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Adaptive and interacting Markov chain Monte Carlo algorithms
(MCMC) have been recently introduced in the literature. These novel sim-
ulation algorithms are designed to increase the simulation efficiency to sam-
ple complex distributions. Motivated by some recently introduced algorithms
(such as the adaptive Metropolis algorithm and the interacting tempering al-
gorithm), we develop a general methodological and theoretical framework
to establish both the convergence of the marginal distribution and a strong
law of large numbers. This framework weakens the conditions introduced in
the pioneering paper by Roberts and Rosenthal [J. Appl. Probab. 44 (2007)
458–475]. It also covers the case when the target distribution π is sampled
by using Markov transition kernels with a stationary distribution that differs
from π .

1. Introduction. Markov chain Monte Carlo (MCMC) methods generate
samples from an arbitrary distribution π known up to a scaling factor; see Robert
and Casella (2004). The algorithm consists in sampling a Markov chain {Xn,n ≥
0} on a general state space X with Markov transition kernel P admitting π as its
unique invariant distribution.

In most implementations of MCMC algorithms, the transition kernel P of the
Markov chain depends on a tuning parameter θ defined on a space � which can
be either finite dimensional or infinite dimensional.

Consider, for example, the Metropolis algorithm [Metropolis et al. (1953)]. Here
X = R

d and the stationary distribution is assumed to have a density, also denoted
by π with respect to a measure. At the iteration n, a move Zn+1 = Xn + Un+1
is proposed, where Un+1 is drawn independently from X0, . . . ,Xn from a sym-
metric distribution on R

d . This move is accepted with probability α(Xn,Zn+1),
where α(x, y) = 1 ∧ (π(y)/π(x)). A frequently advocated choice of the incre-
ment distribution q is the multivariate normal with zero-mean and covariance ma-
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trix (2.382/d)��, where �� is the covariance matrix of the target distribution π

[see Gelman, Roberts and Gilks (1996)].
Of course �� is unknown. In Haario, Saksman and Tamminen (1999), the au-

thors have proposed an adaptive Metropolis (AM) algorithm in which the covari-
ance �n is updated at each iteration using the past values of the simulations [see
also Haario, Saksman and Tamminen (2001), Haario et al. (2004, 2006), Laine and
Tamminen (2008) for applications].

The adaptive Metropolis is an example in which a parameter θn+1 is updated at
each iteration from the values of the chain {X0, . . . ,Xn+1} and the past values of
the parameters {θ0, . . . , θn}. Many other examples of such adaptive MCMC algo-
rithms are presented in Andrieu and Thoms (2008), Rosenthal (2009) and Atchadé
et al. (2011).

When attempting to simulate from a density with multiple modes, the Markov
kernel might mix very slowly. A useful solution to that problem is to intro-
duce a temperature parameter. This idea is exploited in parallel tempering: sev-
eral Metropolis algorithms are run at different temperatures [see Geyer (1991),
Atchade, Roberts and Rosenthal (2011)]. One of the simulations, corresponding
to T1 = 1 is the desired target probability distribution. The other simulations cor-
respond to the family of the target distribution π1/Ti , i ∈ {1, . . . ,K}, created by
gradually increasing the temperature.

The interacting tempering algorithm, a simplified form of the equi-energy sam-
pler introduced Kou, Zhou and Wong (2006), exploits the parallel tempering idea.
Both the algorithms run several chains in parallel, but the interacting tempering
algorithm allows more general interactions between chains. The interacting tem-
pering algorithm provides an example in which the process of interest interacts
with the past samples of a family of auxiliary processes. Other examples of such
interacting schemes are presented in Andrieu et al. (2007) [see also Brockwell,
Del Moral and Doucet (2010)].

The two examples discussed above can be put into a common unifying frame-
work (see Section 2). The purpose of this work is to analyze these general classes
of adaptive and interacting MCMC. This paper complements recent surveys on this
topic by Andrieu and Thoms (2008), Rosenthal (2009) and Atchadé et al. (2011)
which are devoted to the design of these algorithms. We focus in this paper on two
problems: the ergodicity of the sampler (under which condition the marginal dis-
tribution of the process converges to the target distribution π ) and the strong law
of large numbers (SLLN) for additive and unbounded functionals.

Ergodicity of the marginal distributions for adaptive MCMC has been studied
by Andrieu and Moulines (2006) for a particular class of samplers in which the pa-
rameter is adapted using a stochastic approximation algorithm. These results have
later been extended by Roberts and Rosenthal (2007) to handle more general adap-
tation strategies, but under conditions which are in some respects more stringent.
Most of these works assume a form of geometric ergodicity; these conditions are
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relaxed in Atchadé and Fort (2010) which addresses Markov chains with subgeo-
metric rate of convergence.

A strong law of large number for the adaptive Metropolis algorithm was es-
tablished by Haario, Saksman and Tamminen (2001) (for bounded functions and
a compact parameter space �), using mixingales techniques; these results have
later been extended by Atchadé and Rosenthal (2005) to unbounded functions and
compact parameter space �. The LLN for unbounded functions and noncompact
set � has been established recently in Saksman and Vihola (2010). Andrieu and
Moulines (2006) have established the consistency and the asymptotic normality of
n−1 ∑n

k=1 f (Xk) for bounded and unbounded functions for adaptive MCMC al-
gorithms combined with a stochastic approximation procedure [see Atchadé and
Fort (2010) for extensions]. The procedure involves projections on a family of in-
creasing compact subsets of the parameter space, and did not include the results
obtained for the AM by Saksman and Vihola (2010).

Roberts and Rosenthal (2007) prove a weak law of large numbers for bounded
functions for general adaptive MCMC samplers but under technical conditions
which are stringent.

The analysis of interacting MCMC algorithms started more recently and the
theory is still less developed. The original result in Kou, Zhou and Wong [(2006),
Theorem 2], as already noted in the discussion paper [Atchadé and Liu (2006),
Section 3] and carefully explained in Andrieu et al. [(2008), Section 3.1] does
not amount to a proof. Andrieu et al. (2008) presents a proof of convergence of a
simple version of the interacting tempering sampler with K = 2 stages. The proofs
in Andrieu et al. (2008) (uniformly ergodic case) and in Andrieu et al. (2011)
(geometrically ergodic case) are based on the convergence of U -statistics, which
explains why the results obtained for K = 2 stages cannot easily be extended.

SLLN was established by Atchadé (2010) for a simple version of the inter-
acting tempering algorithm for a transition kernel which is geometrically ergodic
with uniformly controlled ergodicity constants, but the proof in this paper is not
convincing [see Fort, Moulines and Priouret (2011), Section 1].

Finally, a functional Central Limit theorem was derived in Bercu, Del Moral
and Doucet (2009) for a class of interacting Markov chains for uniformly ergodic
Markov kernels.

This paper aims at providing a theory weakening some of the limitations men-
tioned above. Let {Pθ , θ ∈ �} be a family of transition kernels on X. We address
the general framework when the target density π is approximated by the process
{Xn,n ≥ 0} such that the conditional distribution of Xn+1 given the past is given
by Pθn(Xn, ·); {θn, n ≥ 0} is the adapted process. There are two main contributions.
First, we cover the case when the ergodicity of the transition kernels {Pθ , θ ∈ �} is
not uniform along the path {θn, n ≥ 0}. The second novelty is that we address the
case when the Pθ has an invariant distribution πθ depending upon the parameter θ ;
in this case, the adaptation has to be such that {πθn, n ≥ 0} converges weakly to π

(almost surely) and we provide sufficient conditions for this property to hold based
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on the (almost sure) weak convergence of the transition kernels {Pθn, n ≥ 0}. Such
conditions are crucial in many applications where πθ is known to exist but has no
explicit expression. Therefore, to generalize the results and include more realistic
conditions, a more complex approach is required.

The paper is organized as follows. In Section 2, we establish the convergence of
the marginal distribution and the strong law of large numbers for additive function-
als for adaptive and interacting MCMC algorithms. These general results are ap-
plied to a running example, namely the adaptive Metropolis algorithm. The novel
contribution is the application to the convergence of the interacting tempering al-
gorithm [Kou, Zhou and Wong (2006)] in Section 3.

Notation. Let (X, X ) be a general state space [see, e.g., Meyn and Tweedie
(2009), Chapter 3] and P be a Markov transition kernel. P acts on bounded func-
tions f on X and on σ -finite positive measures μ on X via

Pf (x)
def=

∫
P(x,dy)f (y), μP (A)

def=
∫

μ(dx)P (x,A).

For n ∈ N, we will denote by P n the n-iterated transition kernel defined by induc-
tion

P n(x,A)
def=

∫
P n−1(x,dy)P (y,A) =

∫
P(x,dy)P n−1(y,A)

with the convention that P 0 is the identity kernel. For a function V : X → [1,+∞),
define the V -norm of a function f : X → R by

‖f ‖V
def= sup

x∈X

|f (x)|
V (x)

.

