans-
form [12], Section 1.3. To handle such situations, we define the groups in the same
spirit as the weakly geometrically increasing blocks in [15]. Let ν = νn be a posi-
tive integer that increases as n →∞. Set ρn = ν

−1/3
n and define

Tj =
{

(1 + νn)
j−1 − 1, j = 1,2,

Tj−1 + ⌊
νnρn(1 + ρn)

j−2⌋, j = 3,4, . . . ,
(6.5)

where �x stands for the largest integer strictly smaller than x. Let J be the
smallest integer j such that Tj ≥ n. We redefine TJ+1 = n and set Bj = {Tj +
1, . . . , Tj+1} for all j = 1, . . . , J .

PROPOSITION 6. Let the groups B1, . . . ,BJ be defined as above with νn sat-
isfying logνn/ logn →∞ and νn →∞ as n →∞. Let λ = (α,w) ∈ � = R

2+ and
consider the prior

π(dλ) = 2n−α/(2α+2γ+1)

(1 + n−α/(2α+2γ+1)w)3 e−α dα dw.(6.6)

Then, in model (1.1) with diagonal covariance matrix � = diag(σ 2
k ;1 ≤ k ≤ n)

satisfying condition (6.4), the aggregate f̂GEWA (under setting 1) based on the tem-
peratures βj = 8 maxi∈Bj

σ 2
i and the constituent estimators f̂α,w = Aα,wY (with

Aα,w being the Pinsker filter) is adaptive in the exact minimax sense on the family
of classes {F (α,R) :α > 0,R > 0}.

4See [61], Definition 3.8.



AGGREGATION OF AFFINE ESTIMATORS 2345

Note that this result provides an estimator attaining the optimal constant in the
minimax sense when the unknown signal lies in an ellipsoid. This property holds
because minimax estimators over the ellipsoids are linear. For other subsets of R

n,
such as hyper-rectangles, Besov bodies and so on, this is not true anymore. How-
ever, as proved by Donoho, Liu and MacGibbon [27], for orthosymmetric quadrat-
ically convex sets the minimax linear estimators have a risk which is within 25%
of the minimax risk among all estimates. Therefore, following the approach devel-
oped here, it is also possible to prove that GEWA can lead to an adaptive estimator
whose risk is within 25% of the minimax risk, for a broad class of hyperrectangles.

7. Experiments. In this section we present some numerical experiments on
synthetic data, by focusing only on the case of homoscedastic Gaussian noise (� =
σ 2In×n) with known variance. A toolbox is made available freely for download
at http://josephsalmon.eu/code/index_codes.php. Additional details and numerical
experiments can be found in [19, 55].

We evaluate different estimation routines on several 1D signals considered as
a benchmark in the literature on signal processing [25]. The six signals we re-
tained for our experiments because of their diversity are depicted in Figure 1.
Since these signals are nonsmooth, we have also carried out experiments on their
smoothed versions obtained by taking the antiderivative. Experiments on non-

FIG. 1. Test signals used in our experiments: Piece-Regular, Ramp, Piece-Polynomial, HeaviSine,
Doppler and Blocks. (a) nonsmooth (Experiment I) and (b) smooth (Experiment II).

http://josephsalmon.eu/code/index_codes.php
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smooth (resp., smooth) signals are referred to as Experiment I (resp., Experi-
ment II). In both cases, prior to applying estimation routines, we normalize the
(true) sampled signal to have an empirical norm equal to one and use the DCT
denoted by θ(Y) = (θ1(Y), . . . , θn(Y))�.

The four tested estimation routines—including EWA—are detailed below.
Soft-Thresholding (ST) [25]: For a given shrinkage parameter t , the soft-

thresholding estimator is θ̂k = sgn(θk(Y))(|θk(Y)| − σ t)+. We use the data-driven
threshold minimizing the Stein unbiased risk estimate [26].

