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ACCURATE EMULATORS FOR LARGE-SCALE COMPUTER
EXPERIMENTS

BY BEN HAALAND1 AND PETER Z. G. QIAN2

Duke-NUS Graduate Medical School and National University of Singapore,
and University of Wisconsin, Madison

Large-scale computer experiments are becoming increasingly important
in science. A multi-step procedure is introduced to statisticians for modeling
such experiments, which builds an accurate interpolator in multiple steps. In
practice, the procedure shows substantial improvements in overall accuracy,
but its theoretical properties are not well established. We introduce the terms
nominal and numeric error and decompose the overall error of an interpolator
into nominal and numeric portions. Bounds on the numeric and nominal error
are developed to show theoretically that substantial gains in overall accuracy
can be attained with the multi-step approach.

1. Introduction. Computer experiments use complex mathematical models
implemented in large computer codes to study real systems. In many situations,
a physical experiment is not feasible because it is unethical, impossible, inconve-
nient or too expensive. A mathematical model of the system can often be devel-
oped and input/output pairs can be produced with the help of computers. Typically,
the input/output pairs are expensive in the sense that they require a great deal of
time and computing to obtain and they are nearly deterministic in the sense that
a particular input will produce almost the same output if given to the computer
experiment on another occasion. Computer experiments are widely used in sys-
tems biology, engineering design, computational biochemistry, climatology and
epidemiology and their pervasiveness in science, engineering and medicine is only
growing. When using a computer experiment to study a real system, a thorough ex-
ploration of the surface is typically wanted. However, obtaining input/output pairs
is often too expensive for a complete exploration. A solution is to evaluate the
computer experiment at several well-distributed data sites given by a space-filling
design [9, 21, 32, 34, 37, 38, 55]. Then build an interpolator which can be used as
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a stand-in, or emulator, for the actual computer experiment. The thorough explo-
ration of the complex surface can then be carried out on the interpolator. Excellent
overviews on data collection and modeling for computer experiments can be found
in [6, 8, 23, 48–50].

To emulate the output from a computer experiment, Gaussian process (GP)
models or reproducing kernel Hilbert space (RKHS) interpolators are often used.
These interpolators have a simple form and control the smoothness of the emulator.
In particular, let f denote the output of a run of the computer experiment, so that
the functional link between input x and output y is y = f (x). Take � :�×� → R

to be symmetric in its two arguments and positive definite. The kernel � is positive
definite on a domain of interest � if

n∑
i=1

n∑
j=1

αiαj�(xi, xj ) > 0

for every nonzero α ∈ Rn and distinct {x1, . . . , xn} ⊆ �. Then, given distinct input
sites X = {x1, . . . , xn}, the GP or RKHS interpolator has the simple form

P(x) =
n∑

i=1

αi�(x, xi),

where α has AXα = f |X , AX = {�(xi, xj )} and f |X = (f (x1) · · ·f (xn))
′. Asso-

ciated with each symmetric, positive definite kernel is exactly one Hilbert space
of functions whose norm, in the case that the kernel is smooth, measures both size
and smoothness. For a particular kernel �, this associated function space will be
called its native space and will be denoted N�(�). Native spaces will be discussed
further in Section 5. The smoothness of the emulator is controlled in the sense that
the RKHS interpolator has the smallest possible native space norm of any function
interpolating f |X [10, 59, 60]. It is worth noting that the GP models often used
in practice to build emulators for computer experiments are essentially a special
case of RKHS emulators. In the GP context, the kernel � is a, possibly scaled,
correlation function. In the case that a nonzero mean function μ̂ is estimated in
the GP model, the interpolator is actually the sum of this estimated mean function
and an RKHS interpolator of the residual (f − μ̂)|X . Here, we consider transla-
tion invariant, or stationary, kernels so that � is a function of only the difference
between its arguments. Hereafter, �(x,y) will be written as �(x − y). Note that
the connection between Gaussian processes and RKHS was also discussed in [59].

Many of the systems which scientists, engineers and medical researchers use
computer experiments to study exhibit extremely complex behavior in portions
of the input space. To discover and understand these regions requires a large-scale
computer experiment with many input sites which are potentially very near one an-
other. Unfortunately, most methods for building emulators, including RKHS and
GP interpolators, suffer from increasingly poor predictive accuracy due to numer-
ical problems as the number of observations of the computer experiment becomes
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larger. Throughout, we refer to large-scale computer experiments as those with a
large number of runs. Such experiments appear frequently in various fields such
as aerospace engineering [4], information technology [20], biology, high-energy
physics, nanotechnology and security. The essential difficulty in emulation of a
large-scale computer experiment is that as input sites become nearer to one an-
other the problem of finding an interpolator becomes ill-conditioned and so less
amenable to accurate calculation. Several techniques exist for numerically stabi-
lizing kernel-based interpolators, including adding a nugget effect [27, 50], using
compactly supported kernels [10, 13], covariance tapering [22], decomposing the
correlation matrix [5] and approximating likelihoods [53]. The multi-step proce-
dure [12] described below also addresses the vital issue of numerical stability and
can be used alone or in concert with additional numeric measures such as those
mentioned above.

The multi-step procedure is not new to the field of applied mathematics, yet
the exposure of statisticians to this method is relatively limited. Further, while
the procedure often improves overall predictive accuracy substantially in practice,
minimal work has been done on its theoretical properties [10]. Notable exceptions
include [33], [11] and [16]. The existing theoretical work in the literature examines
numerical accuracy in a relatively qualitative manner. Here, we introduce the con-
cepts of nominal and numeric accuracy. Nominal accuracy refers to the accuracy
which would be attained if computations could be performed without floating point
rounding. Numeric accuracy refers to how close computed quantities are to their
corresponding nominal counterparts. Then, we introduce a decomposition of the
error of an interpolator into nominal and numeric portions. This gives a complete
description of the computed interpolator’s error while separating the contributing
sources of error to allow for more straight-forward analysis. Bounds on the nu-
meric and nominal error of the multi-step interpolator are developed. The numeric
bound is the only complete, rigorous bound on the numeric error of the multi-step
interpolator. The result is very general and makes very few assumptions about the
kernels used in different steps. The nominal bound is similar to the error bound
developed in [33], but more general in that it allows the kernels at different stages
to be re-scaled in a flexible manner. In practice, the kernel re-scalings can have a
large impact on accuracy.

2. Multi-step interpolator. The multi-step procedure explored here is a gen-
eralization of the procedure introduced in [12]. Their idea was to form well-spread
nested subsets of the data. Then interpolate the first subset using a wide kernel
and form residuals of this interpolator on the next subset. The residuals are then
interpolated using a narrower kernel and the current stage, and previous stage in-
terpolators are added together, giving an interpolator on the larger subset. This
procedure is repeated an appropriate number of times, at each stage updating the
interpolator, until an interpolator of the complete data is obtained. We introduce
a separation of the error into nominal and numeric portions and derive bounds on
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each type of error. We adopt a slightly different notation than [12]. Let f denote
the unknown function to be interpolated and � ⊆ Rd denote the domain of interest.
Throughout, the following assumption is made about the kernel �.

ASSUMPTION 1. The kernel � is continuous, positive definite and translation
invariant.

Note that with minor modifications, the development and results in Sections
1–4.3 only require that � is positive definite.

