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1. Introduction. We thank all the discussants for their careful reading of our
paper, and for their insightful critiques. We would also like to thank the editors for
organizing this discussion. Our paper contributes to the area of high-dimensional
statistics which has received much attention over the past several years across the
statistics, machine learning and signal processing communities. In this rejoinder
we clarify and comment on some of the points raised in the discussions. Finally,
we also remark on some interesting challenges that lie ahead in latent variable
modeling.

Briefly, we considered the problem of latent variable graphical model selection
in the Gaussian setting. Specifically, let X be a zero-mean Gaussian random vector
in R

p+h with O and H representing disjoint subsets of indices in {1, . . . , p + h}
with |O| = p and |H | = h. Here the subvector XO represents the observed vari-
ables and the subvector XH represents the latent variables. Given samples of only
the variables XO , is it possible to consistently perform model selection? We noted
that if the number of latent variables h is small relative to p and if the condi-
tional statistics of the observed variables XO conditioned on the latent variables
XH are given by a sparse graphical model, then the marginal concentration ma-
trix of the observed variables XO is given as the sum of a sparse matrix and a
low-rank matrix. As a first step we investigated the identifiability of latent vari-
able Gaussian graphical models—effectively, this question boils down to one of
uniquely decomposing the sum of a sparse matrix and a low-rank matrix into the
individual components. By studying the geometric properties of the algebraic vari-
eties of sparse and low-rank matrices, we provided natural sufficient conditions for
identifiability and gave statistical interpretations of these conditions. Second, we
proposed the following regularized maximum-likelihood estimator to decompose
the concentration matrix into sparse and low-rank components:

(Ŝn, L̂n) = arg min
S,L

−�(S − L;�n
O) + λn

(
γ ‖S‖1 + tr(L)

)

(1.1)
s.t. S − L � 0,L � 0.
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Here �n
O represents the sample covariance formed from n samples of the observed

variables, � is the Gaussian log-likelihood function, Ŝn represents the estimate of
the conditional graphical model of the observed variables conditioned on the latent
variables, and L̂n represents the extra correlations induced due to marginalization
over the latent variables. The �1 norm penalty induces sparsity in Ŝn and the trace
norm penalty induces low-rank structure in L̂n. An important feature of this es-
timator is that it is given by a convex program that can be solved efficiently. Our
final contribution was to establish the high-dimensional consistency of this estima-
tor under suitable assumptions on the Fisher information underlying the true model
(in the same spirit as irrepresentability conditions for sparse model selection [11,
16]).

2. Alternative estimators. A number of the commentaries described alterna-
tive formulations for estimators in the latent variable setting.

2.1. EM-based methods. The discussions by Yuan and by Lauritzen and
Meinshausen describe an EM-based alternative in which the rank of the matrix
L is explicitly constrained:

(Ŝn, L̂n) = arg min
S,L

−�(S − L;�n
O) + λn‖S‖1

(2.1)
s.t. S − L � 0,L � 0, rank(L) ≤ r.

The experimental results based on this approach seem quite promising, and cer-
tainly deserve further investigation. On the one hand, we should reiterate that the
principal motivation for our convex optimization based formulation was to develop
a method for latent variable modeling with provable statistical and computational
guarantees. One of the main drawbacks of EM-based methods is the existence of
local optima in the associated variational formulations, thus leading to potentially
different solutions depending on the initial point. On the other hand, one of the
reasons for the positive empirical behavior observed by Yuan and by Lauritzen
and Meinshausen may be that all the local optima in the experimental settings
considered by the authors may be “good” models. Such behavior has in fact been
rigorously characterized recently for certain nonconvex estimators in some miss-
ing data problems [7].

