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While estimation of the marginal (total) causal effect of a point exposure
on an outcome is arguably the most common objective of experimental and
observational studies in the health and social sciences, in recent years, investi-
gators have also become increasingly interested in mediation analysis. Specif-
ically, upon evaluating the total effect of the exposure, investigators routinely
wish to make inferences about the direct or indirect pathways of the effect
of the exposure, through a mediator variable or not, that occurs subsequently
to the exposure and prior to the outcome. Although powerful semiparamet-
ric methodologies have been developed to analyze observational studies that
produce double robust and highly efficient estimates of the marginal total
causal effect, similar methods for mediation analysis are currently lacking.
Thus, this paper develops a general semiparametric framework for obtaining
inferences about so-called marginal natural direct and indirect causal effects,
while appropriately accounting for a large number of pre-exposure confound-
ing factors for the exposure and the mediator variables. Our analytic frame-
work is particularly appealing, because it gives new insights on issues of ef-
ficiency and robustness in the context of mediation analysis. In particular,
we propose new multiply robust locally efficient estimators of the marginal
natural indirect and direct causal effects, and develop a novel double robust
sensitivity analysis framework for the assumption of ignorability of the me-
diator variable.

1. Introduction. The evaluation of the total causal effect of a given point ex-
posure, treatment or intervention on an outcome of interest is arguably the most
common objective of experimental and observational studies in the fields of epi-
demiology, biostatistics and in the social sciences. However, in recent years, in-
vestigators in these various fields have become increasingly interested in making
inferences about the direct or indirect pathways of the exposure effect, through
a mediator variable or not, that occurs subsequently to the exposure and prior to
the outcome. Recently, the counterfactual language of causal inference has proven
particularly useful for formalizing mediation analysis. Indeed, causal inference

Received March 2011; revised March 2012.
I'Supported by NIH Grant R21ES019712.
MSC2010 subject classifications. 62G05.
Key words and phrases. Natural direct effects, natural indirect effects, double robust, mediation
analysis, local efficiency.

1816


http://www.imstat.org/aos/
http://dx.doi.org/10.1214/12-AOS990
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

ESTIMATION OF THE MEDIATION FUNCTIONAL 1817

offers a formal mathematical framework for defining varieties of direct and indi-
rect effects, and for establishing necessary and sufficient identifying conditions of
these effects. A notable contribution of causal inference to the literature on me-
diation analysis is the key distinction drawn between so-called controlled direct
effects versus natural direct effects. In words, the controlled direct effect refers
to the exposure effect that arises upon intervening to set the mediator to a fixed
level that may differ from its actual observed value [Robins and Greenland (1992),
Pearl (2001), Robins (2003)]. In contrast, the natural (also known as pure) direct
effect captures the effect of the exposure when one intervenes to set the mediator
to the (random) level it would have been in the absence of exposure [Robins and
Greenland (1992), Pearl (2001)]. As noted by Pearl (2001), controlled direct and
indirect effects are particularly relevant for policy making, whereas natural direct
and indirect effects are more useful for understanding the underlying mechanism
by which the exposure operates. In fact, natural direct and indirect effects combine
to produce the exposure total effect.

To formally define natural direct and indirect effects first requires defining coun-
terfactuals. We assume that for each level of a binary exposure E, and of a me-
diator variable M, there exist a counterfactual variable Y, , corresponding to the
outcome Y had possibly contrary to fact the exposure and mediator variables taken
the value (e, m). Similarly, for E = e, we assume there exists a counterfactual vari-
able M, corresponding to the mediator variable had possibly contrary to fact the
exposure variable taken the value e. The current paper concerns the decomposition
of the total effect of E on Y, in terms of natural direct and natural indirect effects,
which, expressed on the mean difference scale, is given by

total effect
E(Yezl - Ye:OS = E(Yezl,Mezl - Ye:O,Mezo)
natural indirect effect natural direct effect
=EYe=t1,M,_; — Ye=1,M,_y) +FEXe=1,M,_y — Ye=0,M,_,)>

where [E stands for expectation.

In an effort to account for confounding bias when estimating causal effects,
such as the average total effect (1) from nonexperimental data, investigators rou-
tinely collect and adjust for in data analysis, a large number of confounding fac-
tors. Because of the curse of dimensionality, nonparametric methods of estima-
tion are typically not practical in such settings, and one usually resorts to one of
two dimension-reduction strategies; either one relies on a model for the outcome
given exposure and counfounders, or alternately one relies on a model for the ex-
posure, that is, the propensity score. Recently, powerful semiparametric methods
have been developed to analyze observational studies that produce so-called dou-
ble robust and highly efficient estimates of the exposure total causal effect [Robins
(2000), Scharfstein, Rotnitzky and Robins (1999), Bang and Robins (2005), Tsiatis
(2006)] and similar methods have also been developed to estimate controlled direct
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effects [Goetgeluk, Vansteelandt and Goetghebeur (2008)]. An important advan-
tage of a double robust method is that it carefully combines both of the aforemen-
tioned dimension reduction strategies for confounding adjustment, to produce an
estimator of the causal effect that remains consistent and asymptotically normal,
provided at least one of the two strategies is correct, without necessarily knowing
which strategy is indeed correct [van der Laan and Robins (2003)]. Unfortunately,
similar methods for making semiparametric inferences about marginal natural di-
rect and indirect effects are currently lacking. Thus, this paper develops a general
semiparametric framework for obtaining inferences about marginal natural direct
and indirect effects on the mean of an outcome, while appropriately accounting
for a large number of confounding factors for the exposure and the mediator vari-
ables.

Our semiparametric framework is particularly appealing, as it gives new in-
sight on issues of efficiency and robustness in the context of mediation analysis.
Specifically, in Section 2, we adopt the sequential ignorability assumption of Imai,
Keele and Tingley (2010) under which, in conjunction with the standard consis-
tency and positivity assumptions, we derive the efficient influence function and
thus obtain the semiparametric efficiency bound for the natural direct and natu-
ral indirect marginal mean causal effects, in the nonparametric model Mponpar in
which the observed data likelihood is left unrestricted. We further show that in or-
der to conduct mediation inferences in Monpar, ON€ must estimate at least a subset
of the following quantities:

(i) the conditional expectation of the outcome given the mediator, exposure
and confounding factors;
(ii) the density of the mediator given the exposure and the confounders;
(iii) the density of the exposure given the confounders.

Ideally, to minimize the possibility of modeling bias, one may wish to esti-
mate each of these quantities nonparametrically; however, as previously argued,
when as we assume throughout, we wish to account for numerous confounders,
such nonparametric estimates will likely perform poorly in finite samples. Thus,
in Section 2.3 we develop an alternative multiply robust strategy. To do so, we pro-
pose to model (i), (ii) and (iii) parametrically (or semiparametrically), but rather
than obtaining mediation inferences that rely on the correct specification of a spe-
cific subset of these models, instead we carefully combine these three models to
produce estimators of the marginal mean direct and indirect effects that remain
consistent and asymptotically normal (CAN) in a union model, where at least one
but not necessarily all of the following conditions hold:

(a) the parametric or semi-parametric models for the conditional expectation
of the outcome (i) and for the conditional density of the mediator (ii) are correctly
specified;
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(b) the parametric or semiparametric models for the conditional expectation of
the outcome (i) and for the conditional density of the exposure (iii) are correctly
specified;

(c) the parametric or semiparametric models for the conditional densities of the
exposure and the mediator (ii) and (iii) are correctly specified.

