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WHEN DOES THE SCREENING EFFECT HOLD?

BY MICHAEL L. STEIN1

University of Chicago

When using optimal linear prediction to interpolate point observations of
a mean square continuous stationary spatial process, one often finds that the
interpolant mostly depends on those observations located nearest to the pre-
dictand. This phenomenon is called the screening effect. However, there are
situations in which a screening effect does not hold in a reasonable asymp-
totic sense, and theoretical support for the screening effect is limited to some
rather specialized settings for the observation locations. This paper explores
conditions on the observation locations and the process model under which
an asymptotic screening effect holds. A series of examples shows the diffi-
culty in formulating a general result, especially for processes with different
degrees of smoothness in different directions, which can naturally occur for
spatial-temporal processes. These examples lead to a general conjecture and
two special cases of this conjecture are proven. The key condition on the
process is that its spectral density should change slowly at high frequencies.
Models not satisfying this condition of slow high-frequency change should
be used with caution.

1. Introduction. The screening effect is the geostatistical term for the phe-
nomenon of nearby observations tending to reduce the influence of more dis-
tant observations when using kriging (optimal linear prediction) for spatial inter-
polation [Journel and Huijbregts (1978), Chilès and Delfiner (1999)]. This phe-
nomenon is often invoked as a justification for ignoring more distant observations
when using kriging [Memarsadeghi and Mount (2007), Emery (2009)]. Only in
some very limited special cases is the effect exact in the sense that the more dis-
tant observations make no contribution to the kriging predictor, so it is natural to
use asymptotics as a way to study the screening effect.

Let us set some notation. Write x ·y for the inner product of commensurate vec-
tors x and y. Suppose Z is a mean square continuous, stationary, mean 0 Gaussian
process on Rd with autocovariance function K(x) = E{Z(x)Z(0)} and spectral
density f , so that K(x) = ∫

Rd eiω·xf (ω)dω. When the mean is assumed known to
be 0, kriging is often called simple kriging. Throughout this work, we assume that
the problem of interest is to predict Z(0). For S ⊂ Rd , write Z(S) for the vector of
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observations (in some order) of Z on S, and define e(S) to be the error of the best
linear predictor, or BLP, of Z(0) based on Z(S). Let Nε and Fε be two classes of
sets indexed by the parameter ε > 0, with Nε representing observations near 0 and
Fε more distant observations. We will say that Nε asymptotically screens out the
effect of Fε if

lim
ε↓0

Ee(Nε ∪ Fε)
2

Ee(Nε)2 = 1.(1)

Stein (2002) argues that a useful asymptotic approach is to let the smallest dis-
tance from the observations to the predictand tend to 0 as ε ↓ 0. Specifically, Stein
(2002) proves (1) when, essentially, for some x0 ∈ Rd not in the integer lattice, Fε

is all points of the form ε(x0 + J ) for J in the integer lattice, Nε is the restric-
tion of Fε to some fixed region with 0 in its interior and f is regularly varying
at infinity [Bingham, Goldie and Teugels (1987)] in every direction with a com-
mon index of variation. The methods used in Stein (2002) make strong use of the
gridded nature of the observations and are not applicable here. Furthermore, re-
quiring f to be regularly varying at infinity with common index of variation in all
directions excludes models for spatial-temporal phenomena that exhibit a different
degree of smoothness in space than in time. Section 4 provides further discussion
of these issues. Ramm (2005), Chapter 5, takes a different approach to studying
an asymptotic screening effect by considering a process observed with white noise
everywhere in some domain and letting the variance of the white noise tend to 0. In
this work, we take a closer look at how the set where Z is observed affects whether
an asymptotic screening effect holds.

We will take the sets Nε and Fε to have a particular form that simplifies the
asymptotic analysis. Suppose x1, . . . , xn are distinct nonzero elements of Rd ,
y1, . . . , ym are distinct elements of Rd and y0 ∈ Rd is nonzero. For the rest of
this work, let Nε = {εx1, . . . , εxn} and Fε = {y0 + εy1, . . . , y0 + εym}. Section 2
explores when (1) holds through a series of examples leading to a broad conjec-
ture under a key assumption on the spectral density f of the random field: for every
R < ∞,

lim
ω→∞ sup

|ν|<R

∣∣∣∣f (ω + ν)

f (ω)
− 1

∣∣∣∣ = 0.(2)

The examples will demonstrate that one generally needs a further condition on Nε

depending on the mean square differentiability properties of the process. For non-
differentiable processes, no further assumptions on Nε may be needed. Indeed, for
nondifferentiable processes on R, Theorem 1 in Section 3 has (1) as its conclusion
under (2) and a mild additional condition on f . For nondifferentiable processes
on R2, if one restricts the cardinality of Nε to 1 and of Fε to 2 (and sets y2 = 0),
then Theorem 2 proves (1) under (2) without any additional conditions on f .
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Matérn models [Stein (1999a)] appear in both the examples and the proof of
Theorem 1. Define Kν to be the modified Bessel function of the second kind of or-
der ν [Olver et al. (2010)]. The Matérn model on Rd has autocovariance function
φ(α|x|)ν Kν(α|x|) for positive φ,α and ν. The parameter ν controls the smooth-
ness of the process: Z has m mean square derivatives in any direction if and only
if ν > m. The corresponding spectral density equals φ(α2 + |ω|2)−ν−d/2 times a
constant depending on α, ν and d . All Matérn models satisfy (2).

2. Examples. This section studies a number of examples to gain some insight
into the conditions on f and Nε that are needed in order for (1) to hold. The
derivations of these results are elementary but not necessarily easy. Rather than
give detailed derivations of all of them, I will outline derivations in a few of the
more difficult examples in Section 5.1.

To see why a condition like (2) is needed, let us first consider an example on R

addressed in Stein and Handcock (1989) and Stein (1999a), pages 67–69. Suppose
n = 1, x1 = 1, m = 2, y0 = 1, y1 = 0 and y2 = 1; see Figure 1. Consider K(x) =
e−|x|, a Matérn model with smoothness parameter 1

2 . The corresponding process
is mean square continuous but is not mean square differentiable, and it is easy to
show Ee(Nε)

2 ∼ 2ε as ε ↓ 0. This process is Markov, so that Ee(Nε ∪ Fε)
2 =

Ee(Nε)
2 for all ε < 1 and (1) holds trivially. Next consider K(x) = (1 − |x|)+

(where the superscipt + indicates positive part), for which f (ω) = 1−cosω
πω2 , which

does not satisfy (2). Stein and Handcock (1989), page 180, give the BLP based on
Z(Nε ∪ Fε), from which it is not difficult to show that Ee(Nε)

2 ∼ 2ε, just like for
K(x) = e−|x|, but Ee(Nε ∪ Fε)

2 ∼ 3
2ε as ε ↓ 0 so that Ee(Nε ∪ Fε)

2/Ee(Nε)
2 →

3
4 as ε ↓ 0. The choice of y0 = 1 is critical here: for y0 	= 1 but positive (keeping
x1 = 1, y1 = 0, y2 = 1), Ee(Nε ∪ Fε)

2/Ee(Nε)
2 → 1 as ε ↓ 0. The anomaly for

y0 = 1 is related to the lack of differentiability of K(x) at x = 1, which is in turn
related to the oscillations at high frequencies in f . See Stein (2005) for further
discussion on the relationship of the differentiability of K away from the origin
and the high-frequency behavior of f .

Proposition 1 in Stein (2005) provides a second example showing why a condi-
tion like (2) is needed to have a screening effect. The following special case of this
result suffices to illustrate the point. Suppose Z is a stationary process on R2 with
autocovariance function K(s, t) = e−|s|−|t | for s, t ∈ R. The corresponding spec-
tral density f (ω1,ω2) is proportional to 1

(1+ω1)
2(1+ω2

2)
, which does not satisfy (2).

FIG. 1. Prediction problem for triangular autocovariance function. Prediction site (+ sign), nearby
observation (solid circle) and distant observations (open circles).
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FIG. 2. Prediction problem for autocovariance function K(s, t) = e−|s|−|t |. Symbols as in Fig-
ure 1.