One of the motivations for the EM proposal of Yuan and of Lauritzen and Mein-
shausen seems to be that there are fairly mature and efficient solvers for the graph-
ical lasso. As our estimator is relatively newer and as its properties are better un-
derstood going forward, we expect that more efficient solvers will be developed
for (1.1) as well. Indeed, the LogdetPPA solver [15] that we cite in our paper al-
ready scales to instances involving several hundred variables, while more recent
efforts [8] have resulted in algorithms that scale to instances with several thousand
variables.
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2.2. Thresholding estimators. Ren and Zhou propose and analyze an inter-
esting thresholding based estimator for decomposing a concentration matrix into
sparse and low-rank components. They apply a two-step procedure—�1 norm
thresholding followed by trace norm thresholding—to obtain the sparse compo-
nent followed by the low-rank component. Roughly speaking, this two-step es-
timator can be viewed as the application of the first cycle of a block coordinate
descent procedure to compute our estimator that alternately updates the sparse and
low-rank pieces (we also refer the reader to the remarks in [1]).

However, in Theorem 1 in the discussion by Ren and Zhou, a quite stringent
assumption requires that in some scaling regimes the true low-rank component

L∗ must vanish, that is, ‖L∗‖�∞ �
√

logp
n

→ 0. The reason for this condition is
effectively to ensure sign consistency in recovering the sparse component. In a
pure sparse model selection problem (with no low-rank component in the pop-
ulation), the deviation away from the sparse component is given only by noise

due to finite samples and this deviation is on the order of
√

logp
n

in the Gaussian
setting—consequently, sparse model selection via �1 norm thresholding is sign-
consistent when the minimum magnitude nonzero entry in the true model is larger

than
√

logp
n

. In contrast, if the true model consists of both a sparse component and
a low-rank component, the total deviation away from the sparse component in the
finite sample regime is given by both sample noise as well as the low-rank compo-
nent. This seems to be the reason for the stringent assumption on the vanishing of
the low-rank component in Theorem 1 of Ren and Zhou.

More broadly, one of the motivations of Ren and Zhou in proposing and ana-
lyzing their estimator is that it may be possible to weaken the assumptions on the
minimum magnitude nonzero entry θ of the true sparse component S∗ and the min-
imum nonzero singular value σ of the true low-rank component L∗—whether this
is possible under less stringent assumptions on L∗ is an interesting question, and
we comment on this point in Section 3 in the more general context of potentially
improving the rates in our paper.

2.3. Other proposals. Giraud and Tsybakov propose two alternative estima-
tors for decomposing a concentration matrix into sparse and low-rank components.
While our approach (1.1) builds on the graphical lasso, their proposed approaches
build on the Dantzig selector of Candès and Tao [2] and the neighborhood selec-
tion approach of Meinshausen and Bühlmann [9]. Several comments are in order
here.

First, we note that the extension of neighborhood selection proposed by Giraud
and Tsybakov to deal with the low-rank component begins by reformulating the
neighborhood selection procedure to obtain a “global” estimator that simultane-
ously estimates all the neighborhoods. This reformulation touches upon a funda-
mental aspect of latent variable modeling. In many applications marginalization
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over the latent variables typically induces correlations between most pairs of ob-
served variables—consequently, local procedures that learn model structure one
node at a time are ill-suited for latent variable modeling. Stated differently, requir-
ing that a matrix be sparse with few nonzeros per row or column (e.g., expressing
preference for a graphical model with bounded degree) can be done by imposing
column-wise constraints. On the other hand, the constraint that a matrix be low-
rank is really a global constraint expressed by requiring all minors of a certain
size to vanish. Thus, any estimator for latent variable modeling (in the absence of
additional conditions on the latent structure) must necessarily be global in nature.

Second, we believe that the reformulation based on the Dantzig selector per-
haps ought to have an additional constraint. Recall that the Dantzig selector [2]
constrains the �∞ norm (the dual norm of the �1 norm) of the correlated residu-
als rather than the �2 norm of the residuals as in the lasso. As the dual norm of
our combined �1/trace norm regularizer involves both an �∞ norm and a spectral
norm, the following constraint set may be more appropriate in the Dantzig selector
based reformulation of Giraud and Tsybakov:

G = {(S,L) :‖�n
O(S + L) − I‖�∞ ≤ γ λn,‖�n

O(S + L) − I‖2 ≤ λn}.
Finally, we note that the Dantzig selector of [2] has the property that its

constraint set contains the lasso solution (with the same choice of regulariza-
tion/relaxation parameters). In contrast, this property is not shared in general by the
Dantzig selector reformulation of Giraud and Tsybakov in relation to our regular-
ized maximum-likelihood estimator (1.1). It is unclear how one might achieve this
property via suitable convex constraints in a Dantzig selector type reformulation
of our estimator.