Accordingly, we define submodels M, M, and M of Myonpar corresponding
to models (a), (b) and (c) respectively. Thus, the proposed approach is triply robust
as it produces valid inferences about natural direct and indirect effects in the union
model Mypion = Mg U Mj, U M,.. Furthermore, as we later show in Section 2.3,
the proposed estimators are also locally semiparametric efficient in the sense that
they achieve the respective efficiency bounds for estimating the natural direct and
indirect effects in Muynion, at the intersection submodel M, N Mp N M. = M, N
Mc = Ma N Mb = Mb N Mc - Munion - Mnonpar-

Section 3 summarizes a simulation study illustrating the finite sample perfor-
mance of the various estimators described in Section 2, and Section 4 gives a real
data application of these methods. Section 5 describes a strategy to improve the sta-
bility of the proposed multiply robust estimator which directly depends on inverse
exposure and mediator density weights, when such weights are highly variable,
and Section 6 demonstrates the favorable performance of two modified multiply
robust estimators in the context of such highly variable weights. In Section 7, we
compare the proposed methodology to the prevailing estimators in the literature.
Based on this comparison, we conclude that the new approach should generally
be preferred because an inference under the proposed method is guaranteed to
remain valid under many more data generating laws than an inference based on
each of the other existing approaches. In particular, as we argue below the ap-
proach of van der Laan and Petersen (2005) is not entirely satisfactory because,
despite producing a CAN estimator of the marginal direct effect under the union
model M, U M. (and therefore an estimator that is double robust), their estimator
requires a correct model for the density of the mediator. Thus, unlike the direct
effect estimator developed in this paper, the van der Laan estimator fails to be
consistent under the submodel My, C Mynion. Nonetheless, the estimator of van
der Laan is in fact locally efficient in model M, U M., provided the model for
the mediator’s conditional density is either known, or can be efficiently estimated.
This property is confirmed in a supplementary online Appendix [Tchetgen Tch-
etgen and Shpitser (2012)], where we also provide a general map that relates the
efficient influence function for model M pion to the corresponding efficient influ-
ence function for model M, U M., assuming an arbitrary parametric or semi-
parametric model for the mediator conditional density is correctly specified. In
Section 8, we describe a novel double robust sensitivity analysis framework to as-
sess the impact on inferences about the natural direct effect, of a departure from
the ignorability assumption of the mediator variable. We conclude with a brief
discussion.
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2. The nonparametric mediation functional.

2.1. Identification. Suppose i.i.d. dataon O = (Y, E, M, X) is collected for n
subjects. Recall that Y is an outcome of interest, E is a binary exposure variable, M
is a mediator variable with support S, known to occur subsequently to £ and prior
to Y and X is a vector of pre-exposure variables with support X that confound
the association between (E, M) and Y. The overarching goal of this paper is to
provide some theory of inference about the fundamental functional of mediation
analysis which Judea Pearl calls “the mediation causal formula” [Pearl (2011)] and
which, expressed on the mean scale, is

90=/ EYIE=1,M=m,X =x)
SxX

X fmex(mE=0,X=x)fx(x)du(m, x),

fmE,x and fx are respectively the conditional density of the mediator M given
(E, X) and the density of X, and u is a dominating measure for the distribution of
(M, X). Hereafter, to keep with standard statistical parlance, we shall simply refer
to Gy as the “mediation functional” or “M-functional” since it is formally a func-
tional on the nonparametric statistical model Mponpar = {Fo (+) : Fo unrestricted}
of all regular laws F of the observed data O that satisfy the positivity assump-
tion given below; that is, 6y = 60(Fo) : Myonpar — R, with R the real line. The
functional 0y is of keen interest here because it arises in the estimation of natural
direct and indirect effects as we describe next. To do so, we make the consistency
assumption.
Consistency:

2

if E=e, then M, = M w.p.l and
itE=eand M =m, thenY, , =Y w.p.l.

In addition, we adopt the sequential ignorability assumption of Imai, Keele and
Tingley (2010) which states that for e, ¢’ € {0, 1}.
Sequential ignorability:

{Ye’,m’ Me} A E|X7
Yy, L MIE =e, X,

where A 1L B|C states that A is independent of B given C; paired with the fol-
lowing:
Positivity:
fme x(mlE, X) >0 w.p.l foreachm €S and
fEIx(e]X) >0 w.p.1 for each e € {0, 1}.
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Then, under the consistency, sequential ignorability and positivity assumptions,
Imai, Keele and Tingley (2010) showed that

0o =E(Y1,m,) and

5eE/E(Y|E=€,X=x)fX(X)dM(X)
X

3) ://E(YlE:e,M:m,X:x)

SxX
X fue,x(mE=e, X =x) fx(x)du(m, x)
ZE(Y€)=E(YE,ML;)5 e=0’ 1’

so that E(Y7, ) and E(Y,), e =0, 1, are identified from the observed data, and so
is the mean natural direct effect E(Y7, ) — E(Yo) = 6y — 6o and the mean natural
indirect effect E(Y1) — E(Y1,p,) = 81 — 6p. For binary Y, one might alternatively
consider the natural direct effect on the risk ratio scale E(Y a,)/E(Yo) = 6o/d0
or on the odds ratio scale {IE(Y7 s,)E(1 — Yo)}/{E(l — Y1, m)E(Yo)} = {60(1 —
80)}/{80(1 — 6p)} and similarly defined natural indirect effects on the risk ratio
and odds ratio scales. It is instructive to contrast the expression (2) for E(Y1 )
with the expression (3) for e = 1 corresponding to [E(Y}), and to note that the two
expressions bare a striking resemblance except the density of the mediator in the
first expression conditions on the unexposed (with £ = 0), whereas in the sec-
ond expression, the mediator density is conditional on the exposed (with E = 1).
As we demonstrate below, this subtle difference has remarkable implications for
inference.

Pearl (2001) was the first to derive the M-functional 6y = E(Y] ) under a
different set of assumptions. Others have since contributed alternative sets of iden-
tifying assumptions. In this paper, we have chosen to work under the sequential
ignorability assumption of Imai, Keele and Yamamoto (2010), Imai, Keele and
Tingley (2010), but note that alternative related assumptions exist in the literature
[Robins and Greenland (1992), Pearl (2001), van der Laan and Petersen (2005),
Hafeman and Vanderweele (2011)]; however, we note that Robins and Richardson
(2012) disagree with the label “sequential ignorability” because its terminology
has previously carried a different interpretation in the literature. Nonetheless, the
assumption entails two ignorability-like assumptions that are made sequentially.
First, given the observed pre-exposure confounders, the exposure assignment is
assumed to be ignorable, that is, statistically independent of potential outcomes
and potential mediators. The second part of the assumption states that the mediator
is ignorable given the observed exposure and pre-exposure confounders. Specifi-
cally, the second part of the sequential ignorability assumption is conditional on
the observed value of the ignorable treatment and the observed pretreatment con-
founders. We note that the second part of the sequential ignorability assumption is
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particularly strong and must be made with care. This is partly because it is always
possible that there might be unobserved variables that confound the relationship
between the outcome and the mediator variables, even upon conditioning on the
observed exposure and covariates. Furthermore, the confounders X must all be
pre-exposure variables; that is, they must precede E. In fact, Avin, Shpitser and
Pearl (2005) proved that without additional assumptions, one cannot identify nat-
ural direct and indirect effects if there are confounding variables that are affected
by the exposure, even if such variables are observed by the investigator [also see
Tchetgen Tchetgen and VanderWeele (2012)]. This implies that, similarly to the
ignorability of the exposure in observational studies, ignorability of the mediator
cannot be established with certainty, even after collecting as many pre-exposure
confounders as possible. Furthermore, as Robins and Richardson (2012) point out,
whereas the first part of the sequential ignorability assumption could, in princi-
ple, be enforced in a randomized study, by randomizing E within levels of X;
the second part of the sequential ignorability assumption cannot similarly be en-
forced experimentally, even by randomization. And thus, for this latter assumption
to hold, one must entirely rely on expert knowledge about the mechanism under
study. For this reason, it will be crucial in practice to supplement mediation analy-
ses with a sensitivity analysis that accurately quantifies the degree to which results
are robust to a potential violation of the sequential ignorability assumption. Later
in the paper, we develop a variety of sensitivity analysis techniques that allow the
analyst to quantify the degree to which his or her mediation analysis results are
robust to a potential violation of the sequential ignorability assumption.

