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COVARIANCE MATRIX ESTIMATION FOR STATIONARY
TIME SERIES1

BY HAN XIAO AND WEI BIAO WU

University of Chicago

We obtain a sharp convergence rate for banded covariance matrix esti-
mates of stationary processes. A precise order of magnitude is derived for
spectral radius of sample covariance matrices. We also consider a thresh-
olded covariance matrix estimator that can better characterize sparsity if the
true covariance matrix is sparse. As our main tool, we implement Toeplitz
[Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance
matrices to the spectral densities or Fourier transforms of the covariances.
We develop a large deviation result for quadratic forms of stationary pro-
cesses using m-dependence approximation, under the framework of causal
representation and physical dependence measures.

1. Introduction. One hundred years ago, in 1911, Toeplitz obtained a deep
result on eigenvalues of infinite matrices of the form �∞ = (as−t )

∞
s,t=−∞. We

say that λ is an eigenvalue of �∞ if the matrix �∞ − λ Id∞ does not have
a bounded inverse, where Id∞ denotes the infinite-dimensional identity matrix.
Toeplitz proved that, interestingly, the set of eigenvalues is the same as the image
set {g(θ), θ ∈ [0,2π ]}, where

g(θ) = ∑
t∈Z

ate
itθ with i = √−1.(1)

Note that g(θ) is the Fourier transform of the sequence (at )
∞
t=−∞. For a finite

T × T matrix �T = (as−t )1≤s,t≤T , its eigenvalues are approximately equally dis-
tributed (in the sense of Hermann Weyl) as {g(ωs), s = 0, . . . , T − 1}, where ωs =
2πs/T are the Fourier frequencies. See the excellent monograph by Grenander
and Szegö (1958) for a detailed account.

Covariance matrix is of fundamental importance in many aspects of statistics
including multivariate analysis, principal component analysis, linear discriminant
analysis and graphical modeling. One can infer dependence structures among vari-
ables by estimating the associated covariance matrices. In the context of stationary
time series analysis, due to stationarity, the covariance matrix is Toeplitz in that,
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along the off-diagonals that are parallel to the main diagonal, the values are con-
stant. Let (Xt)t∈Z be a stationary process with mean μ = EXt , and denote by
γk = E[(X0 − μ)(Xk − μ)], k ∈ Z, its autocovariances. Then

�T = (γs−t )1≤s,t≤T(2)

is the autocovariance matrix of (X1, . . . ,XT ). In the rest of the paper for simplicity
we also call (2) the covariance matrix of (X1, . . . ,XT ). In time series analysis it
plays a crucial role in prediction [Kolmogoroff (1941), Wiener (1949)], smooth-
ing and best linear unbiased estimation (BLUE). For example, in the Wiener–
Kolmogorov prediction theory, one predicts XT +1 based on past observations
XT ,XT −1, . . . . If the covariances γk were known, given observations X1, . . . ,XT ,
the coefficients of the best linear unbiased predictor X̂T +1 = ∑T

s=1 aT,sXT +1−s in
terms of the mean square error ‖XT +1 − X̂T +1‖2 are the solution of the discrete
Wiener–Hopf equation

�T aT = γ T ,

where aT = (aT ,1, aT ,2, . . . , aT ,T )� and γ T = (γ1, γ2, . . . , γT )�, and we use the
superscript � to denote the transpose of a vector or a matrix. If γk are not known,
we need to estimate them from the sample X1, . . . ,XT , and a good estimate of
�T is required. As another example, suppose now μ = EXt �= 0 and we want
to estimate it from X1, . . . ,XT by the form μ̂ = ∑T

t=1 ctXt , where ct satisfy
the constraint

∑T
t=1 ct = 1. To obtain the BLUE, one minimizes E(μ̂ − μ)2 sub-

ject to
∑T

t=1 ct = 1, ensuring unbiasedness. Note that the usual choice ct ≡ 1/T

may not lead to BLUE. The optimal coefficients are given by (c1, . . . , cT )� =
(1��−1

T 1)−1�−1
T 1, where 1 = (1, . . . ,1)� ∈ R

T ; see Adenstedt (1974). Again a
good estimate of �−1

T is needed.
Given observations X1,X2, . . . ,XT , assuming at the outset that EXt = 0, we

can naturally estimate �T via plug-in by the sample version

�̂T = (γ̂s−t )1≤s,t≤T where γ̂k = 1

T

T∑
t=|k|+1

Xt−|k|Xt.(3)

To judge the quality of a matrix estimate, we use the operator norm. The term “op-
erator norm” usually indicates a class of matrix norms; in this paper it refers to the
�2/�2 operator norm or spectral radius defined as λ(A) := max|x|=1|Ax| for any
symmetric real matrix A, where x is a real vector, and |x| denotes its Euclidean
norm. For the estimate �̂T in (3), unfortunately, because too many parameters
or autocovariances are estimated and the signal-to-noise ratios are too small at
large lags, this estimate is not consistent. Wu and Pourahmadi (2009) showed that
λ(�̂T − �T ) �→ 0 in probability. In Section 2 we provide a precise order of mag-
nitude of λ(�̂T − �T ) and give explicit upper and lower bounds.

The inconsistency of sample covariance matrices has also been observed in the
context of high-dimensional multivariate analysis, and this phenomenon is now
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well understood, thanks to the results from random matrix theory. See, among
others, Marčenko and Pastur (1967), Bai and Yin (1993) and Johnstone (2001).
Recently, there is a surge of interest on regularized covariance matrix estimation
in high-dimensional statistical inference. We only sample a few works which are
closely related to our problem. Cai, Zhang and Zhou (2010), Bickel and Levina
(2008b) and Furrer and Bengtsson (2007) studied the banding and/or tapering
methods, while Bickel and Levina (2008a) and El Karoui (2008) considered the
regularization by thresholding. In most of these works, convergence rates of the
estimates were established.

However, none of the techniques used in the aforementioned papers is applica-
ble in our setting since their estimates require multiple independent and identically
distributed (i.i.d.) copies of random vectors from the underlying multivariate dis-
tribution, though the number of copies can be far less than the dimension of the
vector. In time series analysis, however, it is typical that only one realization is
available. Hence we shall naturally use the sample autocovariances. In a compan-
ion paper, Xiao and Wu (2011) established a systematic theory for L2 and L∞
deviations of sample autocovariances. Based on that, we adopt the regularization
idea and study properties of the banded, tapered and thresholded estimates of the
covariance matrices. Wu and Pourahmadi (2009) and McMurry and Politis (2010)
applied the banding and tapering methods to the same problem, but here we shall
obtain a better and optimal convergence rate. We shall point out that the regular-
ization ideas of banding and tapering are not novel in time series analysis and they
have been applied in nonparametric spectral density estimation.

In this paper we use the ideas in Toeplitz (1911) and Grenander and Szegö
(1958) together with Wu’s (2005) recent theory on stationary processes to present
a systematic theory for estimates of covariance matrices of stationary processes. In
particular, we shall exploit the connection between covariance matrices and spec-
tral density functions and prove a sharp convergence rate for banded covariance
matrix estimates of stationary processes. Using convergence properties of peri-
odograms, we derive a precise order of magnitude for spectral radius of sample
covariance matrices. We also consider a thresholded covariance matrix estimator
that can better characterize sparsity if the true covariance matrix is sparse. As a
main technical tool, we develop a large deviation type result for quadratic forms
of stationary processes using m-dependence approximation, under the framework
of causal representations and physical dependence measures.

The rest of this article is organized as follows. In Section 2 we introduce the
framework of causal representation and physical dependence measures that are
useful for studying convergence properties of covariance matrix estimates. We pro-
vide in Section 2 upper and lower bounds for the operator norm of the sample co-
variance matrices. The convergence rates of banded/tapered and thresholded sam-
ple covariance matrices are established in Sections 3 and 4, respectively. We also
conduct a simulation study to compare the finite sample performances of banded
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and thresholded estimates in Section 5. Some useful moment inequalities are col-
lected in Section 6. A large deviation result about quadratic forms of stationary
processes, which is of independent interest, is given in Section 7. Section 8 con-
cludes the paper.