In sum, both of these alternative estimators deserve further study.

3. Comments on rates. Several of the commentaries (Wainwright, Giraud
and Tsybakov, Ren and Zhou and Candès and Soltanolkotabi) bring up the pos-
sibility of improving the rates given in our paper. At the outset we believe that
n � p samples is inherent to the latent variable modeling problem if spectral norm
consistency is desired in the low-rank component. This is to be expected since the
spectral norm of the deviation of a sample covariance from the underlying popula-

tion covariance is on the order of
√

p
n

. However, some more subtle issues remain.
Giraud and Tsybakov point out that one may be concerned purely with estima-

tion of the sparse component, and that the low-rank component may be a “nui-
sance” parameter. While this is not appropriate in every application, in problem
domains where the conditional graphical model structure of the observed variables
is the main quantity of interest one can imagine quantifying deviations in the low-
rank component via “weaker” norms than the spectral norm—this may lead to
consistent estimates for the sparse component with n 	 p samples. The analysis
in our paper does not rule out this possibility, and a more careful investigation is
needed to establish such results.
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Ren and Zhou suggest that while n � p may be required for consistent esti-
mation, one may be able to weaken the assumptions on θ and σ (the minimum
magnitude nonzero entry of the sparse component and the minimum nonzero sin-
gular value of the low-rank component, respectively). From the literature on sparse
model selection, a natural lower bound on the minimum magnitude nonzero entry
for consistent model selection is typically given by the size of the noise measured
in the �∞ norm (the dual of the �1 regularizer). Building on this intuition, a natural
lower bound that one can expect in our setting on θ is 1

γ
‖�n

O − �‖�∞ , while a
natural bound on σ would be ‖�n

O − �‖2. The reason for this suggestion is that

max{‖S‖�∞
γ

,‖L‖2} is the dual norm of the regularizer used in our paper. There-

fore, it may be possible to only require θ ∼ 1
γ

√
logp

n
and σ ∼

√
p
n

. However, one
issue here is that the �∞ norm bound kicks in when n � logp with probability
approaching one polynomially fast, while the spectral norm bound only kicks in
when n ≥ p but holds with probability approaching one exponentially fast. Thus
(as also noted by Giraud and Tsybakov), it may be possible that n � p is required
for overall consistent estimation, but that the assumption on θ could be weakened
by only requiring that the probability of consistent estimation approach one poly-
nomially fast.

Candès and Soltanolkotabi comment that it would be of interest to establish an
“adaptivity” property whereby if no low-rank component were present, the number
of samples required for consistent estimation would boil down to just the rate for
sparse graphical model selection, that is, n ∼ logp. While such a feature would
clearly be desirable to establish for our estimator, one potential roadblock may
be that our estimator (1.1) “searches” over a larger classes of models than just
those given by sparse graphical models; consequently, rejecting the hypothesis that
the observed variables are affected by any latent variables may require that n �
logp. This question deserves further investigation and, as suggested by Candès and
Soltanolkotabi, recent results on adaptivity could inform a more refined analysis
of our estimator.