Consider the situation pictured in Figure 2, for which x1 = (0,1), y0 = (1,0),
y1 = (0,1) and y2 = (0,0). Then using either direct calculation or Proposition 1
in Stein (2005), limε↓0 Ee(Nε ∪ Fε)

2/Ee(Nε)
2 = 1 − e−2.

The remaining examples all consider f satisfying (2). To see why an additional
condition on Nε is needed for (1) to hold for differentiable processes, consider a
Matérn model with smoothness parameter 3

2 :K(x) = e−|x|(1 +|x|), for which the
corresponding process is exactly once mean square differentiable. For Nε = {ε},
Fε = {1} (top plot in Figure 3), straightforward calculations yield Ee(Nε)

2 ∼ ε2

and Ee(Nε ∪ Fε)
2 ∼ e2−5

e2−4
ε2 as ε ↓ 0 so Ee(Nε ∪ Fε)

2/Ee(Nε)
2 → e2−5

e2−4
as

ε ↓ 0. Unlike the triangular case, there is nothing special about y0 = 1 here and
the more general result for y0 > 0 is Ee(Nε ∪ Fε)

2/Ee(Nε)
2 → 1 − y2

0/(e2y0 −
1 − 2y0 − y2

0). The reason the limit is less than 1 is not because there is any-
thing unusual about f , but rather that Nε is inadequate. Specifically, since Z(0) =
Z(ε) − εZ′(0) + op(ε) and cov{Z(ε),Z′(0)} → 0 as ε ↓ 0, it is apparent that
having even a somewhat informative predictor for Z′(0) would provide useful in-
formation about Z(0) not contained in Z(ε). In fact, as ε ↓ 0, it is possible to
show that Ẑ′(0) = e

e2−4
Z(ε) − 2

e2−4
Z(1) is an asymptotically optimal predictor

of Z′(0) based on (Z(ε),Z(1)) and, in turn, that Z(ε) − εẐ′(0) is an asymptot-
ically optimal predictor of Z(0) based on (Z(ε),Z(1)). A screening effect does
hold if 2ε is added to Nε (bottom plot of Figure 3). Then it is possible to show that
Ee(Nε ∪ Fε)

2 ∼ Ee(Nε)
2 ∼ 8

3ε3 as ε ↓ 0, so (1) is true. Furthermore, as ε ↓ 0,
2Z(2ε) − Z(ε) = Z(ε) − ε[{Z(2ε) − Z(ε)}/ε] is an asymptotically optimal pre-

FIG. 3. Prediction problems for Matérn model with ν = 3
2 on R. Symbols as in Figure 1.
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dictor of Z(0) based on Z(Nε ∪Fε) and {Z(2ε)−Z(ε)}/ε is a consistent predictor
of Z′(0). A reasonable conjecture for a process on R with exactly p mean square
derivatives whose spectral density satisfies (2) is that any distinct x1, . . . , xn with
n > p suffices to make (1) true.

It is helpful to consider this problem in the spectral domain. We need some
further notation to proceed. For nonnegative-valued functions a and b defined
on a common domain D, write a(x) � b(x) if there exists finite C such that
a(x) ≤ Cb(x) for all x ∈ D and, for x ∈ R, a(x) � b(x) as x ↓ x0 if, for some
c > 0, a(x) � b(x) for D = (x0, x0 + c). Write a(x)  b(x) if a(x) � b(x) and
b(x) � a(x) and define a(x)  b(x) as x ↓ 0 if a(x) � b(x) as x ↓ x0 and b(x) �
a(x) as x ↓ x0. For a complex-valued function g and a nonnegative function f de-

fined on a domain D (always Rd here), define ‖g‖f =
√∫

D |g(x)|2f (x) dx. To
each random variable of the form

∑n
j=1 λjZ(sj ) there is a corresponding func-

tion
∑n

j=1 λje
iω·sj , and the mapping is an isometric isomorphism in the sense

that E{∑n
j=1 λjZ(sj )}2 = ∫

Rd |∑n
j=1 λje

iω·sj |2f (ω)dω. Write
∑n

j=1 φjεZ(εxj )

for the BLP of Z(0) based on Z(Nε) and φε(ω) = ∑
j φjεe

iεω·xj for the corre-
sponding function. If we set ηε(ω) = 1 − φε(ω), then Ee(Nε)

2 = ‖ηε‖2
f .

For any A ⊂ Rd , call
∫
A |ηε(ω)|2f (ω)dω/‖ηε‖2

f the fraction of Ee(Nε)
2 at-

tributable to the set of frequencies A. Write b(r) for the ball of radius r centered
at the origin. For the scenario in Figure 3(a), for any fixed ω0 > 0, as ε ↓ 0,∫

b(ω0)
|ηε(ω)|2f (ω)dω

‖ηε‖2
f

∼ 2

π

{
tan−1 ω0 − ω0

1 + ω2
0

}
> 0(3)

so that an asymptotically nonnegligible fraction of Ee(Nε)
2 is attributable to a

fixed range of frequencies. Similar to the definition of ηε , let ψε be the func-
tion corresponding to e(Nε ∪ Fε), so that Ee(Nε ∪ Fε)

2 = ‖ψε‖2
f . Then (3) al-

lows Z(1) to improve the prediction nonnegligibly by making |ψε(ω)|2/|ηε(ω)|2
substantially smaller than 1 in a neighborhood of the origin. In contrast, for
the scenario in Figure 3(b),

∫
b(ω0)

|ηε(ω)|2f (ω)dω � ε4 as ε ↓ 0 for any fixed

ω0, so that
∫
b(ω0)

|ηε(ω)|2f (ω)dω � ε‖ηε‖2
f as ε ↓ 0. In this case, making

|ψε(ω)|2/|ηε(ω)|2 substantially smaller than 1 in a neighborhood of the origin
cannot yield a nonnegligible asymptotic impact on the mean squared prediction
error. Thus,

∫
b(ω0)

c |ψε(ω)|2f (ω)dω/
∫
b(ω0)

c |ηε(ω)|2f (ω)dω must be bounded
by some constant less than 1 as ε ↓ 0 for all ω0 for (1) not to hold. The fact that
f is well behaved at high frequencies [i.e., satisfies (2)] effectively precludes this
possibility so that (1) holds. This line of reasoning forms the basis of the proof of
Theorem 1; see Section 5.2.

It is interesting to reconsider the two cases pictured in Figure 3, for a process
that is not quite mean square differentiable: K(x) = |x|K1(|x|), a Matérn model
with smoothness parameter 1, for which K(x) = 1 + 1

2x2 log(1
2 |x|) + 1

4(2γ −
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1)x2 + O(x4 log|x|) as x → 0 with γ being Euler’s constant. The correspond-
ing spectral density f is proportional to (1 + ω2)−3/2. Since the process has no
mean square derivatives, I conjecture that (1) should hold for any nonempty Nε .
For the scenario in Figure 3(a), Ee(Nε)

2 ∼ −ε2 log ε and, for fixed ω0 > 0,∫
b(ω0)

|ηε(ω)|2f (ω)dω 
∫
b(ω0)

|1 − eiεω|2 + {K(ε) − 1}2

(1 + ω2)3/2 dω  ε2

as ε ↓ 0. Thus, the fraction of the Ee(Ne)
2 attributable to b(ω0) tends to 0 as ε ↓ 0,

although at only a logarithmic rate. Not coincidentally, direct calculation shows
that for Fε = {1}, (1) holds and I would expect it to hold for more general Fε . In
fact, Theorem 2 in Section 3 applies in this case and it follows that (1) holds when
Fε has two points (and y2 = 0).

