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We study maximum likelihood estimation in log-linear models under
conditional Poisson sampling schemes. We derive necessary and sufficient
conditions for existence of the maximum likelihood estimator (MLE) of the
model parameters and investigate estimability of the natural and mean-value
parameters under a nonexistent MLE. Our conditions focus on the role of
sampling zeros in the observed table. We situate our results within the frame-
work of extended exponential families, and we exploit the geometric prop-
erties of log-linear models. We propose algorithms for extended maximum
likelihood estimation that improve and correct the existing algorithms for log-
linear model analysis.

1. Introduction. Log-linear models are arguably the most popular and im-
portant statistical models for the analysis of categorical data; see, for example,
Bishop, Fienberg and Holland (1975), Christensen (1997). These powerful mod-
els, which include as special cases graphical models [see, e.g., Lauritzen (1996)]
as well as many logit models [see, e.g., Agresti (2002), Bishop, Fienberg and Hol-
land (1975)], have applications in many scientific areas, ranging from social and
biological sciences, to privacy and disclosure limitation problems, medicine, data-
mining, language processing and genetics. Their popularity has greatly increased
in the last decades due to growing demands for analyzing databases taking the form
of large and sparse contingency tables, where most of the cell entries are very small
or zero counts. Despite the widespread usage of these models, the applicability and
statistical properties of log-linear models under sparse settings are still very poorly
understood. As a result, even though high-dimensional sparse contingency tables
constitute a type of data that is common in practice (e.g., in sample survey appli-
cations), their analysis remains exceptionally difficult; see Erosheva, Fienberg and
Joutard (2007) for such an example.

In this article we are concerned with statistical inference in log-linear models
of arbitrary dimension, and, in particular, with conditions for the existence of the
maximum likelihood estimator, or MLE, of the model parameters. In log-linear
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model analysis, virtually all methodologies for assessment of fit, model selec-
tion and interpretation are applicable and have theoretical validity only provided
that the MLE exists. Though this may appear to be only a computational issue, in
fact, when MLE is not defined, the applicability of statistical procedures routinely
used by practitioners may no longer have a theoretical justification and, at the very
least, require alteration. The statistical implications of a nonexistent MLE, some
of which are detailed below, are numerous and severe.

• Existence of the MLE is required to justify the use of large sample χ2 approxi-
mations to numerous measures of goodness-of-fit commonly utilized for model
assessment and model selection; see, for example, Bishop, Fienberg and Hol-
land (1975), Agresti (2002), Read and Cressie (1988). When the MLE does not
exist, the standard regularity conditions used to derive such approximations no
longer hold. As we show below, under a nonexistent MLE, the model is not
identifiable, the asymptotic standard errors are not well defined and the number
of degrees of freedom becomes meaningless. Though existence of the MLE is
by no means enough to warrant the use of χ2 approximations, nonexistence will
surely make them inadequate.

• Existence of the MLE is also needed to derive a limiting distribution for the
double-asymptotic approximations of the likelihood ratio and Pearson’s χ2

statistic for tables in which both the sample size and the number of cells are
allowed to grow unbounded, a setting studied, among others, by Morris (1975),
Haberman (1977) and Koehler (1986); see also Read and Cressie (1988).

• The issue of nonexistence is also important for Bayesian analysis of log-linear
models; see, for example, King and Brooks (2001), Massam (2009), Dobra and
Massam (2010) and references therein. Indeed, we will demonstrate that nonex-
istence of the MLE is due to the data not being fully informative about the
model parameters, and results in nonestimability of those parameters. Since the
nonexistence of MLEs is due to insufficient data, it cannot be remediated. In par-
ticular, the use of Bayesian methods in cases in which the MLE is nonexistent
is equivalent to replacing the information content lacking in the data with the
information contained in the prior. Since for some parameters no learning from
the data takes place, the posterior distribution must be interpreted accordingly.
Furthermore, when one uses improper priors for the log-linear parameters, the
posterior may be also be improper when the MLE does not exist; see Forster
(2004).

It has long been known [see, in particular, Birch (1963), Haberman (1974),
Bishop, Fienberg and Holland (1975)] that the nonexistence of the MLE is caused
by sampling zeros. When certain patterns of zero counts occur in the observed ta-
ble, the log-likelihood function cannot be maximized by any vector of finite norm.
While for hierarchical log-linear models, patterns of sampling zeros leading to
null margins are well known to cause nonexistence of the MLE, very little has
been known or observed about general patterns of sampling zeros associated with



998 S. E. FIENBERG AND A. RINALDO

nonexistent MLEs. The very few know examples described in Haberman (1974),
Fienberg and Rinaldo (2007) and Dobra et al. (2009) suggest that nonexistence of
the MLE may occur in small tables, but is very likely to arise when the table is
large and sparse.

Haberman (1974) first obtained necessary and sufficient conditions for the ex-
istence of the MLE for log-linear models. Eriksson et al. (2006) gave a direct ge-
ometric interpretation of Haberman’s conditons and proposed a polynomial time
algorithm for checking for the existence of the MLE. Aickin (1979) and Verbeek
(1992) refined Haberman’s conditions by recasting the problem within the frame-
works of exponential families and of generalized linear models, respectively. In
fact, the issue of nonexistence of the MLE is best dealt with using the general
theory of exponential families and, in particular, of extended exponential families,
originally put forward by Barndorff-Nielsen (1978) and then Brown (1986). See
also the important work by Čencov (1982). In a recent series of papers, Csiszár
and Matúš (2001, 2003, 2005, 2008) broadened significantly the notions of ex-
tended exponential families and extended maximum likelihood estimation to in-
clude very general settings under minimal assumptions. See, in particular, Re-
mark 5.9 in Csiszár and Matúš (2008), which briefly point to the connections with
the theory of log-linear models. Rinaldo, Fienberg and Zhou (2009) and Geyer
(2009) contain more specialized results directly relevant to the log-linear settings.
Adopting a different approach, Lauritzen (1996) defined the parameter space for
log-linear models as the point-wise limit closure of the log-linear model parame-
ters, which he calls the extended log-linear model, and effectively treats the MLE
and extended MLE as one entity. While this is theoretically convenient, the issue
of nonestimability of the model parameters is not resolved, and the computation
of the extended MLE is just as problematic. Finally, Nardi and Rinaldo (2012)
provided asymptotic conditions under which, for a hierarchical log-linear model,
a penalized maximum likelihood estimator based on the group-lasso penalty will
return the correct model, with high probability.

Despite the breadth of the cited literature, two key issues concerning maximum
likelihood estimation in log-linear models remain. First, the properties of extended
exponential families have not yet been specialized to the case of log-linear mod-
els. In particular, direct application of this theory does not yield, in general, usable
conditions for the existence of the MLE, and the identification of the nonestimable
log-linear parameters or of the patterns of zeros leading to a nonexistent MLE
are still open problems. Secondly, existing theoretical results have not been in-
corporated yet in any numerical algorithm for checking for existence of the MLE
and for identifying nonestimable parameters. Consequently, virtually all statistical
software currently available to practitioners is flawed, to the point that nonexis-
tence of the MLE can be detected only by monitoring whether the algorithm used
to optimize the log-likelihood function fails to converge, or converges slowly or
becomes unstable; see, for example, Fienberg and Rinaldo (2007). Consequently,
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results and decisions stemming from the statistical analysis of contingency tables
containing substantial numbers of zero counts can be seriously compromised.