When V = 1, the V -norm is the supremum norm and will be denoted by ‖f ‖∞.
Let LV be the set of functions such that ‖f ‖V < +∞. For two probability distri-
butions μ1,μ2 on X, define the V -distance

‖μ1 − μ2‖V
def= sup

{f,‖f ‖V ≤1}
|μ1(f ) − μ2(f )|.

When V = 1, the V -distance is the total variation distance and is denoted by ‖μ1 −
μ2‖TV.

Denote by Cb(X) the class of bounded continuous functions from X to R. Recall
that a Markov transition kernel P on (X, X ) is (weak) Feller if it maps Cb(X) to
Cb(X).

A measurable set A ∈ A on a probability space (	, A,P) is said to be a P-full
set if P(A) = 1.
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2. Main results. Let (�, T ) be a measurable space and (X, X ) a general state
space. Let {Pθ , θ ∈ �} be a collection of Markov transition kernels indexed by θ

in �, which can be either finite or infinite dimensional. We consider a X×�-valued
process {(Xn, θn), n ≥ 0} on a filtered probability space (	, A, {Fn, n ≥ 0},P). It
is assumed that (Xn, θn) is Fn-adapted and for any bounded measurable function f

E[f (Xn+1)|Fn] = Pθnf (Xn).(1)

2.1. Ergodicity. For V : X → [1,∞) and θ, θ ′ ∈ �, denote by DV (θ, θ ′) the
V -variation of the kernels Pθ and Pθ ′

DV (θ, θ ′) def= sup
x∈X

‖Pθ(x, ·) − Pθ ′(x, ·)‖V

V (x)
.(2)

When V ≡ 1, we use the simpler notation D(θ, θ ′). Consider the following as-
sumption:

A1 For any θ ∈ �, there exists a probability distribution πθ such that πθPθ = πθ .
A2 (a) For any ε > 0, there exists a nondecreasing sequence {rε(n), n ≥ 0} in

N \ {0}, such that lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[∥∥P rε(n)

θn−rε(n)

(
Xn−rε(n), ·) − πθn−rε(n)

∥∥
TV

] ≤ ε.

(b) For any ε > 0, limn→∞
∑rε(n)−1

j=0 E[D(θn−rε(n)+j , θn−rε(n))] = 0, where
D is defined in (2).

Assumption A2(a) is implied by the containment condition introduced in
Roberts and Rosenthal (2007): for any ε > 0, the sequence {Mε(Xn, θn), n ≥ 0}
is bounded in probability, where for x ∈ X, θ ∈ �,

Mε(x, θ)
def= inf{n ≥ 0,‖P n

θ (x, ·) − πθ‖TV ≤ ε}.(3)

In this case, it is easily checked that A2(a) is satisfied by setting rε(n) = N for
all n ≥ 0, where N is large enough. Assumption A2(a) is weaker than the con-
tainment condition, because the sequence {rε(n), n ≥ 0} can grow to infinity. This
is important in applications where it is not known a priori that the parameter se-
quence {θn, n ≥ 0} stays in a region where the ergodicity constants are controlled
uniformly. Examples of such applications are given in a toy example and a more
realistic example below.

Assumption A2(b) requires that the amount of change vanishes as n goes to
infinity at a rate which is matched with the rate at which the kernel converges
to stationarity. If the kernel mixes uniformly fast along any parameter sequence
{θn, n ≥ 0}, that is, rε(n) = N for any n ≥ 0 for some integer N , A2(b) is equiva-
lent to the diminishing adaptation condition introduced in Roberts and Rosenthal
(2007): {D(θn, θn−1), n ≥ 1} converges to zero in probability at any rate. On the
other hand, if the ergodicity is not uniform along a sequence {θn, n ≥ 0}, then
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the rate of convergence of the adaptation should converge to zero but with a fast
enough rate. As expected, there is a trade-off between the rate of convergence of
the chain and the rate at which the parameter can be adapted. This does not nec-
essarily imply however that the parameter sequence {θn, n ≥ 0} converges to some
fixed value [see, e.g., Roberts and Rosenthal (2007)].

THEOREM 2.1. Assume A1 and A2. Let f be a bounded function such that
limn πθn(f ) = α P-a.s. for some constant α. Then

lim
n→∞ E[f (Xn)] = α.

The proof is in Section 4.1. As a trivial corollary, we have:

COROLLARY 2.2. Assume A1 and A2. Assume {πθn, n ≥ 0} converges weakly
to π P-a.s. Then, limn→∞ E[f (Xn)] = π(f ) for any bounded continuous func-
tion f .

When πθ = π for any θ ∈ �, Theorem 2.1 improves the results of Roberts and
Rosenthal (2007) by weakening the conditions on the transition kernels {Pθ , θ ∈
�} (the containment condition is not assumed to hold). The following example
shows that ergodicity can be achieved even if the containment condition in Roberts
and Rosenthal (2007) fails, provided that the adaptation rate is slow enough.

EXAMPLE 1 (Toy example). Let us consider the following example intro-
duced in Andrieu and Moulines (2006) and thoroughly analyzed in Andrieu and
Thoms [(2008), Section 2] and Bai, Roberts and Rosenthal (2011). Let {θn, n ≥ 0}
be a [0,1]-valued deterministic sequence. Consider the nonhomogeneous Markov
chain over X = {0,1} with transition matrix

Pθ =
[

θ 1 − θ

1 − θ θ

]
, θ ∈ [0,1].(4)

For any θ ∈ [0,1], π = [1/2,1/2] is a stationary distribution; the chain is irre-
ducible if θ ∈ (0,1). In this case, for ε > 0 and θ ∈ (0,1),

Mε(x, θ) = ln(ε)/ln|1 − 2θ |.
Assume that, for n ≥ 1, θn = n−1/4. Clearly, for any ε > 0, {Mε(Xn, θn), n ≥ 0}
grows to infinity with probability 1 and the containment condition does not hold
[see also Bai, Roberts and Rosenthal (2011), Proposition 1].

Setting r(n) = n1/3

lim sup
n→∞

E
∥∥P r(n)

θn−r(n)

(
Xn−r(n), ·) − π

∥∥
TV = lim sup

n→∞
|2θn − 1|r(n) = 0

shows that A2(a) holds. Furthermore, we have

D(θ, θ ′) = sup
x∈{0,1}

‖Pθ(x, ·) − Pθ ′(x, ·)‖TV = 2|θ − θ ′|.
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Therefore, with θn = n−1/4, D(θn, θn−1) = O(n−1), and A2(b) is satisfied with
r(n) = n1/3. Corollary 2.2 therefore applies, and the marginal distribution con-
verges.

To check A2(a), it is often easier to use drift conditions. To simplify the dis-
cussion below, this paper only covers the case of drift inequalities for geometric
ergodicity. Extensions to subgeometric rates of convergence can be obtained fol-
lowing the same lines [see, e.g., Bai, Roberts and Rosenthal (2011) and Atchadé
and Fort (2010)] and are left to future work. In the geometric setting, one com-
monly assumes the following simultaneous geometric drift and minorization con-
ditions:

A3 For all θ ∈ �, Pθ is π -irreducible, aperiodic and there exist a function V : X →
[1,+∞), and for any θ ∈ � there exist some constants bθ < ∞, δθ ∈ (0,1),
λθ ∈ (0,1) and a probability measure νθ on X such that

PθV ≤ λθV + bθ ,

Pθ (x, ·) ≥ δθνθ (·)1{V ≤cθ }(x), cθ
def= 2bθ (1 − λθ )

−1 − 1.

A3 implies geometric ergodicity [see, e.g., Meyn and Tweedie (2009), Chapter 15].
The following proposition can be obtained from Roberts and Rosenthal (2004),
Fort and Moulines (2003), Douc, Moulines and Rosenthal [(2004), Proposition 3]
or Baxendale (2005) [see also the proof of Lemma 3 in Saksman and Vihola (2010)
for a similar result].