We now introduce some notation. For a random variable X and p > 0, we write
X ∈ Lp if ‖X‖p := (E|X|p)1/p < ∞, and use ‖X‖ as a shorthand for ‖X‖2. To
express centering of random variables concisely, we define the operator E0 as
E0(X) := X − EX. Hence E0(E0(X)) = E0(X). For a symmetric real matrix A,
we use λmin(A) and λmax(A) for its smallest and largest eigenvalues, respectively,
and use λ(A) to denote its operator norm or spectral radius. For a real number x,
�x� := max{y ∈ Z :y ≤ x} denotes its integer part and 
x� := min{y ∈ Z :y ≥ x}.
For two real numbers x, y, set x ∨ y = max{x, y} and x ∧ y := min{x, y}. For two
sequences of positive numbers (aT ) and (bT ), we write aT � bT if there exists
some constant C > 1 such that C−1 ≤ aT /bT ≤ C for all T . The letter C denotes a
constant, whose values may vary from place to place. We sometimes add symbolic
subscripts to emphasize that the value of C depends on the subscripts.

2. Exact order of operator norms of sample covariance matrices. Suppose
Y is a p × n random matrix consisting of i.i.d. entries with mean 0 and variance 1,
which could be viewed as a sample of size n from some p-dimensional popula-
tion; then YY�/n is the sample covariance matrix. If limn→∞ p/n = c > 0, then
YY�/n is not a consistent estimate of the population covariance matrix (which
is the identity matrix) in term of the operator norm. This is a well-known phe-
nomenon in random matrices literature; see, for example, Marčenko and Pastur
(1967), Section 5.2 in Bai and Silverstein (2010), Johnstone (2001) and El Karoui
(2005). However, the techniques used in those papers are not applicable here, be-
cause we have only one realization and the dependence within the vector can be
quite complicated. Thanks to the Toeplitz structure of �T , our method depends on
the connection between its eigenvalues and the spectral density, defined by

f (θ) = 1

2π

∑
k∈Z

γk cos(kθ).(4)

The following lemma is a special case of Section 5.2 [Grenander and Szegö
(1958)].

LEMMA 1. Let h be a continuous symmetric function on [−π,π ]. Denote by
h and h its minimum and maximum, respectively. Define ak = ∫ π

−π h(θ)e−ikθ dθ

and the T × T matrix 	T = (as−t )1≤s,t≤T ; then

2πh ≤ λmin(	T ) ≤ λmax(	T ) ≤ 2πh.

Lemma 1 can be easily proved by noting that

x�	T x =
∫ π

−π
|x�ρ(θ)|2h(θ)dθ where ρ(θ) = (eiθ , ei2θ , . . . , eiT θ )�.(5)
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The sample covariance matrix (3) is closely related to the periodogram

IT (θ) = T −1

∣∣∣∣∣
T∑

t=1

Xte
itθ

∣∣∣∣∣
2

=
T −1∑

k=1−T

γ̂ke
ikθ .

By Lemma 1, we have λ(�̂T ) ≤ max−π≤θ≤π IT (θ). Asymptotic properties of pe-
riodograms have recently been studied by Peligrad and Wu (2010) and Lin and Liu
(2009). To introduce the result in the latter paper, we assume that the process (Xt)

has the causal representation

Xt = g(εt , εt−1, . . .),(6)

where g is a measurable function such that Xt is well defined, and εt , t ∈ Z, are
i.i.d. random variables. The framework (6) is very general [see, e.g., Tong (1990)]
and easy to work with. Let F t = (εt , εt−1, . . .) be the set of innovations up to
time t ; we write Xt = g(F t ). Let ε′

t , t ∈ Z, be an i.i.d. copy of εt , t ∈ Z. Define
F t∗ = (εt , . . . , ε1, ε

′
0, ε−1, . . .), obtained by replacing ε0 in F t by ε′

0, and set X′
t =

g(F t∗). Following Wu (2005), for p > 0, define

�p(m) =
∞∑

t=m

δp(t), m ≥ 0, where δp(t) = ‖Xt − X′
t‖p.(7)

In Wu (2005), the quantity δp(t) is called physical dependence measure. We make
the convention that δp(t) = 0 for t < 0. Throughout the article, we assume the
short-range dependence condition �p := �p(0) < ∞. Under a mild condition
on the tail sum �p(m) (cf. Theorem 2), Lin and Liu (2009) obtained the weak
convergence result

max
1≤s≤q

{
IT (2πs/T )

2πf (2πs/T )

}
− logq ⇒ G,(8)

where ⇒ denotes the convergence in distribution, G is the Gumbel distribution
with the distribution function e−e−x

, and q = 
T/2� − 1. Using this result, we
can provide explicit upper and lower bounds on the operator norm of the sample
covariance matrix.

THEOREM 2. Assume Xt ∈ Lp for some p > 2 and EXt = 0. If �p(m) =
o(1/ logm) and minθ f (θ) > 0, then

lim
T →∞P

{
π [minθ f (θ)]2 logT

12�2
2

≤ λ(�̂T ) ≤ 10�2
2 logT

}
= 1.

According to Lemma 1, we know λmax(�T ) ≤ 2π maxθ f (θ). As an immediate
consequence of Theorem 2, there exists a constant C > 1 such that

lim
T →∞P [C−1 logT ≤ λ(�̂T − �T ) ≤ C logT ] = 1,
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which means the estimate �̂T is not consistent, and the order of magnitude of
λ(�̂T − �T ) is logT . Earlier, Wu and Pourahmadi (2009) also showed that the
plug-in estimate �̂T = (γ̂s−t )1≤s,t≤T is not consistent, namely, λ(�̂T − �) �→ 0
in probability. Our Proposition 2 substantially refines this result by providing an
exact order of magnitude of λ(�̂T − �).

An, Chen and Hannan (1983) showed that under suitable conditions, for linear
processes with i.i.d. innovations,

lim
T →∞ max

θ
{IT (θ)/[2πf (θ) logT ]} = 1 almost surely.(9)

A stronger version was found by Turkman and Walker (1990) for Gaussian pro-
cesses. Based on (9), we conjecture that

lim
T →∞

λ(�̂T )

2π maxθ f (θ) logT
= 1 almost surely.

Turkman and Walker (1984) established the following result on the maximum pe-
riodogram of a sequence of i.i.d. standard normal random variables:

max
θ

IT (θ) − logT − log(logT )

2
+ log(3/π)

2
⇒ G.(10)

In view of (8) and (10), we conjecture that λ(�̂T ) also converges to the Gumbel
distribution after proper centering and rescaling. Note that the Gumbel conver-
gence (10), where the maximum is taken over the entire interval θ ∈ [−π,π ], has
a different centering term from the one in (8) which is obtained over Fourier fre-
quencies.

If Y is a p×n random matrix consisting of i.i.d. entries, Geman (1980) and Yin,
Bai and Krishnaiah (1988) proved a strong convergence result for the largest eigen-
values of Y�Y , in the paradigm where n,p → ∞ such that p/n → c ∈ (0,∞).
See also Bai and Silverstein (2010) and references therein. If in addition the en-
tries of Y are i.i.d. complex normal or normal random variables, Johansson (2000)
and Johnstone (2001) presented an asymptotic distributional theory and showed
that, after proper normalization, the limiting distribution of the largest eigenvalue
follows the Tracy–Widom law [Tracy and Widom (1994)]. Again, their methods
depend heavily on the setup that there are i.i.d. copies of a random vector with inde-
pendent entries, and/or the normality assumption, so they are not applicable here.
Bryc, Dembo and Jiang (2006) studied the limiting spectral distribution (LSD) of
random Toeplitz matrices whose entries on different sub-diagonals are i.i.d. Solo
(2010) considered the LSD of sample covariances matrices generated by a sample
which is temporally dependent.