In this article we attempt to rectify these problems. Our contributions are two-
fold:

• From a theoretical standpoint, we derive necessary and sufficient conditions
for existence of the MLE that are broadly applicable to a variety of sampling
schemes and amenable to computations. Ultimately, these conditions amount to
checking whether the observed sufficient statistics lie on the boundary a poly-
hedral cone, called the marginal cone; see Eriksson et al. (2006). When the
MLE does not exist, we specialize the theory of extended exponential fami-
lies to characterize the estimability of the natural and mean-value parameters
of the log-linear models. To this end, we focus on discrete exponential families
with polyhedral convex support [see Rinaldo, Fienberg and Zhou (2009), Geyer
(2009)], and rely significantly on tools from polyhedral geometry.

• From a practical viewpoint, we develop algorithms for extended maximum like-
lihood estimation that are applicable to large tables. Our procedures will allow
one to (i) detect nonexistence of the MLE and (ii) identify and estimate all the
parameters that are in fact estimable. Overall, our algorithms correct and im-
prove over many existing software for log-linear model analysis. Due to space
constraints, a detailed description of these algorithms is contained in the supple-
mentary material [Fienberg and Rinaldo (2012)].

Notation. We let I be a finite set of indices or cells, representing the support of
a discrete distribution, such as the joint distribution of a set of categorical variables.
We set I = |I|, where |B| is the cardinality the set B . We denote by RI be the vec-
tor space of real-valued functions on I , and RI≥0 and NI its subset of nonnegative
functions and nonnegative integer-valued functions, respectively. For vectors x and
y, (x,y) = x�y represents their inner product and ‖x‖ = √

x�x the corresponding
Euclidean norm. If x ∈ RI , we denote by x(i) the value corresponding to the ith
coordinate of x and by supp(x) = {i : x(i) �= 0} the set of coordinates of x with
nonzero values. We take functions and relations on vectors component-wise, for
example, for x ∈ RI , exp(x) = {ex(i) : i ∈ I}.

For a nonempty subset F ⊆ I , we let πF : RI → RF the coordinate projec-
tion map given by {x(i) : i ∈ I} 
→ {x(i) : i ∈ F } and, for any S ⊂ RI , we set
πF (S) = {πF (x),x ∈ S}. If M is a linear subspace, we denote by M⊥ its orthog-
onal complement and by �M the orthogonal projector into M. If N is another
linear subspace contained in M, we write M  N for the subspace M ∩ N ⊥.

For a matrix A, R(A) denotes its column range and kernel(A) its null space.
If the rows of A are indexed by I , and F is a nonempty subset of I , AF is the
submatrix of A comprised of the rows with indexes in F . We write cone(A) for the
polyhedral cone spanned by columns of A and conv(A) for the polytope consisting
of the convex combinations of its columns. Similarly, for a set S, conv(S) is the
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convex hull of all its points. For a polyhedron P , we write its relative interior as
ri(P ).

2. Log-linear models, sampling schemes and exponential families. Log-
linear model analysis is concerned with the study of discrete probability distribu-
tions over a finite set I , whose elements will be referred to as cells. These distri-
butions are assumed to form an exponential family of probabilities {Pη,η ∈ Rd}
with densities with respect to the counting measure on I of the form

pη(i) = Pη({i}) = exp{(η,ai) − φ(η)}, η ∈ Rd,(1)

where each ai is a nonzero vector in Rd , and φ(η) = log(
∑

i exp{(η,ai)}) is the
log-partition function. The I × d matrix A, whose ith row is the vector a�

i , is
called the design matrix.2

Suppose we observe a sample of N independent and identically distributed re-
alizations from an unknown distribution satisfying (1), where the data take the
form of an unordered sequence of random cells (L1, . . . ,LN), with Lj ∈ I for
each j , and where N too can be random. The observed cells are then cross-
classified into a random integer vector n ∈ NI , called a a contingency table, with
n(i) = |{j :Lj = i}|, for all i ∈ I .

Traditionally, log-linear model analysis is not directly concerned with the nat-
ural parameters η in (1), but rather with the unknown expected value m := E[n]
of the resulting contingency table, under the provision that m(i) > 0 for each i.
In detail, letting M ⊂ RI be the linear subspace spanned by the rows of the de-
sign matrix A, the ensuing log-linear model is predicated on the condition that
μ := log(m) ∈ M. In particular, log-linear models are typically defined as statis-
tical models for the distribution of the random table n indexed by the points in the
linear subspace M.

The distribution of the table n depends on the sampling scheme used during the
data collection process. In this article, we study sampling schemes based on linear
restrictions on n, known as conditional Poisson sampling schemes, introduced in
Haberman (1974), Chapter 1. Specifically, let N be a given m-dimensional lin-
ear subspace of M, which we will refer to as the sampling subspace, and c a
known vector in RI . The corresponding conditional sampling Poisson scheme
prescribes that the distribution of n is given by the conditional distribution of I

independent Poisson random variable {n(i), i ∈ I} with mean parameters {m(i) =
exp(μ(i)), i ∈ I}, where μ ∈ M, given that �N n = c. This type of data sampling
includes the most commonly used sampling schemes, described below.

2It is easy to see that design matrices are not uniquely determined: if A1 and A2 are two matrices
of dimensions I × d1 and I × d2, respectively, and with identical row spans, then they parametrize
the same statistical model.
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• Poisson sampling scheme. The sampling subspace is N = {0}. Thus, there are no
restrictions on n, which is a random vector comprised of independent Poisson
random variables with mean m. The log-likelihood function is given by

�P (μ) = (n,μ) − 1� exp(μ) − ∑
i

log n(i)!, μ ∈ M.(2)

• Product multinomial and multinomial sampling schemes. Let B1, . . . , Bm be a
partition of I . Under the product multinomial sampling, the conditional distri-
bution of the cell counts n is the product of m independent multinomials of sizes
Nj , j = 1, . . . ,m, each supported on the corresponding class Bj . Formally, let
χ j be the indicator function of Bj , where χj (i) is 1 if i ∈ Bj and 0 other-
wise, and define N to be the r-dimensional subspace spanned by the orthogonal
vectors (χ1, . . . ,χ r ). The product multinomial sampling constraints are of the
form (n,χj ) = Nj , for known integer constants Nj . The log-likelihood function
is [see Haberman (1974), equation 1.51]

�̃M(μ) =
r∑

j=1

( ∑
i∈Bj

n(i) log
m(i)

(m,χ j )
+ logNj ! −

∑
i∈Bj

log n(i)!
)
,

(3)
μ ∈ M,

where m = exp(μ). Because of the sampling constraints, �̃M is well defined
only on the subset of M,

M̃ := {μ ∈ M : (χ j , exp(μ)) = Nj, j = 1, . . . , r},(4)

which is is neither a vector space nor a convex set. We give a more convenient
parametrization below in Lemma 2. The multinomial scheme is a special case of
product multinomial schemes, corresponding to the trivial one-class partition of
I with indicator function 1. In this case, n has a multinomial distribution with
size N = (1,n) = (1,m) and cell probabilities m/N .

• Poisson–multinomial sampling schemes. This sampling scheme is a combina-
tion of the previous two schemes. For a given partition B1, . . . , Bm of I , the
sampling constraints are of the form (n,χ j ) = Nj for j = 1, . . . ,m − 1, with
the counts for the cells in the set Bm left unconstrained; see Lang (2004, 2005).

As is customary, we assume throughout that the sampling subspace N is strictly
contained in M. The case N = M is practically uninteresting, as the resulting
sampling constraints would fix the value of the sufficient statistics so that the con-
ditional distribution of n will not depend on the model parameters. We treat the
case N �⊂ M in the supplementary material [Fienberg and Rinaldo (2012)].