In the below description of the multi-step interpolation procedure, J denotes
the number of stages, and �j denotes the kernel used for interpolation in stage j .
Now, take

X1 ⊂ · · · ⊂ XJ = X(1)

and initialize P 0 ≡ 0. Then, for j = 1, . . . , J , let

P j (x) =
nj∑

u=1

αj
u�j (x − xu),

αj = A−1
Xj ,�j

(
f −

j−1∑
k=0

P k

)∣∣∣∣∣
Xj

,

(2)
AXj ,�j

= {�j(xu − xv)}, u, v = 1, . . . , nj ,

nj = cardXj .

Then the multi-step interpolator,

P(x) =
J∑

j=1

P j (x)(3)

satisfies the interpolation conditions P(xu) = f (xu), u = 1, . . . , n, where n =
cardX. Here, X is the complete set of input sites. The results in this article in-
dicate that the best performance will be achieved if each of the nested designs,
X1, . . . ,XJ , are chosen to have well-separated data sites, uniform low-dimensional
projections and small data-free regions. Note that αj should not be calculated us-

ing the formula A−1
Xj ,�j

(f − ∑j−1
k=0 P k)|Xj

, but instead as the solution to the linear

system AXj ,�j
αj = (f − ∑j−1

k=0 P k)|Xj
. In general, the solution to the linear sys-

tem is subject to smaller numeric error. Also, in the situation where n is large and
AXj ,�j

is sparse due to memory constraints, A−1
Xj ,�j

will often be too dense to be
stored.

It is commonly the situation that each kernel �j depends on parameters �j .
For example, in Section 5 it is assumed that �j is a known kernel �j whose in-
puts x − y are re-scaled by a matrix �j , so that �j(x − y) = �j(�j (x − y)).
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The form of the underlying kernels �j is often fixed in advance to achieve an
interpolator with prespecified smoothness and numerical properties. In particular,
the results in Sections 4 and 5 indicate that smoother underlying kernels have bet-
ter nominal properties and worse numeric properties, as defined in (8), and vice
versa. The accuracy of the interpolator can depend significantly on the choice
of parameter values. A few possible criteria for choosing the parameters �j are
cross-validation, maximum likelihood and sparsity of the interpolation matrices.
Most procedures for choosing the �j are simplified by considering each stage se-
quentially. In particular, �j can be chosen to minimize the cross-validation error,
maximize the likelihood or restrain the number of nonzero entries in the interpo-
lation matrix AXj ,�j

at stage j . For smaller problems, where a dense A−1
Xj ,�j

can
be stored, the short-cut formula in (34) can be used to make leave-one-out cross-
validation computationally efficient. For larger problems, an option such as 10-
fold cross-validation is more appropriate. If the residuals from the previous stage
(f − ∑j−1

k=0 P k)|Xj
are modeled as a GP, then maximum likelihood can be used to

choose the parameters �j . Maximizing the likelihood at each stage is equivalent
to minimizing

nj log

[
1

nj

(
f −

j−1∑
k=0

P k

)′∣∣∣∣∣
Xj

αj

]
+ log det(AXj ,�j

).(4)

Restricted maximum likelihood estimates can be obtained by replacing the nj in
the objective function (4) by nj − nj−1, with n0 = 0. For large problems, a stor-
age and computation efficient algorithm such as [2] should be used in calculating
log det(AXj ,�j

). For very large problems, memory constraints demand that the
sparsity of AXj ,�j

be considered. One possibility for compactly supported kernels
is to choose fixed �j to ensure that the number of nonzero entries in AXj ,�j

is
manageable as in (35). Another possibility is to incorporate a penalty for nonspar-
sity into the objective function such as (4).

If the error at stage j , f − ∑j−1
k=0 P k , is modeled as a GP, then confidence inter-

vals on the function’s values f (x) can be obtained in much the same manner as a
single stage interpolator [58]. In particular, model the output as

f (x) =
J∑

j=1

Zj(x),

where the Zj are mean zero Gaussian processes with Cov(Zj (x1),Zj (x2)) =
σ 2

j �j (x1 − x2). Note that the Zj are not independent. For point sets X and Y ,
denote the cardX × cardY matrix of pairwise kernel evaluations of points in X

and Y as

�(X − Y) = {�(xu − yv)},(5)
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where xu ∈ X, yv ∈ Y . Take Z0 ≡ 0 to simplify the development below. Condi-
tional on f |XJ

,Z1, . . . ,ZJ−1,

f (x) −
J−1∑
j=0

Zj(x) ∼ N
(
�J (XJ − x)′A−1

XJ ,�J

(
f −

J−1∑
j=0

Zj

)∣∣∣∣∣
XJ

,

σ 2
J

(
�J (0) − �J (XJ − x)′A−1

XJ ,�J
�(XJ − x)

))
(6)

	⇒ f (x) ∼ N
(
�J (XJ − x)′A−1

XJ ,�J

(
f −

J−1∑
j=0

Zj

)∣∣∣∣∣
XJ

+
J−1∑
j=0

Zj(x),

σ 2
J

(
�J (0) − �J (XJ − x)′A−1

XJ ,�J
�(XJ − x)

))
.

Let X̃J = {XJ ,x}. Then, conditional on f |XJ
,Z1, . . . ,Zj−1

Zj |X̃J
∼ N

(
�j(Xj − X̃J )′A−1

Xj ,�j

(
f −

j−1∑
k=0

Zk

)∣∣∣∣∣
Xj

,

(7)

σ 2
j

(
�j(X̃J − X̃J ) − �j(Xj − X̃J )′A−1

Xj ,�j
�j (Xj − X̃J )

))
.

Note that the distribution in (7) is singular and �j(X̃J − X̃J ) = A
X̃J ,�j

in the
notation of (2). The first nj components of these conditional distributions are trivial
and given by

Zj |Xj
=

(
f −

j−1∑
k=0

Zk

)∣∣∣∣∣
Xj

, j = 1, . . . , J.

The remaining nJ − nj + 1 components have the nontrivial distribution, condi-
tional on f |XJ

,Z1, . . . ,Zj−1, given by

Zj |X̃J \Xj
∼ N

(
�j(Xj − X̃J \ Xj)

′A−1
Xj ,�j

(
f −

j−1∑
k=0

Zk

)∣∣∣∣∣
Xj

,

σ 2
j

(
�j(X̃J \ Xj − X̃J \ Xj)

− �j(Xj − X̃J \ Xj)
′A−1

Xj ,�j
�j (Xj − X̃J \ Xj)

))
.

After estimates of the σ 2
j and any parameters in the �j have been plugged in,

the results in (6) and (7) can be combined to obtain a Gaussian estimated predic-
tive distribution for f (x) conditional on f |XJ

with mean given by (3). For gen-
erating confidence intervals, the variance of the estimated predictive distribution,
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conditional on f |XJ
, can be calculated in a backwards recursive manner using (6)

and (7). Once again, note that A−1b should be taken as shorthand for the solution
to the linear system Ax = b.