Next consider some settings for the Matérn model with ν = 3
2 on R2. Figure 4(a)

shows a situation in which there are two nearby observations in the vertical direc-
tion from the origin and two distant observations in the horizontal direction. One

FIG. 4. Prediction problems for isotropic Matérn model on R2 with ν = 3
2 . Symbols as in Figure 1.
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might imagine that because the nearby observations provide no information about
how the process varies in the horizontal direction, the distant observations might
provide nonneglible new information about Z(0). However, Section 5.1 demon-
strates that (1) does hold in this case. The next two examples are related to the
one-dimensional examples considered in Figure 3 for a Matérn model with ν = 3

2 .
Write Zi,j for the ij th partial derivative of Z. In Figure 4(b), Nε has three ob-
servations, but they are collinear along a line that does not go through the origin
and it is possible to show that the BLP of Z1,0(0,0) based on Z(Nε) has asymp-
totically negligible correlation with Z1,0(0,0) as ε ↓ 0. As a consequence, the
asymptotic results are identical to what we had in Figure 3(a): Ee(Nε)

2 ∼ ε2 and
Ee(Nε ∪Fε)

2 ∼ e2−5
e2−4

ε2 as ε ↓ 0. If Nε has three points arranged as in Figure 4(c),

then {Z(ε,0) − 1
2Z(2ε, ε) − 1

2Z(2ε,−ε)}/ε is a consistent predictor of Z1,0(0,0)

and (1) holds; see Section 5.1.
Now consider a model satisfying (2) for which the process is not equally differ-

entiable in all directions. Stein (2005) gives an example of such a model. Specifi-
cally, consider a space–time model on R3 ×R with spectral density {(1+|ω1|2)2 +
ω2

2}−2, (ω1,ω2) ∈ R3 × R. Writing erfc for the complementary error function, the
corresponding autocovariance function K is Stein (2005)

K(x, t) = 1

16
π2e|x| erfc

(
|t |1/2 + |x|

2|t |1/2

)(
1 − |x| + 4t2

|x|
)

+ 1

16
π2e−|x| erfc

(
|t |1/2 − |x|

2|t |1/2

)(
1 + |x| − 4t2

|x|
)

(4)

+ 1

4
π3/2|t |1/2 exp

(
−|t | − |x|2

4|t |
)

for x 	= 0 and t 	= 0. For x = 0 or t = 0, we can define K by continuity. For
t = 0, we get K(x,0) = 1

8π2e−|x|(1 + |x|), the Matérn model with ν = 3
2 , so the

corresponding process is exactly once mean square differentiable in any spatial
direction. Stein (2005) shows that K(0, t) = 1

8π2 − 2
3π3/2|t |3/2 + O(t2) as t → 0

so that K(0, t) is not twice differentiable in t at t = 0, and the corresponding
process is not mean square differentiable in time.

For (4), let us again consider the setting in Figure 4(c) with the horizontal axis
corresponding to the first spatial coordinate and the vertical axis corresponding to
time. It now turns out that the two points in Nε off of the horizontal axis contribute
negligibly to the BLP whether or not Fε is included. The problem is that the lack
of differentiability of Z in the vertical direction implies that the BLP of Z1,0(0,0)

based on Z(Nε) has asymptotic correlation 0 with Z1,0(0,0). Consequently, the
asymptotic results are the same as in Figure 3(a) for K(x) = e−|x|(1 +|x|); that is,

Ee(Nε ∪ Fε)
2/Ee(Nε)

2 → e2−5
e2−4

as ε ↓ 0 (Section 5.1).
Figure 5 displays two other settings we now consider for K as in (4). In Fig-

ure 5(a), we have Ee(Nε ∪ Fε)
2/Ee(Nε)

2 → 1 as ε ↓ 0 and, in Figure 5(b),
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FIG. 5. Prediction problems for autocovariance function given in (4). Horizontal axes are first
spatial coordinate and vertical axes are time. Symbols as in Figure 1.

Ee(Nε ∪ Fε)
2/Ee(Nε)

2 → e2−5
e2−4

as ε ↓ 0. These two cases show that it is pos-

sible to have sets Nε ⊂ Ñε yet have that (1) holds for the pair of sets (Nε,Fε) but
not (Ñε,Fε), further complicating any search for a general result that applies to
processes that are not equally smooth in all directions.

These examples demonstrate that any general theorem that encompasses all of
them will need a condition on Nε that depends on f . The following conjecture is
in accord with all of the examples presented here:

CONJECTURE 1. Suppose f satisfies (2) and the following assumption:

ASSUMPTION A. for j = 1, . . . , n, all mean square derivatives of Z at the
origin in the direction xj can be predicted based on Z(Nε) with mean squared
error tending to 0 as ε ↓ 0.

Then for all r > 0,

lim
ε↓0

Ee{Nε ∪ b(r)c}2

Ee{Nε}2 = 1.

Note that here I have expanded the set of distant observations to include all lo-
cations more than r from the origin, which simplifies the statement of the result
although undoubtedly complicates its proof (assuming it is true). It is somewhat
unsatisfying to have the condition on Nε given in terms of properties of predic-
tors of derivatives of Z rather than some purely geometric condition, but I see no
way to accommodate the examples treated here for K as in (4) without a condi-
tion something like Assumption A. Verifying whether Assumption A holds in any
particular setting may require a fair amount of work, although for Nε of fixed and
finite cardinality as we consider here, it should generally be possible to make this
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determination. Note that if all mean square derivatives of Z at the origin can be
consistently predicted based on Z(Nε) as ε ↓ 0, then Assumption A holds for any
Ñε = {εs1, . . . , εs�} with {x1, . . . , xn} ⊂ {s1, . . . , s�}.

In all of the examples for which (1) holds,

lim
ε↓0

∫
b(ω0)

|ηε(ω)|2f (ω)dω

‖ηε‖2
f

= 0(5)

for all ω0 > 0, and I suspect that Assumption A is equivalent to (5). Examining
the proof of Theorem 1 in Section 5.2 [see (19)], one sees that (5) is essential to
making the proof work.

3. Theorems. I do not know how to prove Conjecture 1 in anything like its
full generality. Assuming Z is not differentiable in any direction simplifies matters
considerably, because Assumption A then holds for any nonempty Nε . Theorem 1
considers nondifferentiable processes on R and Theorem 2 nondifferentiable pro-
cesses on R2.

THEOREM 1. Suppose, for d = 1 and some α ∈ (0,2),

f (ω)  (1 + |ω|)−α−1,(6)

and f satisfies (2). Then (1) holds.

Condition (6) is stronger than necessary to guarantee Z is not differentiable. Be-
cause part of the proof is to show that the low frequencies do not matter in the limit,
(6) can likely be weakened to hold only for all ω sufficiently large. Removing (6)
entirely would be more difficult.

The next theorem applies to nondifferentiable processes in R2 and does not
require any conditions on f beyond (2). However, it does restrict Nε to have only
one point and Fε to have two. The theorem also assumes y2 = 0, but this restriction
does not meaningfully detract from the content of the result and, in any case, could
be removed at the cost of a somewhat messier proof. Extending the result to Rd is
straightforward, but taking d > 3 is pointless in this setting because any 4 points
in Rd fall on a three-dimensional hyperplane, and even taking d = 3 provides no
new insight beyond what is learned from the two-dimensional setting.

THEOREM 2. Suppose Z has spectral density f satisfying (2) and that Z is
not mean square differentiable in any direction. In addition, suppose Nε = {εx1}
and Fε = {y0, y0 + εy1}, where x1, y0 and y1 are all nonzero. Then (1) holds.

Note that the example referred to in Figure 2 satisfies the conditions on Nε and
Fε in Theorem 2, and the process is not mean square differentiable in any direction,
but f does not satisfy (2). As we have seen, (1) does not hold in this setting, so
that Theorem 2 would be false if we removed (2).
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Throughout this work we assume that Z has a known mean 0. It is common in
practice to assume that Z has an unknown constant mean μ and then predict Z(0)

by what is called the ordinary kriging predictor, which is just an example of the
best linear unbiased predictor [Stein (1999a)]. In all of the examples considered in
Section 2, for which (1) holds for simple kriging, it still holds for ordinary kriging.
Furthermore, Theorems 1 and 2 can be easily shown to hold for ordinary kriging by
proving that, under the conditions of the theorems, the ordinary kriging predictor
based on Nε is asymptotically optimal relative to the simple kriging predictor (see
the ends of each proof in Section 5). Thus, if Conjecture 1 holds for simple kriging,
then I would expect it also holds for ordinary kriging.