We now derive the equivalent exponential family representation for log-linear
models under conditional Poisson schemes. To this end, we will express the sam-
pling constraints in a different, but equivalent, form. Let (v1, . . . ,vm) be any set
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of m vectors spanning N and such that (vj , c) = 1 for all j . Then, the sampling
constraints take the form

V�n = 1,

where V is the I ×m matrix whose j th column is vj . Accordingly, we denote with

S(V) := {x ∈ NI : V�x = 1}
the set of all possible tables compatible with the sampling constraints specified
by V. Let ν be the finite measure on NI given by3

ν(x) := ∏
i∈I

1

x(i)! , x ∈ NI .

For a conditional Poisson scheme defined by V, let νV be the restriction of ν on
S(V), that is, νV(x) := 1x∈S(V)ν(x), with x ∈ NI .

It is easy to see that the conditional distribution of the table n, given the sam-
pling constraints determined by V, is the exponential family of distributions with
base measure νV, sufficient statistics A�x, natural parameter space Rd and densi-
ties given by

pθ (x) = exp{(A�x, θ) − ψ(θ)}, x ∈ S(V), θ ∈ Rd,(5)

where ψ(θ) = log(
∫
S(V) exp{(A�x, θ)}dνV(x)). This exponential representation

is not the most parsimonious from the viewpoint of sufficiency. Indeed, let T =
{t ∈ Rd : t = A�x,x ∈ S(V)} be the image of A and μV = νVA−1 be the measure
induced by A. Then, by standard arguments [see, e.g., Brown (1986)], the distri-
butions of the sufficient statistics t = A�n also form an exponential family, with
density with respect to the base measure μV given by

qθ (t) = exp
(
(t, θ) − ψ(θ)

)
, t ∈ T , θ ∈ Rd,(6)

the same the log-partition function ψ and natural parameter space as in the original
family.

It is now easy to see that the exponential family parametrization and the log-
linear parametrization are equivalent. Indeed, for any n and t such that t = A�n,
and for any θ ∈ Rd , the identity

(t, θ) = (A�n, θ) = (n,Aθ) = (n,μ),

where μ = Aθ ∈ M, implies these models can be equivalently parametrized by
the linear subspace M. If A is of full rank, then the map θ 
→ Aθ is an isomor-
phism between Rd and M, while if d > dim(M), the natural parametrization is
redundant and, in fact, nonidentifiable.

3This particular choice of the dominating measure will lead to Poisson and product multinomial
likelihoods. More generally, much of our analysis carries over with other choices of dominating mea-
sure, for example, the ones for which conditions (A1)–(A4) in Rinaldo, Fienberg and Zhou (2009)
hold.



MAXIMUM LIKELIHOOD ESTIMATION IN LOG-LINEAR MODELS 1003

Throughout this article, will impose the following assumptions. Let V be the
matrix specifying the conditional Poisson sampling scheme.

(A0) Nontriviality: the set S(V) is nonempty.
(A1) Exhaustive sampling condition: there does not exist any vector γ ∈ N ⊥ \

{0}, such that (γ ,n) is constant almost everywhere with respect to νV. In
particular, for no cell i ∈ I , n(i) = 0, almost everywhere νV.

(A2) Integrality assumption: {x ∈ RI≥0 : Vx = 1} = conv(S(V)).

Assumption (A1) guarantees that no linear constraints hold, other than the ones
specified by N , and it prevents the sampling constraints from introducing struc-
tural zeros. Even though we can easily extend our analysis to deal with structural
zeros, we do not provide the details here. Assumption (A2) is technical, and it is
used in Theorem 3 below to unify the conditions for existence of the MLE across
different sampling schemes. If (A2) is not in effect, checking for existence of the
MLE can become computationally infeasible, depending on V. The Poisson, prod-
uct multinomial and Poisson–multinomial schemes automatically satisfy (A2).

2.1. The effects of sampling constraints. We conclude this section by studying
the effect of the sampling constraints on the estimability of the natural and log-
linear parameters. We show that imposing linear sampling restrictions results in
nonidentifiability of the corresponding natural exponential family (5), to the extent
that only certain linear combinations of the natural parameters, which depend only
on the subspace N , are estimable. For the log-linear parameters, only �MN μ
is estimable, which implies that the number of estimable parameters is dim(M 
N ) = d − m.

We define the following equivalence relation on Rd : for θ1, θ2 ∈ Rd , θ1
N∼ θ2 if

and only if θ1 − θ2 ∈ Z , where

Z := {ζ ∈ Rd : Aζ ∈ N }.(7)

For any θ ∈ Rd , we then write θ N := {θ∗ : θ
N∼ θ∗} for the equivalence class con-

taining θ , and 	N := {θ N , θ ∈ Rd} for the set of equivalent classes corresponding

to the equivalence relation
N∼. For simplicity, below we assume that the matrices A

and V are of full rank, but the same conclusions hold with d replaced by rank(A).

LEMMA 1. Consider the exponential family (5), with A of full rank d , and
suppose that conditions (A0) and (A1) hold.

(i) The set 	N is a vector space of dimension d − m isomorphic to M  N , and
is comprised of parallel m-dimensional affine subspaces of Rd .

(ii) The family is nonidentifiable: any two points θ1
N∼ θ2 specify the same distri-

bution. In fact, this family is parametrized by 	N , or, equivalently, by M  N .
Therefore, it is of order d − m.
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Using standard minimality arguments, nonidentifiability of the natural param-
eters can be easily resolved by redefining a smaller exponential family of order
d − m using as a new design matrix any full-rank matrix whose column span is
M  N ; for this fully-identifiable family, the natural parameter space is Rd−m.
Concretely, we assume, without loss of generality, that the matrix A is of the form

A = (B V),(8)

where V is the I × m matrix of sampling restrictions whose rows span N and B
is a I × (d − m) matrix whose row space is M  N . Then, replacing A with B in
(5) will produce a full and minimal exponential family.

To illustrate this point, we show that the log-likelihood function (3) for the
product multinomial sampling scheme can be more conveniently parametrized by
M  N instead of the nonconvex set M̃. For any β ∈ M  N , let

�M(β) := (n,β) −
m∑

j=1

Nj log(exp(β),χ j ) − ∑
i∈I

log n(i)!.(9)

LEMMA 2. The sets M  N are M̃ homeomorphic and, for each pair of
homeomorphic vectors μ ∈ M̃ and β ∈ M  N , �̃L(μ) = �M(β).

The form of the likelihood in (9) is better suited for computations, as we show
in Fienberg and Rinaldo (2012).

Under the conditions of Lemma 1, the Fisher information matrix at θ has rank
d − m, for each θ ∈ Rd . To see this, notice that the the Fisher information matrix
I (θ) at θ is Covθ (A�n), where Covθ denotes the covariance operator evaluated
using the distribution parametrized by θ . Then, for any ζ in the set Z defined in
(7), the linear form (A�n, ζ ) is constant almost everywhere and therefore has zero
variance. This is equivalent to ζ�I (θ)ζ = 0, so that rank(I (θ)) = dim(Z ⊥) =
d − m, for all θ .

3. Theory of maximum likelihood estimation. We now provide a system-
atic treatment of maximum likelihood estimation for the natural and log-linear
parameters, within the framework of the theory of discrete extended exponen-
tial families with linear sufficient statistics. We refer the reader to Barndorff-
Nielsen (1978) and Brown (1986) for classic references and Csiszár and Matúš
(2001, 2003, 2005, 2008) for advanced treatments. In our setting, Geyer (2009)
and Rinaldo, Fienberg and Zhou (2009) are particularly relevant. For the reader’s
convenience, we briefly review the aspects of this theory that are relevant to our
problem in Appendix A.
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3.1. Existence of the MLE. We prove a general necessary and sufficient con-
dition for existence of the MLE that applies to any conditional Poisson sampling
scheme satisfying assumptions (A0)–(A2). Unlike existing results, these condi-
tions directly translate into usable algorithms for checking for the existence of the
MLE, as described in Fienberg and Rinaldo (2012).