3. Nominal and numeric error. Now, we develop some intuition for why the
multi-step procedure can improve accuracy in many situations in practice. First,
computed quantities, which are subject to floating point error, are distinguished
from the idealized quantities that could be obtained if a computer performed cal-
culations with full accuracy. Hereafter, computed quantities will be distinguished
with a tilde, such as ỹ. We introduce the following separation of error into nominal
and numeric portions:

|f (x) − P̃(x)| = |f (x) − P(x) + P(x) − P̃(x)|
(8)

≤ |f (x) − P(x)| + |P(x) − P̃(x)|.
Note that the absolute values in inequality (8) can be replaced with the norm of
one’s choosing. It is necessary to account for both nominal and numeric error since
the trade-off between the two is very important. In most situations, reducing one
will increase the other. The following proposition shows that the native space norm
of the nominal error is always reduced by the addition of new data sites. Through-
out, let N�(�) denote the reproducing kernel Hilbert space corresponding to the
positive definite kernel �, and let ‖ · ‖N�(�) denote the norm on that space [1].

PROPOSITION 3.1. If f ∈ N�(�) and X1 ⊆ X2, then

‖f − P2‖N�(�) ≤ ‖f − P1‖N�(�),

where P1 and P2 denote the single-stage interpolators on the sets X1 and X2,
respectively.

PROOF. It can be shown that the interpolator is orthogonal to its error with
respect to the native space inner product. This implies that the result holds if and
only if

‖f ‖2
N�(�) − ‖P2‖2

N�(�) ≤ ‖f ‖2
N�(�) − ‖P1‖2

N�(�)

⇐⇒ ‖P2‖2
N�(�) ≥ ‖P1‖2

N�(�)

⇐⇒ f |′X2
A−1

X2,�
f |X2 ≥ f |′X1

A−1
X1,�

f |X1,

where the last equivalent condition follows from the definition of the native space
norm and the fact that αj = A−1

Xj ,�f |Xj
for AXj ,� = {�(xu − xv)}, xu, xv ∈ Xj ,

j = 1,2. Then, write the interpolation matrix AX2,� as

AX2,� =
(

AX1,� A12
A21 A22

)
,
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where A12 = �(X1 −X2 \X1), A21 = �(X2 \X1 −X1), and A22 = �(X2 \X1 −
X2 \ X1), using the notation in (5). Using partitioned matrix inverse and binomial
inverse results [18], it can be shown that

f |′X2
A−1

X2,�
f |X2

= f |′X1
A−1

X1,�
f |X1

+ (f |X2\X1 − A21A
−1
X1,�

f |X1)
′A−1

22·1(f |X2\X1 − A21A
−1
X1,�

f |X1),

where A22·1 = A22 − A21A
−1
X1,�

A12. Since A−1
22·1 is a block on the diagonal of

A−1
X2,�

, it must be positive definite and the result follows. �

On the other hand, the numeric error can become arbitrarily large by the addi-
tion of new data sites. Throughout, let λmax(A) and λmin(A) denote the maximum
and minimum eigenvalues, respectively, of a positive definite matrix A. Note that
λmin(AX,�) → 0 as minxu �=xv‖xu − xv‖2 → 0. Therefore, λmax(A

−1
X,�) → ∞ as

minxu �=xv‖xu − xv‖2 → 0. An unboundedly large maximum eigenvalue of A−1
X,�

can enormously amplify small errors in the function and kernel evaluations. Con-
sider the numeric error of the interpolator at a new point x,

P(x) − P̃(x) =
n∑

i=1

[αi�(x − xi) − α̃i�̃(x − xi)]

=
n∑

i=1

[
(αi − α̃i)�(x − xi) − α̃i

(
�̃(x − xi) − �(x − xi)

)]
.

Let εα = α − α̃ and ε� = �̃(X − x) − �(X − x) using the notation in (5). Then

P(x) − P̃(x) =
n∑

i=1

[εα
i �(x − xi) − (αi − εα

i )ε�
i ]

=
n∑

i=1

[εα
i �(x − xi) − αiε

�
i + εα

i ε�
i ].

So,

|P(x) − P̃(x)| ≥ |f |′XA−1
X,�ε�| − ‖εα‖2‖�(x − X)‖2 − ‖εα‖2‖ε�‖2(9)

since AX,�α = f |X . If, for example, ε� is proportional to the eigenvector corre-
sponding to λmin(AX,�), and f |X is not orthogonal to ε�, then the right-hand side
of (9) can be made unboundedly large by taking λmin(AX,�) → 0.

This phenomenon can be illustrated by attempting to build an interpolator for
the function

f (x) = exp{(x + 1/2)2} sin
(
exp{(x + 1/2)2})
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FIG. 1. Panels 1–3: interpolator in solid blue and actual function in dotted black with collected
data indicated by black dots.

shown in Figure 1 using the Gaussian kernel

�(x − y) = exp{−(x − y)2}.
Interpolators, shown in blue, are built on 11, 21 and 81 evenly spaced data points,
shown in black dots, in the respective panels of Figure 1. As the density of points
increases, so does the numeric error.

Suppose that one is in the situation where most of the data sites are well spread,
but a few poorly separated data sites are causing small numeric errors to be am-
plified. Consider forming an interpolator in two stages. In the first stage, remove
the data sites which are causing the ill-conditioning of the interpolation matrix and
interpolate the remaining points with a relatively wide kernel. The nominal error
will be only slightly larger than the error for the full data set, since the removed
data sites were nearly equal to data sites which were included. However, the nu-
meric error will be substantially less than that of an interpolator formed on the full
data set. In the second stage, interpolate the residuals from the first-stage inter-
polator using a kernel which is narrow enough that numeric errors remain small.
The second-stage interpolator will increase neither the nominal accuracy nor the
numeric error substantially. When the two interpolators are added together to form
the multi-step interpolator, the nominal accuracy may be slightly worse, but the
numeric accuracy will be very much better.

For example, consider building an emulator for the Michalewicz function

f (x, y) = sin(πx) sin20(πx2) + sin(πy) sin20(2πy2)

using the third 925 point data set in Figure 2 with separation distance 5 × 10−11.
The separation distance of a point set X is half the distance between the closest
two points,

qX = 1

2
min

xi ,xj∈X
‖xi − xj‖2.(10)
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FIG. 2. Panel 1: the Michalewicz function. Panels 2–4 in clockwise order: 925 point data sets with
separation distances 0.017, 0.009 and 5 × 10−11, respectively.

Clearly, the ×’s do not contribute much information about the unknown surface. If
an ordinary Gaussian kernel interpolator, corresponding to a single stage with

�(x − y) = exp

{
−

2∑
j=1

θj (xj − yj )
2

}
(11)

is built using all the data sites, the best possible mean squared prediction error over
values of θ1, θ2 is ≈0.15, the square of the function’s L2 norm. This is because the
kernel must be very narrow, or the interpolation matrix will be nearly singular.
Throughout, the term mean squared prediction error is taken to be the average
prediction error over the input domain. If, on the other hand, the ·’s are interpolated
and then the residuals on the ×’s are interpolated, corresponding to two stages, the
best possible mean squared prediction error over values of θ1, θ2 at each stage is
≈1.5 × 10−5.

4. Numeric accuracy. The numeric accuracy of the multi-step interpolation
procedure depends on the accuracy of floating point matrix manipulations. Float-
ing point accuracy refers to the fact that computers do not perform calculations
with real numbers, but instead with rounded versions thereof. For example, a typi-
cal computer has 15 digits of accuracy meaning that

‖x̃ − x‖2

‖x‖2
≤ 10−15,

where x denotes the actual value, and x̃ denotes the value that the computer stores.
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4.1. Numeric accuracy of matrix inversion. The following lemma on the ac-
curacy of floating point matrix inversion is a combination and generalization of
results in [14].