PROOF OF THEOREM 2. For notational simplicity we let f := minθ f (θ) and
f := maxθ f (θ). It follows immediately from (8) that for any δ > 0

lim
T →∞P

[
max

θ
IT (θ) ≥ 2(1 − δ)πf logT

]
= 1.(11)
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The result in (8) is not sufficient to yield an upper bound of maxθ IT (θ). For this
purpose we need to consider the maxima over a finer grid and then use Lemma 3
to extend to the maxima over the whole real line. Set jT = �T logT � and θs :=
θT ,s = πs/jT for 0 ≤ s ≤ jT . Define mT = �T β� for some 0 < β < 1, and X̃t =
Ht−mT

Xt = E(Xt |εt−mT
, εt−mT +1, . . .). Let ST (θ) = ∑T

t=1 Xte
itθ be the Fourier

transform of (Xt)1≤t≤T , and S̃T (θ) = ∑T
t=1 X̃t e

itθ for the mT -dependent sequence
(X̃t )1≤t≤T . By Lemma 3.4 of Lin and Liu (2009), we have

max
0≤s≤jT

T −1/2|ST (θs) − S̃T (θs)| = oP ((logT )−1/2).(12)

Now partition the interval [1, T ] into blocks B1, B2, . . . , BwT
of size mT , where

wT = �T/mT �, and the last block may have size mT ≤ |B|wT
< 2mT . Define the

block sum UT,k(θ) = ∑
t∈Bk

X̃t e
itθ for 1 ≤ k ≤ wT . Choose β > 0 small enough

such that for some 0 < γ < 1/2, the inequality

1 − β + βp − γ (p − 1) − 1/2 < 0(13)

holds. We use truncation and define UT,k(θ) = E0[UT,k(θ)1|UT,k(θ)|≤T γ ]. Using
similar arguments as equation (5.5) [Lin and Liu (2009)] and (13), we have

max
0≤s≤jT

T −1/2

∣∣∣∣∣
wT∑
k=1

[UT,k(θs) − UT,k(θs)]
∣∣∣∣∣ = oP ((logT )−1/2).(14)

Observe that UT,k1(θ) and UT,k2(θ) are independent if |k1 − k2| > 1. Let R(z)

denote the real part of a complex number z. Split the sum
∑wT

k=1 UT,k(θ) into four
parts

RT,1(θ) = ∑
k odd

R(UT,k(θ)), RT,2(θ) = ∑
k even

R(UT,k(θ))

and RT,3, RT,4 similarly for the imaginary part of UT,k . Since E|UT,k(θ)|2 ≤
E|UT,k(θ)|2 ≤ |Bk|�2

2, by Bernstein’s inequality [cf. Freedman (1975)],

sup
θ

P

[
|RT,l(θ)| ≥ 3�2

2
√

2

√
T logT

]
≤ 2 exp

{
− (9/8) logT

1 + 3�−1
2

√
2 logT T γ−1/2

}

for 1 ≤ l ≤ 4. It follows that

lim
T →∞P

[
max

0≤s≤jT

∣∣∣∣∣
wT∑
k=1

UT,k(θs)

∣∣∣∣∣ ≥ 3�2

√
T logT

]
= 0.(15)

Combining (12), (14) and (15), we have

lim
T →∞P

[
max

0≤s≤jT

IT (θs) ≤ 9.5�2
2 logT

]
= 1,(16)

which together with Lemma 3 implies that

lim
T →∞P

[
max

θ
IT (θ) ≤ 10�2

2 logT
]
= 1.(17)
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The upper bound in Theorem 2 is an immediate consequence in view of Lemma 1.
For the lower bound, we use the inequality

λ(�̂T ) ≥ max
θ

{T −1ρ(θ)∗�T ρ(θ)},
where ρ(θ) is defined in (5), and ρ(θ)∗ is its Hermitian transpose. Note that

ρ(θ)∗�T ρ(θ) =
T∑

s,t=1

γ̂s−t e
isθ e−itθ

= 1

2π

∫ π

−π

T∑
s,t=1

IT (ω)e−i(s−t)ωei(s−t)θ dω

= 1

2π

∫ π

−π
IT (ω)

∣∣∣∣∣
T∑

t=1

eit (ω−θ)

∣∣∣∣∣
2

dω

= 1

2π

∫ π−θ

−π−θ
IT (ω + θ)

∣∣∣∣∣
T∑

t=1

eitω

∣∣∣∣∣
2

dω.

By Bernstein’s inequality on the derivative of trigonometric polynomials [cf.
Zygmund (2002), Theorem 3.13, Chapter X], we have

max
θ

|I ′
T (θ)| ≤ T · max

θ
IT (θ).

Let θ0 = arg maxθ IT (θ). Set c = (1 − δ)πf /(10�2
2). By Lemma 1 and (40),

we know 2πf ≤ �2
2, and hence c ≤ 1/20. If IT (θ0) ≥ 2(1 − δ)πf logT and

maxθ IT (θ) ≤ 10�2
2 logT , then for |w| ≤ c/T , we have

IT (θ0 + ω) ≥ [2(1 − δ)πf − 10c�2
2] logT = (1 − δ)πf logT .

Since |∑T
j=1 eijω|2 ≥ 10T 2/11 when |w| ≤ c/T , it follows that

ρ(θ0)
∗�T ρ(θ0) ≥ 1

2π
· (1 − δ)πf logT · 10T 2

11
· 2c

T

= π(1 − δ)2f 2T logT

11�2
2

,

which implies that λ(�̂T ) ≥ π(1 − δ)2f 2 logT/(11�2
2). The proof is completed

by selecting δ small enough. �

REMARK 1. In the proof, as well as many other places in this article, we often
need to partition an integer interval [s, t] ⊂ N into consecutive blocks B1, . . . , Bb

with the same size m. Since s − t + 1 may not be a multiple of m, we make the
convention that the last block Bb has the size m ≤ |Bb| < 2m, and all the other
ones have the same size m.
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3. Banded covariance matrix estimates. In view of Lemma 1, the inconsis-
tency of �̂T is due to the fact that the periodogram IT (θ) is not a consistent esti-
mate of the spectral density f (θ). To estimate the spectral density consistently, it
is very common to use smoothing. In particular, consider the lag window estimate

f̂T ,BT
(θ) = 1

2π

BT∑
k=−BT

K(k/BT )γ̂k cos(kθ),(18)

where BT is the bandwidth satisfying natural conditions BT → ∞ and BT /T → 0,
and K(·) is a symmetric kernel function satisfying

K(0) = 1, |K(x)| ≤ 1 and K(x) = 0 for |x| > 1.

Correspondingly, we define the tapered covariance matrix estimate

�̂T ,BT
= [

K
(
(s − t)/BT

)
γ̂s−t

]
1≤s,t≤T = �̂T � WT ,

where � is the Hadamard (or Schur) product, which is formed by element-wise
multiplication of matrices. The term “tapered” is consistent with the terminology
of the high-dimensional covariance regularization literature. However, the reader
should not confuse this with the notion “data taper” that is commonly used in time
series analysis. Our tapered estimate parallels a lag-window estimate of the spec-
tral density with a tapered window. As a special case, if K(x) = 1{|x|≤1} is the
rectangular kernel, then �̂T ,BT

= (γ̂s−t1{|s−t |≤BT }) is the banded sample covari-
ance matrix. However, this estimate may not be nonnegative definite. To obtain
a nonnegative definite estimate, by the Schur product theorem in matrix theory
[Horn and Johnson (1990)], since �̂T is nonnegative definite, their Schur product
�̂T ,BT

is also nonnegative definite if WT = [K((s − t)/BT )]1≤s,t≤T is nonnega-
tive definite. The Bartlett or triangular window KB(u) = max(0,1 − |u|) leads to
a positive definite weight matrix WT in view of

KB(u) =
∫

R

w(x)w(x + u)dx,(19)

where w(x) = 1{|x|≤1/2} is the rectangular window. Any kernel function having
form (19) must be positive definite.

Here we shall show that �̂T ,BT
is a consistent estimate of �T and estab-

lish a convergence rate of λ(�̂T ,BT
− �). We first consider the bias. By the

Geršgorin theorem [cf. Horn and Johnson (1990), Theorem 6.1.1], we have
λ(E�̂T ,BT

− �) ≤ bT , where

bT = 2
BT∑
k=1

[
1 − K

(
k

BT

)]
|γk| + 2

T

BT∑
k=1

k|γk| + 2
T −1∑

k=BT +1

|γk|.(20)

The first term on the right-hand side in (20) is due to the choice of the kernel
function, whose order of magnitude is determined by the smoothness of K(·)
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at zero. In particular, this term vanishes if K(·) is the rectangular kernel. If
1 − K(u) = O(u2) at u = 0 and γk = O(k−β), β > 1, then bT = O(B

1−β
T ) if

1 < β < 2, bT = O(B
1−β
T +T −1) if 2 < β < 3 and bT = O(B−2

T +T −1) if β > 3.
Generally, if

∑∞
k=1 |γk| < ∞, then bT → 0 as BT → ∞ and BT < T .