LEMMA 2.3. Assume A3. Then for any θ , there exists a probability distribu-
tion πθ such that πθPθ = πθ , πθ(V ) ≤ bθ (1 − λθ )

−1 and

‖P n
θ (x, ·) − πθ‖V ≤ Cθρ

n
θ V (x)

for some finite constants Cθ and ρθ ∈ (0,1). Furthermore, there exist positive con-
stants C and γ such that for any θ ∈ �,

Lθ
def= Cθ ∨ (1 − ρθ)

−1 ≤ C{bθ ∨ δ−1
θ ∨ (1 − λθ )

−1}γ .(5)

EXAMPLE 2 [The adaptive Metropolis (AM) algorithm]. We establish the er-
godicity of the AM algorithm. In this example, X = R

d and the densities are as-
sumed to be w.r.t. the Lebesgue measure. For x ∈ R

d , |x| denotes the Euclidean
norm. For κ > 0, let Cd

κ be the set of symmetric and positive definite d × d matri-
ces whose minimal eigenvalue is larger than κ . The parameter set � = R

d × Cd
κ is

endowed with the norm |θ |2 def= |μ|2 + Tr(�T �), where θ = (μ,�).
At each iteration, Xn+1 ∼ Pθn(Xn, ·), where Pθ is defined by

Pθ(x,A)
def=

∫
A

(
1 ∧ π(y)

π(x)

)
q�(y − x)dy

(6)

+ 1A(x)

[
1 −

∫ (
1 ∧ π(y)

π(x)

)
q�(y − x)dy

]
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with q� the density of a Gaussian random variable with zero mean and covariance
matrix (2.38)2d−1�. The parameter θn = (μn,�n) ∈ � is the sample mean and
covariance matrix

μn+1 = μn + 1

n + 1
(Xn+1 − μn), μ0 = 0,(7)

�n+1 = n

n + 1
�n + 1

n + 1
{(Xn+1 − μn)(Xn+1 − μn)

T + κId},(8)

where Id is the identity matrix, �0 ≥ 0 and κ is a positive constant.
By construction, for any θ ∈ �, π is the stationary distribution for Pθ so that

A1 holds with πθ = π for any θ . As in Saksman and Vihola (2010), we consider
the following assumption:

M1 π is positive, bounded, differentiable and

lim
r→∞ sup

|x|≥r

x

|x|ρ · ∇ logπ(x) = −∞

for some ρ > 1. Moreover, π has regular contours, that is, for some R > 0,

sup
|x|≥R

x

|x| · ∇π(x)

|∇π(x)| < 0.

Saksman and Vihola [(2010), Proposition 15] establishes a drift inequality and a
minorization condition on the kernel as in A3, with a drift function V ∝ π−s with
s = 1/2. Nevertheless, the generalization to an arbitrary s ∈ (0,1) is straightfor-
ward. Note that the function

W(x)
def= π−s(x)‖πs‖∞(9)

grows faster than an exponential under M1 [see, e.g., Saksman and Vihola (2010),
Lemma 8]. Hence, Lemma 2.3 and Proposition 15 of Saksman and Vihola (2010)
both imply:

LEMMA 2.4. Assume M1. For any a ∈ (0,1] and θ ∈ �, there exist Ca,θ < ∞
and ρa,θ ∈ (0,1), such that

‖P k
θ (x, ·) − π‖Wa ≤ Ca,θρ

k
a,θW

a(x) for any x ∈ R
d ,

where W is defined by (9). In addition, there exist finite constants ca, ba such that

Ca,θ ∨ (1 − ρa,θ )
−1 ≤ ca|θ |dγ /2 + ba,

where the constant γ is defined in Lemma 2.3.

In Saksman and Vihola [(2010), Lemma 12] it is proved that under M1, the rate
of growth of the parameters {θn, n ≥ 0} is controlled. Namely, for any τ > 0,

sup
n≥1

n−τ |θn| < +∞, P-a.s.(10)
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In the following lemma, we establish a control of the rate of growth of the state of
the chain {Xn,n ≥ 0}.

LEMMA 2.5. Assume M1. Then:

(i) E[W(Xn)] ≤ E[W(X0)] + nb.
(ii) For any t > 0 and any τ > 0, there exists a constant Ct,τ such that for any

n ≥ 0,

E
[
W(Xn)1supk≤n−1 k−τ |θk |≤t

] ≤ E[W(X0)] + Ct,τ n
τdγ /2,

where γ is defined in Lemma 2.3.
(iii) If E[W(X0)] < +∞, for any τ > 0, supn≥1 n−1−τW(Xn) < +∞, P-a.s.

The proof of this lemma is given in Section 4.2. By combining Lemma 2.4 and
Lemma 2.5, we prove A2(a): as a consequence of Lemma 2.4, it holds for any
τ > 0 such that r > τdγ /2 and for any t > 0

lim sup
n→∞

sup
θ∈�,|θ |≤tnτ

sup
x∈Rd ,W(x)≤tn1+τ

∥∥P �nr�
θ (x, ·) − π

∥∥
TV = 0,(11)

where �·� denotes the lower integer part. For t > 0, set

	t
def=

{
ω : sup

n≥1
n−τ |θn| ≤ t, sup

n≥1
n−1−τW(Xn) ≤ t

}
.

Equation (10) and Lemma 2.5(iii) show that limt→∞ P(	t) = 1. Set r(n) = �nr�.
The Fatou lemma and the monotone convergence theorem show that

lim sup
n→∞

E
[∥∥P r(n)

θn−r(n)

(
Xn−r(n), ·) − π

∥∥
TV

]
≤ E

[
lim sup
n→∞

∥∥P r(n)
θn−r(n)

(
Xn−r(n), ·) − π

∥∥
TV

]

≤ lim
t→∞E

[
lim sup
n→∞

∥∥P r(n)
θn−r(n)

(
Xn−r(n), ·) − π

∥∥
TV1	t

]
= 0.

Therefore, A2(a) is satisfied whereas clearly the uniform containment condition
[see (3)] seems to be very challenging to check.

Consider now A2(b). It is proved in Andrieu and Moulines [(2006), Lemma 13]
that for any (θ, θ̃) ∈ �2 and a ∈ [0,1], DWa(θ, θ̃) ≤ 2dκ−1|� − �̃|. By definition
of �n [see (8)], we have for any m < n,

DWa(θn, θn−m) ≤ 2dκ−1

n

(
2κmd + m

n − m

n−m−1∑
j=0

|Xj+1 − μj |2

+
n−1∑

j=n−m

|Xj+1 − μj |2
)
.
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By definition of the empirical mean μk [see (7)] there exists a constant C′ such
that |μk| ≤ C′{k−1 ∑k

j=1 |Xj |2}1/2; under M1, lim inf|x|→∞ lnW(x)/|x| > 0 [see
the proof of Lemma 8 in Saksman and Vihola (2010)]. Therefore, there exists a
constant C such that

DWa(θn, θn−m)

≤ C
m

n

{
1 + (1 + ln(n − m))

n − m

n−m∑
j=1

ln2 W(Xj)(12)

+ (1 + ln(n))

m

n∑
j=n−m

ln2 W(Xj)

}
.

The proof of A2(b) now relies on the control of moments for the r.v. {ln2 W(Xj),
j ≥ 0}. Lemma 2.5(i) and Jensen’s inequality show that the moment E[ln2 W(Xn)]
increases at most as ln2 n. Then there exists a constant C such that for any m ≤ n

and for any a ∈ [0,1],

E[DWa(θn, θn−m)] ≤ Cm
ln3(n)

n
E[W(X0)].

Then, for any r ∈ (0,1/2), limn→+∞
∑�nr�−1

j=0 E[D(θn−�nr�+j , θn−�nr�)] = 0
and A2(b) holds. Combining the results above yields:

THEOREM 2.6. Assume M1 and E[W(X0)] < +∞. Then, for any bounded
function f , limn→∞ E[f (Xn)] = π(f ).

2.2. Strong law of large numbers for additive functionals. In this section,
a strong law of large numbers (SLLN) is established. The main result of this section
is Theorem 2.7 which provides a SLLN for a special class of additive functionals.
To that goal, A3 is assumed to hold (which implies A1, see Lemma 2.3), and it is
required to strengthen the diminishing adaptation and the stability conditions.

A4
∑∞

k=1 k−1(Lθk
∨Lθk−1)

6DV (θk, θk−1)V (Xk) < +∞ P-a.s., where DV and Lθ

are defined in (2) and (5).

A5 (a) lim supn πθn(V ) < +∞, P-a.s.
(b) For some α > 1,

∑∞
k=0(k + 1)−αL2α

θk
Pθk

V α(Xk) < +∞, P-a.s.

Here again, these conditions balance the rate at which the transition kernel Pθ

converges to stationarity and the adaptation speed. This is reflected in the condi-
tion A4: (Lθk

∨ Lθk−1) is related to the rate of convergence of the kernels Pθk
and

Pθk−1 to stationarity and DV (θk, θk−1) reflects the adaptation speed.

THEOREM 2.7. Assume A3, A4 and A5. Let F : X × � → R be a measurable
function such that:



3272 G. FORT, E. MOULINES AND P. PRIOURET

(i) supθ ‖F(·, θ)‖V < +∞,
(ii)

∑∞
k=1 k−1L2

θk−1
‖F(·, θk) − F(·, θk−1)‖V V (Xk) < +∞ P-a.s.,

(iii) limn→∞
∫

πθn(dx)F (x, θn) exists P-a.s.