For any design matrix A, we denote by CA := cone(A�) the polyhedral cone
spanned by the rows of A. Following Eriksson et al. (2006), we call CA the
marginal cone of A.

THEOREM 3. Assume conditions (A0)–(A2) and let A be any matrix with col-
umn span M. The MLE of θ N (or, equivalently, of �MN μ) exists and is unique
if and only if t = A�n ∈ ri(CA).

This result is a nontrivial application of a well-known result about existence of
MLE in exponential families (viz., Theorem 13 in Appendix A), and it subsumes
previous results of Haberman (1974) and Eriksson et al. (2006), because it pro-
vides a unified condition that applies to all conditional Poisson sampling schemes
satisfying the integrality assumption (A2). To see how Theorem 3 differs from
Theorem 13, a direct application of the latter yields that the MLE exists if and
only if t belongs to the interior of the (d − m)-dimensional polyhedron

CV := conv({t : t = A�x,x ∈ NI ,V�x = 1}).
For Poisson sampling, this polyhedron is in fact the marginal cone, and, for multi-
nomial sampling, it is the polytope {Vx : x ∈ conv(A)}. Under product multi-
nomial sampling, CV is the Minkowsoki addition [see, e.g., Ziegler (1995),
Schrijver (1998)] of m polytopes, one for each multinomial, while under Poisson–
multinomial scheme it is the Minkowski sum of a polyhedral cone and as many
polytopes as multinomial constraints. Even though it has smaller ambient dimen-
sion than the marginal cone, CV is a geometric object that can be rather difficult to
handle, both computationally and theoretically. In contrast, we show that, for any
sampling scheme satisfying conditions (A0)–(A2), it is in fact sufficient to deal
with the polyhedral cone CA, which is simpler to describe and analyze, both al-
gorithmically and in theory; see the supplementary material Fienberg and Rinaldo
(2012). In Rinaldo, Petrović and Fienberg (2011) we provide various examples
of how Theorem 3 can be used to simplify the task of characterizing existence
of the MLE for otherwise complicated models for networks and random graphs.
These particular models are based on product multinomial sampling constraints, in
which case Theorem 3 yields what is known in polyhedral geometry as the Cayley
trick.

3.2. Parameter estimability. We now turn to the issue of estimability of the
natural and log-linear parameters when the MLE does not exist. In our analysis,
we rely on the key notion of facial sets, originally introduced in a slightly different
form by Geiger, Meek and Sturmfels (2006).
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DEFINITION 4. For a log-linear subspace M, a set F ⊆ I is a facial set of
M, when, for some μ ∈ M,

μ(i) = 0 if i ∈ F ,

μ(i) < 0 if i /∈ F .

Equivalently, F is a facial set of M when, for any design matrix A for M (not
necessarily of full column rank), there exists some c ∈ Rd such that

(ai , c) = 0 if i ∈ F ,
(10)

(ai , c) < 0 if i /∈ F ,

where ai denotes the ith row of A. Facial sets encode combinatorial and geomet-
ric properties of the log-linear subspace M which turn out to be crucial to our
analysis. We summarize these properties in the next lemma.

LEMMA 5. Let A be a design matrix of M. The lattice of facial sets of M is
isomorphic to the face lattice of the marginal cone CA. In particular, F is a facial
set of M if and only if {ai , i ∈ F } span the face of CA isomorphic to F .

Using this result, we can paraphrase Theorem 3 as follows [compare with The-
orem 3.2 in Haberman (1974)]:

COROLLARY 6. The MLE exists if and only if supp(n) is not contained in any
facial set of M.

We describe algorithms for determining facial sets and for using the previous
corollary in Fienberg and Rinaldo (2012).

3.2.1. Estimability of the natural parameters. In this section, we rely on ar-
guments proposed in Rinaldo, Fienberg and Zhou (2009) to study the estimability
of the natural parameters. Let CV denote the convex support of the family arising
from a conditional Poisson scheme specified by a constraint matrix V; see Ap-
pendix A. Suppose that the observed sufficient statistics t = A�n belong to the
relative interior of face FV of CV of dimension dF . Thus, the MLE of the natu-
ral parameters for the original family, supported on S(V), is nonexistent, but the
MLE of the natural parameter of the extended family supported FV is well defined.
Theorem 7 below generalizes Lemma 1 by showing that, when the MLE does not
exist, the linear combinations of the natural parameters that are estimable are de-
termined, not only by the deterministic linear subspace arising from the sampling
constraints, but also by the random linear subspace spanned by the normal cone
to the face F of the marginal cone CA containing A�n in its relative interior. As
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for the log-linear parameter, nonexistence of the MLE entails that only points in
πF (M  N ) are estimable, where F is the random facial set corresponding to F .

In preparation for the result, we need to set up some additional notation. By
Lemma 15 in Appendix B, there exists one face F of CA of dimension m + dF

that contains FV, with facial set F . Let NF be the normal cone to F and LF ⊂ Rd

be the linear subspace spanned by NF , so that dim(LF ) = d − m − dF (recall
that, without loss of generality, we assume CA to be full-dimensional). We further
define the linear subspace

NF := {Aβ,β ∈ Z + LF },
where Z is given in (7). Just like in Lemma 1, we define the following equivalence

relation on Rd : θ1
NF∼ θ2 if and only if θ1 − θ2 ∈ Z + LF , and write θ NF

for the
equivalence class containing θ . Finally, 	NF

:= {θ NF
, θ ∈ Rd}.

THEOREM 7. Consider the exponential family (5), with A of full rank d , and
suppose that conditions (A0)–(A2) hold. Let FV be a face of the convex support
and F the corresponding facial set of the normal cone.

(i) For any θ ∈ Rd , the set θ NF
is an affine subspace of Rd of dimension m +

dim(LF ) = d − dF . The set 	NF
is a dF -dimensional dimensional vector

space isomorphic to πF (M  N ) and is comprised of parallel (d − dF )-
dimensional affine subspaces of Rd .

(ii) The extended family corresponding to FV is non-identifiable: any two points

θ1
NF∼ θ2 specify the same distribution. In fact, the family is parametrized by

	NF
, or, equivalently, by πF (M  N ). Therefore, it is of order dF .

The main point of Theorem 7 is that only natural parameters in 	NF
[or the

log-linear parameters in πF (M  N )] are estimable, with both sets being now
random. In principle, nonidentifiability of the natural parameters, due to a nonex-
istent MLE, can be resolved using the same procedure of reduction to minimality
described in the remarks following Lemma 1: identify a set of linearly indepen-
dent vectors in RI spanning M ∩ N ⊥

F , and use them to build a new design matrix
of dimension I × dF . However, unlike the reduction to minimality carried out to
remove the effect of the sampling constraints, which is design-dependent but not
data-dependent, this reduction depends on the random subspace NF (the random-
ness arising from the exposed face F ). Furthermore, while the sampling constraint
reduction is easy to implement, since the matrix V is known, this second reduc-
tion requires us to compute a basis for LF , the linear space spanned by the normal
cone to F . For the mean value parameter, the problem is to compute the facial set
associated to the face F based solely on the observed sufficient statistics t, which
amounts to identifying the face of CA containing t in its relative interior. In gen-
eral, both of these tasks are highly nontrivial, due to the combinatorial complexity
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of the face lattice of CA; see the examples in Section 4. In the supplementary ma-
terial [Fienberg and Rinaldo (2012)], we describe algorithms for accomplishing
these tasks.