2.2. Semiparametric efficiency bounds for Myonpar- In this section, we derive
the efficient influence function for the M-functional 6y in Monpar. This result is
then combined with the efficient influence function for the functional 8, [Robins,
Rotnitzky and Zhao (1994), Hahn (1998)] to obtain the efficient influence function
for the natural direct and indirect effects on the mean difference scale. Thus, in the
following, we shall use the efficient influence function Sgif’nonpar(ée) of &, which
is well known to be

I(E=¢)
JE1x(e]X)

where for e, e* € {0, 1}, we define

{Y - n(eve’ X)} +7’](€,€, X) +8€a

n(e, e, X) = /SE(Y'X’ M=m, E =e) fup.x(m|E = ¢*, X) dp(m),

sothat n(e,e, X) =E(Y|X,E =e¢),e=0,1.
The following theorem is proved in the Appendix.

THEOREM 1. Under the consistency, sequential ignorability and positivity as-
sumptions, the efficient influence function of the M-functional 6y in model Myonpar
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is given by
eff,nonpar
Ser " (G

zsg(ff,nonpar(o; 90)
_ HE=1fupx(ME=0,X)
FEix(UX) fmex(M|E =1, X)
I(E=0)

+— “(EYIX,M,E=1)—n(1,0,X)}+n(1,0, X) — 6,
fE|X(0|X){ (Y| ) —n( )+ n( ) — 6o

and the efficient influence function of the natural direct and indirect effects on the
mean difference scale in model Monpar are respectively given by

{Y —EY|X,M,E=1)}

SxpE " (6. 80)
= sxpE T (0 60, 80)
_ Sg ;.f,nonpar (0o) — S;gf,nonpar (80)
_ HE=1}fme x(ME=0,X)
fEix (X)) fmex(MIE =1, X)
1(E =0)
fE1x (01X)
+n(1,0, X) —n(0,0, X) — 6 + do,

(Y -EY|X,M,E=1)}
{(EY|X,M,E=1)—Y —n(1,0,X)+n(0,0, X)}
and

eff, nonpar
Saig (81, 6)

eff,nonpar , .
= SNIE (0; 81, 60)

fEx(11X)
_ SmexMIE=0.0 4 gy pp = 1)}}
fmEexME=1,X)
_LE=0 myix, M, E=1) = 51,0, X))
JEIx(01X)

Thus, the semiparametric efficiency bound for estimating the natural direct
and the natural indirect effects in Muponpar are respectively given by

E{SSE™ (00, 80)2) " and E{ST """ (81, 60)%) "
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Although not presented here, Theorem 1 is easily extended to obtain the ef-
ficient influence functions and the respective semiparametric efficiency bounds
for the direct and indirect effects on the risk ratio and the odds ratio scales by
a straightforward application of the delta method. An important implication of
the theorem is that all regular and asymptotically linear (RAL) estimators of 6y,
81 — 6o and 6y — 8o in model Monpar share the common influence functions

Sg(ff’nonpar(eo), S;f]t)’goip (0, 89) and S;flt]’inonp (81, 6p), respectively. Specifically,
any RAL estimator 6y of the M-functional 6y in model Mponpar, shares a com-
mon asymptotic expansion,

n72@ — 60) = n'/2P, S5 " (B0) + 0p (1),

where P,[-]=n"! >:[-];. To illustrate this property of nonparametric RAL es-
timators, and as a motivation to multiply robust estimation when nonparametric
methods are not appropriate, we provide a detailed study of three nonparamet-
ric strategies for estimating the M-functional in a simple yet instructive setting in
which X and M are both discrete with finite support.

Strategy 1: The first strategy entails obtaining the maximum likelihood estima-
tor upon evaluating the M-functional under the empirical law of the observed data,

9" =P, Y E(Y|E=1,M=m,X)fugx(mE=0,X),

meS

where fy| E.M.x and fM| E,x are the empirical probablllty mass functions, and
E(Y|E =e, M =m, X = x) is the expectation of Y under fy‘E M.X-

Strategy 2: The second strategy is based on the following alternative represen-
tation of the M-functional:

/ E(Y|E=1,M=m,X =x)dFyz(m|E =0, X = x)dFx(x)
SxX

! I(e=0
:Z// E(Y|E=1,M=m,X:x)m(("’TXix)dFM,E,X(m,e,x)

e=0g5xx
I(E=0
. { (E=0)
JE|x (0] X)
Thus, our second estimator takes the form

{ I(E=0) -
"| fe1x (01X)

IE(Y|E:1,M,X)}.

0;° = E(Y|E=1,M, X)},

with fE| x the empirical estimate of the probability mass function fg|x.
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Strategy 3: The last strategy is based on a third representation of the M-
functional

/ EYIE=1,M=m,X=x)dFyg(mE=0,X=x)dFx(x)
SxX

: Ie=1) fuex(M|E=0,X)
- : dF e,

=E{Y I(E=1) fmex(M|E=0, X)}
fEx(EIX)  fuex(M|E, X) |

Thus, our third estimator takes the form

{ HE=1) fMLE,X(M|E=o,X>}
"I feix(EIX)  fue.x(M|E, X)

At first glance the three estimators 5"“‘ é\oye and §y ™ might appear to be dis-
tinct; however, we observe that prov1ded the empmcal distribution function F =
Fy|E M. X X FM|E x X FE|X X FX satlsﬁes the p051t1V1ty assumption, and thus
Fo € Mponpar, then actually 9 9 0 = GO(F o) since the three repre-
sentations agree on the nonparametrlc model Monpar. Therefore we may con-

clude that these three estimators are in fact asymptotically efficient in Myonpar
eff,nonpar

=

with common influence function S (6p). Furthermore, from this observa-
tion, one further concludes that (asymptotic) inferences obtained using one of the
three representations are identical to inferences using either of the other two rep-
resentations.

At this juncture, we note that the above equivalence no longer applies when
as we have previously argued will likely occur in practice, (M, X) contains 3 or
more continuous variables and/or X is too high dimensional for models to be satu-
rated or nonparametric, and thus parametric (or semiparametric) models are spec-
ified for dimension reduction. Specifically, for such settings, we observe that three
distinct modeling strategies are available. Under the first strategy, the estimator
é‘y”‘ P s obtained é\oym using parametric model estimates ]Epar(Y |E, M, X) and

f;\%‘% x(m|E, X) instead of their nonparametric counterparts; similarly under the

second strategy, the estimator '9\0ye’par is obtained similarly to §0ye using estimates
of parametric models Epar Y|E=1,M =m, X) and ]‘;Epf ;( (e|X) and finally, un-
der the third strategy, @fm’par is obtained similarly to GAOem using fg’f}r( (e|X) and
f MI £.x(m|E, X). Then, it follows that Qym P4 is CAN under the submodel M,,
but is generally inconsistent if either pa‘r(Y |E, M, X) or fM| g x(m|E, X) fails

to be consistent. Similarly, @Bye’par and 90 P4 are, respectively, CAN under the
submodels M, and M, but each estimator generally fails to be consistent out-
side of the corresponding submodel. In the next section, we propose an approach
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that produces a triply robust estimator by combining the above three strategies so
that only one of models M,, M, and M, needs to be valid for consistency of the
estimator.

2.3. Triply robust estimation. The proposed triply robust estimator Omply

solves
-oeff,nonpar Atriply
P, S5O (@, =

where Seff "OPH@) is equal to Seff "M (9) evaluated at {EPU(Y|E, M, X),
fﬁsall%x(mwv X),fﬁffg(elX)},thatls,

HE =1} fyip x(M|E =0, X)
FExQUIX) fifle x(MIE =1, X)

é\otriply P, |:

x {Y —EP"(Y|X, M, E =1)}
I(E 0)
fg’f‘;mm

“4)
{EP"(Y|X,M,E =1)

—AP(L,0, X)) + AP (1,0, X)},
is CAN in model M ypion = My U Mp U M, where
7P (e, e*, X) :/SEPM(HX M=m,E _e)fAI;TE y(m|E =e*, X)du(m).

