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We consider the problem of robustly predicting as well as the best linear
combination of d given functions in least squares regression, and variants of
this problem including constraints on the parameters of the linear combina-
tion. For the ridge estimator and the ordinary least squares estimator, and their
variants, we provide new risk bounds of order d/n without logarithmic factor
unlike some standard results, where n is the size of the training data. We also
provide a new estimator with better deviations in the presence of heavy-tailed
noise. It is based on truncating differences of losses in a min–max frame-
work and satisfies a d/n risk bound both in expectation and in deviations.
The key common surprising factor of these results is the absence of exponen-
tial moment condition on the output distribution while achieving exponential
deviations. All risk bounds are obtained through a PAC-Bayesian analysis
on truncated differences of losses. Experimental results strongly back up our
truncated min–max estimator.

1. Introduction.

Our statistical task. Let Z1 = (X1, Y1), . . . ,Zn = (Xn,Yn) be n ≥ 2 pairs of
input–output and assume that each pair has been independently drawn from the
same unknown distribution P . Let X denote the input space and let the output
space be the set of real numbers R, so that P is a probability distribution on the
product space Z � X ×R. The target of learning algorithms is to predict the output
Y associated with an input X for pairs Z = (X,Y ) drawn from the distribution P .
The quality of a (prediction) function f : X → R is measured by the least squares
risk:

R(f ) � EZ∼P {[Y − f (X)]2}.
Through the paper, we assume that the output and all the prediction functions we
consider are square integrable. Let � be a closed convex set of Rd , and ϕ1, . . . , ϕd

be d prediction functions. Consider the regression model

F =
{
fθ =

d∑
j=1

θjϕj ; (θ1, . . . , θd) ∈ �

}
.
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The best function f ∗ in F is defined by

f ∗ =
d∑

j=1

θ∗
j ϕj ∈ arg min

f ∈F
R(f ).

Such a function always exists but is not necessarily unique. Besides, it is unknown
since the probability generating the data is unknown.

We will study the problem of predicting (at least) as well as function f ∗. In other
words, we want to deduce from the observations Z1, . . . ,Zn a function f̂ having
with high probability a risk bounded by the minimal risk R(f ∗) on F plus a small
remainder term, which is typically of order d/n up to a possible logarithmic factor.
Except in particular settings (e.g., � is a simplex and d ≥ √

n), it is known that the
convergence rate d/n cannot be improved in a minimax sense (see [11] and [12]
for related results).

More formally, the target of the paper is to develop estimators f̂ for which the
excess risk is controlled in deviations, that is, such that for an appropriate constant
κ > 0, for any ε > 0, with probability at least 1 − ε,

R(f̂ ) − R(f ∗) ≤ κ[d + log(ε−1)]
n

.(1.1)

Note that by integrating the deviations [using the identity E(W) = ∫+∞
0 P(W >

t) dt which holds true for any non-negative random variable W ], inequality (1.1)
implies

ER(f̂ ) − R(f ∗) ≤ κ(d + 1)

n
.(1.2)

In this work, we do not assume that the function

f (reg) :x 
→ E[Y |X = x],
which minimizes the risk R among all possible measurable functions, belongs to
the model F . So we might have f ∗ �= f (reg) and in this case, bounds of the form

ER(f̂ ) − R
(
f (reg))≤ C

[
R(f ∗) − R

(
f (reg))]+ κ

d

n
(1.3)

with a constant C larger than 1, do not even ensure that ER(f̂ ) tends to R(f ∗)
when n goes to infinity. These kinds of bounds with C > 1 have been developed
to analyze nonparametric estimators using linear approximation spaces, in which
case the dimension d is a function of n chosen so that the bias term R(f ∗) −
R(f (reg)) has the order d/n of the estimation term (see [3, 6, 10] and references
within). Here we intend to assess the generalization ability of the estimator even
when the model is misspecified [namely, when R(f ∗) > R(f (reg))]. Moreover, we
do not assume either that Y − f (reg)(X) and X are independent or that Y has a
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subexponential tail distribution: for the moment, we just assume that Y − f ∗(X)

admits a finite second-order moment in order that the risk of f ∗ is finite.
Several risk bounds with C = 1 can be found in the literature. A survey on

these bounds is given in [1], Section 1. Let us mention here the closest bound
to what we are looking for. From the work of Birgé and Massart [4], we may
derive the following risk bound for the empirical risk minimizer on a L∞ ball (see
Appendix B of [1]).

THEOREM 1.1. Assume that F has a diameter H for L∞-norm, that is, for
any f1, f2 in F , supx∈X |f1(x) − f2(x)| ≤ H and there exists a function f0 ∈ F
satisfying the exponential moment condition

for any x ∈ X E{exp[A−1|Y − f0(X)|]|X = x} ≤ M(1.4)

for some positive constants A and M . Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖∑d
j=1 θjφj‖2∞
‖θ‖2∞

,

where the infimum is taken with respect to all possible orthonormal bases of F for
the dot product (f1, f2) 
→ E[f1(X)f2(X)] (when the set F admits no basis with
exactly d functions, we set B̃ = +∞). Then the empirical risk minimizer satisfies
for any ε > 0, with probability at least 1 − ε,

R
(
f̂ (erm))− R(f ∗) ≤ κ(A2 + H 2)

d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

where κ is a positive constant depending only on M .

The theorem gives exponential deviation inequalities of order at worse d log(n/

d)/n and, asymptotically, when n goes to infinity, of order d/n. This work will
provide similar results under weaker assumptions on the output distribution.

Notation. When � = Rd , the function f ∗ and the space F will be written f ∗
lin

and Flin to emphasize that F is the whole linear space spanned by ϕ1, . . . , ϕd :

Flin = span{ϕ1, . . . , ϕd} and f ∗
lin ∈ arg min

f ∈Flin

R(f ).

The Euclidean norm will simply be written as ‖ · ‖, and 〈·, ·〉 will be its associated
inner product. We will consider the vector valued function ϕ : X → Rd defined by
ϕ(X) = [ϕk(X)]dk=1, so that for any θ ∈ �, we have

fθ (X) = 〈θ,ϕ(X)〉.
The Gram matrix is the d × d-matrix Q = E[ϕ(X)ϕ(X)T ]. The empirical risk of
a function f is r(f ) = 1

n

∑n
i=1[f (Xi) − Yi]2 and for λ ≥ 0, the ridge regression

estimator on F is defined by f̂ (ridge) = f
θ̂(ridge) with

θ̂ (ridge) ∈ arg min
θ∈�

{r(fθ ) + λ‖θ‖2},
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where λ is some non-negative real parameter. In the case when λ = 0, the ridge
regression f̂ (ridge) is nothing but the empirical risk minimizer f̂ (erm). Besides, the
empirical risk minimizer when � = Rd is also called the ordinary least squares
estimator, and will be denoted by f̂ (ols).

In the same way, we introduce the optimal ridge function optimizing the ex-
pected ridge risk: f̃ = fθ̃ with

θ̃ ∈ arg min
θ∈�

{R(fθ ) + λ‖θ‖2}.(1.5)

Finally, let Qλ = Q + λI be the ridge regularization of Q, where I is the identity
matrix.

Why should we be interested in this task? There are four main reasons. First,
we intend to provide a nonasymptotic analysis of the parametric linear least
squares method. Second, the task is central in nonparametric estimation for linear
approximation spaces (piecewise polynomials based on a regular partition, wavelet
expansions, trigonometric polynomials. . .).

Third, it naturally arises in two-stage model selection. Precisely, when facing
the data, the statistician often has to choose several models which are likely to be
relevant for the task. These models can be of similar structure (like embedded balls
of functional spaces) or, on the contrary, of a very different nature (e.g., based on
kernels, splines, wavelets or on a parametric approach). For each of these models,
we assume that we have a learning scheme which produces a “good” prediction
function in the sense that it predicts as well as the best function of the model up
to some small additive term. Then the question is to decide on how we use or
combine/aggregate these schemes. One possible answer is to split the data into
two groups, use the first group to train the prediction function associated with each
model, and finally use the second group to build a prediction function which is
as good as (i) the best of the previously learned prediction functions, (ii) the best
convex combination of these functions or (iii) the best linear combination of these
functions. This point of view has been introduced by Nemirovski in [8] and optimal
rates of aggregation are given in [11] and the references within. This paper focuses
more on the linear aggregation task [even if (ii) enters in our setting], assuming
implicitly here that the models are given in advance and are beyond our control
and that the goal is to combine them appropriately.