Blockwise James–Stein (BJS) shrinkage [10]: The set {1, . . . , n} is partitioned
into N = [n/ log(n)] blocks B1,B2, . . . ,BN of nearly equal size L. The corre-
sponding blocks of true coefficients θBk

(f) = (θj (f))j∈Bk
are then estimated by

θ̂Bk
= (1− λLσ 2

S2
k (Y)

)+θBk
(Y), k = 1, . . . ,N , with blocks of noisy coefficients θBk

(Y),

S2
k = ‖θBk

(Y)‖2
2 and λ = 4.50524.

Unbiased risk estimate (URE) minimization with Pinsker’s filters [13]: Pinsker
filter with data-driven parameters α and w selected by minimizing an unbiased
estimate of the risk over a suitably chosen grid for the values of α and w. Here, we
use geometric grids ranging from 0.1 to 100 for α and from 1 to n for w.

EWA on Pinsker’s filters: We consider the same finite family of linear filters
(defined by Pinsker’s filters) as in the URE routine described above. According to
Proposition 1, this leads to an estimator nearly as accurate as the best Pinsker’s
estimator in the given family.

To report the result of our experiments, we have also computed the best lin-
ear smoother, hereafter referred to as the oracle, based on a Pinsker filter chosen
among the candidates that we used for defining URE and EWA. By best smoother
we mean the one minimizing the squared error (it can be computed since we know
the ground truth). Results summarized in Table 1 for Experiment I and Table 2
for Experiment II correspond to the average over 1000 trials of the mean squared
error (MSE) from which we subtract the MSE of the oracle and multiply the re-
sulting difference by the sample size. We report the results for σ = 0.33 and for
n ∈ {28,29,210,211}.

Simulations show that EWA and URE have very comparable performances and
are significantly more accurate than soft-thresholding and block James–Stein (cf.
Table 1) for every size n of signals considered. Improvements are particularly im-
portant when signals have large peaks or discontinuities. In most cases, EWA also
outperforms URE, but differences are less pronounced. One can also observe that
for smooth signals, the difference of MSEs between EWA and the oracle, multi-
plied by n, remains nearly constant when n varies. This is in agreement with our
theoretical results in which the residual term decreases to zero inversely propor-
tionally to n.

Of course, soft-thresholding and blockwise James–Stein procedures have been
designed for being applied to the wavelet transform of a Besov smooth function,
rather than to the Fourier transform of a Sobolev-smooth function. However, the
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TABLE 1
Evaluation of 4 adaptive methods on 6 (nonsmooth) signals. For each sample size and each method,
we report the average value of n(MSE−MSEOracle) and the corresponding standard deviation (in

parentheses), for 1000 replications of the experiment

n EWA URE BJS ST EWA URE BJS ST

Blocks Doppler
256 0.051 0.245 9.617 4.846 0.062 0.212 13.233 6.036

(0.42) (0.39) (1.78) (1.29) (0.35) (0.31) (2.11) (1.23)

512 −0.052 0.302 13.807 9.256 −0.100 0.205 17.080 12.620
(0.35) (0.50) (2.16) (1.70) (0.30) (0.39) (2.29) (1.75)

1024 −0.050 0.299 19.984 17.569 −0.107 0.270 21.862 23.006
(0.36) (0.46) (2.68) (2.17) (0.35) (0.41) (2.92) (2.35)

2048 −0.007 0.362 28.948 30.447 −0.150 0.234 28.733 38.671
(0.42) (0.57) (3.31) (2.96) (0.34) (0.42) (3.19) (3.02)

HeaviSine Piece-Regular
256 −0.060 0.247 1.155 3.966 −0.069 0.248 8.883 4.879

(0.19) (0.42) (0.57) (1.12) (0.32) (0.40) (1.76) (1.20)

512 −0.079 0.215 2.064 5.889 −0.105 0.237 12.147 9.793
(0.19) (0.39) (0.86) (1.36) (0.30) (0.37) (2.28) (1.64)

1024 −0.059 0.240 3.120 8.685 −0.092 0.291 15.207 16.798
(0.23) (0.36) (1.20) (1.64) (0.34) (0.46) (2.18) (2.13)