Finally, Wainwright suggests the intriguing possibility that faster rates may be
possible if the low-rank component has additional structure. For example, there
may exist a sparse factorization of the low-rank component due to special struc-
ture between the latent and observed variables. In such settings the trace norm
regularizer applied to the low-rank component is not necessarily the tightest con-
vex penalty. In recent joint work by the authors and Recht [4], a general framework
for constructing convex penalty functions based on some desired structure is pre-
sented. The trace norm penalty for inducing low-rank structure is motivated from
the viewpoint that a low-rank matrix is the sum of a small number of rank-one ma-
trices and, therefore, the norm induced by the convex hull of the rank-one matrices
(suitably scaled) is a natural convex regularizer as this convex hull (the trace norm
ball) carries precisely the kind of facial structure required for inducing low-rank
structure in matrices. In this spirit, one can imagine constructing convex penalty



2010 V. CHANDRASEKARAN, P. A. PARRILO AND A. S. WILLSKY

functions by taking the convex hull of sparse rank-one matrices. While this con-
vex hull is in general intractable to represent, relaxations of this set that are tighter
than the trace norm ball could provide faster rates than can be obtained by using
the trace norm.

4. Weakening of irrepresentability conditions. Wainwright asks a number
of insightful questions regarding the potential for weakening our Fisher informa-
tion based conditions. Giraud and Tsybakov also bring up connections between our
conditions and irrepresentability conditions in previous papers on sparse model se-
lection [11, 16].

In order to better understand if the Fisher information based conditions stated
in our paper are necessary, Wainwright raises the question of obtaining a converse
result by comparing to an oracle method that directly minimizes the rank and the
cardinality of the support of the components. A difficulty with this approach is
that we don’t have a good handle on the set of matrices that are expressible as the
sum of a sparse matrix and a low-rank matrix. The properties of this set remain
poorly understood, and developing a better picture has been the focus of research
efforts in algebraic geometry [6] and in complexity theory [14]. Nonetheless, a
comparison to oracle estimators that have side information about the support of
the sparse component and the row/column spaces of the low-rank component (in
effect, side information about the tangent spaces at the two components) appears
to be more tractable. This is closer to the viewpoint we have taken in our paper
in which we consider the question of identifiability of the components given in-
formation about the underlying tangent spaces. Essentially, our Fisher information
conditions state that these tangent spaces must be sufficiently transverse with re-
spect to certain natural norms and in a space in which the Fisher information is
the underlying inner-product. More generally, as also pointed out by Giraud and
Tsybakov, the necessity of Fisher information based conditions is an open ques-
tion even in the sparse graphical model selection setting considered in [11]. The
experimental studies in [11] describing comparisons to neighborhood selection in
some simple cases provide a good starting point.

Wainwright raises the broader question of consistent model selection when
transversality of the underlying tangent spaces does not hold. One approach [1]
is to quantify the level of identifiability based on a “spikiness” condition. A more
geometric viewpoint may be that only those pieces of the sparse and low-rank com-
ponents that do not lie in the intersection of their underlying tangent spaces are
fundamentally identifiable and, therefore, consistency should be quantified with
respect to these identifiable pieces.

Giraud and Tsybakov ask about the interpretability of our conditions ξ(T ) and
μ(	). These quantities are geometric in nature and relate to the tangent space
conditions for identifiability. In particular, they are closely related to (and bounded
by) the incoherence of the row/column spaces of the low-rank component and the
maximum number of nonzeros per row/column [5]. These latter quantities have
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appeared in many papers on sparse graphical model selection (e.g., [9, 11]) as well
as on low-rank matrix completion [3], and computing them is straightforward. In
our previous work on matrix decomposition [5], we note that these quantities are
bounded for natural random families of sparse and low-rank matrices based on
results in [3].

5. Experimental issues and applications. Lauritzen and Meinshausen as
well as Giraud and Tsybakov raise several points about the choice of the regu-
larization parameters. Choosing these parameters in a data-driven manner (e.g.,
using the methods described in [10]) is clearly desirable. We do wish to emphasize
that the sensitivities of the solution with respect to the parameters λn and γ are
qualitatively different. As described in our main theorem and in our experimental
section, the solution of our estimator (1.1) is stable for a range of values of γ (see
also [5])—this point is observed by Yuan as well in his experiments. Further, the
choice of γ ideally should not depend on n, while the choice of λn clearly should.

