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EVALUATING PROBABILITY FORECASTS

BY TZE LEUNG LAI1, SHULAMITH T. GROSS2 AND DAVID BO SHEN

Stanford University, Baruch College/CUNY and UBS

Probability forecasts of events are routinely used in climate predictions,
in forecasting default probabilities on bank loans or in estimating the prob-
ability of a patient’s positive response to treatment. Scoring rules have long
been used to assess the efficacy of the forecast probabilities after observing
the occurrence, or nonoccurrence, of the predicted events. We develop herein
a statistical theory for scoring rules and propose an alternative approach to the
evaluation of probability forecasts. This approach uses loss functions relating
the predicted to the actual probabilities of the events and applies martingale
theory to exploit the temporal structure between the forecast and the subse-
quent occurrence or nonoccurrence of the event.

1. Introduction. Probability forecasts of future events are widely used in di-
verse fields of application. Oncologists routinely predict the probability of a can-
cer patient’s progression-free survival beyond a certain time horizon [Hari et al.
(2009)]. Economists give the probability forecasts of an economic rebound or a
recession by the end of a fiscal year. Banks are required by regulators assessing
their capital requirements to predict periodically the risk of default of the loans
they make. Engineers are routinely called upon to predict the survival probability
of a system or infrastructure beyond five or ten years; this includes bridges, sewer
systems and other structures. Finally, lawyers also assess the probability of partic-
ular trial outcome [Fox and Birke (2002)] in order to determine whether to go to
trial or settle out of court. This list would not be complete without mentioning the
field that is most advanced in its daily probability predictions, namely meteorol-
ogy. In the past 60 years, remarkable advances in forecasting precipitation proba-
bilities, temperatures, and rainfall amounts have been made in terms of breadth and
accuracy. Murphy and Winkler (1984) provide an illuminating history of the US
National Weather Service’s transition from nonprobabilistic to probability predic-
tions and its development of reliability and accuracy measures for these probability
forecasts. Accuracy assessment is difficult to carry out directly because it requires
comparing a forecaster’s predicted probabilities with the actual but unknown prob-
abilities of the events under study. Reliability is measured using “scoring rules,”
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which are empirical distance measures between repeated predicted probabilities of
an event, such as having no rain the next day, and indicator variables that take on
the value 1 if the predicted event actually occurs, and 0 otherwise; see Gneiting and
Raftery (2007), Gneiting, Balabdaoui and Raftery (2007) and Ranjan and Gneiting
(2010) for recent reviews and developments.

To be more specific, a scoring rule for a sequence of n probability forecasts
p̂i , i = 1, . . . , n, is the average score n−1 ∑n

i=1 L(Yi, p̂i), where Yi = 1 or 0 ac-
cording to whether the ith event Ai actually occurs or not. An example is the
widely used Brier’s score L(y, p̂) = (y − p̂)2 [Brier (1950)]. Noting that the Yi

are related to the actual but unknown probability pi via Yi ∼ Bernoulli(pi), Cox
(1958) proposed to evaluate how well the p̂i predict pi by using the estimates of
(β1, β2) in the regression model

logit(pi) = β1 + β2 logit(p̂i)(1.1)

and developed a test of the null hypothesis (β1, β2) = (0,1), which corresponds
to perfect prediction. Spiegelhalter (1986) subsequently proposed a test of the null
hypothesis H0 : p̂i = pi for all i = 1, . . . , n, based on a standardized form (un-
der H0) of Brier’s score. A serious limitation of this approach is the unrealistic
benchmark of perfect prediction to formulate the null hypothesis, so significant
departures from it are expected when n is large, and they convey little information
on how well the p̂i predict pi . Another limitation is the implicit assumption that
the p̂i are independent random variables, which clearly is violated since p̂i usually
involves previous observations and predictions.

Seillier-Moiseiwitsch and Dawid (1993) have developed a hypothesis testing
approach that removes both limitations in testing the validity of a sequence of prob-
ability forecasts. The forecaster is modeled by a probability measure under which
the conditional probability of the occurrence of Ai given the σ -field Gi−1 gener-
ated by the forecaster’s information set prior to the occurrence of the event is πi .
In this model, the forecaster uses p̂i = πi as the predicted probability of Ai . As
pointed out earlier by Dawid (1982), this model fits neatly into de Finetti’s (1975)
framework in which “the coherent subjectivist Bayesian can be shown to have a
joint probability distribution over all conceivably observable quantities,” which is
represented by the probability measure � in the present case. To test if � is “em-
pirically valid” based on the observed outcomes Y1, . . . , Yn, Seillier-Moiseiwitsch
and Dawid (1993) consider the null hypothesis H0 that “the sequence of events is
generated by the same joint distribution from which the forecasts are constructed.”
Under this null hypothesis,