4. Discussion. The space–time process on R3 × R considered in Section 3
with spectral density {(1 + |ω1|2)2 + ω2

2}−2, (ω1,ω2) ∈ R3 × R, is an example
of a process with a different degree of differentiability in time than in space. It
is a special case of the stochastic fractional heat equations studied by Kelbert,
Leonenko and Ruiz-Medina (2005), which are in turn a special case of a class of
space–time processes suggested in Stein (2005) whose spectral densities are of the
form

f (ω1,ω2) = {c1(a
2
1 + |ω1|2)α1 + c2(a

2
2 + |ω2|2)α2}−ν(7)

for ω1 ∈ Rd1 , ω2 ∈ Rd2 , ν > d1
2α1

+ d2
2α2

and c1, c2, α1, α2 and a2
1 + a2

2 positive to
ensure f is integrable. Because of the superficial similarity of this model to the
Matérn model, we might call it doubly Matérn. All spectral densities of the form
(7) satisfy (2) and thus, I conjecture, satisfy an asymptotic screening effect when-
ever Assumption A applies to Nε . At the same time, by adjusting the parameters
α1, α2 and ν, we can obtain processes with any desired degree of differentiability
in time and any separate degree of differentiability in space [Stein (2005)]. Note
that f of the form (7) satisfies the conditions of Theorem 2 when d1 = d2 = 1,
2ν ≤ 3

α1
+ 1

α2
and 2ν ≤ 1

α1
+ 3

α2
, the last two conditions being necessary and suf-

ficient to make Z not mean square differentiable in any direction. Stein (2011)
derives some results for the covariance structure when a1 = a2 = 0 and α2 = 1.

Despite its flexibility, model (7) is still restrictive in some ways, in particu-
lar in exhibiting what Gneiting (2002) calls full symmetry, due to the fact that
f (ω1,ω2) = f (ω1,−ω2), and hence the corresponding process has the same co-
variance structure with time running backwards as it does with time running for-
ward. Thus, for example, this model is unsuitable for processes with a dominant
direction of advection. Stein (2005) discusses possible approaches to extending
this model to allow for asymmetries.

As noted in Section 3, (5), which says that only an asymptotically negligible
fraction of Ee(Nε)

2 can be attributed to some fixed frequency range, is crucial to
obtaining a screening effect. This same property was also the key idea in Stein
(1999b) to obtaining explicit results on the asymptotic efficiency of predictors
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based on an incorrect spectral density having similar behavior to the correct spec-
tral density at high frequencies. The high-frequency behavior of a Gaussian pro-
cess is also crucial to estimation of the covariance structure [Stein (1999a)], and
misspecification of this high-frequency behavior can lead to poor behavior of es-
timates, particularly if likelihood-based methods are used [Stein (1999a), Chap-
ter 6, and Stein (2008)]. As statisticians strive to advance the statistical analysis of
spatial-temporal processes, they should pay close attention to the spectral behavior
of the models they use. In particular, models that do not satisfy (2) should be used
with caution.

5. Proofs.

5.1. Examples. For a random vector Y , write cov(Y ) for the covariance matrix
of Y , write 0 for a column vector of zeroes whose length is apparent from context
and denote transposes by primes. The following result simplifies the calculations
for several of the examples.

LEMMA 1. If there exists a(ε) > 0, δε ∈ Rn+m and �ε an (n + m) × (n + m)

matrix such that

lim
ε↓0

cov
(

a(ε){Z(0) − δε · Z(Nε ∪ Fε)}
�εZ(Nε ∪ Fε)

)
=

(
k 0′
0 K

)
(8)

for some k > 0 and K positive definite, then

lim
ε↓0

E{Z(0) − δε · Z(ε)}2

Ee(Nε ∪ Fε)2 = 1.

For (8) to hold, ẽε = Z(0)− δε ·Z(Nε ∪Fε) must satisfy Ee(Nε ∪Fε)
2/Eẽ2

ε →
1 as ε ↓ 0. To prove the lemma, note that (8) and K positive definite imply
cov{�εZ(ε)} is positive definite for all ε sufficiently small. Thus, for all ε suf-
ficiently small, the BLP of Z(0) based on Z(Nε ∪ Fε) is the same as the BLP of
Z(0) based on �εZ(Nε ∪ Fε). Since matrix inverse is a continuous function in
some neighborhood of K , using basic results on BLPs [e.g., Stein (1999a), Sec-
tion 1.2],

a(ε)2Ee(Nε ∪ Fε)
2

= a(ε)2(
var ẽε − cov{ẽε,Z(Nε ∪ Fε)

′�′
ε}

× [cov{�εZ(Nε ∪ Fε)}]−1 cov{�εZ(Nε ∪ Fε), ẽε})
= var{a(ε)ẽε} − cov{a(ε)ẽε,Z(Nε ∪ Fε)

′�′
ε}

× [cov{�εZ(Nε ∪ Fε)}]−1 cov{�εZ(Nε ∪ Fε), a(ε)ẽε}
→ k − 0′K−10
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as ε ↓ 0, and the lemma follows.
To apply Lemma 1 to the setting in Figure 4(a) with K(x) = e−|x|(1 + |x|), it

suffices to show

lim
ε↓0

cov

⎛
⎜⎜⎜⎜⎝

ε−3/2{Z(0,0) − 2Z(0, ε) + Z(0,2ε)}
Z(0, ε)

ε−1{Z(0,2ε) − Z(0, ε)}
Z(1,0)

ε−1{Z(1 + ε,0) − Z(1,0)}

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

8
3 0 0 0 0
0 1 0 2e−1 −e−1

0 0 1 0 0
0 2e−1 0 1 0
0 −e−1 0 0 1

⎞
⎟⎟⎟⎟⎠ .

To show, for example, that cov[ε−1{Z(0,2ε) − Z(0, ε)}, ε−1{Z(1 + ε,0) −
Z(1,0)}] → 0, define the function K̃ on [0,∞) by K̃(r) = e−r (1 + r), which
has bounded derivatives of all orders on [0,∞). Then using a Taylor series,

cov{Z(0,2ε) − Z(0, ε),Z(1 + ε,0) − Z(1,0)}
= K

(√
(1 + ε)2 + 4ε2

) − K
(√

(1 + ε)2 + ε2
)

− K
(√

1 + 4ε2
) + K

(√
1 + ε2

)
= K ′(1 + ε)

{√
(1 + ε)2 + 4ε2 −

√
(1 + ε)2 + ε2

}
− K ′(1)

{√
1 + 4ε2 −

√
1 + ε2

} + O(ε4)

= K ′(1 + ε)(1 + ε)

{
2ε2

(1 + ε)2 − ε2

2(1 + ε)2

}
− K ′(1)

(
2ε2 − 1

2
ε2

)
+ O(ε4)

� ε3,

and cov[ε−1{Z(0,2ε) − Z(0, ε)}, ε−1{Z(1 + ε,0) − Z(1,0)}] → 0 follows.
Lemma 1 can be applied to the setting in Figure 4(c) with K(x) = e−|x|(1+|x|)

by showing

lim
ε↓0

cov

⎛
⎜⎜⎝

ε−3/2{
Z(0,0) − 2Z(ε,0) + 1

2Z(2ε, ε) + 1
2Z(2ε,−ε)

}
Z(ε,0)

ε−1{2Z(ε,0) − Z(2ε, ε) − Z(2ε,−ε)}
Z(1,0)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1
3

(
10

√
5 − 8

√
2
)

0 0 0
0 1 0 2e−1

0 0 4 −2e−1

0 2e−1 −2e−1 1

⎞
⎟⎟⎠ .
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Specifically, it is not necessary to consider Z(2ε, ε) and Z(2ε,−ε) separately:
by symmetry, the BLP of Z(0,0) based on Z(Nε ∪ Fε) depends on Z(2ε, ε) and
Z(2ε,−ε) only through Z(2ε, ε) + Z(2ε,−ε).