DEFINITION 2. The matrix 2-norm ‖ · ‖2 is defined as ‖A‖2 = √
λmax(A′A).

LEMMA 1. Suppose Ax = b and Ãx̃ = b̃ with ‖A − Ã‖2 ≤ δA‖A‖2, ‖b −
b̃‖2 ≤ δb‖b‖2 and κ(A) = r/δA < 1/δA for some δA, δb > 0. Then Ã is nonsingu-
lar,

‖x̃‖2

‖x‖2
≤ 1 + r(δb/δA)

1 − r
,

(12) ‖x − x̃‖2

‖x‖2
≤ δA + δb

1 − r
κ(A),

where κ(A) = ‖A‖2‖A−1‖2.

PROOF. Suppose Ã is singular. Then there is a y �= 0 with Ãy = 0 so
(I − A−1Ã)y = y. This implies ‖I − A−1Ã‖2 ≥ 1. On the other hand, the con-
ditions ‖A − Ã‖2 ≤ δA‖A‖2 and κ(A) < 1/δA imply ‖I − A−1Ã‖2 < 1 giving a
contradiction.

Now, Ãx̃ = b̃ implies A−1Ãx̃ = A−1(b − (b − b̃)) = x + A−1(b̃ − b). The
condition ‖I − A−1Ã‖2 ≤ r implies ‖A−1Ã‖2 ≥ 1 − r and in turn

‖x̃‖2 ≤ 1

1 − r
(‖x‖2 + ‖A−1‖2‖b̃ − b‖2)

≤ 1

1 − r
(‖x‖2 + δb‖A−1‖2‖b‖2)

≤ 1

1 − r

(
‖x‖2 + r

δb‖b‖2

δA‖A‖2

)

≤ 1

1 − r

(‖x‖2 + r(δb/δA)‖x‖2
)
,

where the first inequality follows from the stated condition, the triangle inequal-
ity, and the fact that ‖By‖2 ≤ ‖B‖2‖y‖2, the second inequality follows from
the condition ‖b − b̃‖2 ≤ δb‖b‖2, the third inequality follows from the condition
κ(A) = r/δA and the final inequality follows from ‖b‖2 ≤ ‖A‖2‖x‖2. Dividing by
‖x‖2 gives the first inequality in (12).

Note that A(x̃ − x) = b̃ − b − (Ã − A)x̃. So,

‖x̃ − x‖2 ≤ ‖A−1‖2‖b̃ − b‖2 + ‖A−1‖2‖Ã − A‖2‖x̃‖2

≤ δb‖A−1‖2‖b‖2 + δA‖A−1‖2‖A‖2‖x̃‖2



ACCURATE EMULATORS FOR LARGE-SCALE COMPUTER EXPERIMENTS 2985

≤ δbκ(A)
‖b‖2

‖A‖2
+ δAκ(A)‖x̃‖2

≤ κ(A)‖x‖2

(
δb + δA

1 + r(δb/δA)

1 − r

)
,

where the first inequality follows from the triangle inequality and the fact that
‖By‖2 ≤ ‖B‖2‖y‖2, the second inequality follows from the conditions ‖b− b̃‖2 ≤
δb‖b‖2 and ‖A − Ã‖2 ≤ δA‖A‖2, the third inequality follows from the definition
of κ(A) and the final inequality follows from the fact that ‖b‖2 ≤ ‖A‖2‖x‖2 and
the first inequality in (12). Dividing by ‖x‖2 and simplifying gives the second part
of (12). �

4.2. Numeric accuracy of single-stage interpolator. The above lemma can be
used to bound the numeric error of an interpolator as follows.

THEOREM 4.1. Suppose that ‖AX,� − ÃX,�‖2 ≤ δA‖AX,�‖2, ‖f |X −
f̃ |X‖2 ≤ δf ‖f |X‖2, κ(AX,�) = r/δA < 1/δA and supx,y∈� |�(x − y) − �̃(x −
y)| < DδA for some δA, δf ,D > 0, then

|P(x) − P̃(x)| ≤ ∥∥f |X/
√

n
∥∥

2
(δA + δf )

1 − r
g(X,�),

g(X,�) = n

λmin(AX,�)

(
κ(AX,�)�(0) + D

)
,

where κ(·) is defined in Lemma 1.

Note that for large n and approximately uniform X, ‖f |X/
√

n‖2 ≈ ‖f ‖L2(�),
where

‖f ‖L2(�) =
√∫

�
f (x)2 dx.

Further, the assumption supx,y∈�|�(x − y) − �̃(x − y)| < DδA requires that the
kernel is computed in a relatively accurate manner.

PROOF OF THEOREM 4.1. First,

P(x) − P̃(x) =
n∑

i=1

[αi�(x − xi) − α̃i�̃(x − xi)]

=
n∑

i=1

[
(αi − α̃i)�(x − xi) − α̃i

(
�̃(x − xi) − �(x − xi)

)]
.
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So,

|P(x) − P̃(x)|

≤
∣∣∣∣∣

n∑
i=1

(αi − α̃i)�(x − xi)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

α̃i

(
�̃(x − xi) − �(x − xi)

)∣∣∣∣∣.
Applying the Cauchy–Schwarz inequality to each term gives

|P(x) − P̃(x)|

≤ ‖α − α̃‖2

√√√√ n∑
i=1

�(x − xi)2

+ ‖α̃‖2

√√√√ n∑
i=1

(
�̃(x − xi) − �(x − xi)

)2
.

The terms under the radicals can be bounded to obtain

|P(x) − P̃(x)| ≤ √
n‖α − α̃‖2�(0) + √

n‖α̃‖2DδA.

Now, Lemma 1 can be applied to the coefficients, giving

|P(x) − P̃(x)| ≤ √
n
δA + δf

1 − r
κ(AX,�)‖α‖2�(0)

+ √
n

1 + r(δf /δA)

1 − r
‖α‖2DδA.

Noting that ‖α‖2 ≤ ‖A−1
X,�‖2‖f |X‖2 and collecting terms shows that

|P(x) − P̃(x)| ≤
√

n‖A−1
X,�‖2‖f |X‖2

1 − r

× (
(δA + δf )κ(AX,�)�(0) + D(δA + rδf )

)

≤
√

n‖A−1
X,�‖2‖f |X‖2

1 − r
(δA + δf )

(
κ(AX,�)�(0) + D

)
.

Rearranging gives the result. �

4.3. Numeric accuracy of multi-step interpolator. The first numeric result for
the multi-step interpolator follows from Theorem 4.1. Here, δ denotes the com-
puter’s floating point accuracy, typically δ ≤ 10−15.