∑n
i=1 ξi(Yi −πi), n ≥ 1, is a martingale with respect to

the filtration {Gi} when ξi is Gi−1-measurable for all i. Assuming certain regularity
conditions on ξi , they apply the martingale central limit theorem to show that as
n → ∞, {

n∑
i=1

ξi(Yi − πi)

}/{
n∑

i=1

ξ2
i πi(1 − πi)

}1/2

�⇒ N(0,1)(1.2)
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under H0, where �⇒ denotes convergence in distribution. Since πi = p̂i in this
model of a coherent forecaster, Seillier-Moiseiwitsch and Dawid (1993) have made
use of (1.2) to construct various tests of H0. One such test, described at the end
of their Section 6, involves another probability forecast p̂′

i , which is “based on no
more information” to define ξi , so that a significantly large value of the test statistic
can be used to reject H0 in favor of the alternative forecasting model or method.

Hypothesis testing has been extended from testing perfect prediction or empir-
ical validity of a sequence of probability forecasts to testing equality of the pre-
dictive performance of two forecasts; see Redelmeier, Bloch and Hickam (1991)
who extended Spiegelhalter’s approach mentioned above. Testing the equality of
predictive performance, measured by some loss function of the predictors and the
realized values, of two forecasting models or methods has attracted much recent
interest in the econometrics literature, which is reviewed in Section 6.2. In this
paper we develop a new approach to statistical inference, which involves confi-
dence intervals rather than statistical tests of a null hypothesis asserting empirical
validity of a forecasting model or method, or equal predictive performance for two
forecasting models or methods. The essence of our approach is to evaluate prob-
ability forecasts via the average loss Ln = n−1 ∑n

i=1 L(pi, p̂i), where pi is the
actual but unknown probability of the occurrence of Ai . When L is linear in pi ,
L(Yi, p̂i) is an unbiased estimate of L(pi, p̂i) since E(Yi |p̂i) = pi . We show in
Section 2, where an overview of loss functions and scoring rules is also given, that
even for L that is nonlinear in pi there is a “linear equivalent” which carries the
same information as L for comparing different forecasts. In Section 3 we make
use of this insight to construct inferential procedures, such as confidence intervals,
for the average loss Ln under certain assumptions and for comparing the average
losses of different forecasts.

Note that we have used E to denote expectation with respect to the actual prob-
ability measure P , under which Ai occurs with probability pi given the previous
history represented by the σ -field Gi−1, and that we have used � to denote the
probability measure assumed by a coherent Bayesian forecaster whose probability
of occurrence of Ai given Gi−1 is πi . Because πi = p̂i for a coherent Bayesian
forecaster, Seillier-Moiseiwitsch and Dawid (1993) are able to use (1.2) to test
the null hypothesis of empirical validity of � in the sense that E�(Yi |Gi−1) = p̂i ,
where E� denotes expectation with respect to the measure �. Replacing � by P

is much more ambitious, but it appears impossible to derive the studentized version
of the obvious estimate L̂n = n−1 ∑n

i=1 L(Yi, p̂i) and its sampling distribution un-
der P to perform inference on Ln. We address this difficulty in several steps in
Section 3. First we consider in Section 3.1 the case in which L(p, p̂) is linear in
p and make use of the martingale central limit theorem to prove an analog of (1.2)
with pi in place of πi and ξi = L(1, p̂i)−L(0, p̂i). Whereas πi = p̂i under �, the
pi associated with P are unknown parameters that need to be estimated. Postpon-
ing their estimation to Section 3.4, we first use the simple bound pi(1 − pi) ≤ 1/4
to obtain confidence intervals for Ln by making use of this analog of (1.2). In
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Section 3.2 we consider the problem of comparing two probability forecasts via
the difference of their average losses, and make use of the idea of linear equiv-
alents introduced in Section 2 to remove the assumption of L(p, p̂) being linear
in p when we consider �n = n−1 ∑n

i=1{L(pi, p̂
′
i) − L(pi, p̂

′′
i )}. A variant of �n,

called Winkler’s skill score in weather forecasting, is considered in Section 3.3.
In Section 3.4, we return to the problem of estimating pi(1 − pi). Motivated by
applications in which the forecasts are grouped into “risk buckets” within which
the pi can be regarded as equal, Section 3.4 provides two main results on this
problem. The first is Theorem 3, which gives consistent estimates of the asymp-
totic variance of �̂n, or of L̂n when L(p, p̂) is linear in p, in the presence of
risk buckets with each bucket of size 2 or more. The second, given in Theorem 4,
shows that in this bucket model it is possible to adjust the Brier score to obtain
a consistent and asymptotically normal estimate of the average squared error loss
Ln = n−1 ∑n