As a final example, let us apply Lemma 1 to the setting in Figure 4(c) with
K given by (4). Again by symmetry, we can restrict to predictors that depend on
Z(2ε, ε) and Z(2ε,−ε) only through Z(2ε, ε)+Z(2ε,−ε). For a and b fixed and
positive, using a Taylor series and

erfc(x) = 1 − 2√
π

(
x − 1

3
x3

)
+ O(|x|5)

as x → 0 [Olver et al. (2010), page 162], it is possible to show

K(aε, bε) = 1
8π2 − 2

3(πbε)3/2 + O(ε2)

as ε ↓ 0. This result also holds when a or b equals 0. It follows that

lim
ε↓0

cov

⎛
⎝ ε−1{Z(0,0) − Z(ε,0)}

Z(ε,0)

ε−3/4{2Z(ε,0) − Z(2ε, ε) − Z(2ε,−ε)}

⎞
⎠

=
⎛
⎜⎝

1
8π2 0 0

0 1
8π2 0

0 0 8
3

(
2 − √

2
)
π3/2

⎞
⎟⎠

so that Z(ε,0) is an asymptotically optimal predictor of Z(0,0) based on Nε .
Furthermore, for c1 = 2/(e2 − 4) and c2 = −e/(e2 − 4),

lim
ε↓0

cov

⎛
⎜⎜⎝

ε−1{Z(0,0) − (1 + c1ε)Z(ε,0) − c2εZ(1,0)}
Z(ε,0)

Z(1,0)

ε−3/4{2Z(ε,0) − Z(2ε, ε) − Z(2ε,−ε)}

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

8
π2 e2 − 5

e2 − 4
0 0 0

0
1

8
π2 π2

4e
0

0
π2

4e

1

8
π2 0

0 0 0
8

3

(
2 − √

2
)
π3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the conditions of Lemma 1 are satisfied.

5.2. Proof of Theorem 1. Theorem 3.1 in Xue and Xiao (2011) implies

‖ηε‖2
f = Ee(Nε)

2  εα(9)
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as ε ↓ 0. Let us use (9) to show that
∑n

j=1|φjε| is bounded in ε as ε ↓ 0. If we
define Mε = max(1,

∑n
j=1 |φjε|) and x0 = 0, we can write ηε(ω) in the form

Mε

∑n
j=0 μjεe

iεωxj for appropriate μjε’s, where, by construction, |μjε| ≤ 1 for
all j and ε. Thus, if we can show Mε bounded, then

∑n
j=1|φjε| is also bounded.

By (6), there exists 0 < C1 ≤ C2 < ∞ such that

C1

(1 + |ω|)α+1 ≤ f (ω) ≤ C2

(1 + |ω|)α+1(10)

for all ω. Thus, making the change of variables ν = εω in the second step,

Ee(Nε)
2 ≥ C1M

2
ε

∫ ∞
−∞

∣∣∣∣∣
n∑

j=0

μjεe
iεωxj

∣∣∣∣∣
2

(1 + |ω|)−α−1 dω

= C1M
2
ε εα

∫ ∞
−∞

∣∣∣∣∣
n∑

j=0

μjεe
iνxj

∣∣∣∣∣
2

(ε + |ν|)−α−1 dν(11)

≥ C1M
2
ε

(
1

2
ε

)α ∫ ∞
1

∣∣∣∣∣
n∑

j=0

μjεe
iνxj

∣∣∣∣∣
2

ν−α−1 dν

for all ε < 1. Suppose Mε is unbounded. Then there exists a sequence {ε(k)}
tending to 0 such that Mε(k) → ∞. Because the μjε’s are bounded, there exists
(μ0, . . . ,μn) ∈ Rn+1 and a subsequence of {ε(k)}, call it {ε(k�)}, along which
(μ0ε(k�), . . . ,μnε(k�)) → (μ0, . . . ,μn) as � → ∞. Since α > 0, by dominated con-
vergence, it follows that

∫ ∞
1

∣∣∣∣∣
n∑

j=0

μjε(k�)e
iνxj

∣∣∣∣∣
2

ν−α−1 dν →
∫ ∞

1

∣∣∣∣∣
n∑

j=0

μje
iνxj

∣∣∣∣∣
2

ν−α−1 dν > 0

as � → ∞, which, together with (11), contradicts (9), so Mε and
∑n

j=1|φjε| must
be bounded as ε ↓ 0.

Now consider the behavior of ηε at low frequencies. Define pε = 1/
∑

j φjε

and η̃ε(ω) = 1 − pε

∑n
j=1 φjεe

iεωxj . By (6) and (9),
∫ 1

0 |ηε(ω)|2 dω � εα and,

writing Re for real part, |ηε(ω)|2 ≥ {Reηε(ω)}2 = (1 − pε)
2 + O(ε2) uniformly

for ω ∈ [0,1]. It follows that

(pε − 1)2 � εα(12)

as ε ↓ 0. Using |eix − 1| ≤ |x| for all x ∈ R, for β ∈ [0,1] and α ∈ (0,2),

∫
b(ε−β)

|η̃ε(ω)|2f (ω)dω � ε2
∫ ε−β

0

ω2

1 + ωα+1 dω � ε2−β(2−α)(13)
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as ε ↓ 0. Because
∑n

j=1 φjεZ(εxj ) is the BLP of Z(0), ‖ηε‖2
f ≤ ‖η̃ε‖2

f , so that∫
b(ε−β)

|ηε(ω)|2f (ω)dω ≤
∫
b(ε−β)

|η̃ε(ω)|2f (ω)dω

(14)
+

∫
b(ε−β)c

{|η̃ε(ω)|2 − |ηε(ω)|2}f (ω)dω.

Straightforward algebra shows

|η̃ε(ω)|2 − |ηε(ω)|2
= (p2

ε − 1)|φε(ω)|2 − 2(pε − 1)Reφε(ω)(15)

= 2(pε − 1)2|φε(ω)|2 + 2(pε − 1)[|φε(ω)|2 − Reφε(ω)].
The boundedness of the φjε’s in ε implies ||φε(ω)|2 − p−2

ε |2 � min(1, ε2ω2) and
|Reφε(ω) − p−1

ε | � min(1, ε2ω2), and it follows that∣∣|φε(ω)|2 − Reφε(ω)
∣∣ � |pε − 1| + min(1, ε2ω2)

as ε ↓ 0, which, together with (12) and (15), yields

|η̃ε(ω)|2 − |ηε(ω)|2 � εα + εα/2 min(1, ε2ω2)

as ε ↓ 0. Thus, ∫
b(ε−β)c

{|η̃ε(ω)|2 − |ηε(ω)|2}f (ω)dω

�
∫ ε−1

ε−β

εα + ε2+α/2ω2

ωα+1 dω +
∫ ∞
ε−1

εα/2

ωα+1 dω(16)

� ε3α/2 + εα(β+1)

as ε ↓ 0. Combining this bound with (13) and (14) implies that for all β ∈ [0,1],∫
b(ε−β)

|ηε(ω)|2f (ω)dω � ε2−β(2−α) + ε3α/2 + εα(β+1)(17)

as ε ↓ 0. Note that the bound in (17) is o(εα) as ε ↓ 0 for all α ∈ (0,2) and β ∈
(0,1).

Let �ε = (λ1ε, . . . , λmε), and assume �ε 	= 0 hereafter, as the case �ε = 0 is
trivial to handle. We next show the correlation of e(Nε) and �ε · Z(Fε) is asymp-
totically negligible. Defining λε(ω) = ∑m

j=1 λjεe
iεωyj ,

corr{e(Nε),�ε · Z(Fε)}

=
∫
b(ε−β) ηε(ω)e−iωy0λε(ω)f (ω)dω

‖ηε‖f ‖λε‖f
(18)

+
∫
b(ε−β)c ηε(ω)e−iωy0λε(ω)f (ω)dω

‖ηε‖f ‖λε‖f

�= I1 + I2.
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Using the Cauchy–Schwarz inequality and (17), for β ∈ (0,1),

I1 ≤
√∫

b(ε−β) |ηε(ω)|2f (ω)dω

‖ηε‖f

→ 0(19)

as ε ↓ 0, uniformly in �ε . Next, define Rk = 2πk/y0 and kε = �y0ε
−β/(2π)�.