2048 −0.051 0.278 4.858 12.667 −0.059 0.283 21.543 27.387
(0.25) (0.48) (1.42) (2.03) (0.34) (0.54) (2.47) (2.77)

Ramp Piece-Polynomial
256 0.038 0.294 6.933 5.644 0.017 0.203 12.201 3.988

(0.37) (0.47) (1.54) (1.20) (0.37) (0.37) (1.81) (1.19)

512 0.010 0.293 9.712 9.977 −0.078 0.312 17.765 9.031
(0.36) (0.51) (1.76) (1.67) (0.35) (0.49) (2.72) (1.62)

1024 −0.002 0.300 13.656 16.790 −0.026 0.321 23.321 17.565
(0.30) (0.45) (2.25) (2.06) (0.38) (0.48) (2.96) (2.28)

2048 0.007 0.312 19.113 27.315 −0.007 0.314 31.550 29.461
(0.34) (0.50) (2.68) (2.61) (0.41) (0.49) (3.05) (2.95)

point here is not to demonstrate the superiority of EWA as compared to ST and BJS
procedures. The point is to stress the importance of having sharp adaptivity up to
an optimal constant and not simply adaptivity in the sense of rate of convergence.
Indeed, the procedures ST and BJS are provably rate-adaptive when applied to the
Fourier transform of a Sobolev-smooth function, but they are not sharp adaptive—
they do not attain the optimal constant—whereas EWA and URE do attain.

8. Summary and future work. In this paper we have addressed the problem
of aggregating a set of affine estimators in the context of regression with fixed
design and heteroscedastic noise. Under some assumptions on the constituent es-
timators, we have proven that EWA with a suitably chosen temperature parameter
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TABLE 2
Evaluation of 4 adaptive methods on 6 smoothed signals. For each sample size and each method, we

report the average value of n(MSE−MSEOracle) and the corresponding standard deviation (in
parentheses), for 1000 replications of the experiment

n EWA URE BJS ST EWA URE BJS ST

Blocks Doppler
256 0.387 0.216 0.216 2.278 0.214 0.237 1.608 2.777

(0.43) (0.40) (0.24) (0.98) (0.23) (0.40) (0.73) (1.04)

512 0.170 0.209 0.650 3.193 0.165 0.250 1.200 3.682
(0.20) (0.41) (0.25) (1.07) (0.20) (0.44) (0.48) (1.24)

1024 0.162 0.226 1.282 4.507 0.147 0.229 1.842 5.043
(0.18) (0.41) (0.44) (1.28) (0.19) (0.45) (0.86) (1.43)

2048 0.120 0.220 1.574 6.107 0.138 0.229 1.864 6.584
(0.17) (0.37) (0.55) (1.55) (0.20) (0.40) (1.07) (1.58)

HeaviSine Piece-Regular
256 0.217 0.207 1.399 2.496 0.269 0.279 2.120 2.053

(0.16) (0.42) (0.54) (0.96) (0.27) (0.49) (1.09) (0.95)

512 0.206 0.221 0.024 3.045 0.216 0.248 2.045 2.883
(0.18) (0.43) (0.26) (1.10) (0.20) (0.45) (1.17) (1.13)

1024 0.179 0.200 0.113 3.905 0.183 0.228 1.251 3.780
(0.18) (0.50) (0.27) (1.27) (0.20) (0.41) (0.70) (1.37)

2048 0.162 0.189 0.421 5.019 0.145 0.223 1.650 4.992
(0.15) (0.37) (0.27) (1.53) (0.19) (0.42) (1.12) (1.42)

Ramp Piece-Polynomial
256 0.162 0.200 0.339 2.770 0.215 0.257 1.486 2.649

(0.16) (0.38) (0.24) (1.00) (0.25) (0.48) (0.68) (1.01)

512 0.150 0.215 0.425 3.658 0.170 0.243 1.865 3.683
(0.18) (0.38) (0.23) (1.20) (0.20) (0.46) (0.84) (1.20)