In the next theorem, the estimator in the above display is combined with a dou-

bly robust estimator §, 5 doubly of §. [see van der Laan and Robins (2003) or Tsiatis
(2006)], to obtain multiply robust estimators of natural direct and indirect effects,
where

~ I(E=e¢)

slowbly =, [ Y =P (e, e, X)} + 7P (e, e, X)]
‘ fRx(elX)

To state the result, we set EP¥ (Y| X, M, E) = EP*(Y|X, M, E; B,) = g ' (BI'h(X,

M, E)), where g is a known link function, and % is a user specified function of

(X, M, E) so that EP"(Y|X, M, E; By) = g—l(ﬁfh(x, M, E)) entails a working

regression model for E(Y | X, M, E), and Ey solves the estimating equation

0="Pu[Sy(B)]=Pu[h(X, M, E)(Y — g~ " (B h(X. M, E)))].
Similarly, we set prrE x(m|E, X) = fpzllg x(m|E, X; B\m’)\for f,STIE’X(mIE, X;
Bm), a parametric model for the density of [M|E, X] with 8,,, solving

0= B[S, (Bl = Ba | 5 log £ (MIE.X: )|

" a5,
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and we set fg’f;(dX )= f (eIX ,Be) for f P x (el X; Be), a parametric model for
the density of [ E|X] with ﬁe solving

0=P,[S, (B)] = log £ (E1X: B |

“ 35

THEOREM 2. Suppose that the assumptions of Theorem 1 hold, and that the
regularity conditions stated in the Appendix hold and that B,,, B. and By are vari-
ation independent.

(i) Mediation functional: Then, \/n (égriply — 0) is RAL under model M ynion
with influence function
533110"(90, :8*)
E{Seff nonpar(e0 ,8)}
opT
and thus converges in distribution to a N (0, X¢,), where
S (B0, B*) = E(S5M" (6o, B*)?),
with BT = (B, B, B)) and Sp(B) = (S} (Bm), SI (Be), ST (By)T, and with B*
denoting the probabzltty limit of the estimator = (,BZ , EZ , ByT )T,

(ii) Natural direct effect: Similarly, /n (Omply — ggoubly — (6g — b0)) is
RAL under model Mynion with influence function Sﬁ%%“(@o, 30, B*) defined as
Sggm(eo B*) with Sﬁlf]f)gonpar(%, 80, B*) replacing Seff NPT 9y, B*), and asymp-
totic variance Xg,—s,(81, 6o, B*) defined accordmgly

(iii) Natural indirect effect: Similarly, /n (0, 3 doubly Qmply (61 — 6y)) is
RAL under model Mynion with influence function Sﬁﬁ‘g’“(&l 6o, B*) defined as

SN (Go, B*) with Sygir " (81, 6. B*) replacing Sg """ (8o, %), and asymp-

totlc variance Xs,—g,(81, 6o, B*) defined accordmgly
1 1 1 1 1
(IV) eotnp y’ eomp y 8(;10111) y and 5 “adoubly Gérlp y

= g """ (00, B) —

E{aSﬁ(ﬂ)
}3*

-1
] S,

are semiparametric locally
efficient in the sense that they are RAL under model Mpnion and respectively
achieve the semiparametric efficiency bound for 0y, 6y — &9, and §1 — 6y un-
der model Mynion at the intersection submodel M, N Mp N M., with re-

spective efficient influence functions: Seff OMPAL g, B), S;If]fjgonpar(é’o, 80, B*) and
eff nonpar
Saie (01,60, BY).

Empirical versions of Xg,_s,(51, 60, B*) and Xs,_g,(51, 6o, B*) are easily ob-
tained, and the corresponding Wald-type confidence intervals can be used to make
formal inferences about natural direct and indirect effects. It is also straight-
forward to extend the approach to the risk ratio and odds ratio scales for bi-
nary Y. By a theorem due to Robins and Rotnitzky (2001), part (iv) of the

Lo Striply ptriply  sdoubl
theorem implies that when all models are correct, Qonpy Qonpy 5 oY and
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gld oubly _ 0, triply are semiparametric efficient in model M ponpar at the intersection
submodel M, N My N M.,.

3. A simulation study of estimators of direct effect. In this section, we re-
port a simulation study which illustrates the finite sample performance of the var-
ious estimators described in previous sections. We generated 1000 samples of size
n = 600, 1000 from the following model:

(Model.X) X ~ Bernoulli(0.4); [X3|X ]~ Bernoulli(0.3 + 0.4X);
[X3]1X1, X2]~—0.024 —0.4X; +0.4X, + N(O, 1);

(Model.E) [E|X1, X2, X3] ~ Bernoulli([1 4+ exp{—(0.4 + X; — X, + 0.1X3 —
15X X3))7h;

(Model.M) [M|E, X1, X2, X3] ~ Bernoulli([1 + exp{—(0.5 — X1 +0.5X,
—0.9X3+E — 1.5X:X3)17Y);

(Model.Y) [Y|M, E, X1, X2, X3] ~ 1 +0.2X; +0.3X» + 1.4X;3
—25E —-35M+5EM + N(0,1).

We then evaluated the performance of the following four estimators of the nat-

. ~a ~doubly = ~doubly = ~doubl ~triply  -a~doubl
ural direct effect@ —80°u Y 9ye—80°u Y 9ym d oubly d@onpy—Boou v,

Note that the doubly robust estimator 8 was used throughout to estimate
80 = E(Yp). To assess the impact of modehng error, we evaluated these estimators
in four separate scenarios. In the first scenario, all models were correctly speci-
fied, whereas the remaining three scenarios respectively mis-specified only one of
Model E, Model M and Model Y. In order to mis-specify Model E and Model M,
we respectively left out the X X3 interaction when fitting each model, and we
assumed an incorrect log—log link function. The incorrect model for ¥ simply as-
sumed no E M interaction.

Tables 1 and 2 summarize the simulation results which largely agree with the
theory developed in the previous sections. Mainly, all proposed estimators per-
formed well at both moderate and large sample sizes in the absence of modeling

error. Furthermore, under the partially mis-specified model in which Model.Y was
§doubly: ang é\oym — 3\51 OUbly, showed significant

bias irrespective of sample size, while 90 — 3\(;1 Ul nd é*otrlply — 3(? Ul both per-
formed well. Similarly when Model M was incorrect, the estimators 506“1 — 53 oubly
and 9ym — 8d°umy resulted in large bias, when compared to the relatively small
bias of GOye — Sdoubly and é\omply — 3\61 oubly. Finally, mis-specifying Model E lead
to estimators Goye — gg by and 506“1 — 361 Y that were significantly more biased
than the estimators 6, g™ — 5o Sdoubly ang /Q\Otnply — 3(? oubly Interestingly, the efficiency
loss of the multiply robust estlmator remained relatively small when compared to
the consistent nonrobust estimator under the various scenarios, suggesting that, at
least in this simulation study, the benefits of robustness appear to outweigh the loss
of efficiency.

oly

incorrect, both estimators, de -9
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TABLE 1
Simulation results n = 600

Mym Mye Mem Mynion
All correct bias 0.002 0.008 0.002 0.005
MC s.e* 0.005 0.007 0.006 0.006
Y wrong bias —0.500 —0.500 0.0001 0.004
MC s.e. 0.005 0.006 0.006 0.006
M wrong bias 0.038 0.008 —0.054 0.003
MC s.e. 0.005 0.007 0.006 0.006
E wrong bias 0.003 0.027 0.059 0.004
MC s.e. 0.005 0.005 0.005 0.005

~ym adoubl ~ye  adoubl o~ <doubl ~tripl doubl
Mym: Oy — 8 y;/\/lye:@()y -4 y;Mem:Q(f'm—(SO y§Munion190 py_ao Y.

*Monte Carlo standard error.