THEOREM 4.2. Suppose that for j = 1, . . . , J , ‖AXj ,�j
− ÃXj ,�j

‖2 ≤
δj‖AXj ,�j

‖2, ‖f |Xj
− f̃ |Xj

‖2 ≤ δ‖f |Xj
‖2, κ(AXj ,�j

) ≤ r/δj < 1/δj and
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supx,y∈�|�j(x − y) − �̃j (x − y)| < Dδ for some δj , δ,D > 0 with δj‖(f −∑j−1
k=1 P k)|Xj

/
√

nj‖2 ≤ δ‖f |Xj
/
√

nj‖2, then∣∣∣∣∣
J∑

j=1

P j (x) −
J∑

j=1

P̃ j (x)

∣∣∣∣∣
(13)

≤ δ
∥∥f |XJ

/
√

nJ

∥∥
2

[
J∑

M=1

CM
∑

i∈SJ (M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

]
,

where C = 2/(1 − r), SJ (M) = {i ∈ NM+1 : 1 ≤ i1 < · · · < iM ≤ iM+1 = J }
ρ(X,Y ) = ‖f |X/

√
nX‖2/‖f |Y /

√
nY ‖2, and g is defined in Theorem 4.1.

The assumption δj‖(f − ∑j−1
k=1 P k)|Xj

/
√

nj‖2 ≤ δ‖f |Xj
/
√

nj‖2 roughly re-
quires that the nominal errors either shrink or are not much larger than the function
values. In practice, combinations of functions and training data sets which do not
meet this assumption are very rare.

PROOF OF THEOREM 4.2. The result can be shown using induction on the
number of stages J . If J = 1, then the result follows immediately from Theo-
rem 4.1. Take J ≥ 2, and assume the result holds for J − 1 stages. Then∥∥∥∥∥

(
f −

J−1∑
j=1

P j

)∣∣∣∣∣
XJ

−
(
f̃ −

J−1∑
j=1

P̃ j

)∣∣∣∣∣
XJ

∥∥∥∥∥
2

≤ ∥∥f |XJ
− f̃ |XJ

∥∥
2 +

∥∥∥∥∥
(

J−1∑
j=1

P j −
J−1∑
j=1

P̃ j

)∣∣∣∣∣
XJ

∥∥∥∥∥
2

(14)

≤ δ‖f |XJ
‖2 + √

nJ

∥∥∥∥∥
J−1∑
j=1

P j −
J−1∑
j=1

P̃ j

∥∥∥∥∥
L∞(�)

,

where the first inequality follows from the triangle inequality, and the second in-
equality follows from the assumptions and by bounding the L2 error with the max-
imum error. The induction hypothesis can be applied to the final term in (14) giving
the bound

δ‖f |XJ
‖2

(15)

×
(

1 + ρ(XJ−1,XJ )

J−1∑
M=1

CM
∑

i∈SJ−1(M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

)
.

In stage J , the error from the first J −1 stages are interpolated on XJ . After multi-
plying and dividing the above bound (15) by ‖(f − ∑J−1

j=1 P j )|XJ
‖2, Theorem 4.1
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can be used to bound the error due to stage J . Note that the term δf in Theo-
rem 4.1 is the above bound (15) divided by ‖(f − ∑J−1

j=1 P j )|XJ
‖2 and the term

δA in Theorem 4.1 is δj . By assumption, δj is smaller than or equal to (15) divided
by ‖(f − ∑J−1

j=1 P j )|XJ
‖2. Simplification and coarsening of the bound gives

|P J (x) − P̃ J (x)|
≤ δ

∥∥f |XJ
/
√

nJ

∥∥
2

2

1 − r
g(XJ ,�J )(16)

×
(

1 + ρ(XJ−1,XJ )

J−1∑
M=1

CM
∑

i∈SJ−1(M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

)
.

Now,∣∣∣∣∣
J∑

j=1

P j (x) −
J∑

j=1

P̃ j (x)

∣∣∣∣∣ ≤
∣∣∣∣∣
J−1∑
j=1

P j (x) −
J−1∑
j=1

P̃ j (x)

∣∣∣∣∣ + |P J (x) − P̃ J (x)|.

So, the induction hypothesis can be applied again along with (16) giving∣∣∣∣∣
J∑

j=1

P j (x) −
J∑

j=1

P̃ j (x)

∣∣∣∣∣
≤ δ

∥∥f |XJ
/
√

nJ

∥∥
2

×
[
ρ(XJ−1,XJ )

J−1∑
M=1

CM
∑

i∈SJ−1(M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

(17)
+ Cg(XJ ,�J )

+ Cρ(XJ−1,XJ )g(XJ ,�J )

×
J−1∑
M=1

CM
∑

i∈SJ−1(M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

]
.

Note that the term in square brackets in (13) is the sum of the terms with iM < J

and iM = J giving
J∑

M=1

CM
∑

i∈SJ (M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

=
J−1∑
M=1

CM
∑

i∈SJ (M),iM<J

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

+
J∑

M=1

CM
∑

i∈SJ (M),iM=J

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )
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= ρ(XJ−1,XJ )

J−1∑
M=1

CM
∑

i∈SJ−1(M)

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik )

+ Cg(Xj ,�J ) +
J∑

M=2

CM
∑

i∈SJ (M),iM=J

M∏
k=1

ρ(Xik ,Xik+1)g(Xik ,�ik ),

which is exactly the term in square brackets in (17), proving the result. �

4.4. Dependence on separation distance. The terms

g(Xj ,�j ) = nj

λmin(AXj ,�j
)

(
κ(AXj ,�j

)�(0) + D
)

(18)

from Theorem 4.2 can be computed, at least approximately. However, by bounding
(18) in terms of the separation distance, as defined in (10), the role of the data sites
and the kernel’s smoothness in the numeric accuracy are revealed. These results in-
dicate that using poorly separated data or a wide kernel � with a rapidly decaying
Fourier transform, implying more smoothness, has more potential to result in large
numeric errors in interpolation. The Fourier transform can be defined as follows.

DEFINITION 3. For f ∈ L1(R
d) define the Fourier transform [51]

f̂ (ω) = (2π)−d/2
∫

Rd
f (x)e−iω′x dx.

To generate the bound on (18), the following result from [60] can be used.

THEOREM 4.3. Let ϕ∗(M,�) = inf‖ω‖2≤2M �̂(ω). Then

λmin(AX,�) ≥ Cdϕ∗(Md/q,�)/qd,

Md = 12
(
π�2(d/2 + 1)/9

)1/(d+1)
,

Cd = (Md/23/2)d/
(
2�(d/2 + 1)

)
for any q ≤ qX , where AX,� = {�(xi − xj )}.

To bound λmax(AX,�) below, Gershgorin’s theorem [57] can be used. Gersh-
gorin’s theorem states that the largest eigenvalue of AX,� has

|λmax(AX,�) − �(xj − xj )| ≤
n∑

i=1,i �=j

|�(xi − xj )|.

Rearranging and coarsening the bound gives

λmax(AX,�) ≤ n�(0).(19)

Theorem 4.3 and inequality (19) can be combined to obtain the following theorem
bounding (18).
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THEOREM 4.4. Under the assumptions in Theorem 4.2,

g(Xj ,�j ) ≤ κupper(Xj ,�j )
(
κupper(Xj ,�j )�(0) + D

)
,

κupper(Xj ,�j ) =
njq

d
Xj

Cdϕ∗(Md/qXj
,�j )

.

The nested sequence X1 ⊂ · · · ⊂ XJ in (1) with large separation distance can be
generated from nested space-filling designs [15, 41–44], which were originally de-
veloped for the purpose of conducting multi-fidelity computer experiments. Space-
filling designs have shown particular merit in numerical integration [28–31, 35, 36,
39, 40, 52, 55]. Theorem 4.4 provides new insights into the use of such designs in
interpolation.