As a corollary to Theorem 7, we can obtain each family in the extended fam-
ily via a conditional Poisson sampling scheme that forces the base measure to be
supported on FV, or equivalently, by requiring that the cells in F c have zero prob-
ability of containing positive counts. In this case, it is clear that assumption (A1)
is violated. As a result, we can view each such family as a log-linear model under
Poisson sampling scheme containing structural zeros along the (random) coordi-
nates F c. This is in fact consistent with the interpretation by Barndorff-Nielsen
(1978), page 156, of the extended MLE as a conditional MLE, given that sufficient
statistics lie on the boundary of the convex support. We formalize this observation
in the next result.

COROLLARY 8. Each face F of CV of dimension 0 ≤ dF ≤ d − m can be
obtained as the convex support corresponding to the conditional Poisson scheme
with constraint subspace NF , where dim(NF ) = d − dF .

Using the same arguments as in the remarks following Lemma 1, we also see
that the Fisher information matrix at the extended MLE has rank dF < d , and
therefore, is rank-deficient. This remains the case, even after accounting for the
sampling constraints. Statistically, the singularity of the observed Fisher informa-
tion implies that the standard errors are not defined. From an algorithmic stand-
point, this observation implies that the Newton–Raphson method for computing
the MLE is bound to run into numerical instabilities, due to the fact that the Hes-
sian matrix of the log-likelihood function is singular at any optimum [an issue il-
lustrated empirically in Fienberg and Rinaldo (2007)]. Furthermore, Corollary 2.8
in Rinaldo, Fienberg and Zhou (2009) shows that, under a nonexistent MLE, every
point in the normal cone NF to the face F containing the observed sufficient statis-
tics is a (random) direction of recession of the negative log-likelihood function, so
that there are infinitely many directions of maximal increase of the log-likelihood
function.

3.2.2. Estimability of the mean value parameters under Poisson and product
multinomial schemes. We now specialize our analysis to the case of Poisson and
product multinomial sampling schemes. Besides their popularity, the main reason
for focusing on these two particular sampling schemes is that the estimates of
the cell mean values are highly interpretable. Under the Poisson scheme, the cell
mean values are just the expected cell counts, while under the product multinomial
scheme they are the conditional expectations of the cell counts given the grand
total (in the multinomial case) or given the total counts in the portions of the table
associated with the partitions used to define the product multinomial constraints.
For other conditional Poisson sampling schemes, not only are the conditional cell
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mean values difficult to compute due to the unknown normalizing constant, but
they are also less interpretable.

Following Lauritzen (1996), we consider M = cl({exp(μ),μ ∈ M}), the clo-
sure of the set of all cell mean values for a log-linear subspace M. Thus, m ∈ M if
and only if m = limn eμn , for some sequence {μn}n ⊂ M. Lauritzen (1996) calls
the set M the extended log-affine model.

THEOREM 9. Let t be the observed sufficient statistics, and let F be facial
set corresponding to the face of CA containing t in its relative interior. The MLE
of the cell mean vector exists, is unique and identical under Poisson and product
multinomial if and only if F = I . If F � I , there exists one point m̂e in M such
that m̂e = limn exp(μn), where {μn}n ⊂ M is any optimizing sequence such that

lim
n

�P (μn) = sup
μ∈M

�P (μ) and lim
n

�M(μn) = sup
μ̃∈M̃

�M(μ̃).

Furthermore, supp(m̂e) = F and �Mn = �Mm̂e.

This result shows that, for any observed table n, the log-likelihood functions in
both sampling schemes admits always a unique maximizer, m̂e. Though supported
only on the facial set associated with t, this vector exhibits exactly the same fea-
tures as the “ordinary” MLE: it is the unique point m̂e ∈ M such that A�m̂e = A�n
and provided that N ⊂ M, maximizes both the Poisson and product multinomial
likelihoods. The substantial difference is that m̂e has positive coordinates only
along the cells in the facial set F . Theorem 9 generalizes Theorem 4.8 in Lauritzen
(1996). The improvement consists of identifying exactly the supports of the limit
points in M , which are precisely the facial sets of CA.

DEFINITION 10. The vector m̂e is the extended MLE of m and the zeros ap-
pearing in along the coordinates in F c = I \ F are called the likelihood zeros.

The term likelihood zeros highlight the fact that those zero counts, though aris-
ing as sampling and not as structural zeros, have a significant impact on the likeli-
hood function and its optimizers.

3.3. The geometry of the extended Poisson family. The results of Theorem 9
suggest that, for the Poisson and product multinomial schemes, we could, in fact,
take the set M to be the cell mean value parameter space for the extended expo-
nential family of distributions for the actual contingency table, not its sufficient
statistics. We formalize this idea by relying on geometric considerations. For ease
of readability, and without loss of generality, we focus on the Poisson sampling
scheme, and only sketch how our results apply also to product multinomial cases.

For a vector u ∈ RI , let

u+ = {
max{u(i),0}, i ∈ I

}
and u− = {

min{u(i),0}, i ∈ I
}
,
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so that u = u+ − u− and supp(u+) ∩ supp(u−) = ∅. Furthermore, for any pair of
nonnegative vectors x and u in RI , write

xu = ∏
i

x(i)u(i)

for the associated monomial. Following Geiger, Meek and Sturmfels (2006),
page 1469 and Lemma A.1, we consider the toric variety XM corresponding to
the log-linear model M.

DEFINITION 11. The nonnegative toric variety XM associated to the log-
linear subspace M is the set of all vectors x ∈ RI≥0 such that

xu+ = xu− ∀u ∈ M⊥.(11)

Geometrically, XM is the intersection of the solution set of a system of polyno-
mial equations with the nonnegative orthant. It is easy to see that any m > 0 such
that log(m) ∈ M satisfies (11). Equation (11) can still hold, however, when some
of the coordinates of m are zero. Finally, for any ξ ∈ CA, consider the polyhedron

Pξ = {x ∈ RI≥0 : Ax = ξ}.(12)

For a given sufficient statistic t = An, the set of lattice points in Pt, known as the
fiber of t, consists of all possible tables having the same sufficient statistics as the
observed table n.

THEOREM 12. (i) M = XM.
(ii) For any nonzero m ∈ XM, supp(m) is a facial set of CA.

(iii) The linear map A : RI → Rd , given by m 
→ Am, defines a homeomorphism
between XM and CA.

(iv) For any observable sufficient statistic t = An, {m̂e} = XM ∩ Pt and m̂e ∈
ri(Pt).

Part (i) of Theorem 12 is due to Geiger, Meek and Sturmfels (2006), while a
slightly less general version of part (iii) is a standard result in the algebraic statis-
tics literature; see, for example, Pachter and Sturmfels (2005), Drton, Sturmfels
and Sullivant (2009).

Overall, Theorem 12 shows that the set M is homeomorphic to the marginal
cone CA and, therefore, as anticipated, we can use it as a legitimate mean value
space for the extended family of the cell counts. The advantage of M over CA is
its direct interpretability in terms of cell mean values. This result extends directly
to the multinomial sampling scheme. In this case, A specifies a homeomorphism
between {x ∈ XM :

∑
i xi = 1} and PA = conv(A), which is known in algebraic

geometry as the moment map; see Fulton (1993), Ewald (1996). In fact, under
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multinomial scheme, the extended mean-value space can be taken to be the inter-
section of XM with the probability simplex in RI . Furthermore, since M contains
the constant functions, PA and CA have identical facial sets. For product multino-
mial sampling schemes, a characterization of the mean value space analogous to
the one given in Theorem 12 is also possible, though somewhat more involved.
We refer the reader to Morton (2008) for details and a different derivation. In this
particular case, the convex support arises as a Minkwoski sum of polytopes, one
for every multinomial. Then, the proof of Theorem 3 reveals that facial sets of the
convex support are also facial sets of the marginal cone, even though the opposite
is not true. See Rinaldo, Petrović and Fienberg (2011) for an application of these
results to network models.