Finally, in practice, the noise distribution often departs from the normal dis-
tribution. In particular, it can exhibit much heavier tails, and consequently induce
highly non-Gaussian residuals. It is then natural to ask whether classical estimators
such as the ridge regression and the ordinary least squares estimator are sensitive
to this type of noise, and whether we can design more robust estimators.

Outline and contributions. Section 2 provides a new analysis of the ridge es-
timator and the ordinary least squares estimator, and their variants. Theorem 2.1
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provides an asymptotic result for the ridge estimator, while Theorem 2.2 gives a
nonasymptotic risk bound for the empirical risk minimizer, which is complemen-
tary to the theorems put in the survey section. In particular, the result has the benefit
to hold for the ordinary least squares estimator and for heavy-tailed outputs. We
show quantitatively that the ridge penalty leads to an implicit reduction of the input
space dimension. Section 3 shows a nonasymptotic d/n exponential deviation risk
bound under weak moment conditions on the output Y and on the d-dimensional
input representation ϕ(X).

The main contribution of this paper is to show through a PAC-Bayesian analysis
on truncated differences of losses that the output distribution does not need to have
bounded conditional exponential moments in order for the excess risk of appro-
priate estimators to concentrate exponentially. Our results tend to say that trunca-
tion leads to more robust algorithms. Local robustness to contamination is usually
invoked to advocate the removal of outliers, claiming that estimators should be
made insensitive to small amounts of spurious data. Our work leads to a different
theoretical explanation. The observed points having unusually large outputs when
compared with the (empirical) variance should be down-weighted in the estimation
of the mean, since they contain less information than noise. In short, huge outputs
should be truncated because of their low signal-to-noise ratio.

2. Ridge regression and empirical risk minimization. We recall the defini-
tion

F =
{
fθ =

d∑
j=1

θjϕj ; (θ1, . . . , θd) ∈ �

}
,

where � is a closed convex set, not necessarily bounded (so that � = Rd is al-
lowed). In this section we provide exponential deviation inequalities for the empir-
ical risk minimizer and the ridge regression estimator on F under weak conditions
on the tail of the output distribution.

The most general theorem which can be obtained from the route followed in
this section is Theorem 1.5 of the supplementary material [2]. It is expressed in
terms of a series of empirical bounds. The first deduction we can make from this
technical result is of an asymptotic nature. It is stated under weak hypotheses,
taking advantage of the weak law of large numbers.

THEOREM 2.1. For λ ≥ 0, let f̃ be its associated optimal ridge function
[see (1.5)]. Let us assume that

E[‖ϕ(X)‖4] < +∞(2.1)

and

E{‖ϕ(X)‖2[f̃ (X) − Y ]2} < +∞.(2.2)
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Let ν1 > · · · > νd be the eigenvalues of the Gram matrix Q = E[ϕ(X)ϕ(X)T ], and
let Qλ = Q + λI be the ridge regularization of Q. Let us define the effective ridge
dimension

D =
d∑

i=1

νi

νi + λ
1(νi > 0) = Tr[(Q + λI)−1Q] = E[‖Q−1/2

λ ϕ(X)‖2].

When λ = 0, D is equal to the rank of Q and is otherwise smaller. For any ε > 0,
there is nε , such that for any n ≥ nε , with probability at least 1 − ε,

R
(
f̂ (ridge))+ λ

∥∥θ̂ (ridge)∥∥2

≤ min
θ∈�

{R(fθ ) + λ‖θ‖2}

+ 30E{‖Q−1/2
λ ϕ(X)‖2[f̃ (X) − Y ]2}
E{‖Q−1/2

λ ϕ(X)‖2}
D

n

+ 1,000 sup
v∈Rd

E[〈v,ϕ(X)〉2[f̃ (X) − Y ]2]
E(〈v,ϕ(X)〉2) + λ‖v‖2

log(3ε−1)

n

≤ min
θ∈�

{R(fθ ) + λ‖θ‖2}

+ ess sup E{[Y − f̃ (X)]2|X}30D + 1,000 log(3ε−1)

n
.

PROOF. See Section 1 of the supplementary material [2]. �

This theorem shows that the ordinary least squares estimator (obtained when
� = Rd and λ = 0), as well as the empirical risk minimizer on any closed convex
set, asymptotically reaches a d/n speed of convergence under very weak hypothe-
ses. It shows also the regularization effect of the ridge regression. There emerges
an effective dimension D, where the ridge penalty has a threshold effect on the
eigenvalues of the Gram matrix.

Let us remark that the second inequality stated in the theorem provides a sim-
plified bound which makes sense only when

ess sup E{[Y − f̃ (X)]2|X} < +∞
implying that ‖f̃ − f (reg)‖∞ < +∞. We chose to state the first inequality as well,
since it does not require such a tight relationship between f̃ and f (reg).

On the other hand, the weakness of this result is its asymptotic nature: nε may be
arbitrarily large under such weak hypotheses, and this happens even in the simplest
case of the estimation of the mean of a real-valued random variable by its empirical
mean [which is the case when d = 1 and ϕ(X) ≡ 1].

Let us now give some nonasymptotic rate under stronger hypotheses and for the
empirical risk minimizer (i.e., λ = 0).
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THEOREM 2.2. Assume that E{[Y − f ∗(X)]4} < +∞ and

B = sup
f ∈span{ϕ1,...,ϕd }−{0}

‖f ‖2∞/E[f (X)2] < +∞.

Consider the (unique) empirical risk minimizer f̂ (erm) = f
θ̂(erm) :x 
→ 〈θ̂ (erm),

ϕ(x)〉 on F for which θ̂ (erm) ∈ span{ϕ(X1), . . . , ϕ(Xn)}.1 For any values of ε and
n such that 2/n ≤ ε ≤ 1 and

n > 1280B2
[
3Bd + log(2/ε) + 16B2d2

n

]

with probability at least 1 − ε,

R
(
f̂ (erm))− R(f ∗)

(2.3)

≤ 1920B

√
E{[Y − f ∗(X)]4}

[
3Bd + log(2ε−1)

n
+
(

4Bd

n

)2]
.

PROOF. See Section 1 of the supplementary material [2]. �

It is quite surprising that the traditional assumption of uniform boundedness
of the conditional exponential moments of the output can be replaced by a sim-
ple moment condition for reasonable confidence levels (i.e., ε ≥ 2/n). For highest
confidence levels, things are more tricky since we need to control with high prob-
ability a term of order [r(f ∗) − R(f ∗)]d/n (see Theorem 1.6). The cost to pay to
get the exponential deviations under only a fourth-order moment condition on the
output is the appearance of the geometrical quantity B as a multiplicative factor.

To better understand the quantity B , let us consider two cases. First, con-
sider that the input is uniformly distributed on X = [0,1], and that the functions
ϕ1, . . . , ϕd belong to the Fourier basis. Then the quantity B behaves like a numer-
ical constant. On the contrary, if we take ϕ1, . . . , ϕd as the first d elements of a
wavelet expansion, the more localized wavelets induce high values of B , and B

scales like
√

d , meaning that Theorem 2.2 fails to give a d/n-excess risk bound in
this case. This limitation does not appear in Theorem 2.1.

To conclude, Theorem 2.2 is limited in at least four ways: it involves the quan-
tity B , it applies only to uniformly bounded ϕ(X), the output needs to have a fourth
moment, and the confidence level should be as great as ε ≥ 2/n. These limitations
will be addressed in the next section by considering a more involved algorithm.