It is more challenging to deal with λ(�̂T ,BT
− E�̂T ,BT

). If Xt ∈ Lp for some
2 < p ≤ 4 and EXt = 0, Wu and Pourahmadi (2009) obtained

λ(�̂T ,BT
− E�̂T ,BT

) = OP

(
BT �2

p

T 1−2/p

)
.(21)

The key step of their method is to use the inequality

λ(�̂T ,BT
− E�̂T ,BT

) ≤ 2
BT∑
k=0

|K(k/BT )||γ̂k − Eγ̂k|,

which is also obtained by the Geršgorin theorem. It turns out that the above rate
can be improved by exploiting the Toeplitz structure of the autocovariance matrix.
By Lemma 1,

λ(�̂T ,BT
− E�̂T ,BT

) ≤ 2π max
θ

|f̂T ,BT
(θ) − Ef̂T ,BT

(θ)|.(22)

Since f̂T ,BT
(θ) is a trigonometric polynomial of order BT , we can bound its max-

imum by the maximum over a fine grid. The following lemma is adapted from
Zygmund (2002), Theorem 7.28, Chapter X.

LEMMA 3. Let S(x) = 1
2a0 + ∑n

k=1[ak cos(kx) + bk sin(kx)] be a trigono-
metric polynomial of order n. For any x∗ ∈ R, δ > 0 and l ≥ 2(1 + δ)n, let
xj = x∗ + 2πj/l for 0 ≤ j ≤ l; then

max
x

|S(x)| ≤ (1 + δ−1) max
0≤j≤l

|S(xj )|.

For δ > 0, let θj = πj/(
(1 + δ)BT �) for 0 ≤ j ≤ 
(1 + δ)BT �; then by Lem-
ma 3,

max
θ

|f̂T ,BT
(θ) − Ef̂T ,BT

(θ)| ≤ (1 + δ−1)max
j

|f̂T ,BT
(θj ) − Ef̂T ,BT

(θj )|.(23)

THEOREM 4. Assume Xt ∈ Lp with some p > 4, EXt = 0, and �p(m) =
O(m−α). Choose the banding parameter BT to satisfy BT → ∞, and BT =
O(T γ ), for some

0 < γ < 1, γ < αp/2 and (1 − 2α)γ < (p − 4)/p.(24)

Then for bT defined in (20), and cp = (p + 4)ep/4�2
4,

lim
T →∞P

[
λ(�̂T ,BT

− �T ) ≤ 12cp

√
BT logBT

T
+ bT

]
= 1.(25)
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In particular, if K(x) = 1{|x|≤1} and BT � (T / logT )1/(2α+1), then

λ(�̂T ,BT
− �T ) = OP

[(
logT

T

)α/(2α+1)]
.(26)

PROOF. In view of (20), to prove (25) we only need to show that

lim
T →∞P

[
λ(�̂T ,BT

− E�̂T ,BT
) ≤ 12cp

√
BT logBT

T

]
= 1.(27)

By (22) and (23) where we take δ = 1, the problem is reduced to

lim
T →∞P

[
(2π) · max

j
|f̂T ,BT

(θj ) − Ef̂T ,BT
(θj )| ≤ 6cp

√
BT logBT

T

]
= 1.(28)

By Theorem 10 (where we take M = 2), for any γ < β < 1, there exists a constant
Cp,β such that

max
j

P

[
(2π) · |f̂T ,BT

(θj ) − Ef̂T ,BT
(θj )| ≥ 6cp

√
BT logBT

T

]

≤ Cp,β(T BT )−p/4(logT )[(T BT )p/4T −αβp/2 + T B
p/2−1−αβp/2
T + T ](29)

+ Cp,βB−2
T .

If (24) holds, there exist a 0 < β < 1 such that γ − αβp/2 < 0 and (p/4 −
αβp/2)γ − (p/4 − 1) < 0. It follows that by (29),

P

[
max

j
|f̂T ,BT

(θj ) − Ef̂T ,BT
(θj )| ≥ 6cp

√
BT logBT

T

]

≤ Cp,β(logT )
[
T γ−αβp/2 + T 1−p/4 + T (p/4−αβp/2)γ−(p/4−1)] + Cp,βB−1

T

= o(1).

Therefore, (28) holds and the proof of (25) is complete. The last statement (26) is
an immediate consequence. Details are omitted. �

REMARK 2. In practice, EX1 is usually unknown, and we estimate it by
XT = T −1 ∑T

t=1 Xt . Let γ̂ c
k = T −1 ∑T

t=k+1(Xt−k −XT )(Xt −XT ), and �c
T,BT

be

defined as �̂T ,BT
by replacing γ̂k therein by γ̂ c

k . Since XT − EX1 = OP (T −1/2),
it is easily seen that λ(�̂T ,BT

− �̂c
T ,BT

) = OP (BT /T ). Therefore, the results of

Theorem 4 hold for �̂c
T ,BT

as well.
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REMARK 3. In the proof of Theorem 4, we have shown that, as an intermedi-
ate step from (28) to (27),

lim
T →∞P

[
max

0≤θ≤2π
|f̂T ,BT

(θ) − Ef̂T ,BT
(θ)| ≤ 6π−1cp

√
T −1BT logBT

]
= 1.(30)

The above uniform convergence result is very useful in spectral analysis of time
series. Shao and Wu (2007) obtained the weaker version

max
0≤θ≤2π

|f̂T ,BT
(θ) − Ef̂T ,BT

(θ)| = OP

(√
T −1BT logBT

)
under a stronger assumption that �p(m) = O(ρm) for some 0 < ρ < 1.

REMARK 4. For linear processes, Woodroofe and Van Ness (1967) derived the
asymptotic distribution of the maximum deviations of spectral density estimates.
Liu and Wu (2010) generalized their result to nonlinear processes and showed that
the limiting distribution of

max
0≤j≤BT

√
T

BT

|f̂T ,BT
(πj/BT ) − Ef̂T ,BT

(πj/BT )|
f (πj/BT )

is Gumbel after suitable centering and rescaling, under stronger conditions than
(24). With their result, and using similar arguments as Theorem 2, we can show
that for some constant Cp ,

lim
T →∞P

[
C−1

p

√
BT logBT

T
≤ λ(�̂T ,BT

− E�̂T ,BT
) ≤ Cp

√
BT logBT

T

]
= 1,

which means that the convergence rate we have obtained in (27) is optimal.

REMARK 5. The convergence rate
√

T −1BT logBT + bT in Theorem 4 is op-
timal. Consider a process (Xt) which satisfies γ0 = 3 and when k > 0,

γk =
{

A−αj , if k = Aj for some j ∈ N,
0, otherwise,

where α > 0 and A > 0 is an even integer such that A−α ≤ 1/5. Consider the
banded estimate �̂T ,BT

with the rectangular kernel. As shown in the supplementary
article [Xiao and Wu (2012)], there exists a constant C > 0 such that

lim
T →∞P

[
λ(�̂T ,BT

− �T ) ≥ C

√
BT logBT

T
+ bT /5

]
= 1,(31)

suggesting that the convergence rate given in (25) of Theorem 4 is optimal. This
optimality property can have many applications. For example, it can allow one to
derive convergence rates for estimates of aT in the Wiener–Hopf equation, and the
optimal weights cT = (c1, . . . , cT )� in the best linear unbiased estimation problem
mentioned in the Introduction.
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REMARK 6. We now compare (21) and our result. For p = 4, (21) gives the
order λ(�̂T ,BT

− E�̂T ,BT
) = OP (BT /

√
T ). Our result (27) is sharper by moving

the bandwidth BT inside the square root. We pay the costs of a logarithmic factor,
a higher order moment condition (p > 4), as well as conditions on the decay rate
of tail sum of physical dependence measures (24). Note that when α ≥ 1/2, the last
two conditions of (24) hold automatically, so we merely need 0 < γ < 1, allowing
a very wide range of BT . In comparison, for (21) to be useful, one requires BT =
o(T 1−2/p).

REMARK 7. The convergence rate (21) of Wu and Pourahmadi (2009) par-
allels the result of Bickel and Levina (2008b) in the context of high-dimensional
multivariate analysis, which was improved in Cai, Zhang and Zhou (2010) by con-
structing a class of tapered estimates. Our result parallels the optimal minimax rate
derived in Cai, Zhang and Zhou (2010), though the settings are different.

REMARK 8. Theorem 4 uses the operator norm. For the Frobenius norm see
Xiao and Wu (2011) where a central limit theory for

∑BT

k=1 γ̂ 2
k and

∑BT

k=1(γ̂k −
Eγ̂k)

2 is established.

4. Thresholded covariance matrix estimators. In the context of time series,
the observations have an intrinsic temporal order and we expect that observations
are weakly dependent if they are far apart, so banding seems to be natural. How-
ever, if there are many zeros or very weak correlations within the band, the banding
method does not automatically generate a sparse estimate.