i=1(pi − p̂i)
2. Theorem 4 also provides a consistent estimate of the

asymptotic variance of the adjusted Brier score when the bucket size is at least 3.
In Section 3.5 we develop an analog of Theorem 3 for the more general setting
of “quasi-buckets,” for which the pi within each bin (quasi-bucket) need not be
equal. These quasi-buckets arise in “reliability diagrams” in the meteorology liter-
ature. Theorem 5 shows that the confidence intervals obtained under an assumed
bucket model are still valid but tend to be conservative if the buckets are actually
quasi-buckets. The proofs of Theorems 4 and 5 are given in Section 5.

Section 4 gives a simulation study of the performance of the proposed method-
ology, and some concluding remarks and discussion are given in Section 7. In
Section 6 we extend the Yi from the case of indicator variables of events to more
general random variables by modifying the arguments in Section 5, and also show
how the methods and results in Sections 3.2 and 3.4 can be used to address related
problems in the econometrics literature on the expected difference in scores be-
tween two forecasts, after a brief review of that literature that has become a major
strand of research in economic forecasts.

2. Scoring rules and associated loss functions. Instead of defining a scoring
rule via L (which associates better forecasts with smaller values of L), Gneiting
and Raftery (2007) and others assign higher scores to better forecasts; this is tanta-
mount to using −L instead of L in defining a scoring rule. More generally, consid-
ering p and its forecast p̂ as probability measures, they call a scoring rule S proper
relative to a class P of probability measures if EpS(Z,p) ≥ EpS(Z, p̂) for all p

and p̂ belonging to P , where Z is an observed random vector (generated from p)
on which scoring is based. For the development in the subsequent sections, we find
it more convenient to work with L instead of −L and restrict to Z = (Y1, . . . , Yn)

so that S(Z, (p̂1, . . . , p̂n)) = −n−1 ∑n
i=1 L(Yi, p̂i).

The function L in the scoring rule n−1 ∑n
i=1 L(Yi, p̂i) measures the closeness

of the probability forecast p̂i of event i before the indicator variable Yi of the
event is observed. We can also use L as a loss function in measuring the accuracy
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of p̂i as an estimate of the probability pi of event i. Besides the squared error loss
L(p, p̂) = (p − p̂)2 used in Brier’s score, another widely used loss function is the
Kullback–Leibler divergence,

L(p, p̂) = p log(p/p̂) + (1 − p) log[(1 − p)/(1 − p̂)],(2.1)

which is closely related to the log score introduced by Good (1952), as shown
below. More general loss functions of this type are the Bregman divergences; see
Section 3.5.4 of Grünwald and Dawid (2004) and Section 2.2 of Gneiting and
Raftery (2007).

We call a loss function L̃(p, p̂) a linear equivalent of the loss function L(p, p̂)

if L̃(p, p̂) is a linear function of p and

L(p, p̂) − L̃(p, p̂) does not depend on p̂.(2.2)

For example, L̃(p, p̂) = −2pp̂ + p̂2 is a linear equivalent of the squared error
loss (p − p̂)2 used by Brier’s score. A linear equivalent L̃ of the Kullback–Leibler
divergence (2.1) is given by −L̃(p, p̂) = p log(p̂) + (1 − p) log(1 − p̂). This is
the conditional expected value (given p̂) of Y log(p̂) + (1 − Y) log(1 − p̂), which
is Good’s log score. Since the probability p̂i is determined before the Bernoulli
random variable Yi is observed,

E{L(Yi, p̂i)|p̂i , pi} = piL(1, p̂i) + (1 − pi)L(0, p̂i).(2.3)

Therefore the conditional expected loss of a scoring rule L(Y, p̂) yields a loss
function

L̃(p, p̂) = {L(1, p̂) − L(0, p̂)}p + L(0, p̂)(2.4)

that is linear in p. For example, the absolute value scoring rule L(Y, p̂) = |Y − p̂|
is associated with L̃(p, p̂) = p(1 − p̂) + (1 − p)p̂ that is linear in each argument.
Using the notation (2.4), the scoring rule L(Y, p̂) is proper if L̃(p,p) ≤ L̃(p, p̂)

for all p, p̂ ∈ [0,1], and is strictly proper if min0≤p̂≤1 L̃(p, p̂) is uniquely attained
at p = p̂. The scoring rule |Y − p̂|, therefore, is not proper; moreover, |p − p̂|
does not have a linear equivalent.