4. A data application. In this section, we illustrate the methods in a real
world application from the psychology literature on mediation. We re-analyze data
from The Job Search Intervention Study (JOBS II) also analyzed by Imai, Keele
and Tingley (2010). JOBS 1I is a randomized field experiment that investigates
the efficacy of a job training intervention on unemployed workers. The program
is designed not only to increase reemployment among the unemployed but also
to enhance the mental health of the job seekers. In the study, 1801 unemployed
workers received a pre-screening questionnaire and were then randomly assigned
to treatment and control groups. The treatment group with £ = 1 participated in
job skills workshops in which participants learned job search skills and coping
strategies for dealing with setbacks in the job search process. The control group
with E = 0 received a booklet describing job search tips. An analysis considers

TABLE 2
Simulation results n = 1000

Mym Mye Mem Munion
All correct bias 0.001 0.009 0.001 0.001
MC s.e.* 0.004 0.005 0.004 0.004
Y wrong bias —0.484 —0.484 0.003 0.003
MC s.e. 0.004 0.004 0.004 0.004
M wrong bias 0.136 —0.008 0.056 0.01
MC s.e. 0.004 0.05 0.004 0.01
E wrong bias 0.001 —0.024 —0.054 0.001
MC s.e. 0.004 0.004 0.004 0.004

~

. aym  ~doubly . aye odoubly, A doubly . atriply  ~doubly
Mym: 00 — 80 ; Mye: 90 — 80 ; Mem: Q(fm — 80 ; Munion : 90 — 80 .

*Monte Carlo standard error.
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TABLE 3
Estimated causal effects of interest using the job search intervention study data

Mym Mye Mem M union

Direct effect Estimate —0.0310 —0.0310 0.0280 —0.0409
s.e.* 0.0124 0.0620 0.0465 0.0217

Indirect effect Estimate —0.0160 —0.0160 —0.0750 —0.0070
s.e.® 0.0372 0.0620 0.0434 0.0217

*Nonparametric bootstrap standard errors.

a continuous outcome measure Y of depressive symptoms based on the Hopkins
Symptom Checklist [Imai, Keele and Tingley (2010)]. In the JOBS II data, a con-
tinuous measure of job search self-efficacy represented the hypothesized medi-
ating variable M. The data also included baseline covariates X measured before
administering the treatment including: pretreatment level of depression, education,
income, race, marital status, age, sex, previous occupation, and the level of eco-
nomic hardship.

Note that by randomization, the density of [ E|X] was known by design not to
depend on covariates, and therefore its estimation is not prone to modeling error.
The continuous outcome and mediator variables were modeled using linear regres-
sion models with Gaussian error, with main effects for (E, M, X) included in the
outcome regression and main effects for (£, X) included in the mediator regres-

. . . L ~ye 7~ Atripl,
sion. Table 3 summarizes results obtained using 6;™, Oye, Goym and Qonp ¥ together

with :S;d OUbly, e =0, 1, to estimate the direct and indirect effects of the treatment.

Point estimates of both natural direct and indirect effects closely agreed under
models My, and My, and also agreed with the results of Imai, Keele and Tin-
gley (2010). We should note that inferences under our choice of My, are actually
robust to the normality assumption and, as in Imai, Keele and Tingley (2010), only
require that the mean structure of [Y|E, M, X] and [M|E, X] is correct. In con-
trast, inferences under model M., require a correct model for the mediator den-
sity. This distinction may partly explain the apparent disagreement in the estimated
direct effect under M, when compared to the other methods, also suggesting that
the Gaussian error model for M is not entirely appropriate. The multiply robust
estimate of the natural direct effect is consistent with estimates obtained under
models My, and Mye, and is statistically significant, suggesting that the inter-
vention may have beneficial direct effects on participants’ mental health; while
the multiply robust approach suggests a much smaller indirect effect than all other
estimators although none achieved statistical significance.

5. Improving the stability of @J“P‘y
é\triply

0

when weights are highly variable. The

triply robust estimator which involves inverse probability weights for the ex-
posure and mediator variables, clearly relies on the positivity assumption, for good
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finite sample performance. But as recently shown by Kang and Schafer (2007) in
the context of missing outcome data, a practical violation of positivity in data anal-
ysis can severely compromise inferences based on such methodology; although
their analysis did not directly concern the M-functional 8. Thus, it is crucial to
critically examine, as we do below in a simulation study, the extent to which the
various estimators discussed in this paper are susceptible to a practical violation
of the positivity assumption, and to consider possible approaches to improve the
finite sample performance of these estimators in the context of highly variable em-
pirical weights. Methodology to enhance the finite sample behavior of & doubly 4
well studied in the literature and is not considered here; see, for example, Robins
et al. (2007), Cao, Tsiatis and Davidian (2009) and Tan (2010). We first describe
an approach to enhance the finite sample performance of QAomply, particularly in
the presence of highly variable empirical weights. To focus the exposition, we
only consider the case of a continuous Y and a binary M, but in principle, the ap-
proach could be generalized to a more general setting. The proposed enhancement
involves two modifications.

The first modification adapts to the mediation context, an approach developed
for the missing data context (and for the estimation of total effects) in Robins et al.
(2007). The basic guiding principle of the approach is to carefully modify the
estimation of the outcome and mediator models in order to ensure that the triply
robust estimator given by equation (4) has the simple M-functional representation

By ™ = a7 (1,0, X)),

where 77P¥ (1,0, X) is carefully estimated to ensure multiple robustness. The rea-
son for favoring an estimator with the above representation is that it is expected
to be more robust to practical positivity violation because it does not directly de-
pend on inverse probability weights. However, as we show next, to ensure multiple
robustness, estimation of nP*" involves inverse probability weights, and therefore,
QAomply’T indirectly depends on such weights. Our strategy involves a second step to
minimize the potential impact of this indirect dependence on weights.

In the following, we assume, to simplify the exposition, that a simple linear
model is used:

EP(Y|X, M, E = 1) =EP"(Y|X, M, 1; By) =[1, X", M1B,.
Then, similar to Robins et al. (2007), one can verify that the above M-functional
representation of a triply robust estimator is obtained by estimating f’ AI/;‘TIE yM|E =
0, X) with f},}‘liyx (M|E =0, X) obtained via weighted logistic regression in the
unexposed-only, with weight ]?Epsr( (0|X)~!; and by estimating EP" (Y |X, M, E =
1) using weighted OLS of Y on (M, X) in the exposed-only, with weight

fA‘}TéTX(MIE =0, X){]?Epf}r((llX)f},ﬁgX(M|E =1, X))}
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provided that both working models include an intercept. The second enhancement
to minimize undue influence of variable weights on the M-functional estimator,

entails using f;pla ;(’T in the previous step instead of ]?Epgr(, where

logit FEY " (11X) = logit F (11X) + €
with
~ Zpar ~par
Ci = —log(1 = Pa(E)) + log(P, [ E FEY 01X)/ F (1101).

This second modification ensures a certain boundedness property of inverse
propensity score-weighting. Specifically, for any bounded function R = r (Y, M)
of Y and M ; consider for a moment the goal of estimating the counterfactual mean
E{r (Y1, My)}; then it is well known that even though R is bounded, the simple
inverse-probability weighting estimator P, { E Rﬁpﬁr{(l |X)~!} could easily be un-
bounded, particularly if positivity is practically violated. In contrast, as we show
next, the estimator P, { E Rﬁf}r(j(l | X Yy~ 1Y s generally bounded. To see why, note
that

PAERFEY (X)) = B ERFEY 010 FRY T (11X) ™'} + Pu{R)
{ E R 01X) FE% (11X) ! (I—P(E))}
U PLLEFE O1X) R (11X)71] "
+ Py {R}

which is bounded since the second term is bounded, and the first term is a convex
combination of bounded variables, and therefore is also bounded. Furthermore,
IPn[EfglarX’T(OlX)]?f;T(l 1X)~ 1 converges in probability to (1 — E(E)) provided
that f})& converges to fg|x, ensuring that the expression in the above display is
consistent for E{r (Y7, M1)}. The nonparametric bootstrap is most convenient for
inference using ﬁpfi}r(T

In the next section, we study, in the context of highly variable weights, the
behavior Qf our previous estimators of 6y, together with that of the enhanced esti-
mators GA(;HPIY’T’] =P, {77 (1,0, X)}, j = 1, 2, where P21 is constructed as

: ho FPar ~par, 1,2 Zpar,
described above using fE|X’ and 7P uses fE|X .