The rationale behind the banding operation is sparsity, namely autocovariances
with large lags are small, so it is reasonable to estimate them as zero. Applying
the same idea to the sample covariance matrix, we can obtain an estimate of �T

by replacing small entries in �̂T with zero. This regularization approach, termed
hard thresholding, was originally developed in nonparametric function estimation.
It has recently been applied by Bickel and Levina (2008a) and El Karoui (2008)
as a method of covariance regularization in the context of high-dimensional multi-
variate analysis. Since they do not assume any order of the observations, their spar-
sity assumptions are permutation-invariant. Unlike their setup, we still use �p(m)

[cf. (7)] and

�p(m) =
( ∞∑

t=m

δp(t)p
′
)1/p′

, �p(m) =
∞∑
t=0

min{Cp�p(m), δp(t)}(32)

as our weak dependence conditions, where p′ = min(2,p) and Cp is given in (38).
This is natural for time series analysis.

Let AT = 2c′
p

√
logT/T , where c′

p is the constant given in Lemma 6. The
thresholded sample autocovariance matrix is defined as

	̂T ,AT
= (

γ̂s−t1|γ̂s−t |≥AT

)
1≤s,t≤T
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with the convention that the diagonal elements are never thresholded. We empha-
size that the thresholded estimate may not be positive definite. The following result
says that the thresholded estimate is also consistent in terms of the operator norm,
and provides a convergence rate which parallels the banding approach in Section 3.
In the proof we compare the thresholded estimate 	T,AT

with the banded one
�T,BT

for some suitably chosen BT . This is merely a way to simplify the argu-
ments. The same results can be proved without referring to the banded estimates.

THEOREM 5. Assume Xt ∈ Lp with some p > 4, EXt = 0, and �p(m) =
O(m−α), �p(m) = O(m−α′

) for some α ≥ α′ > 0. If

α > 1/2 or α′p > 2,(33)

then

λ(	̂T ,AT
− �T ) = OP

[(
logT

T

)α/(2(1+α))]
.

REMARK 9. Condition (33) is only required for Lemma 6. As commented
by Xiao and Wu (2011), it can be reduced to αp > 2 for linear processes. See
Remark 2 of their paper for more details.

The key step for proving Theorem 5 is to establish a convergence rate for the
maximum deviation of sample autocovariances. The following lemma is adapted
from Theorem 3 of Xiao and Wu (2011), where the asymptotic distribution of the
maximum deviation was also studied.

LEMMA 6. Assume the conditions of Theorem 5. Then

lim
T →∞P

(
max

1≤k<T
|γ̂k − Eγ̂k| ≤ c′

p

√
logT

T

)
= 1,

where c′
p = 6(p + 4)ep/4‖X0‖4�4.

PROOF OF THEOREM 5. Let BT = �(T / logT )1/(2(1+α))�, and �̂T ,BT
be the

banded sample covariance matrix with the rectangular kernel. Recall that bT =
(2/T )

∑BT

k=1 k|γk| + 2
∑T −1

k=BT +1 |γk| from (20). By Lemma 6, we have

λ(�̂T ,BT
− �T ) = OP

(
BT

√
logT

T
+ bT

)
.(34)

Write the thresholded estimate 	̂T ,AT
= 	̂T ,AT ,1 + 	̂T ,AT ,2, where

	̂T ,AT ,1 = (
γ̂s−t1|γ̂s−t |≥AT ,|s−t |≤BT

)
1≤s,t≤T
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and

	̂T ,AT ,2 = (
γ̂s−t1|γ̂s−t |≥AT ,|s−t |>BT

)
1≤s,t≤T .

By Geršgorin’s theorem, it is easily seen that

λ(	̂T ,AT ,1 − �̂T ,BT
) ≤ AT BT = O

(
BT

√
logT

T

)
.(35)

On the other hand,

λ(	̂T ,AT ,2) ≤ 2

(
T∑

k=BT +1

|γ̂k − Eγ̂k|1|γk |<AT /2,|γ̂k |≥AT

+
T∑

k=BT +1

|γ̂k − Eγ̂k|1|γk |≥AT /2,|γ̂k |≥AT
+

T∑
k=BT +1

|Eγ̂k|
)

=: 2(IT + IIT + IIIT ).

The term IIIT is dominated by bT . By Lemma 6, we know

lim
T →∞P(IT > 0) ≤ lim

T →∞P
(

max
1≤k≤T −1

|γ̂k − Eγ̂k| ≥ AT /2
)

= 0.(36)

For the remaining term IIT , note that the number of γk such that k > BT and
|γk| ≥ AT /2 is bounded by 2

∑T
k=BT +1 |γk|/AT ; therefore by Lemma 6

IIT ≤ C(B−α
T /AT ) · max

1≤k≤T −1
|γ̂k − Eγ̂k| = OP (B−α

T ).(37)

Putting (34), (35), (36) and (37) together, the proof is complete. �

REMARK 10. If the mean EX1 is unknown, we need to replace γ̂k by γ̂ c
k

(Remark 2). Since Lemma 6 still holds when γ̂k are replaced by γ̂ c
k [Xiao and Wu

(2011)], Theorem 5 remains true for γ̂ c
k .

5. A simulation study. The thresholded estimate is desirable in that it can
lead to a better estimate when there are a lot of zeros or very weak autocovariances.
Unfortunately, due to technical difficulties, the theoretical result (cf. Theorem 5)
does not reflect this advantage. We show by simulations that thresholding does
have a better finite sample performance over banding when the true autocovariance
matrix is sparse.

Consider two linear processes Xt = ∑∞
s=0 asεt−s and Yt = ∑∞

s=0 bsεt−s , where
a0 = b0 = 1, and when s > 0

as = cs−(1+α), bs = c(s/2)−(1+α)1s is even

for some c > 0 and α > 0; and εs ’s are taken as i.i.d. N (0,1). Let γ X
k , �X

T , and γ Y
k ,

�Y
T denote the autocovariances and autocovariance matrices of the two processes,
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respectively. It is easily seen that γ Y
k = 0 if k is odd. In fact, (Yt ) can be obtained

by interlacing two i.i.d. copies of (Xt). For a given set of centered observations
X1,X2, . . . ,XT , assuming that its true autocovariance matrix is known, for a fair
comparison we choose the optimal bandwidth BT and threshold AT as

ÂX
T = arg min

l∈{|γ̂ X
0 |,|γ̂ X

1 |,...,|γ̂ X
T −1|}

λ(	̂X
T,l − �X

T ), B̂X
T = arg min

1≤k≤T

λ(�̂X
T,k − �X

T ).

The two parameters for the (Yt ) process are chosen in the same way. In all the
simulations we set c = 0.5. For different combinations of the sample size T and
the parameter α which controls the decay rate of autocovariances, we report the
average distances in term of the operator norm of the two estimates �̂

T ,B̂T
and

	̂
T ,ÂT

from �T , as well as the standard errors based on 1000 repetitions. We also

give the average bandwidth of �̂
T ,B̂T

. Instead of reporting the average threshold

for 	̂
T ,ÂT

, we provide the average number of nonzero autocovariances appearing

in the estimates, which is comparable to the average bandwidth of �̂
T ,B̂T

.
From Table 1, we see that for the process (Xt), the banding method outperforms

the thresholding one, but the latter does give sparser estimates. For the process
(Yt ), according to Table 2, we find that thresholding performs better than banding
when the sample size is not very large (T = 100,200), and yields sparser estimates
as well. The advantage of thresholding in error disappears when the sample size

TABLE 1
Errors under operator norm for (Xt )

T = 100 T = 200 T = 500

Error BW Error BW Error BW

0.2 2.94 (1.17) 9.55 (6.60) 3.01 (1.22) 13.4 (7.67) 2.96 (1.23) 23.4 (13.1)

3.66 (1.07) 5.40 (4.87) 3.88 (1.14) 7.39 (5.81) 4.08 (1.17) 12.5 (10.1)

6.98 (2.63) 8.12 (2.85) 10.57 (3.93)

0.5 1.52 (0.68) 6.31 (4.58) 1.38 (0.60) 8.46 (5.57) 1.15 (0.50) 11.9 (7.67)

1.90 (0.64) 3.49 (2.56) 1.89 (0.59) 4.15 (3.07) 1.74 (0.54) 5.15 (3.27)

5.55 (2.37) 6.73 (2.91) 8.88 (3.28)

1 0.82 (0.39) 4.04 (2.33) 0.69 (0.32) 4.62 (2.47) 0.52 (0.24) 5.68 (3.06)