3. A new approach to evaluation of probability forecasts. In this section
we first consider the evaluation of a sequence of probability forecasts p̂1, . . . , p̂n

based on the corresponding sequence of indicator variables Y1, . . . , Yn that denote
whether the events actually occur or not. Whereas the traditional approach to eval-
uating p̂ = (p̂1, . . . , p̂n) uses the scoring rule n−1 ∑n

i=1 L(Yi, p̂i), we propose to
evaluate p̂ via

Ln = n−1
n∑

i=1

L(pi, p̂i),(3.1)

where L is a loss function, and pi is the actual probability of the occurrence of
the ith event. Allowing the actual probabilities pi to be generated by a stochastic
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system and the forecast p̂k to depend on an information set Gk−1 that consists
of the event and forecast histories and other covariates before Yk is observed, the
conditional distribution of Yi given Gi−1 and pi is Bernoulli(pi ), and therefore

P(Yi = 1|Gi−1,pi) = pi.(3.2)

3.1. Linear case. In view of (3.2), an obvious estimate of the unknown pi

is Yi . Suppose L(p, p̂) is linear in p, as in the case of linear equivalents of general
loss functions. Combining this linearity property with (3.2) yields

E{L(Yi, p̂i)|Gi−1,pi} = L(pi, p̂i),(3.3)

and therefore L(Yi, p̂i) − L(pi, p̂i) is a martingale difference sequence with re-
spect to {Fi}, where Fi−1 is the σ -field generated by Gi−1 and p1, . . . , pi . Let
di = L(Yi, p̂i) − L(pi, p̂i). Since L(y, p̂) is linear in y, we can write L(y, p̂) =
a(p̂)y + b(p̂). Setting y = 0 and y = 1 in this equation yields a(p̂) = L(1, p̂) −
L(0, p̂). Moreover, di = a(p̂i)(Yi − pi). Since Yi |Fi ∼ Bernoulli(pi) and p̂i is

Fi−1-measurable,

E(d2
i |Fi−1) = a2(p̂i)pi(1 − pi).(3.4)

By (3.4),
∑n

1 E(d2
i |Fi−1) = ∑n

1{L(1, p̂i)−L(0, p̂i)}2pi(1 −pi) = O(n) a.s., and
therefore n−1 ∑n

i=1 di → 0 a.s. by the martingale strong law [Williams (1991),
Section 12.14] proving L̂n − Ln → 0 a.s. Moreover, if n−1 ∑n

1 E(d2
i |Fi−1) = σ 2

n

converges in probability to a nonrandom positive constant, then
√

n(L̂n − Ln)/σn

has a limiting standard normal distribution by Theorem 1 of Seillier-Moiseiwitsch
and Dawid (1993). Summarizing, we have the following.

THEOREM 1. Suppose L(p, p̂) is linear in p. Let L̂n = n−1 ∑n
i=1 L(Yi, p̂i),

and define Ln by (3.1). Letting

σ 2
n = n−1

n∑
i=1

{L(1, p̂i) − L(0, p̂i)}2pi(1 − pi),(3.5)

assume that σ 2
n = O(1) with probability 1. Then L̂n − Ln converges to 0 with

probability 1. If σ 2
n converges in probability to some nonrandom positive constant,

then
√

n(L̂n − Ln)/σn has a limiting standard normal distribution.

To apply Theorem 1 to statistical inference on Ln, one needs to address the issue
that σ 2

n involves the unknown pi . As noted in the third paragraph of Section 1,
Seillier-Moiseiwitsch and Dawid (1993) have addressed this issue by using pi =
E�(Yi |Gi−1) under the null hypothesis H0 that assumes the sequence of events
are generated by the probability measure �. This approach is related to the earlier
work of Dawid (1982), who assumes a “subjective probability distribution” � for
the events so that Bayesian forecasts are given by p̂i = πi = E�(Yi |Gi−1). Letting
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ξt = 1 or 0 according to whether time t is included in the “test set” to evaluate
forecasts, he calls the test set “admissible” if ξt depends only on Gt−1, and uses
martingale theory to show that(

n∑
i=1

ξiYi −
n∑

i=1

ξip̂i

)/ n∑
i=1

ξi −→ 0 a.s. [�] on

{
n∑

i=1

ξi = ∞
}
.(3.6)

From (3.6), it follows that for any 0 < x < 1, the long-run average of Yi (under the
subjective probability measure) associated with p̂i = x (i.e., ξi = I{p̂i=x}) is equal
to x provided that

∑n
i=1 I{p̂i=x} → ∞. Note that Dawid’s well-calibration theo-

rem (3.6) involves the subjective probability measure �. DeGroot and Fienberg
(1983) have noted that well-calibrated forecasts need not reflect the forecaster’s
“honest subjective probabilities,” that is, need not satisfy Dawid’s coherence crite-
rion p̂i = πi . They therefore use a criterion called “refinement” to compare well-
calibrated forecasts.