3. A min–max estimator for robust estimation. This section provides an
alternative to the empirical risk minimizer with nonasymptotic exponential risk

1When F = Flin, we have θ̂ (erm) = X+Y, with X = (ϕj (Xi))1≤i≤n,1≤j≤d , Y = [Yj ]nj=1 and X+
is the Moore–Penrose pseudoinverse of X.
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deviations of order d/n for any confidence level. Moreover, we will assume only
a second-order moment condition on the output and cover the case of unbounded
inputs, the requirement on ϕ(X) being only a finite fourth-order moment. On the
other hand, we assume here that the set � of the vectors of coefficients is bounded.
The computability of the proposed estimator and numerical experiments are dis-
cussed at the end of the section.

3.1. The min–max estimator and its theoretical guarantee. Let α > 0, λ ≥ 0,
and consider the truncation function:

ψ(x) =
⎧⎨
⎩

− log(1 − x + x2/2), 0 ≤ x ≤ 1,
log(2), x ≥ 1,
−ψ(−x), x ≤ 0.

For any θ, θ ′ ∈ �, introduce

D(θ, θ ′) = nαλ(‖θ‖2 − ‖θ ′‖2) +
n∑

i=1

ψ
(
α[Yi − fθ (Xi)]2 − α[Yi − fθ ′(Xi)]2).

We recall that f̃ = fθ̃ with θ̃ ∈ arg minθ∈�{R(fθ ) + λ‖θ‖2}, and that the effective
ridge dimension is defined as

D = E[‖Q−1/2
λ ϕ(X)‖2] = Tr[(Q + λI)−1Q] =

d∑
i=1

νi

νi + λ
1(νi > 0) ≤ d,

where ν1 ≥ · · · ≥ νd are the eigenvalues of the Gram matrix Q = E[ϕ(X)ϕ(X)T ].
Let us assume in this section that

E{[Y − f̃ (X)]4} < +∞,(3.1)

and that for any j ∈ {1, . . . , d},
E[ϕj (X)4] < +∞.(3.2)

Define

S = {f ∈ Flin : E[f (X)2] = 1},(3.3)

σ =
√

E{[Y − f̃ (X)]2} =
√

R(f̃ ),(3.4)

χ = max
f ∈S

√
E[f (X)4],(3.5)

κ =
√

E{[ϕ(X)T Q−1
λ ϕ(X)]2}

E[ϕ(X)T Q−1
λ ϕ(X)] ,(3.6)

κ ′ =
√

E{[Y − f̃ (X)]4}
E{[Y − f̃ (X)]2} =

√
E{[Y − f̃ (X)]4}

σ 2 ,(3.7)

T = max
θ∈�,θ ′∈�

√
λ‖θ − θ ′‖2 + E{[fθ (X) − fθ ′(X)]2}.(3.8)
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THEOREM 3.1. Let us assume that (3.1) and (3.2) hold. For some numerical
constants c and c′, for

n > cκχD

by taking

α = 1

2χ [2√
κ ′σ + √

χT ]2

(
1 − cκχD

n

)
(3.9)

for any estimator f
θ̂

satisfying θ̂ ∈ � a.s., for any ε > 0 and any λ ≥ 0, with
probability at least 1 − ε, we have

R(f
θ̂
) + λ‖θ̂‖2 ≤ min

θ∈�
{R(fθ ) + λ‖θ‖2}

+ 1

nα

(
max
θ1∈�

D(θ̂ , θ1) − inf
θ∈�

max
θ1∈�

D(θ, θ1)
)

+ cκκ ′Dσ 2

n

+ 8χ

(
log(ε−1)

n
+ c′κ2D2

n2

) [2√
κ ′σ + √

χT ]2

1 − cκχD/n
.

PROOF. See Section 2 of the supplementary material [2]. �

By choosing an estimator such that

max
θ1∈�

D(θ̂ , θ1) < inf
θ∈�

max
θ1∈�

D(θ, θ1) + σ 2 D

n
,

Theorem 3.1 provides a nonasymptotic bound for the excess (ridge) risk with a
D/n convergence rate and an exponential tail even when neither the output Y nor
the input vector ϕ(X) have exponential moments. This stronger nonasymptotic
bound compared to the bounds of the previous section comes at the price of re-
placing the empirical risk minimizer by a more involved estimator. Section 3.3
provides a way of computing it approximately.

Theorem 3.1 requires a fourth-order moment condition on the output. In fact,
one can replace (3.1) by the following second-order moment condition on the out-
put: for any j ∈ {1, . . . , d},

E{ϕj (X)2[Y − f̃ (X)]2} < +∞,

and still obtain a D/n excess risk bound. This comes at the price of a more
lengthy formula, where terms with κ ′ become terms involving the quantities
maxf ∈S E{f (X)2[Y − f̃ (X)]2} and E{ϕ(X)T Q−1ϕ(X)[Y − f̃ (X)]2}. (This can
be seen by not using Cauchy–Schwarz’s inequality in (2.5) and (2.6) of the sup-
plementary material [2].)
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3.2. The value of the uncentered kurtosis coefficients χ and κ . We see that
the speed of convergence of the excess risk in Theorem 3.1 (page 2774) depends
on three kurtosis-like coefficients, χ , κ and κ ′. The third, κ ′, is concerned with
the noise, conceived as the difference between the observed output Y and its best
explanation f̃ (X) according to the ridge criterion. The aim of this section is to
study the order of magnitude of the two other coefficients χ and κ , which are
related to the design distribution,

χ = sup{E(〈u,ϕ(X)〉4)1/2;u ∈ Rd,E(〈u,ϕ(X)〉2) ≤ 1}
and

κ = D−1E(‖Q−1/2
λ ϕ(X)‖4)1/2.

We will review a few typical situations.

3.2.1. Gaussian design. Let us assume first that ϕ(X) is a multivariate cen-
tered Gaussian random variable. In this case, its covariance matrix coincides with
its Gram matrix Q0 and can be written as

Q0 = U−1 Diag(νi, i = 1, . . . , n)U,

where U is an orthogonal matrix. Using U , we can introduce W = UQ
−1/2
λ ϕ(X).

It is also a Gaussian vector, with covariance Diag[νi/(λ+νi), i = 1, . . . , d]. More-
over, since U is orthogonal, ‖W‖ = ‖Q−1/2

λ ϕ(X)‖, and since (Wi,Wj ) are uncor-
related when i �= j , they are independent, leading to

E(‖Q−1/2
λ ϕ(X)‖4) = E

[(
d∑

i=1

W 2
i

)2]

=
d∑

i=1

E(W 4
i ) + 2

∑
1≤i<j≤d

E(W 2
i )E(W 2

j )

= D2 + 2D2,

where D2 =∑d
i=1

ν2
i

(λ+νi)
2 . Thus, in this case,

κ =
√

1 + 2D2D−2 ≤
√

1 + 2ν1

(λ + ν1)D
≤ √

3.

Moreover, as for any value of u, 〈u,ϕ(X)〉 is a Gaussian random variable, χ = √
3.

This situation arises in compressed sensing using random projections on Gaus-
sian vectors. Specifically, assume that we want to recover a signal f ∈ RM

that we know to be well approximated by a linear combination of d basis
vectors f1, . . . , fd . We measure n � M projections of the signal f on i.i.d.
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M-dimensional standard normal random vectors X1, . . . ,Xn :Yi = 〈f,Xi〉, i =
1, . . . , n. Then, recovering the coefficient θ1, . . . , θd such that f = ∑d

j=1 θjfj

is associated to the least squares regression problem, Y ≈ ∑d
j=1 θjϕj (X), with

ϕj (x) = 〈fj , x〉, and X having a M-dimensional standard normal distribution.

3.2.2. Independent design. Let us study now the case when almost surely
ϕ1(X) ≡ 1 and ϕ2(X), . . . , ϕd(X) are independent. To compute χ , we can assume
without loss of generality that ϕ2(X), . . . , ϕd(X) are centered and of unit variance,
since this renormalization is precisely the linear transformation that turns the Gram
matrix into the identity matrix. Let us introduce

χ∗ = max
j=1,...,d

E[ϕj (X)4]1/2

E[ϕj (X)2]
with the convention 0

0 = 0. A computation similar to the one made in the Gaussian
case shows that

κ ≤
√

1 + (χ2∗ − 1)D2D−2 ≤
√

1 + (χ2∗ − 1)ν1

(λ + ν1)D
≤ χ∗.