1.03 (0.38) 2.24 (0.87) 0.95 (0.32) 2.29 (0.74) 0.81 (0.29) 2.58 (0.83)

4.80 (2.14) 6.05 (2.25) 7.81 (2.64)

“Error” refers to the average distance between the estimates and the true autocovariance matrix under
the operator norm, and “BW” refers to the average bandwidth of the banded estimates, and the
average number of nonzero sub-diagonals (including the diagonal) for the thresholded ones. The
numbers 0.2, 0.5 and 1 in the first column are values of α. For each combination of T and α, three
lines are reported, corresponding to banded estimates, thresholded ones and sample autocovariance
matrices, respectively. Numbers in parentheses are standard errors.
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TABLE 2
Error under operator norm for (Yt )

T = 100 T = 200 T = 500

Error BW Error BW Error BW

0.2 3.33 (0.86) 9.87 (6.89) 3.54 (0.95) 13.7 (7.67) 3.61 (1.07) 24.7 (13.1)

3.15 (0.93) 3.95 (3.50) 3.43 (1.00) 5.69 (4.72) 3.75 (1.08) 9.23 (8.04)

7.21 (4.28) 8.69 (4.79) 11.1 (5.31)

0.5 1.98 (0.61) 7.26 (5.32) 1.88 (0.59) 9.95 (6.44) 1.63 (0.53) 16.3 (10.1)

1.81 (0.60) 2.93 (2.41) 1.81 (0.59) 3.44 (2.22) 1.71 (0.54) 4.64 (2.97)

5.88 (3.27) 7.25 (3.59) 9.25 (3.72)

1 1.19 (0.41) 5.31 (3.33) 1.01 (0.35) 6.20 (3.58) 0.79 (0.28) 8.28 (4.95)

1.02 (0.39) 2.16 (0.65) 0.92 (0.32) 2.21 (0.57) 0.80 (0.28) 2.52 (0.77)

5.09 (2.77) 6.39 (2.79) 8.18 (2.91)

is 500. Intuitively speaking, banding is a way to threshold according to the truth
(autocovariances with large lags are small), while thresholding is a way to thresh-
old according to the data. Therefore, if the autocovariances are nonincreasing as
for the process (Xt), or if the sample size is large enough, banding is preferable.
If the autocovariances do not vary regularly as for the process (Yt ) and the sample
size is moderate, thresholding is more adaptive. As a combination, in practice we
can use a thresholding-after-banding estimate which enjoys both advantages.

Apparently our simulation is a very limited one, because we assume that the true
autocovariance matrices are known. Practitioners would need a method to choose
the bandwidth and/or threshold from the data. Although theoretical results suggest
convergence rates of banding and thresholding parameters which lead to optimal
convergence rates of the estimates, they do not offer much help for finite samples.
The issue was addressed by Wu and Pourahmadi (2009) incorporating the idea of
risk minimization from Bickel and Levina (2008b) and the technique of subsam-
pling from Politis, Romano and Wolf (1999), and by McMurry and Politis (2010)
using the rule introduced in Politis (2003) for selecting the bandwidth in spec-
tral density estimation. An alternative method is to use the block length selection
procedure in Bühlmann and Künsch (1999) which is designed for spectral density
estimation. We shall study other data-driven methods in the future.

6. Moment inequalities. This section presents some moment inequalities that
will be useful in the subsequent proofs. In Lemma 7, the case 1 < p ≤ 2 follows
from Burkholder (1988) and the other case p > 2 is due to Rio (2009). Lemma 8
is adopted from Proposition 1 of Xiao and Wu (2011).

LEMMA 7 [Burkholder (1988), Rio (2009)]. Let p > 1 and p′ = min{p,2};
let Dt , 1 ≤ t ≤ T , be martingale differences, and Dt ∈ Lp for every t . Write MT =
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∑T
t=1 Dt . Then

‖MT ‖p′
p ≤ Cp′

p

T∑
t=1

‖Dt‖p′
p where Cp =

{
(p − 1)−1, if 1 < p ≤ 2,√

p − 1, if p > 2.
(38)

It is convenient to use m-dependence approximation for processes with the
form (6). For t ∈ Z, define Ft = 〈εt , εt+1, . . .〉 be the σ -field generated by
the innovations εt , εt+1, . . . , and the projection operator Ht (·) = E(·|Ft ) and
Pt (·) = Ht (·) − Ht+1(·). Observe that (P−t (·))t∈Z is a martingale difference se-
quence with respect to the filtration (F−t ). For m ≥ 0, define X̃t = Ht−mXt ; then
‖Xt −X̃t‖p ≤ Cp�p(m+1) [see Proposition 1 of Xiao and Wu (2011) for a proof],
and (X̃t )t∈Z is an (m + 1)-dependent sequence.

LEMMA 8. Assume EXt = 0 and p > 1. For m ≥ 0, define X̃t = Ht−mXt =
E(Xt |Ft−m). Let δ̃p(·) be the physical dependence measure for the sequence (X̃t ).
Then

‖P0Xt‖p ≤ δp(t) and δ̃p(t) ≤ δp(t),(39)

|γk| ≤ ζ2(k) where ζp(k) :=
∞∑

j=0

δp(j)δp(j + k),(40)

∥∥∥∥∥
T∑

s,t=1

cs,t (XsXt − γs−t )

∥∥∥∥∥
p/2

≤ 4Cp/2Cp�2
p BT

√
T when p ≥ 4,(41)

∥∥∥∥∥
T∑

t=1

ct (Xt − X̃t )

∥∥∥∥∥
p

≤ Cp AT �p(m + 1) when p ≥ 2,(42)

where

AT =
(

T∑
t=1

|ct |2
)1/2

and B2
T = max

{
max

1≤t≤T

T∑
s=1

c2
s,t , max

1≤s≤T

T∑
t=1

c2
s,t

}
.

7. Large deviations for quadratic forms. In this section we prove a result on
probabilities of large deviations of quadratic forms of stationary processes, which
take the form

QT = ∑
1≤s≤t≤T

as,tXsXt .

The coefficients as,t = aT,s,t may depend on T , but we suppress T from subscripts
for notational simplicity. Throughout this section we assume that sups,t |as,t | ≤ 1,
and as,t = 0 when |s − t | > BT , where BT satisfies BT → ∞, and BT = O(T γ )

for some 0 < γ < 1.
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Large deviations for quadratic forms of stationary processes have been ex-
tensively studied in the literature. Bryc and Dembo (1997) and Bercu, Gamboa
and Rouault (1997) obtained the large deviation principle [Dembo and Zeitouni
(1998)] for Gaussian processes. Gamboa, Rouault and Zani (1999) considered the
functional large deviation principle. Bercu, Gamboa and Lavielle (2000) obtained
a more accurate expansion of the tail probabilities. Zani (2002) extended the results
of Bercu, Gamboa and Rouault (1997) to locally stationary Gaussian processes. In
fact, our result is more relevant to the so-called moderate deviations according
to the terminology of Dembo and Zeitouni (1998). Bryc and Dembo (1997) and
Kakizawa (2007) obtained moderate deviation principles for quadratic forms of
Gaussian processes. Djellout, Guillin and Wu (2006) studied moderate deviations
of periodograms of linear processes. Bentkus and Rudzkis (1976) considered the
Cramér-type moderate deviation for spectral density estimates of Gaussian pro-
cesses; see also Saulis and Statulevičius (1991). Liu and Shao (2010) derived the
Cramér-type moderate deviation for maxima of periodograms under the assump-
tion that the process consists of i.i.d. random variables.

For our purpose, on one hand, we do not need a result that is as precise as the
moderate deviation principle or the Cramér-type moderate deviation. On the other
hand, we need an upper bound for the tail probability under less restrictive condi-
tions. Specifically, we would like to relax the Gaussian, linear or i.i.d. assumptions
which were made in the precedent works. Rudzkis (1978) provided a result in this
fashion under the assumption of boundedness of the cumulant spectra up to a fi-
nite order. While this type of assumption holds under certain mixing conditions,
the latter themselves are not easy to verify in general and many well-known ex-
amples are not strong mixing [Andrews (1984)]. We mean to impose alternative
conditions through physical dependence measures, which are easy to use in many
applications [Wu (2005)]. Furthermore, our result can be sharper; see Remark 11.

Our main tool is the m-dependence approximation. In the next lemma we use
dependence measures to bound the Lp norm of the distance between QT and the
m-dependent version Q̃T . The proof and a few remarks on the optimality of the
result are given in the supplementary article [Xiao and Wu (2012)].