Then Rkε ≤ ε−β and∣∣∣∣
∫
b(ε−β)c

ηε(ω)e−iωy0λε(ω)f (ω)dω

∣∣∣∣
≤ 2

∞∑
k=kε

∣∣∣∣
∫ Rk+1

Rk

ηε(ω)e−iωy0λε(ω)f (ω)dω

∣∣∣∣
≤ 2

∞∑
k=kε

f (Rk)

∣∣∣∣
∫ Rk+1

Rk

ηε(ω)e−iωy0λε(ω)dω

∣∣∣∣(20)

+ 2
∞∑

k=kε

∫ Rk+1

Rk

|ηε(ω)λε(ω)||f (ω) − f (Rk)|dω

�= I3 + I4.

For ω ∈ (Rk,Rk+1], by (2), there exist constants ck → 0 as k → ∞ such that

|f (ω) − f (Rk)| ≤ ck min{f (Rk), f (ω)},(21)

so

I4 ≤ 2
∞∑

k=kε

ck

∫ Rk+1

Rk

|ηε(ω)λε(ω)|f (ω)dω

≤ 2 sup
k≥kε

ck

∫ ∞
Rkε

|ηε(ω)λε(ω)|f (ω)dω(22)

≤ sup
k≥kε

ck‖ηε‖f ‖λε‖f ,

the last step by the Cauchy–Schwarz inequality. Now consider I3 in (20). Defin-
ing θε(ω) = ηε(ω)λε(ω), we can write θε in the form

∑m(n+1)
j=1 θjεe

iεωzj . For
Mε = max(1,

∑n
j=1|φjε|), let M = lim supε↓0 Mε , which we showed is finite.

Then, setting Lε = ∑m
j=1|λjε|, it is easy to show that

∑m(n+1)
j=1 |θjε| ≤ (2M + 1)Lε

for all ε sufficiently small. Integrating by parts,∫ Rk+1

Rk

θε(ω)e−iωy0 dω = e−iRky0

iy0
{θε(Rk) − θε(Rk+1)}

+ 1

iy0

∫ Rk+1

Rk

e−iωy0θ ′
ε(ω)dω.
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Defining ž = maxj |zj |, we have |θε(Rk) − θε(Rk+1)| ≤ ∑
j |θjε||1 − ei2πεzj /y0 | ≤

2π(2M + 1)žLεε/y0 and |θ ′
ε(ω)| ≤ (2M + 1)žLεε for all ε sufficiently small, so

that ∣∣∣∣
∫ Rk+1

Rk

θε(ω)e−iωy0 dω

∣∣∣∣ ≤ 4π

y2
0

(2M + 1)žLεε(23)

for all ε sufficiently small. Setting β = 1
2 , inequalities (10) and (23) imply

I3 ≤ 2C2(2M + 1)žLε

∞∑
k=kε

ε

kα+1

(24)

≤ 2α−1C2(2M + 1)žLε

(
8

y0

)α

εα/2+1

for all ε sufficiently small. Similarly to (9), it is possible to show Lεε
α/2 � ‖λε‖f

as ε ↓ 0, so that by (9) and (24),

I3

‖ηε‖f ‖λε‖f

� ε1−α/2(25)

as ε ↓ 0 uniformly in �ε . Since α < 2, this bound tends to 0 uniformly in �ε .
Applying (22) and (25) to (20) yields I2 [defined in (18)] tending to 0 as ε ↓ 0
uniformly in �ε , which together with (18) and (19), implies

lim
ε↓0

sup
�ε

|corr{e(Nε),�ε · Z(Fε)}| = 0.(26)

To finish the proof, it suffices to prove e(Nε) is asymptotically uncorrelated with
all linear combinations of Z(Nε ∪ Fε). Specifically, defining �ε = (ξ1ε, . . . , ξnε),
if we can show

lim
ε↓0

sup
�ε,�ε

|corr{e(Nε),�ε · Z(Fε) − �ε · Z(Nε)}| = 0,(27)

then the theorem follows since

Ee(Nε ∪ Fε)
2

Ee(Nε)2 = 1 − sup
�ε,�ε

corr{e(Nε),�ε · Z(Fε) − �ε · Z(Nε)}2.

Because e(Nε) is the error of a BLP based on Nε , corr{e(Nε),�ε · Z(Nε)} = 0 for
all �ε . Thus, (27) follows from (26) if

var{�ε · Z(Fε)} � var{�ε · Z(Fε) − �ε · Z(Nε)}(28)

uniformly in �ε and �ε . There is nothing to prove if �ε = 0, so assume �ε 	= 0
hereafter. Consider the Matérn spectral density fα(ω) = (1 + ω2)−(α+1)/2, for
which the corresponding autocovariance function is Kα(x) = cα|x|α/2Kα/2(|x|),
where cα = π1/2/{2α/2−1�((α + 1)/2)} [Stein (1999a), page 31]. I will write the
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subscript α to indicate quantities such as variances calculated under Kα . Since,
by (6), f (ω)  fα(ω), (28) is equivalent to

varα{�ε · Z(Fε)} � varα{�ε · Z(Fε) − �ε · Z(Nε)}(29)

uniformly in �ε and �ε , which is in turn equivalent to

lim sup
ε↓0

sup
�ε,�ε

|corrα{�ε · Z(Fε),�ε · Z(Nε)}| < 1.(30)

Define λ·ε = ∑m
j=1 λjε , λ̃jε = λjε − 1

m
λ·ε , L̃ε = ∑m

j=1 |λ̃jε| and �̃ε = (λ̃1ε,

. . . , λ̃mε). Using the series expansion for Kα [Stein (1999a), (15) page 32] and
setting bα = π/{�(α + 1) sin(1

2πα)} and Sα(ε) = −∑m
j,k=1 λ̃jελ̃kε|yj − yk|α ,

varα{�̃ε · Z(Fε)} − bαεαSα(ε) � ε2L̃2
ε.

Now Sα(ε) is nonnegative because
∑m

j=1 λ̃jε = 0, and |x|α is a valid variogram

for α ∈ (0,2) [Stein (1999a), page 37]. Furthermore, if L̃ε 	= 0, Sα(ε)/L̃2
ε is triv-

ially bounded from above. It is also uniformly bounded from below: if Sα(ε)/L̃2
ε

tends to a limit along any sequence of ε values, then there is a further subsequence
along which �̃ε/L̃ε converges to some �̃ = (λ̃1, . . . , λ̃m) 	= 0 and, along this sub-
sequence, by dominated convergence,

bαSα(ε)

L̃2
ε

→
∫ ∞
−∞

∣∣∣∣∣
m∑

j=1

λ̃j e
iωxj

∣∣∣∣∣
2

|ω|−α−1 dω > 0.

Thus, no subsequence of Sα(ε)/L̃2
ε can have 0 as its limit and

varα{�̃ε · Z(Fε)}  εαL̃2
ε,(31)

which holds even if L̃ε = 0. Again using the series expansion for Kα ,
|covα{Z(y0 + εy1), �̃ε · Z(Fε)}| � εαL̃ε , so that corrα{Z(y0 + εy1), �̃ε ·
Z(Fε)} → 0 uniformly in �̃ε 	= 0. Thus,

varα{�ε · Z(Fε)} ∼ λ2·εKα(0) + varα{�̃ε · Z(Fε)}(32)

as ε ↓ 0, uniformly in �ε . Results similar to (31) and (32) apply to �ε · Z(Nε).
Next, define ξ·ε = ∑n

j=1 ξjε , ξ̃jε = ξjε − 1
n
ξ·ε , X̃ε = ∑n

j=1|ξ̃jε| and �̃ε =
(ξ̃1ε, . . . , ξ̃nε) and consider

covα{�ε · Z(Fε),�ε · Z(Nε)}
= λ·εξ·εKα(y0 + εy1 − εx1) + λ·ε covα{Z(y0 + εy1), �̃ε · Z(Nε)}(33)

+ ξ·ε covα{Z(εx1), �̃ε · Z(Fε)} + covα{�̃ε · Z(Fε), �̃ε · Z(Nε)}.
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Since Kα has a bounded second derivative outside of a neighborhood of the origin,
it is straightforward to obtain the following bounds:

|λ·εξ·εKα(y0 + εy1 − εx1) − λ·εξ·εKα(y0)| � ε|λ·ε||ξ·ε|,
|λ·ε covα{Z(y0 + εy1), �̃ε · Z(Nε)}| � ε|λ·ε|X̃ε,

|ξ·ε covα{Z(εx1), �̃ε · Z(Fε)}| � ε|ξ·ε|L̃ε

and

|covα{�̃ε · Z(Fε), �̃ε · Z(Nε)}| � ε2L̃εX̃ε

as ε ↓ 0. Applying these bounds to (33) gives

|covα{�ε · Z(Fε),�ε · Z(Nε)} − λ·εξ·εKα(y0)|
(34)

� ε|λ·ε||ξ·ε| + ε|λ·ε|X̃ε + ε|ξ·ε|L̃ε + ε2L̃εX̃ε.