On a different point regarding experimental results, Giraud and Tsybakov sug-
gest at the end of their discussion that latent variable models don’t seem to provide
significantly more expressive power than a sparse graphical model. In contrast,
Yuan’s synthetic experiment seems to provide compelling evidence that our ap-
proach (1.1) provides better performance relative to models learned by the graph-
ical lasso. The reason for these different observations may be tied to the manner
in which their synthetic models were generated. Specifically, latent variable model
selection using (1.1) is likely to be most useful when the latent variables affect
many observed variables upon marginalization (e.g., latent variables are connected
to many observed variables), while the conditional graphical model among the ob-
served variables conditioned on the latent variables is sparse and has bounded de-
gree. This intuition is based on the theoretical analysis in our paper and is also
the setting considered in the experiment in Yuan’s discussion (as well as in the
synthetic experiments in our paper). On the other hand, the experimental setup fol-
lowed by Giraud and Tsybakov seems to generate a graphical model with large
maximum degree and low average degree, and randomly selects a subset of the
variables as latent variables. It is not clear if these latent variables are the ones
with large degree, which may explain their remarks.

Finally, we note that sparse and low-rank matrix decomposition is relevant in
applications beyond the one described in our paper. As observed by Lauritzen and
Meinshausen, a natural matrix decomposition problem involving covariance ma-
trices may arise if one considers directed latent variable models in the spirit of fac-
tor analysis. In such a context the covariance matrix may be expressed as the sum
of a low-rank matrix and a sparse (rather than just diagonal) matrix, corresponding
to the setting in which the distribution of the observed variables conditioned on the
latent variables is given by a sparse covariance matrix. More broadly, similar ma-
trix decomposition problems arise in domains beyond statistical estimation such as
optical system decomposition, matrix rigidity and system identification in control
[5], as well as others as noted by Candès and Soltanolkotabi.
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6. Future questions. Our paper and the subsequent discussions raise a num-
ber of research and computational challenges in latent variable modeling that we
wish to highlight briefly.

6.1. Convex optimization in R. As mentioned by Lauritzen and Meinshausen,
R remains the software of choice for practitioners in statistics. However, some of
the recent advances in high-dimensional statistical estimation have been driven by
sophisticated convex optimization based procedures that are typically prototyped
using packages such as SDPT3 [13] and others in Matlab and Python. It would be
of general interest to develop packages to invoke SDPT3 routines directly from R.

6.2. Sparse/low-rank decomposition as infimal convolution. Given a matrix
M � 0, consider the following function:

‖M‖S/L,γ = min
S,L

γ ‖S‖�1 + tr(L), s.t. M = S − L,L � 0.(6.1)

It is clear that ‖ · ‖S/L,γ is a norm, and it can be viewed as the infimal convolu-
tion [12] of the (scaled) �1 norm and the trace norm. In essence, it is a norm whose
minimization induces matrices expressible as the sum of sparse and low-rank com-
ponents (see also the atomic norm viewpoint of [4]). We could then effectively
restate (1.1) as

M̂n = arg min
M�0

−�(M;�n
O) + λn‖M‖S/L,γ

and then decompose M̂n by solving (6.1). This two-step approach suggests the
possibility of decoupling the decomposition problem from the conditions funda-
mentally required for consistency via regularized maximum-likelihood, as the lat-
ter only ought to depend on the composite norm ‖ · ‖S/L,γ . This decoupling also
highlights the different roles played by the parameters λn and γ (as discussed in
Section 5). More broadly, such an approach may be useful as one analyzes general
regularizers, for example, convex penalties other than the trace norm as described
in Section 3.

6.3. Non-Gaussian latent variable modeling. As described in our paper and
as raised by Wainwright, latent variable modeling with non-Gaussian variables
is of interest in many applications. Both the computational and algebraic aspects
present major challenges in this setting. Specifically, the secant varieties arising
due to marginalization in non-Gaussian models (e.g., in models with categorical
variables) are poorly understood, and computing the likelihood is also intractable.
An approach based on matrix decomposition as described in our paper may be
appropriate, although one would have to quantify the effects of the Gaussianity
assumption.
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