Then,

lim
n→∞

1

n

n−1∑
k=0

F(Xk, θk) = lim
n→∞

∫
πθn(dx)F (x, θn), P-a.s.

The proof is in Section 4.3. When the function F does not depend upon θ , this
theorem becomes the following.

COROLLARY 2.8. Assume A3, A4 and A5. Let f : X → R be a measur-
able function such that ‖f ‖V < +∞ and limn→∞ πθn(f ) exists P-a.s. Then,
n−1 ∑n−1

k=0 f (Xk)
a.s.−→ limn πθn(f ).

EXAMPLE 3 (Toy example: law of large numbers). For θ ∈ (0,1), the con-
stants Cθ and ρθ (see Lemma 2.3) are, respectively, equal to 1 and |1 − 2θ | and
V = 1. This implies that Lθ = 1/(2θ) if θ ≤ 1/2 and 1/(2(1 − θ)) otherwise.
Therefore A3 is satisfied since

∑∞
k=1 k−1θ−3

k |θk−1 − θk| < +∞ when θk = k−1/4.
Assumption A4(a) is automatically satisfied because the stationary distribution
does not depend on θ . Assumption A4(b) is satisfied for any α > 4/3 because
in such case

∑∞
k=1(k

−1θk)
α < ∞. By Theorem 2.7, the SLLN is satisfied for this

nonhomogeneous Markov chain.

The stated assumptions are very general and, when applied to some specific
settings, can be simplified. For example, in many interesting examples (see, e.g.,
Section 3), it is known that lim supn→∞ Lθn < ∞, P-a.s. and for some α > 1,
supn≥0 E[V α(Xn)] < ∞. Under these assumptions, it is straightforward to estab-
lish the following corollary:

COROLLARY 2.9. Assume A3 and:

(i) lim supn→∞ Lθn < ∞ and lim supn→∞ πθn(V ) < +∞, P-a.s.,
(ii) there exists α > 1 such that supk≥0 E[V α(Xk)] < +∞,

(iii)
∑∞

k=1 k−1DV (θk, θk−1)V (Xk) < +∞ P-a.s.

Let f : X → R be a measurable function such that ‖f ‖V < +∞ and
limn→∞ πθn(f ) exists P-a.s. Then, n−1 ∑n−1

k=0 f (Xk)
a.s.−→ limn→∞ πθn(f ).

EXAMPLE 4 (AM: law of large numbers). Application of the above criteria
yields the SLLN for the AM algorithm. This result has recently been obtained by
Saksman and Vihola (2010).
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Let a ∈ (0,1) and set W(x)
def= π−s(x)‖πs‖∞ for s ∈ (0,1). We prove that a

(strong) LLN holds for any function f in LWa . We choose τ > 0 small enough so
that

(1 − a) > τ(a + 3dγ ), 1/a − 1 > τdγ (1/a + 1/2),(13)

where γ is given by Lemma 2.3. Consider A4. By Lemma 2.4 and (10), there
exists a r.v. U1, P-a.s. finite such that Lθk

∨ Lθk−1 ≤ U1k
τdγ/2. By (12) and

Lemma 2.5(iii), there exists a r.v. U2, P-a.s. finite such that DWa(θk, θk−1) ≤
U2k

−1 ln3 k. Finally, applying Lemma 2.5(iii) again, there exists a r.v. U3, P-a.s. fi-
nite such that Wa(Xk) ≤ U3k

a(1+τ). Combining these inequalities show that there
exists a r.v. U , P-a.s. finite such that∑

k

k−1(Lθk
∨ Lθk−1)

6DWa(θk, θk−1)W
a(Xk) ≤ U

∑
k

k2−a−τ(a+3dγ ) ln3 k,

thus showing A4 [observe that the RHS is finite by definition of τ , equation (13)].
The proof of A5(b) could rely on the same inequalities in the case a ∈ (0,1/2).
Nevertheless, a SLLN can be established for larger values of a by using the
bound on W(Xn) given by Lemma 2.5(ii) which improves on Lemma 2.5(iii).

Set 	t
def= {supn≥1 n−τ |θn| ≤ t}. By Lemma 2.5, limt→+∞ P(	t) ↑ 1 and A5(b)

holds provided
∑

k≥1 k−1/aL
2/a
θk−1

Pθk−1W(Xk)1	t is finite P-a.s. for any t > 0.
Lemmas 2.4 and 2.5(ii) imply that there exists a constant Ct such that

E

[∑
k

k−1/aL
2/a
θk−1

Pθk−1W(Xk)1	t

]
≤ Ct

∑
k

k−1/a+τdγ (1/a+1/2).

The RHS is finite by definition of τ [see (13)].

The above discussion is summarized in the following theorem.

THEOREM 2.10. Assume M1 and E[W(X0)] < +∞. Then, for any a ∈ (0,1)

and any function f ∈ LWa , n−1 ∑n
k=1 f (Xk)

a.s.−→ π(f ).

2.3. Almost sure convergence of the invariant distributions. When the sta-
tionary distribution πθ is not explicitly known, convergence of the sequence
{πθn, n ≥ 0} has to be obtained from the convergence of the transition kernels
{Pθn, n ≥ 0}. We propose below a set of sufficient conditions allowing to prove
the almost sure convergence of {πθn(f ), n ≥ 0} for continuous functions f . The
proof of Theorem 2.11 is in Section 4.4.

THEOREM 2.11. Assume that X is a Polish space. Assume A3 and:

(i) lim supn→∞ Lθn < ∞ P-a.s. where Lθ is given by (5),
(ii) for any function f in Cb(X), the class of functions {Pθf, θ ∈ �} is equicon-

tinuous,
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(iii) there exists θ� ∈ � and for any x ∈ X, a P-full set 	x such that for any
ω ∈ 	x , {Pθn(ω)(x, ·), n ≥ 0} converges weakly to Pθ�(x, ·).
Then, there exists a P-full set 	0 such that, for any any ω ∈ 	0 and f ∈ Cb(X),
πθn(ω)(f )

a.s.−→ πθ�(f ) (or, equivalently, for any ω ∈ 	0, πθn(ω) converges weakly
to πθ�).

Note that the weak convergence implies that for any ω ∈ 	0 and for any set
A such that πθ�(∂A) = 0 where ∂A denotes the boundary of A, limn πθn(ω)(A) =
πθ�(A).

Theorem 2.11 might be seen as an extension of the classical results on the con-
tinuity of the perturbations of the spectrum and eigenprojections; but it is stated
under assumptions that are weaker than what is usually assumed [Kato (1980),
Theorem 3.16]. The difference stems from the fact that condition (iii) does not im-
ply the convergence of Pθ to Pθ� in operator norm. This is crucial to deal with the
interacting tempering algorithm (see Section 3).

Condition (iii) of Theorem 2.11 is certainly the most difficult to check. In the
case, it is known that for any function f ∈ Cb(X), there exists a P-full set 	x,f

such that for any ω ∈ 	x,f , limn Pθn(ω)f (x) = Pθ�f (x), then the existence of a
P-full set, uniform in f for f ∈ Cb(X), relies on the characterization of the weak
convergence by a separable class of functions [see Dudley (2002), Theorem 11.4.1,
and Proposition 3.3 below for an example].

3. Convergence of the interacting tempering (IT) algorithm. We consider
the interacting tempering algorithm, which is a simplified form of the equi-energy
sampler by Kou, Zhou and Wong (2006).

Assume that X is a Polish space equipped with its Borel σ -field X . Let π be the
target density w.r.t. a measure μ on (X, X ). Denote by K the number of different
temperature levels, T1 = 1 < T2 < · · · < TK . For k ∈ {1, . . . ,K − 1}, let P (k) be a
transition kernel on (X, X ) with unique invariant distribution π1/Tk . Fix υ ∈ (0,1)

the probability of interaction.
We denote by X(k) = (X

(k)
n )n the sampled values at each temperatures Tk . The

chains are defined by induction on k: given the past of the process X(k+1) up to
time n, and the current value X

(k)
n of the current process X(k), we define X

(k)
n+1 as

follows:

1. with probability (1 − υ), the state X
(k)
n+1 is sampled using the Markov kernel

P (k)(X
(k)
n , ·),

2. with probability υ , a tentative state Zn+1 is drawn at random from the
past {X(k+1)

� , � ≤ n}. This move is accepted with probability 1 ∧ (π(X
(k)
n )/

π(Zn+1))
T −1

k+1−T −1
k .
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We consider first the case K = 2. We will then address the general case (see Theo-
rem 3.6 below). For notational simplicity, we set T2 = T > 1 and P (1) = P . Denote
by � the set of the probability measures on (X, X ). For any distribution θ ∈ �, de-

fine the transition kernel Pθ(x, ·) def= (1 − υ)P (x, ·) + υKθ(x, ·), where, for any
A ∈ X ,

Kθ(x,A)
def=

∫
A

α(x, y)θ(dy) + 1A(x)

∫
{1 − α(x, y)}θ(dy)(14)

with

α(x, y) = 1 ∧ π(y)π1/T (x)

π(x)π(y)1/T
= 1 ∧ πβ(y)

πβ(x)
, β

def= 1 − 1

T
∈ (0,1).(15)

Denote by {Yn,n ≥ 0} the process run at the temperature T . It is not assumed that
{Yn,n ≥ 0} is a Markov chain. We simply assume that, for any bounded continuous
function f , n−1 ∑n

k=1 f (Yk) → θ�(f ) a.s. where θ� is the probability distribution
on (X, X ) with density (w.r.t. μ) proportional to π1/T . We consider the process
{Xn,n ≥ 0} defined, for each n ≥ 0 and any bounded function f : X → R,

E[f (Xn+1)|Fn] = Pθnf (Xn) where θn(f ) = (n + 1)−1
n∑

k=0

f (Yk).