Finally, part (iv) of Theorem 12 shows that the extended MLE is the only point
in Pt satisfying the log-linear model conditions. This result can be also interpreted
in terms of I-divergence projections [Csiszár (1975, 1989)], and provides the ge-
ometric basis for showing convergence of iterative methods for extended maxi-
mum likelihood estimation such as the iterative proportional scaling algorithm of
Darroch and Ratcliff (1972). In the interest of space, we do not pursue this analysis.

4. Inference under a nonexistent MLE. We have shown that when the MLE
does not exist, only some of the model parameters (both under the natural and
mean-value parametrization) are estimable, and we have identified the parameters
that can instead be estimated within the extended family. Thus, when the MLE is
nonexistent, statistical inference is still feasible, but only for the reduced family
whose parameters are fully estimable.

As described at the end of Section 3.2.1, we can obtain the relevant extended
exponential family by computing a new random design matrix AF whose column
span is πF (M  N ), where F is the random facial set corresponding to the face F

of the marginal cone containing the sufficient statistics in its relative interior. We
can then use this new design matrix to specify a new exponential family as in (5),
where only the cells F have positive probability of being observed. We carry out
inference within this extended family or, equivalently, conditionally on the suf-
ficient statistics being on the face F , as advocated by Barndorff-Nielsen (1978),
page 156. By Corollary 8, this is equivalent to treating the coordinates in F as if
they were structural zeros. Thus, dealing with a nonexistent MLE reduces, in prac-
tice, to fitting the same log-linear model under the additional (random) constraints
that the cells in F c, which are not estimable, be treated as structural zeros. The
same approach is also advocated in Geyer (2009). In practice, this entails replacing
the MLE with the extended MLE and, quite importantly, adjusting the number of
degrees of freedom, now to be computed as the difference between the cardinality
of the facial set |F | (i.e., the number of cell mean values that can be estimated), and
the number of estimable parameters, namely dim(πF (M  N )) = dim(F ) − m.
Using the adjusted number of degrees of freedom, asymptotic χ2 tests for good-
ness of fit [see, e.g., Read and Cressie (1988)] can then still be applied. Algorithms
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for carrying out the numerical tasks just described are presented in the supplemen-
tary material [Fienberg and Rinaldo (2012)].

5. Examples of likelihood zeros. Below, we illustrate by means of examples
various practical aspects of goodness-of-fit testing when the MLE is nonexistent,
and we show how to appropriately adjust the number of degrees of freedom. We
will focus on hierarchical log-linear models [see, e.g., Bishop, Fienberg and Hol-
land (1975)], and refer the reader to Dobra et al. (2009) and Rinaldo, Petrović and
Fienberg (2011) for other examples of this kind.

Our polyhedral characterization of the conditions for the existence of the MLE
permits to generate novel examples of patterns of sampling zeros causing nonex-
istence of the MLE for hierarchical log-linear models without producing null mar-
gins, an instance that is virtually ignored in all statistical software. As pointed out
by Fienberg and Rinaldo (2007), the R [R Development Core Team (2005)] rou-
tines loglin and glm, as well as virtually any other software for inference and
model selection for log-linear models, does no detect nonexistence and report the
unadjusted, incorrect, numbers of degrees of freedom for all the examples below.
In the analysis of sparse tables, it is also common practice to add small positive
quantities to the zero cells, in order to avoid numerical issues with the computation
of the MLE. We remain highly skeptical of the numerical advantages of this ad-
hoc procedure, and remark that such adjustments will make it impossible to detect
nonexistence of the MLE and to distinguish the estimable parameters.

The examples of likelihood zeros in Examples 2–4 suggest that the combina-
torial complexity of hierarchical log-linear models, measured by the number of
facets of the marginal cone, can be quite significant. In the reported examples, as
well as in many other experiments we conducted, for many models the number
of facets associated with zero margins appears to be much smaller than the total
number of facets, indicating that, at least combinatorially, likelihood zeros asso-
ciated to positive margins are much more frequent (though never detected). Be-
low we use the classic notation to represent the generating class of a hierarchical
log-linear model; for example, see Bishop, Fienberg and Holland (1975). Empty
cells indicate positive counts. All the calculations were carried out in polymake
[Gawrilow and Joswig (2000)].

EXAMPLE 1. The 23 table and the model [12][13][23] of no-second-order
interaction. The MLE is not defined because the two likelihood zeros expose one
of the 16 facets of the marginal cone. This example, due to Haberman (1974),
was the only published example a log-linear model with nonexistent MLE and
positive margins; see Fienberg and Rinaldo (2007), Section 5, for a general result
concerning binary K-way tables and the model of no-(K − 1)st interaction.

0
0
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The dimension of the log-linear subspace for this model, or, equivalently, of the
marginal cone, is 7, leaving 1 degree of freedom when the MLE exists. However,
because of the likelihood zeros, inference can only be made for the 6-dimensional
exposed facet. Since the cardinality of the associated facial set F is also 6, the
resulting extended log-linear model is the saturated model on F .

EXAMPLE 2. The 33 table and the model [12][13][23]. The MLE is not de-
fined because the pattern of likelihood zeros exposes one of the 207 facets of the
marginal cone. Of all the facets, only 27 are associated to zero margins.

0

0 0
0 0
0

0 0
0

The dimension of the facet is 18, which is also the cardinality of the facial set
for this configuration of likelihood zeros. As in the previous example, this defines
the saturated model on F , giving 0 adjusted degrees of freedom and making χ2

approximations not applicable.
Under the same log-linear model, the MLE does not exist also when the follow-

ing pattern of zeros arises:

0
0 0

0 0

0 0
0

In this example, the zeros displayed in bold are not likelihood zeros, but the others
are. Indeed, their presence or absence has no effect on the existence of the MLE.
Furthermore, when the extended MLE is computed, the boldfaced zero counts will
be replaced by positive entries, while the likelihood zeros will stay zero. The num-
ber of degrees of freedom in this example is 3, because the total number of es-
timable cell mean values is 21, and the number of parameters for the reduced
model is 18.

In our last example, the MLE is defined, despite the table being very sparse,
because no facet of the marginal cone is exposed [source: Fienberg and Rinaldo
(2007)].

0 0
0 0
0 0

0 0
0 0

0 0

0 0
0 0

0 0

EXAMPLE 3. The 4×4×4 table and the model [12][13][23]. The MLE is not
defined because the pattern of zeros exposes one of 113,740 facets of the marginal
cone [source: Eriksson et al. (2006)]. Of these, only 48 are associated to zero mar-
gins.
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0 0 0
0 0
0

0 0
0

0 0 0

0

0 0 0
0 0

0 0 0
0 0

0

EXAMPLE 4. The 34 table and the 4-cycle model [12][14][23][34]. The MLE
is not defined because the pattern of zeros exposes one of the 1116 facets of the
marginal cone. Of these, only 36 are associated to zero margins.

0 0
0

0 0 0
0 0 0
0 0

0 0 0
0 0
0

0 0
0 0 0
0 0 0

0
0 0 0
0 0

0 0
0

0 0
0

0 0 0

0

0 0

0 0 0
0 0

0 0 0

6. Algorithms for extended maximum likelihood estimation. In the sup-
plementary material [Fienberg and Rinaldo (2012)], we apply the theory developed
in this article to develop efficient algorithms for extended maximum likelihood es-
timation in log-linear models under Poisson and product multinomial schemes [for
which the key integrality assumption (A2) is satisfied] that are applicable to high-
dimensional models and large tables. Some of these algorithms are implemented in
a MATLAB toolbox available at http://www.stat.cmu.edu/~arinaldo/ExtMLE/. The
final output of our procedure is the set of estimable mean value and natural param-
eters.