1024 0.146 0.211 0.935 4.815 0.179 0.236 1.547 5.017
(0.18) (0.39) (0.33) (1.35) (0.20) (0.47) (1.02) (1.38)

2048 0.141 0.221 1.316 6.432 0.165 0.210 2.246 6.628
(0.20) (0.43) (0.42) (1.54) (0.20) (0.39) (1.15) (1.70)

satisfies PAC-Bayesian type inequality, from which different types of oracle in-
equalities have been deduced. All these inequalities are with leading constant one
and rate-optimal residual term. As an application of our results, we have shown
that EWA acting on Pinsker’s estimators produces an adaptive estimator in the
exact minimax sense.

Next in our agenda is carrying out an experimental evaluation of the pro-
posed aggregate using the approximation schemes described by Dalalyan and Tsy-
bakov [23], Rigollet and Tsybakov [52, 54] and Alquier and Lounici [1], with a
special focus on the problems involving large scale data.

Although we do not assume the covariance matrix � of the noise to be known,
our approach relies on an unbiased estimator of � which is independent on the
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observed signal and on an upper bound on the largest singular value of �. In
some applications, such information may be hard to obtain and it can be helpful to
relax the assumptions on �̂. This is another interesting avenue for future research
for which, we believe, the approach developed by Giraud [34] can be of valuable
guidance.

APPENDIX: PROOFS OF MAIN THEOREMS

We develop now the detailed proofs of the results stated in the manuscript.

A.1. Stein’s lemma. The proofs of our main results rely on Stein’s lem-
ma [59], recalled below, providing an unbiased risk estimate for any estimator
that depends sufficiently smoothly on the data vector Y.

LEMMA 1. Let Y be a random vector drawn form the Gaussian distribution
Nn(f,�). If the estimator f̂ is a.e. differentiable in Y and the elements of the matrix
∇ · f̂� := (∂i f̂j ) have finite first moment, then

r̂ = ‖Y − f̂‖2
n + 2

n
Tr
[
�
(∇ · f̂�

)]− 1

n
Tr[�]

is an unbiased estimate of r , that is, E[r̂] = r .

The proof can be found in [61], page 157. We apply Stein’s lemma to the affine
estimators f̂λ = AλY + bλ, with Aλ an n × n deterministic real matrix and bλ ∈
R

n a deterministic vector. We get that if �̂ is an unbiased estimator of �, then
r̂unb
λ = ‖Y − f̂λ‖2

n + 2
n

Tr[�̂Aλ] − 1
n

Tr[�̂] is an unbiased estimator of the risk

rλ = E[‖f̂λ − f‖2
n] = ‖(Aλ − In×n)f + bλ‖2

n + 1
n

Tr[Aλ�A�
λ ].

A.2. An auxiliary result. Prior to proceeding with the proof of the main the-
orems, we prove an important auxiliary result which is the central ingredient of the
proofs for our main results.

LEMMA 2. Let assumptions of Lemma 1 be satisfied. Let {f̂λ :λ ∈ �} be a
family of estimators of f and {r̂λ :λ ∈ �} a family of risk estimates such that the
mapping Y �→ (f̂λ, r̂λ) is a.e. differentiable for every λ ∈ �. Let r̂unb

λ be the unbi-
ased risk estimate of f̂λ given by Stein’s lemma.

(1) For every π ∈ P� and for any β > 0, the estimator f̂EWA defined as the
average of f̂λ w.r.t. to the probability measure

π̂(Y, dλ) = θ(Y, λ)π(dλ) with θ(Y, λ) ∝ exp
{−nr̂λ(Y)/β

}
admits

r̂EWA =
∫
�

(
r̂unb
λ − ‖f̂λ − f̂EWA‖2

n − 2n

β

〈∇Yr̂λ|�(f̂λ − f̂EWA)
〉
n

)
π̂ (dλ)