6. A simulation study where positivity is practically violated. We adapted
to the mediation setting, the missing data simulation scenarios in Kang and Schafer
(2007) which were specifically designed so that, when misspecified, working mod-
els are nonetheless nearly correct, but yield highly variable inverse probability
weights with practical positivity violation in the context of estimation. We gener-
ated 1000 samples of size n = 200, 1000 from the following model:

(Model.X) Z = Z1, Za, Z3, Z4 "= N (0, 1); X1 = exp(Z1/2);
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Xo=Zy/{1 +exp(Z))} + 10; X3 = (Z1Z3/25 + 0.6)3
and X4y = (Zr+ Z4+ 20)2, so that Z may be expressed in terms of X.
(Model.E) [E|X1, X2, X3] ~ Bernoulli([1 + exp{(Z; —0.5Z> + 0.25Z3
+0.1Z4)}17h;
(Model.M) [M|E, X1, X2, X3] ~ Bernoulli([1 4+ exp{—(0.5—-Z; +0.5Z;
—0.9Z3+ Z4 — 1.5E)}17Y);
Model.Y) [Y|M,E, X, X, X3]~2104+27.4Z +13.7Z3+ 13.7Z;3
+M+ E+N(,1).

Correctly specified working models were thus achieved when an additive linear
regression of ¥ on Z, a logistic regression of M with linear predictor additive in
Z and E and a logistic regression of E with linear predictor additive in the Z,
respectively. Incorrect specification involved fitting these models with X replac-
ing Z, which produces higly variable weights. For instance, an estimated propen-
sity score as small as 5.5 x 10733 occurred in the simulation study reflecting an
effective violation of positivity; similarly, a mediator predicted probability as small
as 3 x 10720 also occured in the simulation study.

. . ~ym ~ye “em Atriply ~triply,t,1
Tables 4 and 5 summarize simulation results for Goy m, 6 ye, Boem, GOHP Y Gonp yi

and é\omply "2 When all three working models are correct, all estimators perform

well in terms of bias, but there are clear differences between the estimators in

TABLE 4
Simulation results n = 200

Mym Mye Mem Munion Mz'lillion Mz.lilzion

All correct bias 0.001 —-0.207 0.498 0.003 —0.08 —0.079
MC se™ 2614 8.333 20.214 2.6151 2.6155 2.6153

Y wrong bias —-9.87 —10.221 0.498 —-0.147 —-0.502 —0.202
MC s.e. 3.322  10.539 20.214 4.461 3.177 3.141

M wrong bias —0.033 —-0.207 —9.497 0.001 0.046 0.046
MC s.e. 2.613 8.333 15.376 2.615 2.614 2.614

E wrong bias —0.001 0.132  210.450 0.066 —0.089 —0.087
MC s.e. 2.614 4.373  2336.92 4.891 2.619 2.615

Y, E wrong bias —9.869 —13.535 210.454 —33.090 —1.4609 —2.487
MC s.e. 3.322 5.256 233692 375.334 5.187 4.245

Y, M wrong bias —9.355 —10.220 —9.496 —4.346 3579 —-3.579
MC s.e. 3.224  10.539 15.376 3.912 3.480 3.441

E, M wrong bias —0.032 0.132  205.060 0.088 —0.001 —3.77x107°
MC s.e. 2.614 4.373  2289.788 4.763 2.623 2.618

Y, E, M wrong bias —9.355 —13.535  205.060 —37.757 —4.223 —5.253

MC s.e. 3.224 5.356 2289.78  379.122 5.835 4.828

. aym, .pve. . Jem. L ptiply, .1 ptriply, .1 +,2 | Ztriply,T,2
Mym: 05 s Mye: 85 5 Mem: 05™; Munion: 6y s Mimion: 6o s Minion: 9o .

*Monte Carlo standard error.
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TABLE 5
Simulation results n = 1000

Mym Mye Mem Munion MT’ M ¥ ’

lll’llOl’l llnlOl’l
All correct bias 0.0324 0.004 —0.106 0.034  —0.047 —0.047
MCse* 1.136 3.06  6.490 1.136 1.137  1.137
Y wrong bias —10.256 —10.305 —0.106 0.063  —0.147 —0.148
MCse. 1675 4.005 6.490 1.769 1419  1.407
M wrong bias —5x 107% 0.004 —9.706 0.033 0.076  0.076
MCse. 1.136 3.060 5.395 1.137 1.137  1.135
E wrong bias 0.032 0.135 2.4x10° 1908.76 —0.038 —0.030
MCse. 1136 1.794 4.3 x 107 53911.63 1.400  1.242
Y,E wrong  Dbias —10.256 —14.011 24x10° —1.1x10° 6201 1.024
MCse.  1.675 2.386 4.3 x 107 2.1x107 9406  5.097
Y, M wrong  bias —9.705 —10.305 —9.706 —4216  —3.555 —3.557
MCse. 1.626 4.004 5.395 1.667 1.527  1.510

E,M wrong  Dbias 57x107%  0.135 2.5x10° 2034.83 0.0539  0.0599
MCse. 1136 1.794 4.6 x 107 56090.10 1429  1.272
Y, E, M wrong bias —9.075 —14.011 25x10® —12x10° 4.659 —0.755
MCse. 1.626 2386 4.6 x 107 22x107 10.121  5.910

~ym ~ye e ~tripl 1 trllTl 2 tr1]T2
./\/lymzeoy ;Myezé‘oy s Mem: 05™; Munion: 6, Py, MT % Py ./\/lJf % Py

unlon llIllOl‘l
*Monte Carlo standard error.

. ~ ly triply,t,1 ly,,2
terms of efficiency. In fact, Qoy 9mp Y Qomp Y1 and 9mp Y2 have compara-

ble efficiency for n = 200, 1000, but Gye, é\em is far more variable. Moreover,

~tiply Atriply. .1 ~riply, 1,2 .
under mis-specification of a single model, 6, riply , 0 iPy-T 1 and N "PY-T2 emain

nearly unbiased, and for the most part sgbstagtially more efﬁ01ent than the corre-
sponding consistent estimator in {6, mac, 6,™}. When at least two models are

~triply  Atriply, 1,1 ~triply, 1,2
X and 6

mis-specified, the multiply robust estimators 6, gen-

erally outperform the other estimators, although 6, g iply occasionally succumbs to
the unstable weights resulting in disastrous mean squared error; see Table 5 when
Model M and Model E are both incorrect. In contrast 9 griply. 1.2

triply, 7,1
n eorlpyT

generally improves

which generally outperforms 90 ¥ and for the most part Qmply 71

and éomply’ "2 appear to eliminate any possible deleterious impact of highly vari-

able weights.

7. A comparison to some existing estimators. In this section, we briefly
compare the proposed approach to some existing estimators in the literature. Per-
haps the most common approach for estimating direct and indirect effects when
Y is continuous uses a system of linear structural equations; whereby, a linear
structural equation for the outcome, given the exposure, the mediator and the con-
founders, is combined with a linear structural equation for the mediator, given
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the exposure and confounders, to produce an estimator of natural direct and in-
direct effects. The classical approach of Baron and Kenny (1986) is a particular
instance of this approach. In recent work, mainly motivated by Pearl’s mediation
functional, several authors [Imai, Keele and Tingley (2010), Imai, Keele and Ya-
mamoto (2010), Pearl (2011), VanderWeele (2009), Vanderweele and Vansteelandt
(2010)] have demonstrated how the simple linear structural equation approach gen-
eralizes to accommodate both, the presence of an interaction between exposure and
mediator variables, and a nonlinear link function, either in the regression model
for the outcome, or in the regression model for the mediator, or both. In fact, when
the effect of confounders is also modeled in such structural equations, inferences
based on the latter can be viewed as special instances of inferences obtained under
a particular specification of model M, for the outcome and the mediator densities.
And thus, as previously shown in the simulations, an estimator obtained under a
system of structural equations will generally fail to produce a consistent estimator
of natural direct and indirect effects when model M, is incorrect, whereas, by
using the proposed multiply robust estimator, valid inferences can be recovered
under the union model My U M, even if M, fails.