In this paper we apply Theorem 1 to construct confidence intervals for Ln,
under the actual probability measure P that generates the unknown pi in (3.5).
Whereas substituting pi by Yi in L(pi, p̂i) leads to a consistent estimate of Ln

when L is linear, such substitution gives 0 as an overly optimistic estimate of
pi(1 − pi) = Var(Yi |Fi−1). A conservative confidence interval for Ln can be ob-
tained by replacing pi(1 − pi) in (3.5) by its upper bound 1/4. In Section 3.4, we
consider estimation of σ 2

n and of n−1 ∑n
i=1 L(pi, p̂i) when L is nonlinear in pi ,

under additional assumptions on how the pi are generated.

3.2. Application to comparison of probability forecasts. Consider two se-
quences of probability forecasts p̂′ = (p̂′

1, . . . , p̂
′
n) and p̂′′ = (p̂′′

1 , . . . , p̂′′
n) of

p = (p1, . . . , pn). Suppose a loss function L(p,q) is used to evaluate each fore-
cast, and let L̃(p, q) be its linear equivalent. Since L(p,q) − L̃(p, q) does not
depend on q in view of (2.2), it is a function only of p, which we denote by d(p).
Hence

L(pi, p̂
′
i) − L(pi, p̂

′′
i ) = {L̃(pi, p̂

′
i) + d(pi)} − {L̃(pi, p̂

′′
i ) + d(pi)}

= L̃(pi, p̂
′
i) − L̃(pi, p̂

′′
i )

is a linear function of pi , and therefore we can estimate �n = n−1 ∑n
i=1{L(pi,

p̂′
i ) − L(pi, p̂

′′
i )} by the difference n−1 ∑n

i=1 L(Yi, p̂i) − n−1 ∑n
i=1 L(Yi, p̂

′
i) of

scores of the two forecasts. Application of Theorem 1 then yields the following
theorem, whose part (ii) is related to (2.4).

THEOREM 2. Let �̂n = n−1 ∑n
i=1{L(Yi, p̂

′
i) − L(Yi, p̂

′′
i )} and

δi = {L(1, p̂′
i ) − L(0, p̂′

i )} − {L(1, p̂′′
i ) − L(0, p̂′′

i )},
(3.7)

s2
n = n−1

n∑
i=1

δ2
i pi(1 − pi).
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(i) Suppose L has a linear equivalent. Letting �n = n−1 ∑n
i=1{L(pi, p̂

′
i) −

L(pi, p̂
′′
i )}, assume that s2

n = O(1) with probability 1. Then �̂n − �n converges
to 0 with probability 1. If furthermore sn converges in probability to some non-
random positive constant, then

√
n(�̂n − �n)/sn has a limiting standard normal

distribution.
(ii) Without assuming that L has a linear equivalent, the same conclusion as in

(i) still holds with �n = n−1 ∑n
i=1{δipi + L(0, p̂′

i ) − L(0, p̂′′
i )}.

3.3. Illustrative applications and skill scores. As an illustration of Theorem 2,
we compare the Brier scores Bk for the k-day ahead forecasts p̂

(k)
t ,1 ≤ k ≤ 7, for

Queens, NY, provided by US National Weather Service from June 8, 2007, to
March 31, 2009. Table 1 gives the values of B1 and Bk − Bk−1 for 2 ≤ k ≤ 6.
Using 1/4 to replace pi(1 − pi) in (3.7), we can use Theorem 2(i) to construct
conservative 95% confidence intervals for

�(k) = n−1

{
n∑

t=1

(
pt − p̂

(k)
t

)2 −
n∑

t=1

(
pt − p̂

(k−1)
t

)2
}
,

in which pt is the actual probability of precipitation on day t . These confidence
intervals, which are centered at Bk − Bk−1, are given in Table 1. The results show
significant improvements, by shortening the lead time by one day, in forecasting
precipitation k = 2,3,4,6.