Moreover, for any u ∈ Rd such that ‖u‖ = 1,

E(〈u,ϕ(X)〉4) =
d∑

i=1

u4
i E(ϕi(X)4) + 6

∑
1≤i<j≤d

u2
i u

2
jE[ϕi(X)2]E[ϕj (X)2]

+ 4
d∑

i=2

u1u
3
i E[ϕi(X)3]

≤ χ2∗
d∑

i=1

u4
i + 6

∑
i<j

u2
i u

2
j + 4χ3/2∗

d∑
i=2

|u1ui |3

≤ sup
u∈Rd+,‖u‖=1

(χ2∗ − 3)

d∑
i=1

u4
i + 3

(
d∑

i=1

u2
i

)2

+ 4χ3/2∗ u1

d∑
i=2

u3
i

≤ 33/2

4
χ3/2∗ +

⎧⎪⎨
⎪⎩

χ2∗ , χ2∗ ≥ 3,

3 + χ2∗ − 3

d
, 1 ≤ χ2∗ < 3.

Thus, in this case,

χ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ∗
(

1 + 33/2

4
√

χ∗

)1/2

, χ∗ ≥ √
3,

(
3 + 33/2

4
χ

3/2∗ + χ2∗ − 3

d

)1/2

, 1 ≤ χ∗ <
√

3.
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If, moreover, the random variables ϕ2(X), . . . , ϕd(X) are not skewed, in the
sense that E[ϕj (X)3] = 0, j = 2, . . . , d , then⎧⎪⎨

⎪⎩
χ = χ∗, χ∗ ≥ √

3,

χ ≤
(

3 + χ2∗ − 3

d

)1/2

, 1 ≤ χ∗ <
√

3.

3.2.3. Bounded design. Let us assume now that the distribution of ϕ(X) is
almost surely bounded and nearly orthogonal. These hypotheses are suited to the
study of regression in usual function bases, like the Fourier basis, wavelet bases,
histograms or splines.

More precisely, let us assume that P(‖ϕ(X)‖ ≤ B) = 1 and that for some posi-
tive constant A and any u ∈ Rd ,

‖u‖ ≤ AE[〈u,ϕ(X)〉2]1/2.

This appears as some stability property of the partial basis ϕj with respect to the
L2-norm, since it can also be written as

d∑
j=1

u2
j ≤ A2E

[(
d∑

j=1

ujϕj (X)

)2]
, u ∈ Rd .

In terms of eigenvalues, A−2 can be taken to be the lowest eigenvalue νd of the
Gram matrix Q. The value of A can also be deduced from a condition saying that
ϕj are nearly orthogonal in the sense that

E[ϕj (X)2] ≥ 1 and |E[ϕj (X)ϕk(X)]| ≤ 1 − A−2

d − 1
.

In this situation, the chain of inequalities

E[〈u,ϕ(X)〉4] ≤ ‖u‖2B2E[〈u,ϕ(X)〉2] ≤ A2B2E[〈u,ϕ(X)〉2]2

shows that χ ≤ AB . On the other hand,

E[‖Q−1/2
λ ϕ(X)‖4]

= E[sup{〈u,ϕ(X)〉4;u ∈ Rd,‖Q1/2
λ u‖ ≤ 1}]

≤ E[sup{‖u‖2B2〈u,ϕ(X)〉2; ‖Q1/2
λ u‖ ≤ 1}]

≤ E[sup{(1 + λA2)−1A2B2‖Q1/2
λ u‖2〈u,ϕ(X)〉2; ‖Q1/2

λ u‖ ≤ 1}]

≤ A2B2

1 + λA2 E[‖Q−1/2
λ ϕ(X)‖2] = A2B2D

1 + λA2

showing that κ ≤ AB√
(1+λA2)D

.
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For example, if X is the uniform random variable on the unit interval and ϕj ,
j = 1, . . . , d , are any functions from the Fourier basis [meaning that they are of
the form

√
2 cos(2kπX) or

√
2 sin(2kπX)], then A = 1 (because they form an

orthogonal system) and B ≤ √
2d .

A localized basis like the evenly spaced histogram basis of the unit interval

ϕj (x) = √
d1

(
x ∈ [(j − 1)/d, j/d[), j = 1, . . . , d,

will also be such that A = 1 and B = √
d . Similar computations could be made for

other local bases, like wavelet bases.
Note that when χ is of order

√
d , and κ and κ ′ of order 1, Theorem 3.1 means

that the excess risk of the min–max truncated estimator f̂ is upper bounded by
Cd/n provided that n ≥ Cd2 for a large enough constant C.

3.2.4. Adaptive design planning. Let us discuss the case when X is some ob-
served random variable whose distribution is only approximately known. Namely,
let us assume that (ϕj )

d
j=1 is some basis of functions in L2[P̃] with some known

coefficient χ̃ , where P̃ is an approximation of the true distribution of X in the sense
that the density of the true distribution P of X with respect to the distribution P̃

is in the range (η−1, η). In this situation, the coefficient χ satisfies the inequality
χ ≤ η3/2χ̃ . Indeed,

EX∼P[〈u,ϕ(X)〉4] ≤ ηE
X∼P̃

[〈u,ϕ(X)〉4]
≤ ηχ̃2E

X∼P̃
[〈u,ϕ(X)〉2]2

≤ η3χ̃2EX∼P[〈u,ϕ(X)〉2]2.

In the same way, κ ≤ η7/2κ̃ . Indeed,

E[sup{〈u,ϕ(X)〉4;E(〈u,ϕ(X)〉2) ≤ 1}]
≤ ηẼ[sup{〈u,ϕ(X)〉4; Ẽ(〈u,ϕ(X)〉2) ≤ η}]
≤ η3Ẽ[sup{〈u,ϕ(X)〉4; Ẽ(〈u,ϕ(X)〉2) ≤ 1}]
≤ η3κ̃2Ẽ[sup{〈u,ϕ(X)〉2; Ẽ(〈u,ϕ(X)〉2) ≤ 1}]2

≤ η7κ̃2E[sup{〈u,ϕ(X)〉2;E(〈u,ϕ(X)〉2) ≤ 1}]2.

Let us conclude this section with some scenario for the case when X is a real-
valued random variable. Let us consider the distribution function of P̃,

F̃ (x) = P̃(X ≤ x).

Then, if P̃ has no atoms, the distribution of F̃ (X) would be uniform on (0,1)

if X were distributed according to P̃. In other words, P̃ ◦ F̃−1 = U, the uniform
distribution on the unit interval. Starting from some suitable partial basis (ϕj )

d
j=1
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of L2[(0,1),U] like the ones discussed above, we can build a basis for our problem
as

ϕ̃j (X) = ϕj [F̃ (X)].
Moreover, if P is absolutely continuous with respect to P̃ with density g, then P ◦
F̃−1 is absolutely continuous with respect to P̃ ◦ F̃−1 = U, with density g ◦ F̃−1,
and, of course, the fact that g takes values in (η−1, η) implies the same property
for g ◦ F̃−1. Thus, if χ̃ and κ̃ are the coefficients corresponding to ϕj (U) when
U is the uniform random variable on the unit interval, then the true coefficient χ

[corresponding to ϕ̃j (X)] will be such that χ ≤ η3/2χ̃ and κ ≤ η7/2κ̃ .

3.3. Computation of the estimator. For ease of description of the algorithm,
we will write X for ϕ(X), which is equivalent to considering without loss of gener-
ality that the input space is Rd and that the functions ϕ1, . . . , ϕd are the coordinate
functions. Therefore, the function fθ maps an input x to 〈θ, x〉. Let us introduce

Li(θ) = α(〈θ,Xi〉 − Yi)
2.

For any subset of indices I ⊂ {1, . . . , n}, let us define

rI (θ) = λ‖θ‖2 + 1

α|I |
∑
i∈I

Li(θ).

We suggest the following heuristics to compute an approximation of

arg min
θ∈�

sup
θ ′∈�

D(θ, θ ′):

• Start from I1 = {1, . . . , n} with the ordinary least squares estimate

θ̂1 = arg min
Rd

rI1 .

• At step number k, compute

Q̂k = 1

|Ik|
∑
i∈Ik

XiX
T
i .