A notable improvement on the system of structural equations approach is the
double robust estimator of a natural direct effect due to van der Laan and Pe-
tersen (2005). Their estimator solves the estimating equation constructed using
an empirical version of Sg]gé\i‘i‘éggn (6o, 80) given in the online Appendix. They
show their estimator remains CAN in the larger submodel M, U M, and there-
fore, they can recover valid inferences even when the outcome model is incorrect,
provided both the exposure and mediator models are correct. Unfortunately, the
van der Laan estimator is still not entirely satisfactory because unlike the proposed
multiply robust estimator, it requires that the model for the mediator density is cor-
rect. Nonetheless, if the mediator model is correct, the authors establish that their
estimator achieves the efficiency bound for model M, U M, at the intersection
submodel M, N M, where all models are correct; and thus it is locally semipara-
metric efficient in M, U M_. Interestingly, as we report in the online supplement,
the semiparametric efficiency bounds for models M, U M. and M, U M} U M,
are distinct, because the density of the mediator variable is not ancillary for in-
ferences about the M-functional. Thus, any restriction placed on the mediator’s
conditional density can, when correct, produce improvements in efficiency. This is
in stark contrast with the role played by the density of the exposure variable, which
as in the estimation of the marginal causal effect, remains ancillary for inferences
about the M-functional and thus the efficiency bound for the latter is unaltered by
any additional information on the former [Robins, Rotnitzky and Zhao (1994)]. In
the online Appendix, we provide a general functional map that relates the efficient
influence function for the larger model M, U M} U M. to the efficient influence
for the smaller model M, U M, where the model for the mediator is either para-
metric or semiparametric. Our map is instructive because it makes explicit using
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simple geometric arguments, the information that is gained from increasing re-
strictions on the law of the mediator. In the online Appendix, we illustrate the map
by recovering the efficient influence function of van der Laan and Petersen in the
case of a singleton model (i.e., a known conditional density) for the mediator and
in the case of a parametric model for the mediator.

8. A semiparametric sensitivity analysis. We describe a semiparametric
sensitivity analysis framework to assess the extent to which a violation of the ig-
norability assumption for the mediator might alter inferences about natural direct
and indirect effects. Although only results for the natural direct effect are given
here, the extension for the indirect effect is easily deduced from the presentation.
Let

tle,m,x)=E[Y1wlE=e,M=m,X=x]—-E[Y|nw|E=e,M#*m, X =x],
then
Yom YL MIE =e, X,

that is, a violation of the ignorability assumption for the mediator variable, gener-
ally implies that

te,m,x)#0 for some (e, m, x).

Thus, we proceed as in Robins, Rotnitzky and Scharfstein (2000), and propose to
recover inferences by assuming the selection bias function ¢ (e, m, x) is known,
which encodes the magnitude and direction of the unmeasured confounding for
the mediator. In the following, the support of M, S is assumed to be finite. To
motivate the proposed approach, suppose for the moment that fy g x (M|E, X)
is known; then under the assumption that the exposure is ignorable given X, we
show in the Appendix that

E[Y1mIMy=m, X =x]
=E[Y1mlE=0,M=m, X =x]
=E[YIE=1,M=m,X=x]—t(1,m,x)(1 = fpe,x(mE=1,X =x))
+1(0,m, x)(1 — fuje.x(m|E =0, X =x)),
and therefore the M-functional is identified by

Y EEYIE=1,M=m X]— t(1,m,X)(1 = fuje.x(m|E =1,X))

meS
5 +t(0,m,X)(1—fM|E7X(m|E:O,X))}
X fme,x(m|E =0, X),
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which is equivalently represented as
[ HE =1} fme x(MIE =0, X)
JEix(X) fuex(M|E =1, X)
©6) < {Y —1(1, M, X)(1 = fue.x(m|E =1, X))

+t(0, M, X)(l — fM|E’X(M|E =0, X))}:|

Below, these two equivalent representations, (5) and (6), are carefully combined
to obtain a double robust estimator of the M-functional, assuming 7(-, -, ) is
known. A sensitivity analysis is then obtained by repeating this process and re-
porting inferences for each choice of #(-,-,-) in a finite set of user-specified
functions 7 = { (-, -, -): A} indexed by a finite dimensional parameter A with
to(-,+,-) € T corresponding to the unmeasured confounding assumption, that
is, fo(-, -, -) = 0. Throughout, the model fAF,}T% xCIE, X; B) for the probabil-
ity mass function of M is assumed to be correct. Thus, to implement the
sensitivity analysis, we develop a semiparametric estimator of the natural di-
rect effect in the union model M, U M., assuming #(-,-,-) =t+(-,-,-) for a
fixed A*. The proposed doubly robust estimator of the natural direct effect is
then given by 90 OUbly(k*) doubly where (Sd ubly
and

is as previously described,

HE =1} fyp x(M|E =0, X)
XX fi x(MIE =1, X)

é\odoubly ( )»*) _ |:

x {Y —EP"(Y|X, M,E=1)}+'ﬁp“(1,0,X;/\*)]
with
7P (1,0, X 1)
=Y ({BP(Y|X. M =m, E=1)+1,-(0,m, X)(1 = fijj x(m|E =0, X))

meS

— e (Lm, X)(1 = faflp x m|E =1, X))}
x futle.x(mE=0,X).
Our sensitivity analysis then entails reporting the set {90 doubly ) — dOUbly vy
(and the associated confidence intervals), which summarizes how sensmve infer-
ences are to a deviation from the ignorability assumption A = 0. A theoretical jus-
tification for the approach is given by the following formal result, which is proved
in the supplemental Appendix.
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THEOREM 4. Suppose t(-,-, ) = t,*(-, -, -); then under the consistency, posi-

.. . . .7 . A~ 1
tivity assumptions and the ignorability assumption for the exposure, QOdOUb Y —
I ly . . . .
861 oubly ;< 4 CAN estimator of the natural direct effect in M, U M_.

The influence function of godoubly (1*) is provided in the Appendix, and can be

used to construct a corresponding confidence interval.

It is important to note that the sensitivity analysis technique presented here
differs in crucial ways from previous techniques developed by Hafeman (2008),
VanderWeele (2010) and Imai, Keele and Yamamoto (2010). First, the methodol-
ogy of VanderWeele (2010) postulates the existence of an unmeasured confounder
U (possibly vector valued) which, when included in X, recovers the sequential
ignorability assumption. The sensitivity analysis then requires specification of a
sensitivity parameter encoding the effect of the unmeasured confounder on the
outcome within levels of (E, X, M), and another parameter for the effect of the
exposure on the density of the unmeasured confounder given (X, M). This is a
daunting task which renders the approach generally impractical, except perhaps
in the simple setting where it is reasonable to postulate a single binary con-
founder is unobserved, and one is willing to make further simplifying assump-
tions about the required sensitivity parameters [VanderWeele (2010)]. In compar-
ison, the proposed approach circumvents this difficulty by concisely encoding a
violation of the ignorability assumption for the mediator through the selection
bias function #, (e, m, x). Thus the approach makes no reference and thus is ag-
nostic about the existence, dimension and nature of unmeasured confounders U.
Furthermore, in our proposal, the ignorability violation can arise due to an un-
measured confounder of the mediator-outcome relationship that is also an effect
of the exposure variable, a setting not handled by the technique of VanderWeele
(2010). The method of Hafeman (2008) which is restricted to binary data, shares
some of the limitations given above. Finally, in contrast with our proposed dou-
ble robust approach, a coherent implementation of the sensitivity analysis tech-
niques of Imai, Keele and Yamamoto (2010), Imai, Keele and Tingley (2010) and
VanderWeele (2010) rely on correct specification of all posited models. We refer
the reader to VanderWeele (2010) for further discussion of Hafeman (2008) and
Imai, Keele and Yamamoto (2010).