2350 A. S. DALALYAN AND J. SALMON

as unbiased estimator of the risk.
(2) If, furthermore, r̂λ ≥ r̂unb

λ , ∀λ ∈ � and
∫
�〈n∇Yr̂λ|�(f̂λ − f̂EWA)〉nπ̂(dλ) ≥

−a
∫
� ‖f̂λ − f̂EWA‖2

nπ̂(dλ) for some constant a > 0, then for every β ≥ 2a it holds
that

E
[‖f̂EWA − f‖2

n

]≤ inf
p∈P�

{∫
�

E[r̂λ]p(dλ) + βK(p,π)

n

}
.(A.1)

PROOF. According to the Stein lemma, the quantity

r̂EWA = ‖Y − f̂EWA‖2
n + 2

n
Tr
[
�
(∇ · f̂EWA(Y)

)]− 1

n
Tr[�](A.2)

is an unbiased estimate of the risk rn = E[‖f̂EWA − f‖2
n]. Using simple algebra, one

checks that

‖Y − f̂EWA‖2
n = ∫

�

(‖Y − f̂λ‖2
n − ‖f̂λ − f̂EWA‖2

n

)
π̂(dλ).(A.3)

By interchanging the integral and differential operators, we get the following re-
lation: ∂yi

f̂EWA,j = ∫
�{(∂yi

f̂λ,j (Y))θ(Y, λ) + f̂λ,j (Y)(∂yi
θ(Y, λ))}π(dλ). Then,

combining this equality with equations (A.2) and (A.3) implies that

r̂EWA =
∫
�

(
r̂unb
λ − ‖f̂λ − f̂EWA‖2

n

)
π̂(dλ) + 2

n

∫
�

Tr
[
�f̂λ∇Yθ(Y, λ)�

]
π(dλ).

After having interchanged differentiation and integration, we obtain that∫
� f̂EWA(∇Yθ(Y, λ))�π(dλ) = f̂EWA∇Y(

∫
� θ(Y, λ)π(dλ)) = 0 and, therefore, we

come up with the following expression for r̂EWA:

r̂EWA =
∫
�

(
r̂unb
λ − ‖f̂λ − f̂n‖2

n + 2
〈∇Y log θ(λ)|�(f̂λ − f̂EWA)

〉
n

)
π̂(dλ)

=
∫
�

(
r̂unb
λ − ‖f̂λ − f̂EWA‖2

n − 2nβ−1〈∇Yr̂λ|�(f̂λ − f̂EWA)
〉
n

)
π̂(dλ).

This completes the proof of the first assertion of the lemma.
To prove the second assertion, let us observe that under the required condi-

tion and in view of the first assertion, for every β ≥ 2a it holds that r̂EWA ≤∫
� r̂unb

λ π̂(dλ) ≤ ∫
� r̂λπ̂(dλ) ≤ ∫

� r̂λπ̂(dλ) + β
n

K(π̂, π). To conclude, it suffices
to remark that π̂ is the probability measure minimizing the criterion

∫
� r̂λp(dλ)+

β
n

K(p,π) among all p ∈ P�. Thus, for every p ∈ P�, we have

r̂EWA ≤
∫
�

r̂λp(dλ) + β

n
K(p,π).

Taking the expectation of both sides, the desired result follows. �
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A.3. Proof of Theorem 1.
Assertion (i). In what follows, we use the matrix shorthand I = In×n and

AEWA �
∫
� Aλπ̂(dλ). We apply Lemma 2 with r̂λ = r̂unb

λ . To check the condi-
tions of the second part of Lemma 2, note that in view of equations (2.4) and (2.6),
as well as the assumptions A�

λ = Aλ and Aλ′bλ = 0, we get

∇Yr̂unb
λ = 2

n
(I − Aλ)

�(I −Aλ)Y − 2

n
(I − Aλ)

�bλ = 2

n
(I −Aλ)

2Y − 2

n
bλ.