• Consider the sets

Jk,1(η) = {
i ∈ Ik :Li(θ̂k)X

T
i Q̂−1

k Xi

(
1 +

√
1 + [Li(θ̂k)]−1

)2
< η

}
,

where Q̂−1
k is the (pseudo-)inverse of the matrix Q̂k .

• Let us define

θk,1(η) = arg min
Rd

rJk,1(η),

Jk,2(η) = {i ∈ Ik : |Li(θk,1(η)) − Li(θ̂k)| ≤ 1},



2780 J.-Y. AUDIBERT AND O. CATONI

θk,2(η) = arg min
Rd

rJk,2(η),

(ηk, �k) = arg min
η∈R+,�∈{1,2}

max
j=1,...,k

D(θk,�(η), θ̂j ),

Ik+1 = Jk,�k
(ηk),

θ̂k+1 = θk,�k
(ηk).

• Stop when

max
j=1,...,k

D(θ̂k+1, θ̂j ) ≥ 0,

and set θ̂ = θ̂k as the final estimator of θ̃ .

Note that there will be at most n steps, since Ik+1 � Ik and in practice much less in
this iterative scheme. Let us give some justification for this proposal. Let us notice
first that

D(θ + h, θ)

= nαλ(‖θ + h‖2 − ‖θ‖2)

+
n∑

i=1

ψ
(
α[2〈h,Xi〉(〈θ,Xi〉 − Yi) + 〈h,Xi〉2]).

Hopefully, θ̃ = arg minθ∈Rd (R(fθ ) + λ‖θ‖2) is in some small neighborhood of
θ̂k already, according to the distance defined by Q � Q̂k . So we may try to look
for improvements of θ̂k by exploring neighborhoods of θ̂k of increasing sizes with
respect to some approximation of the relevant norm ‖θ‖2

Q = E[〈θ,X〉2].
Since the truncation function ψ is constant on (−∞,−1] and [1,+∞), the

map θ 
→ D(θ, θ̂k) induces a decomposition of the parameter space into cells cor-
responding to different sets I of examples. Indeed, such a set I is associated to the
set CI of θ such that Li(θ)−Li(θ̂k) < 1 if and only if i ∈ I . Although this may not
be the case, we will do as if the map θ 
→ D(θ, θ̂k) restricted to the cell CI reached
its minimum at some interior point of CI , and approximates this minimizer by the
minimizer of rI .

The idea is to remove first the examples which will become inactive in the clos-
est cells to the current estimate θ̂k . The cells for which the contribution of example
number i is constant are delimited by at most four parallel hyperplanes.

It is easy to see that the square of the inverse of the distance of θ̂k to the closest
of these hyperplanes is equal to

1

α
XT

i Q̂−1
k XiLi(θ̂k)

(
1 +

√
1 + 1

Li(θ̂k)

)2

.
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Indeed, this distance is the infimum of ‖Q̂1/2
k h‖, where h is a solution of

〈h,Xi〉2 + 2〈h,Xi〉(〈θ̂k,Xi〉 − Yi) = 1

α
.

It is computed by considering h of the form h = ξ‖Q̂−1/2
k Xi‖−1Q̂−1

k Xi and solv-
ing an equation of order two in ξ .

This explains the proposed choice of Jk,1(η). Then a first estimate θk,1(η) is
computed on the basis of this reduced sample, and the sample is readjusted to
Jk,2(η) by checking which constraints are really activated in the computation of
D(θk,1(η), θ̂k). The estimated parameter is then readjusted, taking into account the
readjusted sample (this could as a variant be iterated more than once). Now that we
have some new candidates θk,�(η), we check the minimax property against them
to elect Ik+1 and θ̂k+1. Since we did not check the minimax property against the
whole parameter set � = Rd , we have no theoretical warranty for this simplified
algorithm. Nonetheless, similar computations to what we did could prove that we
are close to solving minj=1,...,k R(f

θ̂j
), since we checked the minimax property

on the reduced parameter set {θ̂j , j = 1, . . . , k}. Thus, the proposed heuristics are
capable of improving on the performance of the ordinary least squares estimator,
while being guaranteed not to degrade its performance significantly.

3.4. Synthetic experiments. In Section 3.4.1, we detail the different kinds of
noises we work with. Then, Sections 3.4.2, 3.4.3 and 3.4.4 describe the three types
of functional relationships between the input, the output and the noise involved in
our experiments. A motivation for choosing these input–output distributions was
the ability to compute exactly the excess risk, and thus to compare easily estima-
tors. Section 3.4.5 provides details about the implementation, its computational
efficiency and the main conclusions of the numerical experiments. Figures and
tables are postponed to the Appendix.

3.4.1. Noise distributions. In our experiments, we consider different types of
noise that are centered and with unit variance:

• the standard Gaussian noise, W ∼ N (0,1),
• a heavy-tailed noise defined by W = sign(V )/|V |1/q , with V ∼ N (0,1), a stan-

dard Gaussian random variable and q = 2.01 (the real number q is taken strictly
larger than 2 as for q = 2, the random variable W would not admit a finite sec-
ond moment).

• an asymmetric heavy-tailed noise defined by

W =
⎧⎨
⎩

|V |−1/q, if V > 0,

− q

q − 1
, otherwise,

with q = 2.01 with V ∼ N (0,1) a standard Gaussian random variable.
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• a mixture of a Dirac random variable with a low-variance Gaussian random
variable defined by, with probability p, W = √

(1 − ρ)/p, and with probability
1 − p, W is drawn from

N
(
−

√
p(1 − ρ)

1 − p
,

ρ

1 − p
− p(1 − ρ)

(1 − p)2

)
.

The parameter ρ ∈ [p,1] characterizes the part of the variance of W explained
by the Gaussian part of the mixture. Note that this noise admits exponential
moments, but for n of order 1/p, the Dirac part of the mixture generates low
signal-to-noise points.

3.4.2. Independent normalized covariates [INC(n, d)]. In INC(n, d), we con-
sider ϕ(X) = X, and the input–output pair is such that

Y = 〈θ∗,X〉 + σW,

where the components of X are independent standard normal distributions, θ∗ =
(10, . . . ,10)T ∈ Rd and σ = 10.

3.4.3. Highly correlated covariates [HCC(n, d)]. In HCC(n, d), we consider
ϕ(X) = X, and the input–output pair is such that

Y = 〈θ∗,X〉 + σW,

where X is a multivariate centered normal Gaussian with covariance matrix Q ob-
tained by drawing a (d, d)-matrix A of uniform random variables in [0,1] and by
computing Q = AAT , θ∗ = (10, . . . ,10)T ∈ Rd and σ = 10. So the only differ-
ence with the setting of Section 3.4.2 is the correlation between the covariates.

3.4.4. Trigonometric series [TS(n, d)]. Let X be a uniform random variable
on [0,1]. Let d be an even number. In TS(n, d), we consider

ϕ(X) = (cos(2πX), . . . , cos(dπX), sin(2πX), . . . , sin(dπX))T ,

and the input–output pair is such that

Y = 20X2 − 10X − 5
3 + σW

with σ = 10. One can check that this implies

θ∗ =
(

20

π2 , . . . ,
20

π2(d/2)2 ,−10

π
, . . . ,− 10

π(d/2)

)T

∈ Rd .
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3.4.5. Experiments.

Choice of the parameters and implementation details. The min–max truncated
algorithm has two parameters α and λ. In the subsequent experiments, we set the
ridge parameter λ to the natural default choice for it: λ = 0. For the truncation
parameter α, according to our analysis [see (3.9)], it roughly should be of order
1/σ 2 up to kurtosis coefficients. By using the ordinary least squares estimator,
we roughly estimate this value, and test values of α in a geometric grid (of 8
points) around it (with ratio 3). Cross-validation can be used to select the final α.
Nevertheless, it is computationally expensive and is significantly outperformed in
our experiments by the following simple procedure: start with the smallest α in the
geometric grid and increase it as long as θ̂ = θ1, that is, as long as we stop at the
end of the first iteration and output the empirical risk minimizer.