LEMMA 9. Assume Xt ∈ Lp with p ≥ 4, EXt = 0 and �p < ∞. Let X̃t =
Ht−mT

Xt and Q̃T = ∑
1≤s≤t≤T as,t X̃sX̃t ; then

‖E0QT − E0Q̃T ‖p/2

≤ 4�p(mT )2 + 11(p − 2)�p

√
T BT �p(mT )

+ (p − 2)
√

T BT

[
3�p(�mT /2�)�p(mT ) + 3�p(mT )�p(�mT /2�)].

The following theorem is the main result of this section.

THEOREM 10. Assume Xt ∈ Lp , p > 4, EXt = 0, and �p(m) = O(m−α).
Set cp = (p + 4)ep/4�2

4. For any M > 1, let xT = 2cp

√
T MBT logBT . Assume
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that BT → ∞ and BT = O(T γ ) for some 0 < γ < 1. Then for any γ < β < 1,
there exists a constant Cp,M,β > 0 such that

P(|E0QT | ≥ xT )

≤ Cp,M,βx
−p/2
T (logT )[(T BT )p/4T −αβp/2 + T B

p/2−1−αβp/2
T + T ]

+ Cp,M,βB−M
T .

REMARK 11. Rudzkis (1978) proved that if p = 4k for some k ∈ N, then

P(|E0QT | ≥ xT ) ≤ Cx
−p/2
T (T BT )p/4,

which can be obtained by using Markov inequality and (41) under our framework.
The upper bound given in Theorem 10 has a smaller order of magnitude. We note
that Rudzkis (1978) also proved a stronger exponential inequality under strong
moment conditions. They required the existence of every moment and the absolute
summability of cumulants of every order.

PROOF OF THEOREM 10. Without loss of generality, assume BT ≤ T γ . For
γ < β < 1, let mT = �T √

β�, X̃t = Ht−mT
Xt and

Q̃T = ∑
1≤s≤t≤T

as,t X̃sX̃t .

By Lemma 9 and (41), we have

P
[|E0(QT − Q̃T )| ≥ cpM1/2

√
T BT (logBT )

]
(43)

≤ Cp,Mx
−p/2
T (T BT )p/4T −α

√
βp/2.

Split [1, T ] into blocks B1, . . . , BbT
of size 2mT , and define

QT,k = ∑
t∈Bk

∑
1≤s≤t

as,t X̃sX̃t .

By Corollary 1.7 of Nagaev (1979) and (41), we know for any M > 1, there exists
a constant Cp,M,β such that

P
[|E0Q̃T | ≥ cp

√
T MBT (logBT )

]

≤
bT∑
k=1

P

(
|E0QT,k| ≥ xT

Cp,M,β

)
+

[
Cp,M,βT m−1

T (mT BT )p/4

(T BT )p/4

]Cp,M,β

(44)

+ Cβ exp
{

c2
p(logBT )

(p + 4)2ep/2�4
4

}

≤
bT∑
k=1

P(|E0QT,k| ≥ xT /Cp,M,β) + Cp,M,β(B−M
T + T −M).
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By Lemma 11, we have

P(|E0QT,k| ≥ xT /Cp,M,β)

≤ Cp,M,βx
−p/2
T (logT )(45)

× [(
T

√
βBT

)p/4
T −αβp/2 + T

√
βB

p/2−1−αβp/2
T + T

√
β]

.

Combining (43), (44) and (45), the proof is complete. �

LEMMA 11. Assume Xt ∈ Lp with p > 4, EXt = 0, and �p(m) = O(m−α).
If xT > 0 satisfies T δ

√
T BT = o(xT ) for some δ > 0, then for any 0 < β < 1, there

exists a constant Cp,δ,β such that

P(|E0QT | ≥ xT ) ≤ Cp,δ,βx
−p/2
T (logT )

× [(T BT )p/4T −αβp/2 + T B
p/2−1−αβp/2
T + T ].

PROOF. For j ≥ 1, define mT,j = �T βj �, Xt,j = Ht−mT,j
Xt and

QT,j = ∑
1≤s≤t≤T

as,tXs,jXt,j .

Let jT = 
− log(logT )/(logβ)�. Note that mT,jT
≤ e. By Lemma 9 and (41),

P [|E0(QT − QT,1)| ≥ xT /jT ] ≤ Cp,β(logT )1/2x
−p/2
T (T BT )p/4T −αβp/2.(46)

Let j ′
T be the smallest j such that mT,j < BT /4. For 1 ≤ j < j ′

T , split [1, T ] into

blocks B(j)
1 , . . . , B(j)

bT ,j
of size BT + mT,j . Define

RT,j,b = ∑
t∈B(j)

b

∑
1≤s≤t

as,tXs,jXt,j and R′
T ,j,b = ∑

t∈B(j)
b

∑
1≤s≤t

as,tXs,j+1Xt,j+1.

By Corollary 1.6 of Nagaev (1979) and (41), we have for any C > 2

P

[
|E0(QT,j − QT,j+1)| > xT

2jT

]
≤

bT,j∑
b=1

P

[
|E0(RT,j,b − R′

T ,j,b)| ≥
xT

CjT

]
(47)

+ 2
[

64Ce2�4
4T BT j2

T

x2
T

]C/4

.(48)

It is clear that for any M > 1, there exists a constant CM,δ,β such that the term in
(48) is less than CM,δ,βx−M

T . For (47), by Lemma 9 and (41)
bT,j∑
b=1

P

[
|E0(RT,j,b − R′

T ,j,b)| ≥
xT

CjT

]

≤ Cp,βT (mT,j )
−1 · (logT )1/2 · x−p/2

T · (mT,jBT )p/4 · m−αp/2
T ,j+1

≤ Cp,βx
−p/2
T · (logT )1/2T B

p/4
T · (mT,j )

p/4−1−αβp/2.
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Depending on whether the exponent p/4 − 1 − αβp/2 is positive or not, the term
(mT,j )

p/4−1−αβp/2 is maximized when j = 1 or j = j ′
T − 1, respectively, and we

have
bT,j∑
b=1

P

[
|E0(RT,j,b − R′

T ,j,b)| ≥
xT

CjT

]
(49)

≤ Cp,βx
−p/2
T · (logT )1/2 · [(T BT )p/4T −αβp/2 + T B

p/2−1−αβp/2
T ].

Combining (46), (47), (48) and (49), we have shown that

P(|E0QT | ≥ xT )

≤ P(|E0QT,j ′
T
| ≥ xT /2) + Cp,M,δ,βx−M

T(50)

+ Cp,M,δ,βx
−p/2
T (logT )[(T BT )p/4T −αβp/2 + T B

p/2−1−αβp/2
T ].

To deal with the probability concerning QT,j ′
T

in (50), we split [1, T ] into blocks
B1, . . . , BbT

with size 2BT , and define the block sums

RT,j ′
T ,b = ∑

t∈Bb

∑
1≤s≤t

as,tXs,j ′
T
Xt,j ′

T
.

Similarly as (47) and (48), there exists a constant Cp,M,δ,β > 2 such that

P(|E0QT,j ′
T
| ≥ xT /2) ≤

bT∑
b=1

P

(
|E0RT,j ′

T ,b| ≥
xT

Cp,M,δ,β

)
+ Cp,M,δ,βx−M

T .

By Lemma 12, we have

P(|E0RT,j ′
T ,b| ≥ C−1

p,M,δ,βxT ) ≤ Cp,M,δ,βx
−p/2
T (logT )(B

p/2−αβp/2
T + BT );

and it follows that for some constant Cp,δ,β > 0,

P(|E0QT,j ′
T
| ≥ xT /2) ≤ Cp,δ,βx

−p/2
T (logT )T (B

p/2−1−αβp/2
T + 1).(51)

The proof is completed by combining (50) and (51). �

In the next lemma we consider QT when the restriction as,t = 0 for |s − t | > BT

is removed. To avoid confusion, we use a new symbol. Let

R(T ,m) = ∑
1≤s≤t≤T

cs,t (Hs−mXs)(Ht−mXt).

For xT > 0, define

U(T ,m,xT ) = sup
{cs,t }

P [|E0R(T ,m)| ≥ xT ],

where the supremum is taken over all arrays {cs,t } such that |cs,t | ≤ 1. We use RT

and U(T , xT ) as shorthands for R(T ,∞) and U(T ,∞, xT ), respectively.
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LEMMA 12. Assume Xt ∈ Lp with p > 4, EXt = 0, and �p(m) = O(m−α).
If xT > 0 satisfies T 1+δ = o(xT ) for some δ > 0, then for any 0 < β < 1, there
exists a constant Cp,δ,β such that

P(|E0RT | ≥ xT ) ≤ Cp,δ,βx
−p/2
T (logT )(T p/2−αβp/2 + T ).