Since, by construction, πPθ� = π , it is expected that the marginal distribution of
Xk as k goes to infinity converges to π . To go further, some additional assumptions
are required:

I1 π is a continuous positive density on X and ‖π‖∞ < +∞.
I2 (a) P is a π -irreducible aperiodic Feller transition kernel on (X, X ) such that

πP = π .
(b) There exist τ ∈ (0,1/T ), λ ∈ (0,1) and b < +∞ such that

PW ≤ λW + b with W(x)
def= (

π(x)/‖π‖∞
)−τ

.(16)

(c) For any p ∈ (0,‖π‖∞), the sets {π ≥ p} are 1-small (w.r.t. the transition
kernel P ).

When X ⊆ R
d and P is a symmetric random-walk Metropolis (SRWM) algo-

rithm then πP = π and P is π -irreducible [Mengersen and Tweedie (1996), Lem-
ma 1.1]. If in addition the proposal density is continuous on X then, since π is
positive and continuous on X, any compact set of X is 1-small [Mengersen and
Tweedie (1996), Lemma 1.2]. Therefore, the transition kernel of a SRWM algo-
rithm satisfies I2(a) and I2(c).

Drift conditions of the form I2(b) for the SRWM algorithm on X ⊆ R
d are dis-

cussed in Roberts and Tweedie (1996), Jarner and Hansen (2000) and Saksman
and Vihola (2010). Under conditions which imply that the target density π is
super-exponential and have regular contours (see M1), Jarner and Hansen (2000)
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and Saksman and Vihola (2010) show that any functions proportional to π−s with
s ∈ (0,1) satisfies a Foster–Lyapunov drift inequality [Jarner and Hansen (2000),
Theorems 4.1 and 4.3]. Under this condition, I2(b) is satisfied with any τ in the
interval (0,1/T ).

Stability conditions on the auxiliary process {Yn,n ≥ 0} are also required.

I3 (a) θ�(W) < +∞ and for any continuous function f in LW , θn(f )
a.s.−→ θ�(f ).

(b) supn E[W(Yn)] < +∞.

The following proposition is the key-ingredient to prove the convergence of
the IT sampler. Under the stated assumptions, we prove that the transition kernels
{Pθ , θ ∈ �} satisfy a Foster–Lyapunov drift inequality and a minorization condi-
tion. The proof of Proposition 3.1 is adapted from Atchadé [(2010), Lemma 4.1];
a detailed proof is given in Fort, Moulines and Priouret (2011), Section 2.

PROPOSITION 3.1. Assume I1 and I2. Then, there exist λ̃ ∈ (0,1), b̃ < ∞,
such that, for any θ ∈ �,

PθW(x) ≤ λ̃W(x) + b̃θ(W).(17)

In addition, for any p ∈ (0,‖π‖∞), the level sets {π ≥ p} are 1-small w.r.t. the
transition kernels Pθ and the minorization constant does not depend upon θ .

COROLLARY 3.2. Assume I1, I2, I3 and E[W(X0)] < +∞. Then:

(i) supn≥0 E[W(Xn)] < +∞,

(ii) lim supn→∞ Lθn < +∞ P-a.s., where Lθ is defined by (5).

The proof of Corollary 3.2 is in Section 5.1. As a consequence of Proposi-
tion 3.1, the transition kernel Pθ possesses an (unique) invariant distribution πθ .
Ergodicity and SLLN for additive functionals both require the a.s. convergence
of πθn(f ) (see Theorems 2.1 and 2.7). Nevertheless, in this example, πθ does not
have an explicit expression. The proof of the following proposition is postponed
in Section 5.2.

PROPOSITION 3.3. Assume I1, I2, I3 and E[W(X0)] < +∞. Then, the
conditions of Theorem 2.11 hold and for any bounded continuous function f ,
limn πθn(f ) = π(f ) P-a.s.

We now address the convergence of the marginals.

THEOREM 3.4. Assume I1, I2, I3 and E[W(X0)] < +∞. Then, for any
bounded continuous function f , limn E[f (Xn)] = π(f ).
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PROOF. We check the assumptions of Corollary 2.2. By Corollary 3.2(i),
{W(Xn),n ≥ 0} is bounded in probability. Furthermore, Corollary 3.2(ii) implies
that lim supn Cθn < +∞ P-a.s. and lim supn ρθn < 1 P-a.s. This proves A2(a).

The next step is to establish A2(b). Since, for any bounded function f ,
θn+m(f ) = (n + m + 1)−1 ∑n+m

k=n+1 f (Yk) + (n + 1)(n + m + 1)−1θn(f ), we have

|Pθn+mf (x) − Pθnf (x)| ≤ sup
y,z∈X

|f (y) − f (z)|‖θn+m − θn‖TV ≤ 2‖f ‖∞m

n + m + 1
.

Consequently, D(θn+m, θn) is deterministically bounded by a sequence converging
to zero. We have

rε(n)−1∑
j=0

E
[
D

(
θn−rε(n)+j , θn−rε(n)

)] ≤ 2
r2
ε (n)

n − rε(n)

thus proving A2(b) with any sequence of the form rε(n) = nr with r < 1/2.
Finally, Proposition 3.3 proves the convergence of πθn(f ) for any bounded con-

tinuous function f . �

We now state the strong law of large numbers for the IT sampler.

THEOREM 3.5. Assume I1, I2, I3 and E[W(X0)] < +∞. Then:

(i) for any measurable set A such that
∫
∂A π dμ = 0 where ∂A is the boundary

of A,

1

n

n−1∑
k=0

1A(Xk)
a.s.−→

∫
A

π dμ;

(ii) for any a ∈ (0,1) and any continuous function f in LWa ,

1

n

n−1∑
k=0

f (Xk)
a.s.−→

∫
f π dμ.

PROOF. We check conditions (i), (ii) and (iii) of Corollary 2.9 with V
def= Wa

for a ∈ (0,1), and α
def= 1/a. Assumption A3 holds and lim supn Lθn < +∞ P-a.s.

[see Proposition 3.1 and Corollary 3.2(ii)]. The drift condition (17) implies that

lim sup
n

πθn(W) ≤ b̃

1 − λ̃
lim sup

n
θn(W).(18)

Since W is continuous, the assumption I3(a) implies that lim supn θn(W) < ∞
P-a.s. Hence, condition (i) of Corollary 2.9 holds. Corollary 3.2(i) implies the
condition (ii) of Corollary 2.9. The definition (2) of DV implies

DV (θk, θk−1) ≤ 2υ‖θk − θk−1‖V ≤ 2

k + 1
θk−1(V ) + 2

k + 1
V (Yk).
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Hence, under I3(a), condition (iii) of Corollary 2.9 holds if
∑

k k−2V (Xk) < +∞
and

∑
k k−2V (Xk)V (Yk) < +∞ P-a.s. The first series converges since, by Corol-

lary 3.2(i), supk E[V (Xk)] < +∞. For the second series, it is sufficient to prove

that
∑

k k−2/pV 1/p(Xk)V
1/p(Yk) < +∞ w.p.1 with p

def= (2a) ∨ 1. We have by
the Cauchy–Schwarz inequality

E[V 1/p(Yk)V
1/p(Xk)] ≤ E[V 2/p(Yk)]1/2

E[V 2/p(Xk)]1/2

≤ E[V 1/a(Yk)]1/2
E[V 1/a(Xk)]1/2

= E[W(Yk)]1/2
E[W(Xk)]1/2.

The RHS is finite under I3(b) and Corollary 3.2(i). Then, this concludes the proof
of condition (iii) of Corollary 2.9.