To compute θk,1(η) or θk,2(η), one needs to determine a least squares estimate
(for a modified sample). To reduce the computational burden, we do not want to
test all possible values of η (note that there are at most n values leading to different
estimates). Our experiments show that testing only three levels of η is sufficient.
Precisely, we sort the quantity

Li(θ̂k)X
T
i Q̂−1

k Xi

(
1 +

√
1 + [Li(θ̂k)]−1

)2
by decreasing order and consider η being the first, 5th and 25th value of the ordered
list. Overall, in our experiments, the computational complexity is approximately
fifty times larger than the one of computing the ordinary least squares estimator.

Results. The tables and figures have been gathered in the Appendix. Tables 1 and
2 give the results for the mixture noise. Tables 3, 4 and 5 provide the results for the
heavy-tailed noise and the standard Gaussian noise. Each line of the tables has been
obtained after 1,000 generations of the training set. These results show that the
min–max truncated estimator is often equal to the ordinary least squares estimator
f̂ (ols), while it ensures impressive consistent improvements when it differs from
f̂ (ols). In this latter case, the number of points that are not considered in f̂ , that is,
the number of points with low signal-to-noise ratio, varies a lot from 1 to 150 and
is often of order 30. Note that not only the points that we expect to be considered
as outliers (i.e., very large output points) are erased, and that these points seem to
be taken out by local groups: see Figures 1 and 2 in which the erased points are
marked by surrounding circles.

Besides, the heavier the noise tail is (and also the larger the variance of the noise
is), the more often the truncation modifies the initial ordinary least squares estima-
tor, and the more improvements we get from the min–max truncated estimator,
which also becomes much more robust than the ordinary least squares estimator
(see the confidence intervals in the tables).

Finally, we have also tested more traditional methods in robust regression,
namely, the M-estimators with Huber’s loss, L1-loss and Tukey’s bisquare influ-
ence function, and also the least trimmed squares estimator, the S-estimator and
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the MM-estimator (see [9, 13] and the references within). These methods rely on
diminishing the influence of points having “unreasonably” large residuals. They
were developed to handle training sets containing true outliers, that is, points
(X,Y ) not generated by the distribution P . This is not the case in our estima-
tion framework. By overweighting points having reasonably small residuals, these
methods are often biased even in settings where the noise is symmetric and the re-
gression function f (reg) :x 
→ E[Y |X = x] belongs to Flin (i.e., f (reg) = f ∗

lin), and
also even when there is no noise (but f (reg) /∈ f ∗

lin).
The worst results were obtained by the L1-loss, since estimating the (condi-

tional) median is here really different from estimating the (conditional) mean. The
MM-estimator and the M-estimators with Huber’s loss and Tukey’s bisquare influ-
ence function give good results as long as the signal-to-noise ratio is low. When
the signal-to-noise ratio is high, a lack of consistency drastically appears in part of
our simulations, showing that these methods are thus not suited for our estimation
framework.

The S-estimator is almost consistently improving on the ordinary least squares
estimator (in our simulations). However, when the signal-to-noise ratio is low (i.e.,
in the setting of the aforementioned simulations with σ = 10), the improvements
are much less significant than the ones of the min–max truncated estimator.

4. Main ideas of the proofs. The goal of this section is to explain the key
ingredients appearing in the proofs which both allow to obtain subexponential tails
for the excess risk under a nonexponential moment assumption and get rid of the
logarithmic factor in the excess risk bound.

4.1. Subexponential tails under a nonexponential moment assumption via trun-
cation. Let us start with the idea allowing us to prove exponential inequalities
under just a moment assumption (instead of the traditional exponential moment
assumption). To understand it, we can consider the (apparently) simplistic 1-
dimensional situation in which we have � = R and the marginal distribution of
ϕ1(X) is the Dirac distribution at 1. In this case, the risk of the prediction function
fθ is R(fθ ) = E[(Y − θ)2] = E[(Y − EY)2]+ (EY − θ)2, so that the least squares
regression problem boils down to the estimation of the mean of the output variable.
If we only assume that Y admits a finite second moment, say, E(Y 2) ≤ 1, it is not
clear whether for any ε > 0, it is possible to find θ̂ such that, with probability at
least 1 − 2ε,

R(f
θ̂
) − R(f ∗) = (

E(Y ) − θ̂
)2 ≤ c

log(ε−1)

n
(4.1)

for some numerical constant c. Indeed, from Chebyshev’s inequality, the trivial
choice θ̂ = 1

n

∑n
i=1 Yi just satisfies, with probability at least 1 − 2ε,

R(f
θ̂
) − R(f ∗) ≤ 1

nε
,
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which is far from the objective (4.1) for small confidence levels [consider ε =
exp(−√

n), e.g.]. The key idea is thus to average (soft) truncated values of the
outputs. This is performed by taking

θ̂ = 1

nλ

n∑
i=1

log
(

1 + λYi + λ2Y 2
i

2

)

with λ =
√

2 log(ε−1)
n

. Since we have

log E exp(nλθ̂) = n log
(

1 + λE(Y ) + λ2

2
E(Y 2)

)

≤ nλE(Y ) + n
λ2

2
,

the exponential Chebyshev’s inequality guarantees that with probability at least
1 − ε, we have nλ(θ̂ − E(Y )) ≤ nλ2/2 + log(ε−1), hence,

θ̂ − E(Y ) ≤
√

2 log(ε−1)

n
.

Replacing Y by −Y in the previous argument, we obtain that, with probability at
least 1 − ε, we have

nλ

{
E(Y ) + 1

nλ

n∑
i=1

log
(

1 − λYi + λ2Y 2
i

2

)}
≤ n

λ2

2
+ log(ε−1).

Since − log(1 + x + x2/2) ≤ log(1 − x + x2/2), this implies E(Y ) − θ̂ ≤√
2 log(ε−1)

n
. The two previous inequalities imply inequality (4.1) (for c = 2), show-

ing that subexponential tails are achievable even when we only assume that the
random variable admits a finite second moment (see [5] for more details on the
robust estimation of the mean of a random variable).

4.2. Localized PAC-Bayesian inequalities to eliminate a logarithm factor. Let
us first recall that the Kullback–Leibler divergence between distributions ρ and μ

defined on F is

K(ρ,μ) �

⎧⎨
⎩Ef ∼ρ log

[
dρ

dμ
(f )

]
, if ρ � μ,

+∞, otherwise,
(4.2)

where dρ
dμ

denotes as usual the density of ρ w.r.t. μ. For any real-valued (measur-
able) function h defined on F such that

∫
exp[h(f )]π(df ) < +∞, we define the
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distribution πh on F by its density:

dπh

dπ
(f ) = exp[h(f )]∫

exp[h(f ′)]π(df ′)
.(4.3)

The analysis of statistical inference generally relies on upper bounding the
supremum of an empirical process χ indexed by the functions in a model F . Con-
centration inequalities appear as a central tool to obtain these bounds. An alterna-
tive approach, called the PAC-Bayesian one, consists in using the entropic equality

E exp
(

sup
ρ∈M

{∫
ρ(df )χ(f ) − K(ρ,π ′)

})
=
∫

π ′(df )E exp(χ(f )),(4.4)

where M is the set of probability distributions on F .
Let ř : F → R be an observable process such that, for any f ∈ F , we have

E exp(χ(f )) ≤ 1

for χ(f ) = λ[R(f ) − ř(f )] and some λ > 0. Then (4.4) leads to, for any ε > 0,
with probability at least 1 − ε, for any distribution ρ on F , we have∫

ρ(df )R(f ) ≤
∫

ρ(df )ř(f ) + K(ρ,π ′) + log(ε−1)

λ
.(4.5)

The left-hand side quantity represents the expected risk with respect to the distri-
bution ρ. To get the smallest upper bound on this quantity, a natural choice of the
(posterior) distribution ρ is obtained by minimizing the right-hand side, that is,
by taking ρ = π ′

−λř
[with the notation introduced in (4.3)]. This distribution con-

centrates on functions f ∈ F for which ř(f ) is small. Without prior knowledge,
one may want to choose a prior distribution π ′ = π which is rather “flat” (e.g.,
the one induced by the Lebesgue measure in the case of a model F defined by
a bounded parameter set in some Euclidean space). Consequently, the Kullback–
Leibler divergence K(ρ,π ′), which should be seen as the complexity term, might
be excessively large.