APPENDIX A: EXTENDED EXPONENTIAL FAMILIES

In this appendix we provide a brief review of the theory of extend families and
its relevance for log-linear models. Along with classic references on exponential
families [Barndorff-Nielsen (1978), Brown (1986), Čencov (1982), Letac (1992)]
and generalizations by Csiszár and Matúš (2001, 2003, 2005, 2008), we refer the
reader to Rinaldo, Fienberg and Zhou (2009) and Geyer (2009) for treatments more
directly relevant to our problem.

Consider a log-linear model under conditional Poisson sampling scheme spec-
ified by a sampling matrix V of rank m and a design matrix A of the form (8),
where B is of full-rank d − m. Then [see equation (6)], the distribution of the suf-
ficient statistic z = B�n form an exponential family of distributions ECV on Rd−m

http://www.stat.cmu.edu/~arinaldo/ExtMLE/
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with densities

qθ (z) = exp
(
(z, θ) − ψ(θ)

)
, θ ∈ 	,

with respect to the base measure μV = ν−1
V B, and parameter space 	 = Rd−m.

The convex support CV of ECV is the closure of the convex hull of the support
of μV. In particular, P is a full-dimensional polyhedron in Rd−m and, for every
face F of CV, F is the convex hull of some points in the support of μV. Given a
realization z of the sufficient statistics, the random set

θ̂(z) = θ̂ =
{
θ∗ ∈ 	 :qθ∗(z) = sup

θ∈	

qθ (z)
}

(13)

is the maximum likelihood estimator (MLE) of θ . If θ̂ = ∅ we say that the MLE
does not exist. Existence of the MLE is fully characterized by the geometry of
CV, as the following well-known result indicates; see, for example, Theorem 5.5
in Brown (1986) or Theorem 9.13 in Barndorff-Nielsen (1978).

THEOREM 13. For a minimal and full exponential family, the MLE θ̂ exists
and is unique if and only if z ∈ ri(P).

Setting ξ(θ) = ∫
Rd−m zqθ (z) dμV(z), because of the minimality of ECV , one ob-

tains the fundamental identity ∇ψ(θ) = ξ(θ),∀θ ∈ 	, where ∇ indicates the gra-
dient. In particular, if the MLE exists, it satisfies the equation θ̂ = (∇ψ)−1(z),
which is equivalent to the moment equation ξ (̂θ) = z.

For any proper face F of CV, let μF
V be the restriction of μV to F . Then, μF

V de-
termines a new exponential family of distributions, EF , with densities with respect
to μF

V given by

qF
θ (x) = exp

(
(z,θ) − ψF (θ)

)
, θ ∈ 	F ,

where the natural parameter space is 	F = {θ ∈ 	 : exp(ψF (θ)) < ∞} = 	, with
ψF (θ) = log

∫
Rd−m exp((z, θ)) dμF

V(z). The convex support of this new family is
F , and the existence result of Theorem 13 carries over: the MLE exists if and only
if the observed sample z belongs to ri(F ). However, since EF is supported on a
lower-dimensional affine subspace of Rd−m of dimension dF = dim(F ), it is no
longer minimal, hence it is unidentifiable. Nonetheless, if z ∈ ri(F ), the MLE of θ
is the set consisting of those θ satisfying the first order optimality conditions

z = ∇ψF (θ) or, equivalently, ξF (θ) = z,(14)

where ξF (θ) = ∫
Rd−m zqF

θ (z) dμF
V(z).

The collection of distributions

E = ⋃
F

EF

as F ranges over all the faces of CV, including CV itself, is known as the extended
exponential family of distributions. With respect to such family E , for any observed
sample z, the MLE, or extended MLE, is always well defined and is the set of
solutions to (14), where F is the unique face containing z in its relative interior.
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APPENDIX B: PROOFS

This appendix contains the proofs of some results stated in the article. The re-
maining proofs can be found in the supplementary material Fienberg and Rinaldo
(2012). Throughout, we assume familiarity with basic notions of polyhedral ge-
ometry; see Ziegler (1995), Schrijver (1998) and Rockafellar (1970) for in-depth
treatments, and Section 2.1 of Rinaldo, Fienberg and Zhou (2009) for a brief re-
view of the concepts directly relevant to our setting.

PROOF OF THEOREM 3. We first assume that A is of full rank d . If N = {0},
then the convex support is the d-dimensional polyhedral cone CA, so the result
follows directly from Theorem 13. Thus, throughout the remainder of the proof
we consider the case 0 < dim(N ) < d . For now, we further assume that A is of the
form (8).

By standard minimality arguments, we can work with the exponential family
supported on S = {z : z = B�x,x ∈ NI ,V�x = 1}. By assumption (A1), the con-
vex support CV, which is the closure of the set conv(S), is a full-dimensional
polyhedron in Rd−m. In particular, the parameter space is Rd−m. The MLE exists
and is unique if and only if z ∈ ri(CV) by Theorem 13. We now show that this
happens if and only if t ∈ ri(CA). We first use the integrality assumption (A2) to
obtain a simpler representation of CV.

LEMMA 14.

CV = {B�x : x ∈ RI≥0,V�x = 1}.

PROOF. Since {B�x : x ∈ RI≥0,V�x = 1} is a polyhedron (hence closed and
convex), it must contain CV. To show the reverse inclusion, let z∗ ∈ {B�x : x ∈
RI≥0,V�x = 1}. Then, z∗ = B�x∗ for some x∗ ∈ {x : x ∈ RI≥0,V�x = 1}. By the
integrality assumption (A2),

x∗ ∈ conv({x : x ∈ NI ,V�x = 1}),
which by linearity implies that z∗ ∈ conv(B�x : x ∈ NI ,V�x = 1}) ⊆ CV, as
claimed. �

For design matrices of the form (8), the claim in the theorem follows directly
from the next lemma.

LEMMA 15. There exists a homomorphism from the face lattice of CV to the
face lattice of CA that associates to each face of CV of dimension dF the (unique)
face of CA of dimension m + dF containing it.
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PROOF. Instead of concerning ourselves with CV, we find it convenient to deal
with the d − m-dimensional polyhedron in Rd

TV = CA ∩ {t = (t1, . . . , td)� ∈ Rd : tj = 1, j = d − m + 1, . . . , d}.(15)

In light of the next result, TV and CV have the same combinatorial properties.

LEMMA 16. The polyhedra TV and CV are combinatorially equivalent.

PROOF. By Lemma 14, z ∈ CV if and only if (
z
1) ∈ TV. Thus the coordinate

projection map π : Rd → Rd−m given by π(x1, . . . , xd) = (x1, . . . , xd−m) defines a
bijection between CV and TV. Since π is a linear mapping, CV and TV are affinely
equivalent, hence combinatorially equivalent. �

It follows from Lemma 16 that there exists a bijection between CV and TV
that is also a bijection between boundary points of CV and points on the relative
boundary of TV in such a way that the face lattices of CV and TV are identical. Note
also that isomorphic faces of the polyhedra have the same dimension. Therefore,
it is sufficient to prove that the claim of the theorem holds for TV instead of CV.