It remains to prove that limn πθn(f ) = π(f ) P-a.s. By Proposition 3.3, this
property holds for any bounded continuous function f and any set A such that∫
∂A π dμ = 0. We proved that there exists α > 1 such that lim supn πθn(V

α) +
π(V α) < +∞ [see (18)]. Classical truncation arguments imply that limn πθn(f )

exists P-a.s. for any continuous function f ∈ LV [see, e.g., Billingsley (1999),
Theorem 3.5, or similar arguments in the proof of Proposition 4.3]. �

To summarize the above discussions, the process {Xn,n ≥ 0} has uniformly
bounded W -moments (see Corollary 3.2), the distribution of Xn converges to π as
n → +∞ (Theorem 3.4) and a strong law of large numbers is satisfied for a wide
family of functions (Theorem 3.5). The results are obtained provided the auxiliary
process also possesses uniformly bounded W -moments and satisfies a strong law
of large numbers (see I3). Repeated applications of this result provides sufficient
conditions for the interacting tempering with multiple stages to be ergodic and to
satisfy a strong law of large numbers. Recall that IT algorithm defines recursively
K random sequences X(i) = {Xi

n,n ≥ 0} for i ∈ {1, . . . ,K} such that X(i) tar-
gets the distribution proportional to π1/Ti . We are interested in X(1) which targets
π1/T1 = π . The proof of Theorem 3.6 is in Section 5.3.

THEOREM 3.6. Let (X, X ) be a Polish space, and π be a density (w.r.t. a mea-
sure μ) satisfying I1. Choose T� > 1 and T1 = 1 < T2 < · · · < TK < T�. Assume
that for any i ∈ {1, . . . ,K −1}, there exists a π -irreducible Feller transition kernel
P (i) on (X, X ) such that:

(i) π1/TiP (i) = π1/Ti ,
(ii) for any s ∈ (0,1/Ti), there exist λ(i) ∈ (0,1) and b(i) < +∞ such that

P (i)Us ≤ λ(i)Us + b(i) where Us ∝ π−s .
Assume in addition that there exists T̃ ∈ (TK,T�) such that:

(iii)
∫

π1/TK−1/T̃ dμ < +∞,
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(iv) for any continuous function in L
π−1/T̃ ,

n−1
n∑

k=1

f
(
X

(K)
k

) a.s.−→
∫

f
π1/TK∫
π1/TK dμ

dμ,

(v) supn E[π−1/T̃ (X
(K)
n )] < ∞.

Finally, assume that for any i ∈ {1, . . . ,K − 1}, E[π−1/T̃ (X
(i)
0 )] < +∞. Then,

for any continuous function f in Lπ−1/T� ,

n−1
n∑

k=1

f
(
X

(1)
k

) a.s.−→
∫

f π dμ.

Note that since convergence holds for any continuous function f in Lπ−1/T� , it
also holds with f = 1A where A is a measurable set such that

∫
∂A π dμ = 0.

We conclude this section by an example of SRWM-based interacting tempering
algorithm, for which the conditions of Theorem 3.6 hold. The proof is in Sec-
tion 5.4.

PROPOSITION 3.7. Let π be a super-exponential density on X = R
d with reg-

ular contours (i.e., satisfying M1). Let T� ∈ (1,+∞) and choose a temperature
ladder 1 = T1 < · · · < TK < T�. Consider the K-stages interacting tempering al-
gorithm with:

• for i ∈ {1, . . . ,K − 1}, P (i) is a SRWM transition kernel with invariant distribu-
tion proportional to π1/Ti and proposal distribution Nd(0,�(i)),

• {X(K)
n , n ≥ 0} is a SRWM Markov chain with invariant distribution proportional

to π1/TK and proposal distribution Nd(0,�(K)).

Finally, assume that for any i ∈ {1, . . . ,K}, E[π−1/T�(X
(i)
0 )] < +∞. Then, for any

continuous function f ∈ Lπ−1/T� , n−1 ∑n
k=1 f (X

(1)
k )

a.s.−→ π(f ) as n → +∞.

4. Proofs of Section 2.

4.1. Proof of Theorem 2.1. We preface the proof by a lemma, which is proved
in Atchadé et al. (2011), Proposition 1.7.1.

LEMMA 4.1. For any integers n,N > 0,

sup
‖f ‖∞≤1

∣∣E[f (Xn+N)|Fn] − P N
θn

f (Xn)
∣∣ ≤

N−1∑
j=1

E[D(θn+j , θn)|Fn], P-a.s.
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PROOF OF THEOREM 2.1. Let f be a bounded nonnegative function. Without
loss of generality, assume that ‖f ‖∞ ≤ 1. For any N ≤ n,

|E[f (Xn)] − α| ≤ |E[f (Xn) − P N
θn−N

f (Xn−N)]| + |E[πθn−N
(f ) − α]|

(19)
+ |E[P N

θn−N
f (Xn−N) − πθn−N

(f )]|.
Let ε > 0. By setting N = rε(n) where the sequence {rε(n), n ≥ 0} is as in A2(a),
the third term on the RHS in (19) is bounded by

E
[∥∥P rε(n)

θn−rε(n)

(
Xn−rε(n), ·) − πθn−rε(n)

∥∥
TV

]
.

Under A2(a), for any large n this expectation is upper bounded by ε. Lemma 4.1
shows that

∣∣E[
f (Xn) − P

rε(n)
θn−rε(n)

f
(
Xn−rε(n)

)]∣∣ ≤
rε(n)−1∑

j=1

E
[
D

(
θn−rε(n)+j , θn−rε(n)

)]
.

Under A2(b), the RHS tends to zero as n → +∞. Finally, the remaining term in
(19) converges to zero, as a consequence of the a.s. convergence of {πθn(f ), n ≥ 0}
to α, and of the property limn n − rε(n) = +∞. �

4.2. Proof of Lemma 2.5. The proof of (i) follows by iterating the drift in-
equality in Saksman and Vihola (2010), Proposition 15. We now prove (ii). Saks-
man and Vihola [(2010), Proposition 15] implies that there exists a constant c such
that on the set {supk≤n−1 k−τ |θk| ≤ t},

sup
k≤n−1

λθk
≤ 1 − (ctdγ /2kτdγ/2)−1 ≤ 1 − (ctdγ /2nτdγ/2)−1, P-a.s.

Then by iterating the drift inequality in Saksman and Vihola [(2010), Proposi-
tion 15] this yields

E
[
W(Xn)1supk≤n−1 k−τ |θk |≤t

]

≤ E[W(X0)] + b

n−1∑
k=0

(
1 − (ctdγ /2nτdγ/2)−1)k

≤ E[W(X0)] + b(ctdγ /2nτdγ/2).

The last assertion follows from (10), (ii), and the Markov inequality: let ε, τ > 0;
choose tε and τ ′ > 0 such that τ − τ ′dγ /2 > 0 and P(supn≥1|θn|n−τ ′ ≥ tε) ≤ ε/2.
Then

P

[
sup
n

n−1−τW(Xn) ≥ M
]

≤ ε/2 + P

[
sup
n

n−1−τW(Xn) ≥ M, sup
n≥1

|θn|n−τ ′ ≤ tε

]
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≤ ε/2 + 1

M
E

[
sup
n≥1

n−1−τW(Xn)1supn≥1 |θn|n−τ ′≤tε

]

≤ ε/2 + C

M

∑
n≥1

1

n1+τ
nτ ′dγ /2

for some constant C, and the RHS is upper bounded by ε for large enough M .

4.3. Proof of Theorem 2.7. The proof of Theorem 2.7 is prefaced by lemmas
on the regularity in θ of the invariant distribution πθ and on the function F̂θ solu-
tion of the Poisson equation F̂θ − Pθ F̂θ = F(·, θ) − πθ(F (·, θ)).

Under A3, F̂θ (x)
def= ∑

n P n
θ {F(·, θ) − πθ(F (·, θ))}(x) exists for all x ∈ X,

solves the Poisson equation, and by Lemma 2.3

|F̂θ (x)| ≤ ‖F(·, θ)‖V L2
θV (x),(20)

where Lθ is defined in (5).
The following lemma is adapted from Andrieu et al. (2011). A detailed proof is

given in Section 3 of the supplemental paper [Fort, Moulines and Priouret (2011)].

LEMMA 4.2. Assume A3. For any θ ∈ �, let Fθ : X → R
+ be a measurable

function such that supθ ‖Fθ‖V < +∞ and define F̂θ
def= ∑

n≥0 P n
θ {Fθ − πθ(Fθ )}.