Now, from (32),

|λ·εξ·εKα(y0)|√
varα{�ε · Z(Fε)}varα{�ε · Z(Nε)}

∼ |λ·εξ·εKα(y0)|√
λ2·εKα(0) + varα{�̃ε · Z(Fε)}

√
ξ2·εKα(0) + varα{�̃ε · Z(Nε)}

(35)

≤ Kα(y0)

Kα(0)
,

which is in (0,1) for all y0 	= 0. And, since α < 2,

ε|λ·ε||ξ·ε| + ε|λ·ε|X̃ε + ε|ξ·ε|L̃ε + ε2L̃εX̃ε√
λ2·ε + εαL̃2

ε

√
ξ2·ε + εαX̃2

ε

→ 0,

which, together with (32), (34) and (35), proves (30) and hence (27) and the theo-
rem.

To prove that Theorem 1 also applies to ordinary kriging, note that by setting
β = 1

2 , (13) and (16) together with (9) imply ‖η̃ε‖2
f ∼ ‖ηε‖2

f as ε ↓ 0. Since η̃ε

corresponds to the error of a linear unbiased predictor under the constant mean
model, we have that the mean squared error of the ordinary kriging predictor based
on Z(Nε) is at least ‖ηε‖2

f and at most ‖η̃ε‖2
f , so that if (1) holds for the simple

kriging predictor it also holds for the ordinary kriging predictor.

5.3. Proof of Theorem 2. Restricting Nε to one point and Fε to 2 allows us to
make use of Lemma 1 to prove (1). Setting y2 = 0 simplifies the calculations with-
out changing any essential details. Specifically, defining V (x) = K(0)−K(x), we
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will show that

W ′
ε = (Wε1,Wε2,Wε3,Wε4)

(36)

=
(

Z(0) − Z(εx1)√
V (εx1)

,Z(εx1),Z(y0 + εy1),
Z(y0) − Z(y0 + εy1)√

V (εy1)

)′

has limiting covariance matrix of the form given in (8), from which Theorem 2
readily follows.

Let us consider the easier parts of the proof first. Independent of ε, the vari-
ances of the elements of Wε are 1,K(0),K(0) and 1, respectively. Since Z has
a spectral density, K is continuous and |K(y)| < K(0) for all y 	= 0. Thus,
cov(Wε2,Wε3) → K(y0) as ε ↓ 0, and the 2 × 2 matrix with K(0) on the diag-
onals and K(y0) elsewhere is positive definite. Thus, it suffices to show that the
other offdiagonal elements of the covariance matrix of Wε tend to 0 as ε ↓ 0. First,
cov(Wε1,Wε2) = 1

2

√
V (εx1)/K(0) → 0 as ε ↓ 0. Similarly, cov(Wε3,Wε4) → 0

as ε ↓ 0.
Now consider cov(Wε1,Wε3). We have

cov{Z(0) − Z(εx1),Z(y0 + εy1)} =
∫

R2
e−iω·(y0+εy1)(1 − eiεω·x1)f (ω)dω,

so that for D(T ) = {ω : |ω · x1| ≤ T },
cov(Wε1,Wε3)

2 ≤ {∫R2 |1 − eiεω·x1 |f (ω)dω}2

K(0)
∫
R2 |1 − eiεω·x1 |2f (ω)dω

≤ 2{∫D(T ) |1 − eiεω·x1 |f (ω)dω}2

K(0)
∫
D(T ) |1 − eiεω·x1 |2f (ω)dω

(37)

+ 2{∫D(T )c |1 − eiεω·x1 |f (ω)dω}2

K(0)
∫
D(T )c |1 − eiεω·x1 |2f (ω)dω

for all T sufficiently large (to guarantee
∫
D(T ) |1−eiεω·x1 |2f (ω)dω > 0). Because

ε−1|1 − eiεω·x1 | ≤ |ω · x1| and ε−1|1 − eiεω·x1 | → |ω · x1| as ε ↓ 0, by dominated
convergence,

lim
ε↓0

{∫D(T ) |1 − eiεω·x1 |f (ω)dω}2∫
D(T ) |1 − eiεω·x1 |2f (ω)dω

= {∫D(T ) |ω · x1|f (ω)dω}2∫
D(T ) |ω · x1|2f (ω)dω

.(38)

By the Cauchy–Schwarz inequality,

{∫D(T )c |1 − eiεω·x1 |f (ω)dω}2∫
D(T )c |1 − eiεω·x1 |2f (ω)dω

≤
∫
D(T )c |1 − eiεω·x1 |2f (ω)dω

∫
D(T )c f (ω)dω∫

D(T )c |1 − eiεω·x1 |2f (ω)dω
(39)

=
∫
D(T )c

f (ω)dω.
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From (37)–(39), we will have cov(Wε1,Wε3) → 0 as ε ↓ 0 if the right-hand
sides of (38) and (39) tend to 0 as T → ∞. The integrability of f implies∫
D(T )c f (ω)dω → 0 as T → ∞, so consider the right-hand side of (38). Let

A be the 2 × 2 matrix with first row given by x1, orthogonal rows and deter-
minant of 1 and set v = (v1, v2)

′ = Aω. Define f̄ (v1) = ∫ ∞
−∞ f (A−1v) dv2. Up

to a linear rescaling, f̄ is the spectral density of the process Z along the x1
direction, so it is integrable. In addition, because Z is not mean square differ-
entiable in any direction,

∫ ∞
0 v2

1 f̄ (v1) dv1 = ∞. Then for any even function g,∫
D(T ) g(ω · x1)f (ω)dω = 2

∫ T
0 g(v1)f̄ (v1) dv1, so that for 0 < S < T ,

{∫D(T ) |ω · x1|f (ω)dω}2∫
D(T ) |ω · x1|2f (ω)dω

= {∫ T
0 v1f̄ (v1) dv}2∫ T
0 v2

1 f̄ (v1) dv1
(40)

= {∫ S
0 v1f̄ (v1) dv1 + ∫ T

S v1f̄ (v1) dv1}2∫ T
0 v2

1 f̄ (v1) dv1
.

If we can show that

lim
S→∞ lim

T →∞
{∫ S

0 v1f̄ (v1) dv1 + ∫ T
S v1f̄ (v1) dv1}2∫ T

0 v2
1 f̄ (v1) dv1

= 0,(41)

then the right-hand side of (38) will tend to 0 as T → ∞. To prove (41), expand the
square in the numerator and consider each term separately. First, by the Cauchy–
Schwarz inequality,

lim
T →∞

{∫ S
0 v1f̄ (v1) dv1}2∫ T
0 v2

1 f̄ (v1) dv1
= lim

T →∞

∫ S
0 v2

1 f̄ (v1) dv1
∫ S

0 f̄ (v1) dv1∫ T
0 v2

1 f̄ (v1) dv1
= 0.