For another application of Theorem 2, we consider Winkler’s (1994) skill score.
To evaluate weather forecasts, a skill score that is commonly used is the percentage
improvement in average score over that provided by climatology, denoted by p̂c

i

and considered as an “unskilled” forecaster, that is,

Sn =
{
n−1

n∑
i=1

L(Yi, p̂
c
i ) − n−1

n∑
i=1

L(Yi, p̂i)

}/
n−1

n∑
i=1

L(Yi, p̂
c
i ).(3.8)

Climatology refers to the historic relative frequency, also called the base rate, of
precipitation; we can take it to be p̂c

i = (M + 1)−1 ∑0
t=−M Yt . Noting that (3.8)

is not a proper score although it is intuitively appealing, Winkler (1994) proposed
to replace the average climatology score in the denominator of (3.8) by individual

TABLE 1
Brier scores B1 and 95% confidence intervals for �(k)

B1 �(2) �(3) �(4) �(5) �(6) �(7)

0.125 0.021 0.012 0.020 0.010 0.015 0.007
±0.010 ±0.011 ±0.012 ±0.011 ±0.011 ±0.010
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weights l(p̂i , p̂
c
i ), that is,

Wn = n−1
n∑

i=1

{L(Yi, p̂i) − L(Yi, p̂
c
i )}/l(p̂i , p̂

c
i ),(3.9)

where l(p, c) = {L(1,p) − L(1, c)}I{p≥c} + {L(0,p) − L(0, c)}I{p<c}. Theo-
rem 2(i) can be readily extended to show that Winkler’s score Wn is a consistent
estimate of

wn = n−1
n∑

i=1

{L(pi, p̂i) − L(pi, p̂
c
i )}/l(p̂i , p̂

c
i )(3.10)

and that
√

n(Wn − wn)/s̃n has a limiting standard normal distribution, where

s̃2
n = n−1

n∑
i=1

δ2
i pi(1 − pi)/ l2(p̂i, p̂

c
i ).(3.11)

Winkler (1994) used the score (3.9), in which L(p, p̂) = (p − p̂)2, to evaluate
precipitation probability forecasts, with a 12- to 24-hour lead time, given by the
US National Weather Service for 20 cities in the period between April 1966 and
September 1983. Besides the score (3.9), he also computed the Brier score and the
skill score (3.8) of these forecasts and found that both the Brier and skill scores
have high correlations (0.87 and 0.76) whereas (3.9) has a much lower correlation
0.44 with average climatology, suggesting that (3.9) provides a better reflection
of the “skill” of the forecasts over an unskilled forecasting rule (based on his-
toric relative frequency). Instead of using correlation coefficients, we performed a
more detailed analysis of Winkler’s and skill scores to evaluate the one-day ahead
probability forecasts of precipitation for six cities: Las Vegas, NV; Phoenix, AZ;
Albuquerque, NM; Queens, NY; Boston, MA; and Portland, OR (listed in increas-
ing order of relative frequency of precipitation), during the period January 1, 2005,
to December 31, 2009. The period January 1, 2002, to December 31, 2004, is used
to obtain the past three years’ climatology, which is used as the reference un-
skilled score in the calculation of the skill score and Winkler’s score (3.9). The left
panel of Figure 1 plots Winkler’s score against the relative precipitation frequency
taken from the period January 1, 2005, to December 31, 2009, which is simply
the percentage of days with rain during that period and represents the climatology
in (3.8). The dashed line in the right panel of Figure 1 represents linear regres-
sion of the skill scores (3.8) on climatology and has a markedly positive slope of
0.95. In contrast, the regression line of Winkler’s scores on climatology, shown in
the left panel of Figure 1, is relatively flat and has slope 0.12. Unlike skill scores,
Winkler’s scores are proper and provide consistent estimates of the average loss
(3.10) involving the actual daily precipitation probabilities pi for each city during
the evaluation period. The vertical bar centered at the dot (representing Winkler’s
score) for each city is a 95% confidence interval for (3.10), using a conservative
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FIG. 1. The Winkler and skill scores versus climatology.

estimate of (3.11) that replaces pi(1 − pi) by 1/4. The confidence intervals are
considerably longer for cities whose relative frequencies p̂c

i of precipitation fall
below 0.1 because δ2

i / l2(p̂i, p̂
c
i ) tends to be substantially larger when p̂c

i is small.

3.4. Risk buckets and quadratic loss functions. Both (3.5) and (3.7) involve
pi(1 − pi), which is the variance of the Bernoulli random variable Yi . It is not
possible to estimate this variance based on a single observation unless there is some
statistical structure on the pi to make (3.5) or (3.7) estimable, and a conservative
approach in the absence of such structure is to use the upper bound 1/4 for pi(1 −
pi) in (3.5) or (3.7), as noted in Section 3.1. One such structure is that the pi can be
grouped into buckets within which they have the same value, as in risk assessment
of a bank’s retail loans (e.g., mortgages, automobile loans and personal loans), for
which the obligors are grouped into risk buckets within which they can be regarded
as having the same risk (or more precisely, the same probability of default on
their loans). According to the Basel Committee on Banking Supervision [(2006),
page 91] each bank has to use at least seven risk buckets for borrowers who have
not defaulted and at least one for those who have defaulted previously at the time
of loan application.