Using the H-representation [see, e.g., Ziegler (1995), Schrijver (1998)] we write

CA = {t ∈ Rd : Ct ≤ 0}(16)

for some matrix C, where we can assume that no inequality is redundant. In par-
ticular, any face F of CA of co-dimension k can be written as

{t : Ct ≤ 0, (cj , t) = 0, j = 1, . . . , k},
where (c1, . . . , ck) are the k rows of C that define the k supporting hyperplanes
whose intersection with CA is precisely F . Define

T = [ 0 Im ] ,

where 0 is the m × (d − m) matrix of zeros, and Im is the m × m identity matrix.
Thus, TV is the set of points in Rd given by {t : Dt ≤ b}, with

D =
⎡
⎣ C′

T
−T

⎤
⎦ and b =

⎡
⎣ 0

1
−1

⎤
⎦ ,

where C′ is the sub-matrix of C obtained by removing the rows corresponding to
inequalities that may have become redundant once the sampling constraint are en-
forced. These inequalities are the precisely the defining inequalities for the facets
that do not intersect the affine space {t : Tt = 1}. Notice that, by (A1), the dimen-
sion of TV is equal to d minus the rank of[

T
−T

]
,
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which is m. Next, any face F of TV of co-dimension k can be written as

F = {t : Dt ≤ b, (dj , t) = 0, j = 1, . . . , k},
where (d1, . . . ,dk) are the k rows of C′ that define the k supporting hyperplanes
of F . Since the points in F satisfy all the inequalities (16), it follows that F is
contained in the set F ′ = {t : Ct ≤ 0, (dj , t) = 0, j = 1, . . . , k}, which is a face of
CA of co-dimension k. It is also immediate to see that F ′ is the smallest such
face. Furthermore, if G is a different face of TV of co-dimension k, it is defined
by a different set of equalities, so it is contained in a different face of CA (of co-
dimension k). If G is instead of co-dimension k′ > k and is also a face of F , then,
G = {t : Dt ≤ b, (dj , t) = 0, j = 1, . . . , k, . . . , k′}, so that G is contained in the set
{t : Ct ≤ 0, (dj , t) = 0, j = 1, . . . , k′}, which is a face of CA of co-dimension k′
and also a face of F ′.

Therefore, the mapping that associates to each face of TV the smallest face of CA
containing it (and of the same co-dimension) is a lattice homomorphism from the
face lattice of TV to the face lattice of CA. Furthermore, since the homomorphism
just described is between faces of the same co-dimension, and dim(TV) = d − m

while dim(CA) = d , each face of TV of dimension dF is mapped to a face of CA
of dimension m + dF . �

Thus far we have assumed that the design matrix A is of full rank and has the
form specified by equation (8). Now let A′ be any design matrix with row span
M, not necessarily of the form (8), or not even of full rank. Then, CA′ is also a
polyhedral cone of dimension d , though its ambient dimension may be larger. As
A′ and A have the same null space, the cones CA′ and CA are affinely isomorphic,
hence combinatorially equivalent. Thus, t′ = (A′)�x ∈ ri(CA′) if and only if t =
A�x, which shows that the theorem holds for any generic design matrix A. �

PROOF OF THEOREM 9. We show that, under both Poisson and product multi-
nomial scheme, the MLE exists, is unique and is identical in both cases if and only
if t = An is a point in the relative interior of CA. If t belongs to the relative in-
terior of a face F , then both log-likelihood functions realize their suprema along
sequences of points μn ⊂ M for which the limit exp(μn) = m̂e is unique, satisfies
the moment equations �Mn = �Mn̂ and supp(m̂) = F .

First, we consider the problem of maximizing the log-likelihood �P (μ) =
(n,μ) − ∑

i∈I exp(μ(i)) under Poisson sampling scheme. Suppose t = A�n lies
inside the relative interior of a proper face F of CA with corresponding facial
set F . Then, there exists a zF ∈ kernel(A) = M⊥ such that the vector xF = n+zF

satisfies t = A�xF and supp(n + zF ) = F . Furthermore, since, for any μ ∈ M,
(zF ,μ) = 0, �P (μ) = (xF ,μ) − ∑

i∈I exp(μ(i)).
Define �P

F and �P
F c to be the restriction of �P on πF (M) and πF c (M), respec-

tively. Explicitly,

�P
F (μ) = (xF ,πF (μ)) − ∑

i∈F
exp(μ(i)) = (xF ,μ) − ∑

i∈F
exp(μ(i))
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and �P
F c (μ) = −∑

i∈F c exp(μ(i)). Therefore, �P (μ) = �P
F (μ) + �P

F c (μ). On
πF (M), the function �P

F is bounded from above, continuous and strictly concave,
so it is maximized by the unique point μ∗

F ∈ πF (M) that satisfy the first order
optimality conditions on the differential of �P

F [see Haberman (1974), Chapter 2]
given by

(λF , exp(μ∗
F )) = (λF , πF (xF )) = (λF ,n) ∀λF ∈ πF (M),(17)

where the second equality holds since xF ∈ M⊥ and supp(XF ) = F .
On the other hand, on πF c (M), the function �P

F c is negative and strictly de-
creasing in each coordinate of its argument. Thus,

sup
μ∈M

�P
P(μ) ≤ sup

μF ∈πF (M)

�P
F (μF ) = �P

F (μ∗
F ).

We now show that the above inequality is in fact an equality by finding a se-
quence {μn} ⊂ M such that

lim
n

�P (μn) = �P
F (μ∗

F ).

To this end, let μ∗ be any vector in M such that πF (μ∗) = μ∗
F . Next, since F is a

facial set, there exists a sequence {γ n} ⊂ M such that:

(i) if i ∈ F , then γ n(i) = 0, for all n;
(ii) if i ∈ F c, then γ n(i) < 0 for all n and limn γ n(i) = −∞ (the rate at which

these series diverge to infinity being arbitrarily fast).

Define the sequence {μn} ⊂ M as μn = μ∗ + γ n. Then,

lim
n

μn(i) =
{

μ∗(i) if i ∈ F ,
−∞ if i ∈ F c,

from which it follows that

lim
n

�P (μn) = lim
n

�P
F (πF (μn)) + lim

n
�P

F c (πF c (μn))

= �P
F (μ∗

F ) + lim
n

�P
F c (πF c (μn)) = �P

F (μ∗
F ),

as desired, since

lim
n

�P
F c (πF c (μn)) = ∑

i∈F c

lim
n

exp(μn(i)) = 0.

Set m̂e = limn exp(μn), and notice that m̂e is the unique vector in RI such that{
πF (m̂e) = exp(μ∗

F ),

πF c (m̂e) = 0,

where uniqueness stems from the uniqueness of μ∗
F (it is clear that, while m̂e is

unique, the sequence {μn} is not). Furthermore, m̂e is random, as it depends on the
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facial set F associated to the face of CA exposed by t = A�n. Finally, in virtue of
the fact that supp(n) ⊆ F , we see that, for any λ ∈ M,

(λ, m̂e) = (λF , exp(μ∗
F )) and (λF ,n) = (λ,n)

so that, using (17), m̂e can be characterized as the unique point in M such that

(λ, m̂e) = (λ,n) ∀λ ∈ M,

or, equivalently,

A�m̂e = A�n or �Mm̂e = �Mn.(18)

If we instead want to maximize the log-likelihood function �M under product
multinomial sampling, we need to consider only the points μ̃ inside M̃ as in equa-
tion (4). Fortunately, this restriction is inconsequential. First note that, by (18) and
because N ⊂ M, the limit μ∗ satisfies the constraints {(χ j , exp(μ∗)) = Nj, j =
1, . . . , r}. Next, since �M and �P differ by a constant on M̃ and M̃ ⊂ M, we have
that

�M(μ∗) = sup
μ̃∈M̃

�M(μ̃).

We conclude that the log-likelihood functions under both the Poisson and product
multinomial model must have the same maximizer m̂.

Finally, we note that if t ∈ ri(CA), so that F = I , the arguments simplify. Ex-
plicitly, there exists a point μ∗ ∈ M̃ ⊂ M such that

sup
μ∈M

�P (μ) = �P (μ∗),

sup
μ̃∈M̃

�M(μ̃) = �M(μ∗)

which we can obtain as the unique point m̂e ∈ M with supp(m̂e) = I satisfy-
ing (18). �
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