9. Discussion. The main contribution of the current paper is a theoretically
rigorous yet practically relevant semiparametric framework for making inferences
about natural direct and indirect causal effects in the presence of a large number of
confounding factors. Semiparametric efficiency bounds are given for the nonpara-
metric model, and multiply robust locally efficient estimators are developed that
can be used when nonparametric estimation is not possible.

Although the paper focuses on a binary exposure, we note that the extension
to a polytomous exposure is trivial. In future work, we shall extend our results
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for marginal effects by considering conditional natural direct and indirect effects,
given a subset of pre-exposure variables [Tchetgen Tchetgen and Shpitser (2011)].
These models are particularly important in making inferences about so-called mod-
erated mediation effects, a topic of growing interest, particularly in the field of psy-
chology [Preacher, Rucker and Hayes (2007)]. In related work, we have recently
extended our results to a survival analysis setting [Tchetgen Tchetgen (2011)].

A major limitation of the current paper is that it assumes that the mediator is
measured without error, an assumption that may be unrealistic in practice and,
if incorrect, may result in biased inferences about mediated effects. We note that
much of the recent literature on causal mediation analysis makes a similar as-
sumption. In future work, it will be important to build on the results derived in
the current paper to appropriately account for a mis-measured mediator [Tchetgen
Tchetgen and Lin (2012)].

APPENDIX

PROOF OF THEOREM 1. Let Fo.; = Fy\p x,E:: Fm|E, x;: FE|x;: Fx; denote a
one-dimensional regular parametric submodel of Myonpar, With Fp o = Fp, and
let

6 =60(Fou) = [ [ BA(YIE=1,M =m X =)

SxX
X fmexi(mE =0, X =x) fx;;(x)dpu(m, x).
The efficient influence function Sggf’nonpar(eo) is the unique random variable to

satisfy the following equation:
Vi—obs = E{Sg, " (60)U)

for U the score of Fp.; att =0, and V;—¢ denoting differentiation w.r.t. r at t = 0.
We observe that

36,
! :// V0B, (YIE=1,M=m, X = x)
SxX

0t lr=0

X fmex(mE=0,X=x)fx(x)du(m,x)

+f/E(Y|E=1,M=m,X=x)
SxX

X Vi=ofmE x::(m|E =0, X =x) fx(x)du(m, x)

+//]E(Y|E=1,M=m,X=x)
SxX

X fuex(mE=0,X=x)Vi—o fx;:(x)dpu(m, x).
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Considering the first term, it is straightforward to verify that

f Vic)By(Y|E=1,M =m, X =x) fujg. x(mE=0,X =x) fx(x)du(m, x)
SxX

— |: M{Y—E(Y|E,M=m,X=x)}fM|E’X(M|E:0’X)i|‘
SEIx (E1X) fuiex(MIE=1,X)

Similarly, one can easily verify that

/ EXYIE=1,M=m,X =x)Vi=o fmg.x::(m|E=0,X =x) fx(x)du(m, x)
SxX

:E[Uﬂ

JElx (E|X)

and finally, one can also verify that

{(EYIE=1,M=m,X=x)—n(,0, X)}],

[ BGIE =10 =, X =) farip.x (I E =0, X =)V fts (6) dpa(m, )
SxX
=E[U{n(1,0, X) — Oo}].
Thus we obtain
Viofr = E{S, """ 60)U ).

Given ng’nonpar(cSe), the results for the direct and indirect effect follow from the
fact that the influence function of a difference of two functionals equals the dif-
ference of the respective influence functions. Because the model is nonparametric,

there is a unique influence function for each functional, and it is efficient in the
model, leading to the efficiency bound results. [

PROOF OF THEOREM 2. We begin by showing that

E{Sg """ Go: By B BD)
=0

(7

under model M ypion. First note that (,8;‘, By) = (By, Bm) under model M, . Equal-
ity (7) now follows because EP*(Y|X, M, E =1;8,) =E(Y|X,M,E =1) and
n(1,0, X; By, Bm) =E[{EP"(Y|X, M, E=1; By)}|E =0, X]=n(1,0, X):
1,
E{Sg, " (005 Bms By» By))

_ [ HE =1) fyg x(MIE =0, X; Bn)
Eix (11X B2) faye x (MIE =1, X; Bn)
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=0
x E{Y —EP*(Y|X,M,E=1;B,)|E=1, M, X}}

I(E =0)
[praf((l 1X; BY)
=0
x BIE(YX. M. E = 13 ) — (1.0, X: By Bl E = 0.X1]

=0.

Second, (B, B;) = (By, Be) under model M,,. Equality (7) now follows because
EPM(Y|X, M, E=1;8,) =E(Y|X, M, E=1)and fy(1|X; Be) = fE1x (11X):

ff,
E(Sg, """ (60: By Be- By))

B HE =1} fuyp x(MIE =0, X; )
- [f£§<1|x;ﬁe>fﬁTg,X<M|E=I,X;ﬁm
=0
x E{Y — EP¥*(Y|X, M,E:l;,By)|E:1,M,X}}

[ I(E =0)
FEx(LIX; Be)
« E[EP(Y[X, M. E = 1: ) — (1,0, X: By B)}E =0, X]}

+E[n(1,0, X; By, )1 — 6o
= E[E[{EP*(Y|X, M, E = 1; B,)}|E =0, X]] — 65 =0.
Third, equality (7) holds under model M, because

ff,
E{Sg, """ (60 Byy» Be» By))

B [ H{E =1} fyp.x (MIE =0, X; Bn)
FEx UX; Be) fagie x (MIE =1, X; )

x E{Y —EP"(Y|X, M, E =1; ﬁ;k)}}

[ I(E =0)
Ferx (1X; Be)
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X BIEP(Y X, M, E = 157) = 1(1.0. X: B fn)) |E =0.X1|

+E[n(1,0, X; By, Bn)l — 6o
=E[E[{E(Y|X, M, E = 1)}|E =0, X]]
—E[E[EP"(Y|X, M, E = 1; B)|E =0, X]]
+E[E[EP"(Y|X, M. E =1; B)|E =0, X]] — E[n(1,0, X; B, Bn)]
+E[n(1,0, X; B, Bu)1 — 6o
=E[E[{E(Y|X, M, E = )}|E =0, X]] — 6.

Assuming that the regularity conditions of Theorem 1A in Robins, Mark
and Newey (1992) hold for Sg(ff’nonpar(eo; Bms Be, By), Sg(B), the expression for

Sgg‘ion(Go, B*) follows by standard Taylor expansion arguments, and it now fol-
lows that

~tripl | I
©) V@™ = 00) = 5 3 Sii" B0, B) + 0p(1).
i=1

The asymptotic distribution of /n (é‘otrlply — 6p) under model M pjon follows from
the previous equation by Slutsky’s Theorem and the Central Limit Theorem.

We note that Af oubly is CAN in the union model Mo since it is CAN
in the larger model where either the density for the exposure is correct, or the
density of the mediator and the outcome regression are both correct and thus
ne,e, X; B%, Br) =E(Y|X, E = e). This gives the multiply robust result for di-
rect and indirect effects. The asymptotic distribution of direct and indirect effect
estimates then follows from similar arguments as above.

At the intersection submodel

DE{Sg, """ (G0, )} .
apT o

hence
Sg;lion(eo’ ,3) — Sggf,nonpar(eo’ ﬁ)

. . . . ~tripl o
The semiparametric efficiency claim then follows for Qomp Y, and a similar argu-

ment gives the result for direct and indirect effects. [

PROOFS OF THEOREMS 3 AND 4. The proofs are given in the online Ap-
pendix. [
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SUPPLEMENTARY MATERIAL

Supplemental Appendix to Semiparametric theory for causal mediation
analysis (DOI: 10.1214/12-A0S990SUPP; .pdf). The supplementary material
gives the semiparametric efficiency theory for estimation of natural direct effects
with a known model for the mediator density. The Appendix also gives the proof
of Theorem 3 (stated in the Supplementary Appendix) and of Theorem 4.
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