5. Nominal accuracy. The results in this section indicate that the nominal er-
ror in interpolation converges to zero more quickly for wider, smoother kernels �,
although the constant involved in this rate changes. This is in direct opposition to
the numeric error, which tends to be smaller for narrower, less smooth kernels. In
fact, it will be seen that convergence of the nominal error of an arbitrarily fast rate
can be achieved with an infinitely smooth kernel, such as the Gaussian in (11).

A re-scaling is introduced in the following definition.

DEFINITION 4. For a nonsingular �, define ��(x) = �(�x).

5.1. Point-wise bound. Initially, consider a single stage with a fixed � which
is re-scaled by a fixed �. For a set of input sites X of size n, define the cardinal
basis functions

ui(x) =
n∑

i=1

βi��(x − xj ),

ui(xj ) = 1{i=j}
for i, j = 1, . . . , n. Then

P(x) =
n∑

i=1

f (xi)ui(x).

Since f (x) = 〈f,��(· − x)〉N��
(�) if f ∈ N��(�),

f (x) − P(x) = 〈f,��(· − x)〉N��
(�) −

n∑
i=1

ui(x)〈f,��(· − xi)〉N��
(�)

=
〈
f,��(· − x) −

n∑
i=1

ui(x)��(· − xi)

〉
N��

(�)

.



ACCURATE EMULATORS FOR LARGE-SCALE COMPUTER EXPERIMENTS 2991

Now, the Cauchy–Schwarz inequality can be applied, giving the error bound

|f (x) − P(x)| ≤ ‖f ‖N��
(�)

∥∥∥∥∥��(· − x) −
n∑

i=1

ui(x)��(· − xi)

∥∥∥∥∥
N��

(�)

.(20)

The second term on the right-hand side of (20) is the so-called power function,
P��,X . It can be shown [60] that if the domain of interest � is bounded and convex,
then

P 2
��,X ≤ C1‖�� − p‖L∞(B(0,C2hX)),

where C1,C2 > 0 are constants which may depend on �, p is any multivariate
polynomial, B(a, b) = {x ∈ Rd :‖x − a‖2 < b} and hX denotes the fill distance

hX = sup
x∈�

min
xu∈X

‖x − xu‖2.

Now, if � has k continuous derivatives, p can be taken to be the Taylor’s polyno-
mial of �� of degree k − 1. Then

‖�� − p‖L∞(B(0,C2hX)) ≤ C3‖�‖k
2h

k
X,

where C3 is a constant which does not depend on �. Combining the above devel-
opment gives the following.

THEOREM 5.1. Suppose that � is bounded and convex, � satisfies Assump-
tion 1 and has k continuous derivatives and � is nonsingular. Then

|f (x) − P(x)| ≤ C�‖�‖k/2
2 h

k/2
X ‖f ‖N��

(�).

5.2. Native space bound. First, write �� ∗ �� as

�� ∗ ��(x − y) =
∫
�

��(x − t)��(y − t)dt.

Then, for f ∈ N��∗��(�) and x ∈ �, express f in terms of the integral operator

f (x) =
∫
�

u(y)�� ∗ ��(x − y)dy,

where u ∈ L2(�). Combining these expressions gives

f (x) =
∫
�

u(y)

∫
�

��(y − t)��(x − t)dt dy

=
∫
�

v(t)��(x − t)dt,

where v ∈ L2(�) is given by

v(t) =
∫
�

u(y)��(y − t)dy
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for t ∈ �. Then

‖f − P‖2
N��

(�) = 〈f − P, f 〉N��
(�)

= 〈f − P, v〉L2(�)(21)

≤ ‖f − P‖L2(�)‖v‖L2(�),

where the first equality follows from the orthogonality of the interpolator and its
error with respect to the native space norm, the second equality follows from the
properties of the integral operator and the inequality follows from the Cauchy–
Schwarz inequality.

If � has k continuous derivatives, then the first term on the right-hand side of
inequality (21) can be bounded using Theorem 5.1 as

‖f − P‖L2(�) ≤ √
vol�‖f − P‖L∞(�)(22)

≤ C�‖�‖k/2
2 h

k/2
X ‖f − P‖N��

(�),

where the first inequality follows by relating the L2(�) and L∞(�) norms, and the
second inequality follows by applying Theorem 5.1 to f − P . Plugging inequality
(22) into inequality (21) and canceling a single ‖f − P‖N��

(�) term gives

‖f − P‖N��
(�) ≤ C�‖�‖k/2

2 h
k/2
X ‖v‖L2(�).(23)

Using the properties of the integral operator, the square of the second term on the
right-hand side of inequality (23) can be expressed as

‖v‖2
L2(�) =

∫
�3

u(x)u(y)��(y − t)��(x − t)dx dy dt

(24)
= ‖f ‖2

N��∗��
(�).

Combining inequality (23) and equality (24) gives the following theorem.

THEOREM 5.2. Under the assumptions of Theorem 5.1,

‖f − P‖N��
(�) ≤ C�‖�‖k/2

2 h
k/2
X ‖f ‖N��∗��

(�).

To allow for individual re-scalings in different stages, we start with some nota-
tion. Define �k recursively as

�0 = �,
(25)

�k = �k−1 ∗ �k−1

for k ∈ N. For the kernel on step j , take

�j = �
J−j
�j

.(26)
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We now develop a bound on ‖ · ‖N�j ∗�j
(�) in terms of ‖ · ‖N�j−1 (�). The basic

assumptions on the re-scaling matrices �j in this section are that they are non-
singular and larger than the �j−1 in the sense that λmax(�

′
j−1�j−1�

′
j�j ) ≤ 1,

where �′
j = �−1

j .

In the case � = Rd , the native space N��(Rd) has norm defined through the
inner product

〈f,g〉N��
(Rd ) = (2π)−d/2

∫
Rd

f̂ (ω)ĝ(ω)

�̂�(ω)
dω,(27)

where f̂ and ĝ denote the Fourier transform and complex conjugate of the Fourier
transform, respectively, of f,g ∈ N��(Rd) [60]. This explicit representation of
the native space inner product can be used to relate the native space norms for
convolutions and re-scalings. Hereafter, take ∞ > c2 ≥ c1 > 0 and ϒ̂ with

ω′ω ≤ ν′ν 	⇒ ϒ̂(ω) ≥ ϒ̂(ν), c1ϒ̂(ω) ≤ �̂(ω) ≤ c2ϒ̂(ω).(28)

Assumption 1 ensures that c1, c2 and �̂ satisfying (28) exist [60]. The bounds to
follow are tightest for c2 − c1 as small as possible. Essentially, we want a radially
decreasing envelop on the Fourier transform of the underlying kernel � to sim-
plify development. Note that the Fourier transforms �̂ and �̂� are related in the
following manner:

�̂�(ω) = (2π)−d/2
∫

Rd
��(x)e−iω′x dx

= (2π)−d/2
∫

Rd
�(�x)e−iω′�′�x dx

(29)
= (2π)−d/2|det(�)|

∫
Rd

�(y)e−iω′�′y dy

= |det(�)|�̂(�ω),

where �′ = �−1 and the third equality follows by making the substitution y = �x.