To overcome the lack of prior information and the resulting high complexity
term, one can alternatively use a more “localized” prior distribution. Here we use
Gaussian distributions centered at the function of interest (e.g., the function f ∗),
and with covariance matrix proportional to the inverse of the Gram matrix Q.
The idea of using PAC-Bayesian inequalities with Gaussian prior and posterior
distributions goes back to Langford and Shawe-Taylor [7] in the context of linear
classification.

The detailed proofs of Theorems 2.1, 2.2 and 3.1 can be found in the supple-
mentary material [2].

APPENDIX: EXPERIMENTAL RESULTS FOR THE MIN–MAX
TRUNCATED ESTIMATOR (SECTION 3.3)
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TABLE 1
Comparison of the min–max truncated estimator f̂ with the ordinary least squares estimator f̂ (ols) for the mixture noise (see Section 3.4.1) with ρ = 0.1

and p = 0.005. In parenthesis, the 95%-confidence intervals for the estimated quantities

Nb of Nb of iter. with Nb of iter. with ER[(f̂ (ols))|f̂ �= f̂ (ols)] E[R(f̂ )|f̂ �= f̂ (ols)]
iterations R(f̂ ) �= R(f̂ (ols)) R(f̂ ) < R(f̂ (ols)) ER(f̂ (ols)) − R(f ∗) ER(f̂ ) − R(f ∗) −R(f ∗) −R(f ∗)

INC (n = 200, d = 1) 1,000 419 405 0.567 (±0.083) 0.178 (±0.025) 1.191 (±0.178) 0.262 (±0.052)

INC (n = 200, d = 2) 1,000 506 498 1.055 (±0.112) 0.271 (±0.030) 1.884 (±0.193) 0.334 (±0.050)

HCC (n = 200, d = 2) 1,000 502 494 1.045 (±0.103) 0.267 (±0.024) 1.866 (±0.174) 0.316 (±0.032)

TS (n = 200, d = 2) 1,000 561 554 1.069 (±0.089) 0.310 (±0.027) 1.720 (±0.132) 0.367 (±0.036)

INC (n = 1,000, d = 2) 1,000 402 392 0.204 (±0.015) 0.109 (±0.008) 0.316 (±0.029) 0.081 (±0.011)

INC (n = 1,000, d = 10) 1,000 950 946 1.030 (±0.041) 0.228 (±0.016) 1.051 (±0.042) 0.207 (±0.014)

HCC (n = 1,000, d = 10) 1,000 942 942 0.980 (±0.038) 0.222 (±0.015) 1.008 (±0.039) 0.203 (±0.015)

TS (n = 1,000, d = 10) 1,000 976 973 1.009 (±0.037) 0.228 (±0.017) 1.018 (±0.038) 0.217 (±0.016)

INC (n = 2,000, d = 2) 1,000 209 207 0.104 (±0.007) 0.078 (±0.005) 0.206 (±0.021) 0.082 (±0.012)

HCC (n = 2,000, d = 2) 1,000 184 183 0.099 (±0.007) 0.076 (±0.005) 0.196 (±0.023) 0.070 (±0.010)

TS (n = 2,000, d = 2) 1,000 172 171 0.101 (±0.007) 0.080 (±0.005) 0.206 (±0.020) 0.083 (±0.012)

INC (n = 2,000, d = 10) 1,000 669 669 0.510 (±0.018) 0.206 (±0.012) 0.572 (±0.023) 0.117 (±0.009)

HCC (n = 2,000, d = 10) 1,000 669 669 0.499 (±0.018) 0.207 (±0.013) 0.561 (±0.023) 0.125 (±0.011)

TS (n = 2,000, d = 10) 1,000 754 753 0.516 (±0.018) 0.195 (±0.013) 0.558 (±0.022) 0.131 (±0.011)
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TABLE 2
Comparison of the min–max truncated estimator f̂ with the ordinary least squares estimator f̂ (ols) for the mixture noise (see Section 3.4.1) with ρ = 0.4

and p = 0.005. In parenthesis, the 95%-confidence intervals for the estimated quantities

Nb of Nb of iter. with Nb of iter. with ER[(f̂ (ols))|f̂ �= f̂ (ols)] E[R(f̂ )|f̂ �= f̂ (ols)]
iterations R(f̂ ) �= R(f̂ (ols)) R(f̂ ) < R(f̂ (ols)) ER(f̂ (ols)) − R(f ∗) ER(f̂ ) − R(f ∗) −R(f ∗) −R(f ∗)

INC (n = 200, d = 1) 1,000 234 211 0.551 (±0.063) 0.409 (±0.042) 1.211 (±0.210) 0.606 (±0.110)

INC (n = 200, d = 2) 1,000 195 186 1.046 (±0.088) 0.788 (±0.061) 2.174 (±0.293) 0.848 (±0.118)

HCC (n = 200, d = 2) 1,000 222 215 1.028 (±0.079) 0.748 (±0.051) 2.157 (±0.243) 0.897 (±0.112)

TS (n = 200, d = 2) 1,000 291 268 1.053 (±0.079) 0.805 (±0.058) 1.701 (±0.186) 0.851 (±0.093)

INC (n = 1,000, d = 2) 1,000 127 117 0.201 (±0.013) 0.181 (±0.012) 0.366 (±0.053) 0.207 (±0.035)

INC (n = 1,000, d = 10) 1,000 262 249 1.023 (±0.035) 0.902 (±0.030) 1.238 (±0.081) 0.777 (±0.054)

HCC (n = 1,000, d = 10) 1,000 201 192 0.991 (±0.033) 0.902 (±0.031) 1.235 (±0.088) 0.790 (±0.067)

TS (n = 1,000, d = 10) 1,000 171 162 1.009 (±0.033) 0.951 (±0.031) 1.166 (±0.098) 0.825 (±0.071)

INC (n = 2,000, d = 2) 1,000 80 77 0.105 (±0.007) 0.099 (±0.006) 0.214 (±0.042) 0.135 (±0.029)

HCC (n = 2,000, d = 2) 1,000 44 42 0.102 (±0.007) 0.099 (±0.007) 0.187 (±0.050) 0.120 (±0.034)

TS (n = 2,000, d = 2) 1,000 47 47 0.101 (±0.007) 0.099 (±0.007) 0.147 (±0.032) 0.103 (±0.026)

INC (n = 2,000, d = 10) 1,000 116 113 0.511 (±0.016) 0.491 (±0.016) 0.611 (±0.052) 0.437 (±0.042)

HCC (n = 2,000, d = 10) 1,000 110 105 0.500 (±0.016) 0.481 (±0.015) 0.602 (±0.056) 0.430 (±0.044)

TS (n = 2,000, d = 10) 1,000 101 98 0.511 (±0.016) 0.499 (±0.016) 0.601 (±0.054) 0.486 (±0.051)
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TABLE 3
Comparison of the min–max truncated estimator f̂ with the ordinary least squares estimator f̂ (ols) with the heavy-tailed noise (see Section 3.4.1)

Nb of Nb of iter. with Nb of iter. with ER[(f̂ (ols))|f̂ �= f̂ (ols)] E[R(f̂ )|f̂ �= f̂ (ols)]
iterations R(f̂ ) �= R(f̂ (ols)) R(f̂ ) < R(f̂ (ols)) ER(f̂ (ols)) − R(f ∗) ER(f̂ ) − R(f ∗) −R(f ∗) −R(f ∗)