A bucket model for risk assessment involves multivariate forecasts for events
k,1 ≤ k ≤ Kt , at a given time t . Thus, identifying the index i with (t, k), one has a
vector of probability forecasts (p̂t,1, . . . , p̂t,Kt ) at time t −1 for the occurrences of
Kt events at time t ; Kt = 0 if no forecast is made at time t −1. The information set
can then be expressed as Gt−1 that consists of event and forecast histories and other
covariates up to time t − 1, and therefore conditional on Gt−1 and pt,1, . . . , pt,Kt ,
the events at time t can be regarded as the outcomes of Kt independent Bernoulli
trials with respective probabilities pt,1, . . . , pt,Kt . The bucket model assumes that,
conditional on Gt−1 and pt,1, . . . , pt,Kt , events in the same bucket at time t have
the same probability of occurrence. That is, the pt,k are equal for all k belonging
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to the same bucket. Let Jt be the number of buckets at time t and nj,t be the size
of the j th bucket, 1 ≤ j ≤ Jt , so that n = ∑T

t=1
∑Jt

j=1 nj,t . Then the common pt,k

of the j th bucket at time t , denoted by pt(j), can be estimated by the relative
frequency Ȳt (j) = n−1

j,t

∑
i∈Ij,t

Yi , where Ij,t denotes the index set for the bucket.
This in turn yields an unbiased estimate

v̂t (j ) = nj,t Ȳt (j)
(
1 − Ȳt (j)

)
/(nj,t − 1)(3.12)

of pi(1 − pi) for i ∈ Ij,t , and we can replace pi(1 − pi) in (3.5) or (3.7) by v̂t (j )

for i ∈ Ij,t so that the results of Theorems 1 or 2 still hold with these estimates of
the asymptotic variance, as shown in the following.

THEOREM 3. Using the same notation as in the preceding paragraph, sup-
pose nj,t ≥ 2 for 1 ≤ j ≤ Jt and define v̂t (j ) by (3.12).

(i) Under the same assumptions as in Theorem 1, define

σ̂ 2
n = n−1

T∑
t=1

Jt∑
j=1

∑
i∈Ij,t

{L(1, p̂i) − L(0, p̂i)}2v̂t (j ).

Then σ̂ 2
n − σ 2

n converges to 0 with probability 1.
(ii) Under the same assumptions as in Theorem 2, ŝ2

n − s2
n converges to 0 with

probability 1, where ŝ2
n = n−1 ∑T

t=1
∑Jt

j=1
∑

i∈Ij,t
δ2
i v̂t (j ).

PROOF. Let Ft−1 be the σ -field generated by Gt−1 and ps,1, . . . , ps,Ks for
s ≤ t . Note that v̂t (j ) = ∑

i∈Ij,t
(Yi − Ȳt (j))2/(nj,t − 1) and that

E(v̂t (j)|Ft−1) = pt(j)
(
1 − pt(j)

)
,(3.13)

which is the variance of Yi associated with Ij,t . Therefore

Jt∑
j=1

{
v̂t (j ) − pt(j)

(
1 − pt(j)

)}{ ∑
i∈Ij,t

[L(1, p̂i) − L(0, p̂i)]2
}

is a martingale difference sequence with respect to {Ft }. Hence we can apply the
martingale strong law as in the proof of Theorem 1 to show that σ̂ 2

n −σ 2
n converges

a.s., and the same argument also applies to ŝ2
n − s2

n . �

The preceding proof also shows that for the squared error loss L(p, p̂) = (p −
p̂)2, we can estimate (3.1) in the bucket model by the adjusted Brier score

L̂n − n−1
T∑

t=1

Jt∑
j=1

nj,t v̂t (j),(3.14)
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since L̂n = n−1 ∑n
i=1 L(Yi, p̂i) is a consistent estimate of the linear equivalent

n−1 ∑n
i=1(p̂

2
i −2pip̂i +pi), and n−1 ∑T

t=1
∑Jt

j=1 nj,t v̂t (j) is a consistent estimate

of n−1 ∑n
i=1 pi(1 − pi). Consistency of an estimate l̂n of ln means that l̂n − ln

converges to 0 in probability as n → ∞. Moreover, the following theorem shows
that

√
n(L̂n − n−1 ∑T

t=1
∑Jt

j=1 nj,t v̂t (j) − Ln) has a limiting normal distribution
in the bucket model and can be studentized to give a limiting standard normal
distribution. Its proof is given in Section 5.