PROPOSITION 5.1. If Assumption 1 is satisfied and �j−1,�j are nonsingular
with respective inverses �′

j−1,�
′
j , then

λmax(�
′
j−1�j−1�

′
j�j ) ≤ 1

(30)

	⇒ ‖f ‖2
N�j ∗�j

(Rd )
≤

(
c2

c1

)2J−(j−1) |det(�j−1)|
|det(�j )|2 ‖f ‖2

N�j−1 (Rd )

for 1 ≤ j ≤ J where c1 and c2 satisfy (28), and �j−1 and �j satisfy relations (25)
and (26).
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PROOF. If f /∈ N�j−1(R
d), then ‖f ‖2

N�j−1 (Rd )
= ∞ and (30) is true. Now,

assume f ∈ N�j−1(R
d), and note that

ω′�′
j�jω

ω′�′
j−1�j−1ω

≤ λmax(�
′
j−1�j−1�

′
j�j ).

If λmax(�
′
j−1�j−1�

′
j�j ) ≤ 1, then

ω′�′
j�jω ≤ ω′�′

j−1�j−1ω

	⇒ 1

c1
�̂(�jω) ≥ ϒ̂(�jω) ≥ ϒ̂(�j−1ω) ≥ 1

c2
�̂(�j−1ω)

(31)

	⇒ 1

�̂(�jω)2J−j
≤

(
c2

c1

)2J−j
1

�̂(�j−1ω)2J−j

	⇒ 1

�̂J−j (�jω)
≤

(
c2

c1

)2J−j
1

�̂J−j (�j−1ω)
,

where the first implication follows from (28), the second implication follows since
the right- and left-hand sides are positive and the final implication follows from the
relations (25) and (26) and the properties of Fourier transforms of convolutions. So,

‖f ‖2
N�j−1 (Rd )

= ‖f ‖2
N

�
J−(j−1)
�j−1

(Rd )

= (2π)−d/2
∫

Rd

|f̂ (ω)|2
�̂

J−(j−1)
�j−1

(ω)
dω

= (2π)−d/2

|det(�j−1)|
∫

Rd

|f̂ (ω)|2
�̂J−(j−1)(�j−1ω)

dω

= (2π)−d/2

|det(�j−1)|
∫

Rd

|f̂ (ω)|2
̂�J−j ∗ �J−j (�j−1ω)

dω

= (2π)−d

|det(�j−1)|
∫

Rd

|f̂ (ω)|2
�̂J−j (�j−1ω)2

dω

= (2π)−d |det(�j )|2
|det(�j−1)|

∫
Rd

|f̂ (ω)|2
|det(�j )|2�̂J−j (�j−1ω)2

dω

≥ (2π)−d |det(�j )|2
|det(�j−1)|

(
c1

c2

)2J−j+1 ∫
Rd

|f̂ (ω)|2
|det(�j )|2�̂J−j (�jω)2

dω
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= (2π)−d/2 |det(�j )|2
|det(�j−1)|

(
c1

c2

)2J−j+1 ∫
Rd

|f̂ (ω)|2
̂

�
J−j
�j

∗ �
J−j
�j

(ω)

dω

= |det(�j )|2
|det(�j−1)|

(
c1

c2

)2J−j+1

‖f ‖2
N�j ∗�j

(Rd )
,

where the first equality follows from relation (26), the second equality fol-
lows from the inner product representation (27), the third equality follows from
the scaled Fourier transform relation (29), the fourth equality follows from the
definition of �J−(j−1) (25), the fifth equality follows from the properties of
Fourier transforms of convolutions, the sixth equality follows by multiplying by
|det(�j )|2/|det(�j )|2, the inequality follows from the development (31), the sev-
enth equality follows from the scaled Fourier transform relation (29) and the prop-
erties of Fourier transforms of convolutions and the final equality follows from the
inner product representation (27). �

In most applications, the domain of interest � is a strict subset of Rd . If f ∈
N�1(�), then f can be extended to Ef ∈ N�1(R

d) [60] with

‖f ‖N�1 (�) = ‖Ef ‖N�1 (Rd ),

(32)
‖f ‖N�2 (�) ≤ ‖Ef ‖N�2 (Rd )

for all �2. Combining (32) with Proposition 5.1 gives the following corollary.

COROLLARY 1. If the assumptions of Proposition 5.1 are satisfied, then

λmax(�
′
j−1�j−1�

′
j�j ) ≤ 1

(33)

	⇒ ‖f ‖2
N�j ∗�j

(�) ≤
(

c2

c1

)2J−(j−1) |det(�j−1)|
|det(�j )|2 ‖f ‖2

N�j−1 (�).

PROOF. If f /∈ N�j−1(�), then ‖f ‖2
N�j−1 (�) = ∞ and (33) is true. Now, as-

sume f ∈ N�j−1(�) and extend f to Ef ∈ N�j−1(R
d) with ‖Ef ‖2

N�j−1 (Rd )
=

‖f ‖2
N�j−1 (�). Then

‖f ‖2
N�j ∗�j

(�) ≤ ‖Ef ‖2
N�j ∗�j

(Rd )

≤
(

c2

c1

)2J−(j−1) |det(�j−1)|
|det(�j )|2 ‖Ef ‖2

N�j−1 (Rd )

=
(

c2

c1

)2J−(j−1) |det(�j−1)|
|det(�j )|2 ‖f ‖2

N�j−1 (�),
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where the first inequality follows from (32), the second inequality follows from
Proposition 5.1 and the equality follows from the property of the chosen extension.

�

5.3. Error bound for multi-step interpolator. Combining Theorem 5.2 with
Corollary 1, we are able to obtain the following theorem bounding the native space
norm of the multi-step interpolator’s error.

THEOREM 5.3. Under the assumptions of Theorem 5.1 and Proposition 5.1,∥∥∥∥∥f −
J∑

j=1

P j

∥∥∥∥∥
N�J

(�)

≤ C�,J ‖f ‖N�0 (�)

J∏
j=1

{√
|det(�j−1)|
|det(�j )| (‖�j‖k

2h
k
Xj

)2J−j−1
}
.

PROOF. First applying Theorem 5.2 and then applying Proposition 5.1 gives∥∥∥∥∥f −
J∑

j=1

P j

∥∥∥∥∥
N�J

(�)

≤ C�‖�J ‖k/2
2 h

k/2
XJ

∥∥∥∥∥f −
J−1∑
j=1

P j

∥∥∥∥∥
N�J ∗�J

(�)

≤ C�,J ‖�J ‖k/2
2 h

k/2
XJ

√|det(�J−1)|
|det(�J )|

∥∥∥∥∥f −
J−1∑
j=1

P j

∥∥∥∥∥
N�J−1 (�)

.

For J ≥ 2, repeat the above argument J − 1 more times, and note that �J−j has
k2j continuous derivatives. �

By applying Theorem 5.1 to the error f − ∑J
j=1 P j , an additional multiple of

h
k/2
XJ

is obtained in the following theorem.

THEOREM 5.4. Under the assumptions of Theorem 5.1 and Proposition 5.1,∣∣∣∣∣f (x) −
J∑

j=1

P j (x)

∣∣∣∣∣
≤ C�,J ‖f ‖N�0 (�)‖�J ‖k/2

2 h
k/2
XJ

J∏
j=1

{√
|det(�j−1)|
|det(�j )| (‖�j‖k

2h
k
Xj

)2J−j−1
}
.