Recall now that for any pair of commuting matrices P and Q the identity (I −
P)2 = (I −Q)2 + 2(I − P+Q

2 )(Q−P) holds true. Applying this identity to P =
Aλ and Q = AEWA (in view of the commuting property of the Aλ’s), we get the
following relation: 〈(I − Aλ)

2Y|�(Aλ − AEWA)Y〉n = 〈(I − AEWA)2Y|�(Aλ −
AEWA)Y〉n − 2〈(I − AEWA+Aλ

2 )(AEWA −Aλ)Y|�(AEWA −Aλ)Y〉n. When one in-
tegrates over � with respect to the measure π̂ , the term of the first scalar product
in the right-hand side of the last equation vanishes. On the other hand,〈

Aλ(AEWA −Aλ)Y|�(AEWA −Aλ)Y
〉
n

= 〈
Aλ(f̂EWA − f̂λ)|�(f̂EWA − f̂λ)

〉
n

= 〈
(f̂EWA − f̂λ)|Aλ�(f̂EWA − f̂λ)

〉
n

= 1

2n
(f̂EWA − f̂λ)�(Aλ� + �Aλ)(f̂EWA − f̂λ) ≥ 0.

Since positive semi-definiteness of matrices �Aλ + Aλ� implies the one of
the matrix �AEWA + �AEWA, we also have 〈AEWA(AEWA − Aλ)Y|�(AEWA −
Aλ)Y〉n ≥ 0. Therefore,〈(

I − AEWA +Aλ

2

)
(AEWA −Aλ)Y|�(AEWA −Aλ)Y

〉
n

≤ 〈
(f̂EWA − f̂λ)|�(f̂EWA − f̂λ)

〉
n

= ∥∥�1/2(f̂EWA − f̂λ)
∥∥2
n.

This inequality implies that∫
�

〈
n∇Yr̂unb

λ |�(f̂λ − f̂EWA)
〉
nπ̂(dλ) ≥−4

∫
�

∥∥�1/2(f̂λ − f̂EWA)
∥∥2
nπ̂(dλ).

Therefore, the claim of Theorem 1 holds true for every β ≥ 8|||�|||.
Assertion (ii). Let now f̂λ = AλY + bλ with symmetric Aλ  In×n and bλ ∈

Ker(Aλ). Using the definition r̂
adj
λ = r̂unb

λ + 1
n

Y�(Aλ − A2
λ)Y, one easily checks

that r̂
adj
λ ≥ r̂unb

λ for every λ and that∫
�

〈
n∇ r̂

adj
λ |�(f̂λ − f̂EWA)

〉
nπ̂(dλ) =

∫
�

〈
2(Y − f̂λ)|�(f̂λ − f̂EWA)

〉
nπ̂(dλ)

=−2
∫
�

∥∥�1/2(f̂λ − f̂EWA)
∥∥2
nπ̂(dλ).
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Therefore, if β ≥ 4|||�|||, all the conditions required in the second part of Lemma 2
are fulfilled. Applying this lemma, we get the desired result.

A.4. Proof of Theorem 2. We apply the result of assertion (ii) of Theo-
rem 1 to the prior π(dλ) replaced by the probability measure proportional to
e(2/β)Tr[�̂(Aλ−A�

λ Aλ)]π(dλ). This leads to

E
[‖f̃SEWA − f‖2

n

]≤ inf
p∈P�

{∫
�

E
[‖f̂λ − f‖2

n

]
p(dλ) + β

n
K(p,π)

}

+ β

n
E

[
log

∫
�

e(2/β)Tr[�̂(Aλ−A�
λ Aλ)]π(dλ)

]
.

Condition (C) entails that the last term is always nonnegative and the result follows.

A.5. Proof of Theorem 3. Let us place ourselves in setting 1. It is clear that
E[‖f̂GEWA − f‖2

n] =
∑J

j=1 E[‖f̂jGEWA − fj‖2
n]. For each j ∈ {1, . . . , J }, since βj ≥

8|||�j |||, one can apply assertion (i) of Theorem 1, which leads to the desired result.
The case of setting 2 is handled in the same manner.
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SUPPLEMENTARY MATERIAL

Proofs of some propositions (DOI: 10.1214/12-AOS1038SUPP; .pdf). In this
supplement we present the detailed proofs of Propositions 2–6.
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