For any θ, θ ′ ∈ �,

‖πθ − πθ ′‖V ≤ L2
θ ′ {πθ(V ) + L2

θV (x)}DV (θ, θ ′)
and

|Pθ F̂θ − Pθ ′F̂θ ′ |V ≤ sup
θ∈�

‖Fθ‖V L2
θ ′

(
LθDV (θ, θ ′) + ‖πθ − πθ ′‖V

)
+ L2

θ ′‖Fθ − Fθ ′‖V ,

where Lθ is given by (5).

PROOF OF THEOREM 2.7. We denote by L the limit limn

∫
πθn(dx)F (θn, x).

We write 1
n

∑n−1
k=0 F(Xk, θk) − L = ∑4

i=1 Ti,n with

T1,n
def= 1

n
F(X0, θ0) − L

n
,

T2,n
def= 1

n

n−1∑
k=1

{F(Xk, θk) − F(Xk, θk−1)},

T3,n
def= 1

n

n−1∑
k=1

{
F(Xk, θk−1) −

∫
πθk−1(dx)F (x, θk−1)

}
,

T4,n
def= 1

n

n−2∑
k=0

{∫
πθk

(dx)F (x, θk) − L

}
.
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Consider first T1,n. Since |F(X0, θ0)| < +∞ P-a.s., limn→∞ T1,n = 0 P-a.s. Under
conditions (ii) [resp., (iii)], T2,n (resp., T4,n) converges to zero a.s. (for T2,n, note
that Lθ ≥ 1 by definition). Consider finally T3,n:

1

n

n−1∑
k=1

{
F(Xk, θk−1) −

∫
πθk−1(dx)F (x, θk−1)

}
= Mn + Rn + R̃n

with F̂θ (x)
def= ∑

n≥0 P n
θ {F(·, θ) − πθ(F (·, θ))}(x) and

Mn
def= 1

n

n−1∑
k=1

{F̂θk−1(Xk) − Pθk−1F̂θk−1(Xk−1)},

Rn
def= 1

n

n−1∑
k=1

{Pθk
F̂θk

(Xk) − Pθk−1F̂θk−1(Xk)},

R̃n
def= 1

n
Pθ0F̂θ0(X0) − 1

n
Pθn−1F̂θn−1(Xn−1).

By construction, {F̂θk−1(Xk)−Pθk−1F̂θk−1(Xk−1), k ≥ 1} is a martingale-increment

sequence. Therefore, by Hall and Heyde [(1980), Theorem 2.18], Mn
a.s.−→ 0 pro-

vided that

∑
k≥1

1

kα
E[|F̂θk−1(Xk) − Pθk−1F̂θk−1(Xk−1)|α|Fk−1] < +∞, P-a.s.(21)

Equation (20) and Jensen’s inequality imply that (α > 1)

E[|F̂θk−1(Xk) − Pθk−1F̂θk−1(Xk−1)|α|Fk−1]
≤ 2α−1

E[|F̂θk−1(Xk)|α + |Pθk−1F̂θk−1(Xk−1)|α|Fk−1]
≤ 2α

(
sup
θ

‖F(·, θ)‖V L2
θk−1

)α
Pθk−1V

α(Xk−1).

Under item (i) and A5(b), the series is finite P-a.s. and this concludes the proof
of (21). Consider now the remainder term Rn. By Lemma 4.2,

|Rn| ≤ supθ ‖F(·, θ)‖V

n

×
n∑

k=1

L2
θk

L2
θk−1

{1 + πθk
(V ) + L2

θk
}DV (θk, θk−1)V (Xk)

+ 1

n

n∑
k=1

L2
θk

‖F(·, θk) − F(·, θk−1)‖V V (Xk).
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Assumptions A4, A5(a) and items (i), (ii) imply that Rn
a.s.−→ 0. Consider fi-

nally R̃n. By (20),

1

n
|Pθ0F̂θ0(X0) − Pθn−1F̂θn−1(Xn−1)|

≤ supθ ‖F(·, θ)‖V

n

(
L2

θ0
Pθ0V (X0) + L2

θn−1
Pθn−1V (Xn−1)

)

≤ supθ ‖F(·, θ)‖V

n

(
L2

θ0
{V (X0) + bθ0} + L2

θn−1
Pθn−1V (Xn−1)

)
.

Assumption A5(b), item (i) and the condition V (X0) < +∞ P-a.s. imply that
R̃n

a.s.−→ 0. �

4.4. Proof of Theorem 2.11. We preface the proof of this theorem by a propo-
sition and a lemma. The proof of Proposition 4.3 is postponed to Fort, Moulines
and Priouret (2011), Section 4.

PROPOSITION 4.3. Let X be a Polish space endowed with its Borel σ -field X .
Let μ and {μn,n ≥ 1} be probability distributions on (X, X ). Let {hn,n ≥ 0} be
an equicontinuous family of functions from X to R. Assume:

(i) the sequence {μn,n ≥ 0} converges weakly to μ,
(ii) for any x ∈ X, limn→∞ hn(x) exists, and there exists α > 1 such that

supn μn(|hn|α) + μ(| limn hn|) < +∞.

Then, μn(hn) → μ(limn hn).

LEMMA 4.4. Let X be a Polish space endowed with its Borel σ -field X . Let
{Pθ , θ ∈ �} be a family of transition kernels on (X, X ) and {θn, n ≥ 0} be a �-
valued random sequence on (	, A,P). Assume conditions (ii) and (iii) of The-
orem 2.11. Then, there exists a P-full set 	� such that for any ω ∈ 	�, x ∈ X
and k ≥ 1, the probability distributions {P k

θn(ω)(x, ·), n ≥ 0} converge weakly to

P k
θ�

(x, ·).

PROOF. We prove, by induction on k, that there exists a P-full set 	k such
that for any ω ∈ 	k and x ∈ X, the probability distributions {P k

θn(ω)(x, ·), n ≥ 0}
converge weakly to P k

θ�
(x, ·). The proof is then concluded by setting 	� = ⋂

k 	k .
Consider the case k = 1. By condition (iii) of Theorem 2.11, for any x ∈ X

there exists a P-full set 	x such that for any ω ∈ 	x , {Pθn(ω)(x, ·), n ≥ 0} con-
verges weakly to Pθ�(x, ·). Since X is Polish, it admits a countable dense sub-
set D. Therefore, there exists a P-full set 	D such that for any ω ∈ 	D and any
x ∈ D, {Pθn(ω)(x, ·), n ≥ 0} converges weakly to Pθ�(x, ·). Under condition (ii)
of Theorem 2.11, for any bounded continuous function f , the family of functions



3284 G. FORT, E. MOULINES AND P. PRIOURET

{P̄θf
def= Pθf −Pθ�f, θ ∈ �} is equicontinuous. For any ε > 0 and any x ∈ X, there

thus exists xε ∈ D such that for any θ ∈ �, |P̄θf (x) − P̄θf (xε)| ≤ ε. Hence, for
any ω ∈ 	D and any bounded continuous function f ,∣∣P̄θn(ω)f (x)

∣∣ ≤ ∣∣P̄θn(ω)f (xε)
∣∣ + ∣∣P̄θn(ω)f (x) − P̄θn(ω)f (xε)

∣∣
≤ ∣∣Pθn(ω)f (xε) − Pθ�f (xε)

∣∣ + ε.

This implies that lim supn |P̄θn(ω)f (x)| ≤ ε. Since ε was arbitrary, it follows
{Pθn(ω)(x, ·), n ≥ 0} converges weakly to Pθ�(x, ·) for any x. Hence, we set
	1 = 	D .

Assume that the property holds for k ≥ 1. We write for any bounded and con-
tinuous function f

P k+1
θn(ω)f (x) − P k+1

θ�
f (x) =

∫ (
P k

θn(ω)(x,dy) − P k
θ�

(x,dy)
)
Pθ�f (y)

(22)
+

∫
P k

θn(ω)(x,dy)
(
Pθn(ω)f (y) − Pθ�f (y)

)
.

By the induction assumption, there exists a P-full set 	k such that for any ω ∈ 	k ,
x ∈ X and any bounded continuous function h, limn→∞ P k

θn(ω)h(x) = P k
θ�

h(x).
Applied with h = Pθ�f , which is continuous under the assumption (ii), this
proves that for any ω ∈ 	k , the first term on the RHS of (22) goes to zero.
For the second term, we use Proposition 4.3. Let ω ∈ 	k ∩ 	1. For any x ∈ X,
{P k

θn(ω)(x, ·), n ≥ 0} converges weakly to P k
θ�

(x, ·). Furthermore, the family of
bounded functions {Pθn(ω)f − Pθ�f,n ≥ 0} is equicontinuous and, since ω ∈ 	1,
limn→∞ Pθn(ω)f (y) − Pθ�f (y) = 0 for any y ∈ X. Proposition 4.3 thus implies
that the second term on the RHS of (22) converges to zero, for any bounded con-
tinuous function f . The above discussion proves that 	k+1 = 	k ∩ 	1 = 	1, and
concludes the induction. �

PROOF OF THEOREM 2.11. Fix x ∈ X. Let f be a bounded continuous func-
tion on X. Under A3, we have by Lemma 2.3

lim sup
n

|πθn(f ) − P k
θn

f (x) + P k
θ�

f (x) − πθ�(f )|

≤
(
lim sup

n
Cθn[lim sup

n
ρθn]k + Cθ�ρ

k
θ�

)
V (x).