6. Examples. First, consider using the multi-step procedure to interpolate
Franke’s function

f (x, y) = 3
4 exp

{−(
(9x − 2)2 + (9y − 2)2)

/4
}

+ 3
4 exp

{−(
(9x + 1)2/49 − (9y + 1)2/10

)}
+ 1

2 exp
{−(

(9x − 7)2 + (9y − 3)2)
/4

}
− 1

5 exp
{−(

(9x − 4)2 + (9y − 7)2)}
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FIG. 3. Left panel: Franke’s function. Right panel: log mean squared prediction error versus num-
ber of stages (circles) and using mlegp (asterisk).

shown in the left panel of Figure 3. Theorems 4.2 and 4.4 indicate that each of the
nested data sets should have well-separated points in the full dimension as well
as lower-dimensional projections to give small numeric error, and Theorem 5.4
indicates that each of the nested data sets should have small data-free regions in
the full dimension as well as lower-dimensional projections to give small nomi-
nal error. Training data are collected from Franke’s function using a randomized
(0,4,2)-net in base 5 [38] with 54 = 625 points, which has a convenient nested
structure with both the full and each sub-design having small data-free regions
and relatively well-spread points in both the full and projected space, making it
ideal for the multi-step procedure. Theorem 4.4 indicates that a less smooth un-
derlying kernel � will give more numerically accurate results, while Theorem 5.4
indicates that a more smooth kernel will give more nominally accurate results. To
balance these opposing forces in this moderately sized example, the selected � is
Wendland’s compactly supported kernel with four continuous derivatives [60],

�(x − y) = φ
(√

(x − y)′(x − y)
)
,

φ(r) = (1 − r)l+2+ [(l2 + 4l + 3)r2 + (3l + 6)r + 3], l = �d/2� + 3,

and the rescaling matrices �1, . . . ,�J are restricted to be diagonal, so each input
is re-scaled separately. The re-scalings for each stage are chosen by leave-one-out
cross-validation, for which a simple short-cut formula holds making computation
undemanding for this moderately sized problem, although A−1

Xj ,�j
needs to be cal-

culated. In particular, the ith cross-validation error at stage j is [47]

e(i) = α
j
i

B
j
ii

, Bj = A−1
Xj ,�j

.(34)

In this example, the single-stage sample size is n1 = 625, the two-stage sample
sizes are n1 = 250 and n2 = 625, the three-stage sample sizes are n1 = 250, n2 =
375 and n3 = 625 and the four-stage sample sizes are n1 = 250, n2 = 375, n3 =
500 and n4 = 625. The nested data sets are Xj = {xi ∈ X : i ≤ nj }. The right panel



2998 B. HAALAND AND P. Z. G. QIAN

FIG. 4. Left panel: two-dimensional projection of Schwefel’s function. Right panel: log mean
squared prediction error versus number of stages.

of Figure 3 shows the logarithm of the mean squared prediction error on a test set of
1,000 randomly generated uniform points. Notice that the mean squared prediction
error is improved from 4.4 × 10−8 to 5.4 × 10−9. A Gaussian process fit using the
mlegp package [7] in R, on the other hand, has mean squared prediction error
6.8 × 10−7.

Next, consider using the multi-step procedure to interpolate Schwefel’s function
for d = 5

f (x) = −
d∑

j=1

(1,000xj − 500) sin
(√|1,000xj − 500|)/1,000,

a two-dimensional projection of which with the remaining variables fixed at 1/2
is shown in the left panel of Figure 4. This function is relatively complex and
a very large training set is needed to build an accurate emulator. To ensure easy
nesting and good space-filling properties for sub-designs, data are collected from
Schwefel’s function using a randomized (0,8,5)-net in base 5 with 58 = 390,625
points. In this example there is a great deal of potential for numeric problems so
Wendland’s continuous, compactly supported kernel,

�(x − y) = φ
(√

(x − y)′(x − y)
)
,

φ(r) = (1 − r)l+2+ , l = �d/2� + 1

with relatively little smoothness is selected. The re-scaling matrices �1, . . . ,�J

are chosen to be fixed scalar multiples of the identity, �j = θj Id , with

θj =
( n2

jπ
d/2

107�(d/2 + 1)

)1/d

,(35)

which ensures that each intepolation matrix AXj ,�j
has less than 107 nonzero en-

tries. Edge effects in the five-dimensional cube ensure that the number of nonzero
entries is substantially less than 107. In this example, the single-stage sample
size is n1 = 390,625, the two-stage sample sizes are n1 = 57 = 78,125 and n2 =
390,625 and the three-stage sample sizes are n1 = 78,125, n2 = 2 × 57 = 156,250
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and n3 = 390,625. The nested data sets are Xj = {xi ∈ X : i ≤ nj }. The right panel
of Figure 4 shows the logarithm of the mean squared prediction error on a test
set of 10,000 randomly generated uniform points. Notice that the mean squared
prediction error is improved from 0.11 to 0.036. On the other hand, the mlegp
package runs out of memory trying to fit a GP.

7. Discussion. We have presented the intuitively appealing and practically
useful multi-step interpolation procedure. This procedure is easy to use and of-
fers substantial improvements in overall accuracy in the emulation of large-scale
computer experiments. We introduced a decomposition of the error of any interpo-
lator into nominal and numeric portions. This decomposition is important because
it allows the two sources of error to be analyzed separately while emphasizing
the interplay between the two types of errors. We proved a very general result
bounding the numeric error of a multi-step interpolator, of which an ordinary in-
terpolator is a special case. This result constitutes the only complete and rigorous
bound on the numeric error of the multi-step interpolator. We proved that in the
situation where the earlier stage kernels are convolutions of the later stage kernels,
substantial nominal improvements can be realized. In the context of the multi-step
interpolator, this result is the most general and explicit of its kind.

Further work on the multi-step interpolation method will be explored in the fol-
lowing directions. First, its implementation details, along with various examples,
will be reported in a subsequent article, to illustrate the theoretical results derived
here. The implementation of the method requires the generation of nested data
sites, for which the typical choice in applied mathematics is nested grids. Nested
space-filling designs [15, 41–43], originally constructed for running multiple com-
puter experiments with different levels of accuracy, are a better choice because
of their good uniformity properties. Such designs can be generated by exploiting
nesting in orthogonal arrays [19], U designs [55, 56], orthogonal Latin hypercubes
[3, 25, 26, 54, 62] or scrambled nets [38]. Second, emulation of computer models
with qualitative and quantitative factors is currently getting increasing attention
[17, 45, 46]. We plan to extend the multi-step procedure to accommodate these
two types of factors. Third, beyond emulation of computer experiments, singular-
ity issues arise in fitting many other large kernel models. We plan to introduce a
general multi-step framework for fitting kernel based classification and regression
methods with a large number of observations. As in the multi-step interpolation
procedure, this framework obtains nested data sites and then fits a kernel model
in multiple steps, where in each step interpolation is replaced by an appropriate
procedure for the given problem. New theoretical bounds on the nominal and nu-
meric accuracy, analogous to those in Sections 4 and 5, will be derived for this
framework. The required well-spread nested data sites for the framework will be
generated by using nested space-filling designs or the efficient thinning algorithm
[12] for observational data. In the revision of this paper, we became aware of new
theoretical developments of the multi-step method in applied mathematics, includ-
ing [24] and [61].
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