PROOF. Let mT = �T β� and R̃T := R(T ,mT ). By Lemma 9 and (41),

P [|E0(RT − R̃T )| ≥ xT /2] ≤ Cpx
−p/2
T T p/2−αβp/2.

We claim that there exists a constant Cp,δ,β such that

U(T ,mT , xT /2) ≤ Cp,δ,βx
−p/2
T (T logT )(m

p/2−1−αβp/2
T + 1).(52)

Therefore, the proof is complete by using

P(|E0RT | ≥ xT ) ≤ P [|E0(RT − R̃T )| ≥ xT /2] + U(T ,mT , xT /2).

We need to prove the claim (52). Let zT satisfy T 1+δ = o(zT ). Let jT =

−log(logT )/(logβ)�, and note that T βjT ≤ e. Set yT = zT /(2jT ). We consider
U(T ,m, zT ) for an arbitrary 1 < m < T/4. Set Xt,1 := Ht−mXt and Xt,2 :=
Ht−�mβ�Xt . Define

Yt,1 =
t−3m−1∑

s=1

cs,tXs,1 and Zt,1 =
t∑

s=1∨(t−3m)

cs,tXs,1

and Yt,2, Zt,2 similarly by replacing Xs,1 with Xs,2. Observe that Xt,k and Yt,l

are independent for k, l = 1,2. We first consider
∑T

t=1(Xt,1Zt,1 − Xt,2Zt,2). Split
[1, T ] into blocks B1, . . . , BbT

with size 4m, and define WT,b = ∑
t∈Bb

(Xt,1Zt,1 −
Xt,2Zt,2). Let yT satisfy yT < zT /2 and T 1+δ/2 = o(yT ). Since WT,b and WT,b′
are independent if |b − b′| > 1, by Corollary 1.6 of Nagaev (1979), (41) and
Lemma 9, similarly as (47) and (48), we know for any M > 1, there exists a con-
stant Cp,M,δ,β such that

P

[∣∣∣∣∣E0

(
T∑

t=1

Xt,1Zt,1 − Xt,2Zt,2

)∣∣∣∣∣ ≥ yT

]

≤ Cp,M,δ,βy−M
T +

bT∑
b=1

P(|E0WT,b| ≥ yT /CM,δ)(53)

≤ Cp,M,δ,βy−M
T + Cp,M,δ,βy

−p/2
T T mp/2−1−αβp/2.

Now we deal with the term
∑T

t=1(Xt,1Yt,1 − Xt,2Yt,2). Split [1, T ] into blocks
B∗

1, . . . , B∗
b∗
T

with size m. Define RT,b = ∑
t∈B∗

b
(Xt,1Yt,1 − Xt,2Yt,2). Let ξb be

the σ -fields generated by {εlb , εlb−1, . . .}, where lb = max{B∗
b}. Observe that
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(RT,b)b is odd is a martingale sequence with respect to (ξb)b is odd, and so are
(RT,b)b is even and (ξb)b is even. By Lemma 1 of Haeusler (1984) we know for any
M > 1, there exists a constant CM,δ such that

P

[∣∣∣∣∣
T∑

t=1

(Xt,1Yt,1 − Xt,2Yt,2)

∣∣∣∣∣ ≥ yT

]

≤ CM,δy
−M
T + 4P

[ b∗
T∑

b=1

E(R2
T ,b|ξb−2) >

y2
T

(logyT )3/2

]

(54)

+
b∗
T∑

b=1

P

[
|RT,b| ≥ yT

logyT

]

=: IT + IIT + IIIT .

Since (Xt,1,Xt,2) and (Yt,1, Yt,2) are independent, RT,b has finite pth moment.
Using similar arguments as Lemma 9, we have

‖RT,b‖p ≤ Cp(mT )p/2m−αβp;
and it follows that

IIIT ≤ Cpy
−p
T (logyT )pT p/2+1mp/2−1−αβp.(55)

For the second term, let rs−t,k = E(Xs,kXt,k) for k = 1,2; we have

b∗
T∑

b=1

E(R2
T ,b|ξb−2) ≤ 2

b∗
T∑

b=1

[ ∑
s,t∈B∗

b

(rs−t,1Ys,1Yt,1 + rs−t,2Ys,2Yt,2)

]

(56)
= ∑

1≤s≤t≤T

as,t,1Xs,1Xt,1 + ∑
1≤s≤t≤T

as,t,2Xs,2Xt,2.

By (39) and (40), we know
∑

l∈Z |rl,k| < ∞ for k = 1,2, and hence |as,t,k| ≤ CT .
It follows that the expectations of the two terms in (56) are all less than CT 2, and

IIT ≤ CβU

[
T ,m,

y2
T

T (logyT )2

]
+ CβU

[
T , �mβ�, y2

T

T (logyT )2

]
.(57)

Combining (53), (54), (55) and (57), we have shown that U(T ,m, zT ) is bounded
from above by

U(T , �mβ�, zT − 2yT )

+ CβU

[
T , �mβ�, y2

T

T (logyT )2

]
+ CβU

[
T ,m,

y2
T

T (logyT )2

]
(58)

+ Cp,M,δ,β[y−M
T + y

−p/2
T T mp/2−1−αβp/2

+ y
−p
T (logyT )pT p/2+1mp/2−1−αβp].
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Since sup{cs,t } ‖E0RT ‖p/2 ≤ CpT by (41), by applying (58) recursively to deal

with the last term on the first line of (58) for q times such that (yT /T )−2qp =
O[y−(M+1)

T ], we have

U(T ,m, zT ) ≤ Cp,M,δ,β

[
U(T , �mβ�, zT − 2yT ) + y

−p/2
T T mp/2−1−αβp/2

(59)
+ y

−p
T (logyT )pT p/2+1mp/2−1−αβp + y−M

T

]
.

Using the preceding arguments similarly, we can show that when 1 ≤ m ≤ 3

U [T ,m, zT /(2jT )] ≤ CM,p,δ[z−p/2
T (logT )T + z

−p
T (log zT )p+1T p/2+1 + z−M

T ].
The details of the derivation are omitted. Applying (59) recursively for at most
jT − 1 times, we have the first bound for U(T ,m, zT ),

U(T ,m, zT )

≤ C
jT

p,M,δ,β{U [T ,3, zT /(2jT )] + z
−p/2
T (log zT )T (mp/2−1−αβp/2 + 1)

(60)
+ z

−p
T (log zT )p+1T p/2+1(mp/2−1−αβp + 1) + z−M

T }
≤ C

jT

p,δ,β(log zT )p+1(z
−p/2
T T + z

−p
T T p/2+1)(mp/2−1−αβp/2 + 1).

Now plugging (60) back into (58) for the last two terms on the first line and using
the condition T 1+δ/2 = o(yT ), we have

U(T ,m, zT ) ≤ U(T , �mβ�, zT − 2yT )
(61)

+ Cp,δ,β[y−p/2
T T (mp/2−1−αβp/2 + 1)].

Again by applying (61) for at most jT − 1 times, we obtain the second bound for
U(T ,m, zT ):

U(T ,m, zT ) ≤ Cp,δ,βz
−p/2
T (T logT )(mp/2−1−αβp/2 + 1).

The proof of the claim (52) is complete. �

8. Conclusion. In this paper we use Toeplitz’s connection of eigenvalues of
matrices and Fourier transforms of their entries, and obtain optimal bounds for ta-
pered covariance matrix estimates by applying asymptotic results of spectral den-
sity estimates. Many problems are still unsolved; for example, can we improve the
convergence rate of the thresholded estimate in Theorem 5? What is the asymp-
totic distribution of the maximum eigenvalues of the estimated covariance matri-
ces? We hope that the approach and results developed in this paper can be useful
for other high-dimensional covariance matrix estimation problems in time series.
Such problems are relatively less studied compared to the well-known theory of
random matrices which requires i.i.d. entries or multiple i.i.d. copies.
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SUPPLEMENTARY MATERIAL

Additional technical proofs (DOI: 10.1214/11-AOS967SUPP; .pdf). We give
the proofs of Remark 5 and Lemma 9, as well as a few remarks on Lemma 9.
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