By Lemma 2.3 and condition (i), lim supn Cθn < +∞ and lim supn ρθn < 1 P-a.s.;
then, there exists a P-full set 	′′

� such that for any ω ∈ 	′′
� , there exists k(ω) such

that

lim sup
n

∣∣πθn(ω)(f ) − P
k(ω)
θn(ω)f (x) + P

k(ω)
θ�

f (x) − πθ�(f )
∣∣ ≤ ε.

Note that 	′′
� does not depend upon x and f . By Lemma 4.4, there exists a P-full

set 	� such that limn→∞ P k
θn(ω)f (x) = P k

θ�
f (x) for any ω ∈ 	�, any x ∈ X, any

k ≥ 1 and any bounded continuous function f . The proof is concluded by setting
	′

� = 	′′
� ∩ 	�. �
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5. Proofs of Section 3.

5.1. Proof of Corollary 3.2. (i) By iterating the drift inequality (17), we obtain

E[W(Xn)] ≤ λ̃n
E[W(X0)] + b̃

n−1∑
k=0

λ̃k
E[θn−k(W)].

Under I3(b), supk≥0 E[θk(W)] < +∞ so that

E[W(Xn)] ≤ λ̃n
E[W(X0)] + b̃

1 − λ̃
sup
k≥0

E[θk(W)].(23)

(ii) Since W is a continuous function, I3(a) implies that lim supn θn(W) < +∞,
P-a.s. Consequently, lim supn Lθn < +∞, P-a.s. by Lemma 2.3 and Proposi-
tion 3.1.

5.2. Proof of Proposition 3.3. We check the conditions of Theorem 2.11. Con-
dition (i) of Theorem 2.11 holds by Corollary 3.2.

The proof of condition (ii) of Theorem 2.11 is a consequence of the following
lemma.

LEMMA 5.1. Let f be a function on X such that ‖f πβ‖∞ < +∞. For any
x, x′ ∈ X such that π(x) > 0, π(x′) > 0,

sup
θ∈�

|Pθf (x) − Pθf (x′)| ≤ |Pf (x) − Pf (x′)| + |f (x) − f (x′)|

+ 2‖f πβ‖∞|π−β(x) − π−β(x′)|.

PROOF. By definition of the transition kernel Pθ , it is easily checked that

Pθf (x) − Pθf (x′)

= υ

∫
{α(x, y) − α(x′, y)}(f (y) − f (x′)

)
θ(dy)(24)

+ (1 − υ)
(
Pf (x) − Pf (x′)

) + υ
(
f (x) − f (x′)

)
A(θ, x),

where A(θ, x)
def= 1 − ∫

α(x, y)θ(dy). Since 0 ≤ α(x, y) ≤ 1, we have∣∣υ(
f (x) − f (x′)

)
A(θ, x)

∣∣ ≤ |f (x) − f (x′)|.
We can assume w.l.o.g. that π(x) ≤ π(x′). By definition of the ratio α, we have

α(x, y) − α(x′, y) = 1{π(x)≤π(y)≤π(x′)}
(
π−β(y) − π−β(x′)

)
πβ(y)

+ (
π−β(x) − π−β(x′)

)
1{π(y)≤π(x)≤π(x′)}πβ(y),
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showing that |α(x, y) − α(x′, y)| ≤ (π−β(x) − π−β(x′))πβ(y)1{π(y)≤π(x′)}. The
proof is concluded by noting that∫

|α(x, y) − α(x′, y)||f (y) − f (x′)|θ(dy)

≤ 2
(
sup

X
|f |πβ

)(
π−β(x) − π−β(x′)

)
. �

The most delicate part consists in establishing condition (iii) of Theorem 2.11.
The proof relies on the following result which is an extension of the Varadarajan
theorem [Dudley (2002), Theorem 11.4.1]. The proof of Proposition 5.2 is detailed
in Section 5 of the supplemental paper [Fort, Moulines and Priouret (2011)].

PROPOSITION 5.2. Let (U, d) be a metric space equipped with its Borel σ -
field B(U). Let (	, A,P) be a probability space, μ be a distribution on (U, B(U))

and {Kn,n ≥ 0} be a family of Markov transition kernels Kn :	 × B(U) → [0,1].
Assume that, for any f ∈ Cb(U, d)

	f
def=

{
ω ∈ 	 : lim sup

n→∞
|Kn(ω,f ) − μ(f )| = 0

}
is a P-full set. Then{

ω ∈ 	 :∀f ∈ Cb(U, d) lim sup
n→∞

|Kn(ω,f ) − μ(f )| = 0
}

is a P-full set.

PROOF OF (iii) OF THEOREM 2.11. We check the conditions of Proposi-
tion 5.2 with μn = Pθn(x, ·) and μ = Pθ�(x, ·). For any x ∈ X, and f ∈ Cb(X),
y �→ α(x, y) and y �→ α(x, y)f (y) are continuous. Thus, I3(a) implies that
Pθnf (x)

a.s.−→ Pθ�f (x) and 	f is a P-full set. �

5.3. Proof of Theorem 3.6. Set α0 = 1 and choose αl > 1 such that T̃ ×∏K
l=0 αl = T�. The proof is by induction on i for i = K down to i = 2.

Set W(K−1) def= π−T −1
�

∏K−1
l=0 αl = π−1/(T̃ αK) and π(K−1) be the probability dis-

tribution proportional to π1/TK−1 . Under the stated assumptions, Theorem 3.5 ap-
plies with Y ← X(K) and X ← X(K−1): for any continuous function f in LW(K−1) ,

n−1 ∑n
k=1 f (X

(K−1)
k )

a.s.−→ π(K−1)(f ).
Assume Theorem 3.5 holds with Y ← X(i+1) and X ← X(i) for some i ∈

{2, . . . ,K − 1}: for any continuous function f in LW(i) , n−1 ∑n
k=1 f (X

(i)
k )

a.s.−→
π(i)(f ) where W(i) def= π−T −1

�

∏i
l=0 αl and π(i) ∝ π1/Ti . We apply the above results

with

π ← π1/Ti−1, θ� ← π1/Ti , P ← P (i−1),

T ← Ti

Ti−1
, W ← W−T −1

�

∏i
l=0 αl .
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We thus have that n−1 ∑n
k=1 f (X

(i−1)
k )

a.s.−→ π(i−1)(f ) for any continuous function
f in LW(i−1) , where

W(i−1) def= π−T −1
�

∏i−1
l=0 αl = {

W(i)}1/αi , π(i−1) ∝ π1/Ti−1 .

This concludes the induction.

5.4. Proof of Proposition 3.7. For any i ∈ {1, . . . ,K}, the transition kernels
P (i) are π -irreducible, aperiodic, and compact sets are 1-small. In addition, they
are Feller (the proof is on the same lines as the proof of Lemma 5.1). By Saksman
and Vihola [(2010), Proposition 15] conditions (i) and (ii) of Theorem 3.6 are
satisfied for i ∈ {1, . . . ,K}. Note that the proof of Proposition 15 in Saksman and
Vihola (2010) is in the case sTi = 1/2 but it can be easily adapted for any sTi ∈
(0,1). In the case i = K , this implies that there exist λ ∈ (0,1) and b < +∞ such
that

P (K)Ũ ≤ λŨ + b,

where Ũ = (π/ supX π)−1/T̃ . Standard results on Markov chains [see, e.g., Meyn
and Tweedie (2009)] imply (iv). By iterating the drift inequality, we have

sup
n

E
[
Ũ

(
X(K)

n

)] ≤ E
[
Ũ

(
X

(K)
0

)] + b

1 − λ
,

thus proving (v). Finally, since π satisfies M1, there exist positive constants ci

such that π(x) ≤ c1 exp(−c2|x|) [see, e.g., Saksman and Vihola (2010), Lemma 8].
Therefore, for any τ > 0,

∫
πτ (x)dx < +∞ thus showing (iii).
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SUPPLEMENTARY MATERIAL

Supplement to paper “Convergence of adaptive and interacting Markov
chain Monte Carlo algorithms” (DOI: 10.1214/11-AOS938SUPP; .pdf). This
supplement provides a detailed proof of Lemma 4.2 and Propositions 3.1, 4.3 and
5.2. It also contains a discussion on the setwise convergence of transition kernels.
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