Again by the Cauchy–Schwarz inequality,

{∫ T
S v1f̄ (v1) dv1}2∫ T
0 v2

1 f̄ (v1) dv1
≤

∫ T
S v2

1 f̄ (v1) dv1
∫ T
S f̄ (v1) dv1∫ T

0 v2
1 f̄ (v1) dv1

≤
∫ T

S
f̄ (v1) dv1,

which tends to 0 when one takes limS→∞ limT →∞ since f̄ is integrable. Finally,∫ S
0 v1f̄ (v1) dv1

∫ T
S v1f̄ (v1) dv1∫ T

0 v2
1 f̄ (v1) dv1

≤
∫ S

0 v1f̄ (v1) dv1
∫ T
S v1f̄ (v1) dv1∫ T

S v2
1 f̄ (v1) dv1

≤
∫ S

0 v1f̄ (v1) dv1

S
·
∫ T
S v1f̄ (v1) dv1∫ T
S v1f̄ (v1) dv1

≤ 1

S

∫ S1/2

0
v1f̄ (v1) dv1 + 1

S

∫ S

S1/2
v1f̄ (v1) dv1

≤ 1

S1/2

∫ S1/2

0
f̄ (v1) dv1 +

∫ S

S1/2
f̄ (v1) dv1,
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which tends to 0 as S → ∞, and (41) follows. Thus, cov(Wε1,Wε3) → 0 as ε ↓ 0.
Similarly, cov(Wε2,Wε4) → 0 as ε ↓ 0.

We will need the following lemma to handle cov(Wε1,Wε4):

LEMMA 2. If Z is not mean square differentiable in the direction x, then

lim
ε↓0

ε2

V (εx)
= 0.

To prove the lemma, first note that the assumption on Z is equivalent to∫
R2

|ω · x|2f (ω)dω = ∞.(42)

If lim supε↓0
ε2

V (εx)
> 0, then there must exist some sequence εn ↓ 0 along which

limn→∞ V (εnx)

ε2
n

= C for some finite C, or

lim
n→∞

∫
R2

|1 − eiεnω·x |2
ε2
n

f (ω)dω = C.

But for any finite T , by dominated convergence,

C = lim
n→∞

∫
R2

|1 − eiεnω·x |2
ε2
n

f (ω)dω

≥ lim
n→∞

∫
|ω|<T

|1 − eiεnω·x |2
ε2
n

f (ω)dω

=
∫
|ω|<T

|ω · x|2f (ω)dω

for all T , which contradicts (42), and the lemma is proven.
Consider

cov{Z(0) − Z(εx1),Z(y0) − Z(y0 + εy1)}
=

∫
R2

e−iω·y0(1 − eiεω·x1)(1 − e−iεω·y1)f (ω)dω.

Define f1(ω) = min(f (ω),1), and write cov1 to indicate covariances calculated
under the spectral density f1. Then (2) and f integrable imply that f (ω) = f1(ω)

outside some bounded set, and it easily follows that

cov{Z(0) − Z(εx1),Z(y0) − Z(y0 + εy1)}
(43)

= cov1{Z(0) − Z(εx1),Z(y0) − Z(y0 + εy1)} + O(ε2).

Because Z is not mean square differentiable in any direction, Lemma 2 implies the
O(ε2) remainder in (43) makes no contribution to limε↓0 cov(Wε1,Wε4).
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We proceed by rotating coordinates so that one of the frequency axes points
in the direction of y0. Specifically, let B be the 2 × 2 orthogonal matrix with de-
terminant 1 and first row equal to y0 and set τ = (τ1, τ2)

′ = Bω. Then, defining
Hε(τ1, τ2) = (1 − eiε(B−1τ)·x1)(1 − e−iε(B−1τ)·y1),

cov1{Z(0) − Z(εx1),Z(y0) − Z(y0 + εy1)}
=

∫
R2

e−iτ1Hε(τ1, τ2)f1(B
−1τ) dτ

=
∫

R

∞∑
k=−∞

∫ 2π(k+1)

2πk
e−iτ1Hε(τ1, τ2)f1(B

−1τ) dτ1 dτ2.

Define the function g on R2 by, for 2πk ≤ τ1 < 2π(k + 1), g(B−1τ) = 1 −
f1(B

−1(2πk, τ2)
′)/f1(B

−1τ) if f1(B
−1τ) > 0 and 0 otherwise. We have

cov1{Z(0) − Z(εx1),Z(y0) − Z(y0 + εy1)}

=
∫

R

∞∑
k=−∞

f1

(
B−1

(
2πk

τ2

))∫ 2π(k+1)

2πk
e−iτ1Hε(τ1, τ2) dτ1 dτ2(44)

+
∫

R2
e−iω·y0(1 − eiεω·x1)(1 − e−iεω·y1)f1(ω)g(ω)dω.

By (2), g(ω) → 0 as ω → ∞. Thus, given δ > 0, we can find T < ∞ such that
g(ω) < δ for |ω| > T . Then∣∣∣∣

∫
R2

e−iω·y0(1 − eiεω·x1)(1 − e−iεω·y1)f1(ω)g(ω)dω

∣∣∣∣
≤ ε2

∫
|ω|≤T

|ω · x1||ω · y1|f1(ω)|g(ω)|dω

+ 4δ

∫
|ω|>T

|1 − eiεω·x1 ||1 − e−iεω·y1 |f1(ω)dω.

By the Cauchy–Schwarz inequality and f1 ≤ f ,
∫
|ω|>T |1−eiεω·x1 ||1−e−iεω·y1 |×

f1(ω)dω ≤ √
V (εx1)V (εy1), which, together with Lemma 2, implies

lim sup
ε↓0

| ∫R2 e−iω·y0(1 − eiεω·x1)(1 − e−iεω·y1)f1(ω)g(ω)dω|√
V (εx1)V (εy1)

≤ 4δ.(45)

Since δ is arbitrary, this lim sup must in fact be 0.
Now return to the the first term on the right-hand side of (44). Integrating by

parts,∫ 2π(k+1)

2πk
e−iτ1Hε(τ1, τ2) dτ1 = iHε

(
2π(k + 1), τ2

) − iHε(2πk, τ2)

− i

∫ 2π(k+1)

2πk
e−iτ1

∂

∂τ1
Hε(τ1, τ2) dτ1.
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There exists finite C independent of ε and τ such that∣∣∣∣ ∂

∂τ1
Hε(τ1, τ2)

∣∣∣∣ ≤ Cε
{∣∣1 − eiε(B−1τ)·x1

∣∣ + ∣∣1 − e−iε(B−1τ)·y1
∣∣},

which implies∣∣∣∣
∫ 2π(k+1)

2πk
e−iτ1Hε(τ1, τ2) dτ1

∣∣∣∣
(46)

≤ 4πCε
{∣∣1 − eiε(B−1τ)·x1

∣∣ + ∣∣1 − e−iε(B−1τ)·y1
∣∣}.

We can choose T finite so that if 2πk ≤ τ1 ≤ 2π(k+1), then f1(B
−1(2πk, τ2)

′) ≤
2f (B−1τ) whenever |τ | > T . Applying this result and (46) to the first term on the
right-hand side of (44) and changing variables back to ω = B−1τ , we get∣∣∣∣∣

∫
R

∞∑
k=−∞

f1

(
B−1

(
2πk

τ2

))∫ 2π(k+1)

2πk
e−iτ1Hε(τ1, τ2) dτ1 dτ2

∣∣∣∣∣
≤ 8πCε

∫
R2

f (ω){|1 − eiεω·x1 | + |1 − e−iεω·y1 |}dω + O(ε2)(47)

≤ 8πCε
{√

V (εx1) +
√

V (εy1)
}√∫

R2
f (ω)dω + O(ε2),

where the last step uses the Cauchy–Schwarz inequality. From Lemma 2 and (47),
it follows that

lim sup
ε↓0

|∫R

∑∞
k=−∞ f1(B

−1(2πk
τ2

)
)
∫ 2π(k+1)

2πk e−iτ1Hε(τ1, τ2) dτ1 dτ2|√
V (εx1)V (εy1)

= 0.

Together with (44) and (45), this limit implies

lim sup
ε↓0

cov1{Z(0) − Z(εx1),Z(y0) − Z(y0 + εy1)}√
V (εx1)V (εy1)

= 0,

which together with (43) and Lemma 2, implies limε↓0 cov{Wε1,Wε4} = 0.
Theorem 2 applies to ordinary kriging as well. Specifically, Z(εx1) is an asymp-

totically optimal linear predictor of Z(0) based on Z(Nε ∪ Fε) when the mean of
Z is assumed to be 0, so since it is a linear unbiased predictor when the mean is
an unknown constant, Z(εx1) must also be asymptotically optimal with respect to
this more restricted class of predictors.

Acknowledgment. The author thanks Steven Lalley for help with the proof of
Theorem 2.
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