INC (n = 200, d = 1) 1,000 163 145 7.72 (±3.46) 3.92 (±0.409) 30.52 (±20.8) 7.20 (±1.61)
INC (n = 200, d = 2) 1,000 104 98 22.69 (±23.14) 19.18 (±23.09) 45.36 (±14.1) 11.63 (±2.19)
HCC (n = 200, d = 2) 1,000 120 117 18.16 (±12.68) 8.07 (±0.718) 99.39 (±105) 15.34 (±4.41)
TS (n = 200, d = 2) 1,000 110 105 43.89 (±63.79) 39.71 (±63.76) 48.55 (±18.4) 10.59 (±2.01)
INC (n = 1,000, d = 2) 1,000 104 100 3.98 (±2.25) 1.78 (±0.128) 23.18 (±21.3) 2.03 (±0.56)
INC (n = 1,000, d = 10) 1,000 253 242 16.36 (±5.10) 7.90 (±0.278) 41.25 (±19.8) 7.81 (±0.69)
HCC (n = 1,000, d = 10) 1,000 220 211 13.57 (±1.93) 7.88 (±0.255) 33.13 (±8.2) 7.28 (±0.59)
TS (n = 1,000, d = 10) 1,000 214 211 18.67 (±11.62) 13.79 (±11.52) 30.34 (±7.2) 7.53 (±0.58)
INC (n = 2,000, d = 2) 1,000 113 103 1.56 (±0.41) 0.89 (±0.059) 6.74 (±3.4) 0.86 (±0.18)
HCC (n = 2,000, d = 2) 1,000 105 97 1.66 (±0.43) 0.95 (±0.062) 7.87 (±3.8) 1.13 (±0.23)
TS (n = 2,000, d = 2) 1,000 101 95 1.59 (±0.64) 0.88 (±0.058) 8.03 (±6.2) 1.04 (±0.22)
INC (n = 2,000, d = 10) 1,000 259 255 8.77 (±4.02) 4.23 (±0.154) 21.54 (±15.4) 4.03 (±0.39)
HCC (n = 2,000, d = 10) 1,000 250 242 6.98 (±1.17) 4.13 (±0.127) 15.35 (±4.5) 3.94 (±0.25)
TS (n = 2,000, d = 10) 1,000 238 233 8.49 (±3.61) 5.95 (±3.486) 14.82 (±3.8) 4.17 (±0.30)
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TABLE 4
Comparison of the min–max truncated estimator f̂ with the ordinary least squares estimator f̂ (ols) with the asymmetric heavy-tailed noise

(see Section 3.4.1)

Nb of Nb of iter. with Nb of iter. with ER[(f̂ (ols))|f̂ �= f̂ (ols)] E[R(f̂ )|f̂ �= f̂ (ols)]
iterations R(f̂ ) �= R(f̂ (ols)) R(f̂ ) < R(f̂ (ols)) ER(f̂ (ols)) − R(f ∗) ER(f̂ ) − R(f ∗) −R(f ∗) −R(f ∗)

INC (n = 200, d = 1) 1,000 87 77 5.49 (±3.07) 3.00 (±0.330) 35.44 (±34.7) 6.85 (±2.48)
INC (n = 200, d = 2) 1,000 70 66 19.25 (±23.23) 17.4 (±23.2) 37.95 (±13.1) 11.05 (±2.87)
HCC (n = 200, d = 2) 1,000 67 66 7.19 (±0.88) 5.81 (±0.397) 31.52 (±10.5) 10.87 (±2.64)
TS (n = 200, d = 2) 1,000 76 68 39.80 (±64.09) 37.9 (±64.1) 34.28 (±14.8) 9.21 (±2.05)
INC (n = 1,000, d = 2) 1,000 101 92 2.81 (±2.21) 1.31 (±0.106) 16.76 (±21.8) 1.88 (±0.69)
INC (n = 1,000, d = 10) 1,000 211 195 10.71 (±4.53) 5.86 (±0.222) 29.00 (±21.3) 6.03 (±0.71)
HCC (n = 1,000, d = 10) 1,000 197 185 8.67 (±1.16) 5.81 (±0.177) 20.31 (±5.59) 5.79 (±0.43)
TS (n = 1,000, d = 10) 1,000 258 233 13.62 (±11.27) 11.3 (±11.2) 14.68 (±2.45) 5.60 (±0.36)
INC (n = 2,000, d = 2) 1,000 106 92 1.04 (±0.37) 0.64 (±0.042) 4.54 (±3.45) 0.79 (±0.16)
HCC (n = 2,000, d = 2) 1,000 99 90 0.90 (±0.11) 0.66 (±0.042) 3.23 (±0.93) 0.82 (±0.16)
TS (n = 2,000, d = 2) 1,000 84 81 1.11 (±0.66) 0.60 (±0.042) 6.80 (±7.79) 0.69 (±0.17)
INC (n = 2,000, d = 10) 1,000 238 222 6.32 (±4.18) 3.07 (±0.147) 16.84 (±17.5) 3.18 (±0.51)
HCC (n = 2,000, d = 10) 1,000 221 203 4.49 (±0.98) 2.98 (±0.091) 9.76 (±4.39) 2.93 (±0.22)
TS (n = 2,000, d = 10) 1,000 412 350 5.93 (±3.51) 4.59 (±3.44) 6.07 (±1.76) 2.84 (±0.16)
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TABLE 5
Comparison of the min–max truncated estimator f̂ with the ordinary least squares estimator f̂ (ols) for standard Gaussian noise

Nb of Nb of iter. with Nb of iter. with ER[(f̂ (ols))|f̂ �= f̂ (ols)] E[R(f̂ )|f̂ �= f̂ (ols)]
iterations R(f̂ ) �= R(f̂ (ols)) R(f̂ ) < R(f̂ (ols)) ER(f̂ (ols)) − R(f ∗) ER(f̂ ) − R(f ∗) −R(f ∗) −R(f ∗)

INC (n = 200, d = 1) 1,000 20 8 0.541 (±0.048) 0.541 (±0.048) 0.401 (±0.168) 0.397 (±0.167)

INC (n = 200, d = 2) 1,000 1 0 1.051 (±0.067) 1.051 (±0.067) 2.566 2.757
HCC (n = 200, d = 2) 1,000 1 0 1.051 (±0.067) 1.051 (±0.067) 2.566 2.757
TS (n = 200, d = 2) 1,000 0 0 1.068 (±0.067) 1.068 (±0.067) – –
INC (n = 1,000, d = 2) 1,000 0 0 0.203 (±0.013) 0.203 (±0.013) – –
INC (n = 1,000, d = 10) 1,000 0 0 1.023 (±0.029) 1.023 (±0.029) – –
HCC (n = 1,000, d = 10) 1,000 0 0 1.023 (±0.029) 1.023 (±0.029) – –
TS (n = 1,000, d = 10) 1,000 0 0 0.997 (±0.028) 0.997 (±0.028) – –
INC (n = 2,000, d = 2) 1,000 0 0 0.112 (±0.007) 0.112 (±0.007) – –
HCC (n = 2,000, d = 2) 1,000 0 0 0.112 (±0.007) 0.112 (±0.007) – –
TS (n = 2,000, d = 2) 1,000 0 0 0.098 (±0.006) 0.098 (±0.006) – –
INC (n = 2,000, d = 10) 1,000 0 0 0.517 (±0.015) 0.517 (±0.015) – –
HCC (n = 2,000, d = 10) 1,000 0 0 0.517 (±0.015) 0.517 (±0.015) – –
TS (n = 2,000, d = 10) 1,000 0 0 0.501 (±0.015) 0.501 (±0.015) – –
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FIG. 1. Circled points are the points of the training set generated several times from TS(1,000,10)

(with the mixture noise with p = 0.005 and ρ = 0.4) that are not taken into account in the min—
max truncated estimator (to the extent that the estimator would not change by removing simultane-
ously all these points). The min–max truncated estimator x 
→ f̂ (x) appears in dash-dot line, while
x 
→ E(Y |X = x) is in solid line. In these six simulations, it outperforms the ordinary least squares
estimator.
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FIG. 2. Circled points are the points of the training set generated several times from TS(200,2)

(with the heavy-tailed noise) that are not taken into account in the min–max truncated estimator (to
the extent that the estimator would not change by removing these points). The min–max truncated
estimator x 
→ f̂ (x) appears in dash-dot line, while x 
→ E(Y |X = x) is in solid line. In these six
simulations, it outperforms the ordinary least squares estimator. Note that in the last figure, it does
not consider 64 points among the 200 training points.
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SUPPLEMENTARY MATERIAL

Supplement to “Robust linear least squares regression” (DOI: 10.1214/11-
AOS918SUPP; .pdf). The supplementary material provides the proofs of Theo-
rems 2.1, 2.2 and 3.1.
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