THEOREM 4. Suppose nj,t ≥ 2 for 1 ≤ j ≤ Jt . Letting L(p, p̂) = (p − p̂)2,
define Ln by (3.1) and the adjusted Brier score by (3.14). Let vt (j) = pt(j)(1 −
pt(j)),

β2
n = n−1

T∑
t=1

Jt∑
j=1

{
vt (j)

∑
i∈Ij,t

(1 − 2p̂i)
2

− 2vt (j)
(
1 − 2pt(j)

) ∑
i∈Ij,t

(1 − 2p̂i)(3.15)

+ nj,tvt (j)
(
1 − 4vt (j)

) + 2nj,t v
2
t (j )/(nj,t − 1)

}
.

If βn converges in probability to some nonrandom positive constant, then
√

n(L̂n −
n−1 ∑T

t=1
∑Jt

j=1 nj,t v̂t (j) − Ln)/βn has a limiting standard normal distribution.

Moreover, if nj ≥ 3 for all 1 ≤ j ≤ Jt , then β̂n − βn converges to 0 with probabil-
ity 1, where

β̂2
n = 1

n

T∑
t=1

Jt∑
j=1

{
v̂t (j )

∑
i∈Ij,t

(1 − 2p̂i)
2

− 2n2
j,t

(nj,t − 1)3

[ ∑
i∈Ij,t

(1 − 2p̂i)

][ ∑
i∈Ij,t

(
Yi − Ȳt (j)

)3
]

(3.16)

+ 4nj,t (nj,t − 1)

(nj,t − 2)2

× ∑
i∈Ij,t

[
1

2(nj,t − 1)

∑
k∈Ij,t ,k �=i

(Yi − Yk)
2 − v̂t (j )

]2}
.

3.5. Quasi-buckets and reliability diagrams. When the actual pt,i in a bin
with index set Ij,t are not the same for all i ∈ Ij,t , we call the bin a “quasi-
bucket.” These quasi-buckets are the basic components of reliability diagrams that
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are widely used as graphical tools to evaluate probability forecasts. In his descrip-
tion of reliability diagrams, Wilks [(2005), Sections 7.1.2, 7.1.3] notes that reliabil-
ity, or calibration, relates the forecast to the average observation, “for specific val-
ues of (i.e., conditional on) the forecast.” A widely used approach to “verification”
of forecasts in meteorology is to group the forecasts p̂i into bins so that “they are
rounded operationally to a finite set of values,” denoted by p̂(1), . . . , p̂(J ). Corre-
sponding to each p̂(j) is a set of observations Yi, i ∈ Ij , taking the values 0 and 1,
where Ij = {i : p̂i = p̂(j)}. The reliability diagram plots Ȳ (j) = (

∑
i∈Ij

Yi)/nj

versus p̂(j), where nj is the size of Ij ; see Figure 3 in Section 4. Statistical in-
ference for reliability diagrams has been developed in the meteorology literature
under the assumption of “independence and stationarity,” that is, that (p̂i, Yi) are
i.i.d. samples from a bivariate distribution of forecast and observation; see Wilks
[(2005), Section 7.9.3] and Bröcker and Smith (2007). Under this assumption, the
index sets Ij define a bucket model and a (1 − α)-level confidence interval for the
common mean p(j) of the Yi for i ∈ Ij is

Ȳ (j) ± z1−α/2
{
Ȳ (j)

(
1 − Ȳ (j)

)
/nj

}1/2
,(3.17)

where zq is the qth quantile of the standard normal distribution.
The assumption of i.i.d. forecast-observation pairs is clearly violated in weather

forecasting, and this has led to the concern that the confidence intervals given by
(3.17) “are possibly too narrow” [Wilks (2005), page 331]. The temporal depen-
dence between the forecast-observation pairs can be handled by incorporating time
as in Section 3.4. To be specific, let p̂t,k, k ≤ Kt , be the probability forecasts, at
time t − 1, of events in the next period. We divide the set {p̂t,k :k ≤ Kt,1 ≤ t ≤ T }
into bins B1, . . . ,BJ , which are typically disjoint sub-intervals of [0,1]. Let

Ij,t = {k : p̂t,k ∈ Bj },
Ȳt (j) = ∑

i∈Ij,t

Yi/nj,t ,(3.18)

Ȳ (j) =
T∑

t=1

∑
i∈Ij,t

Yi/nj ,

where nj,t is the cardinality of Ij,t and nj = ∑T
t=1 nj,t . Note that nj,t and Ȳt (j)

have already been introduced in Section 3.4 and that Ȳ (j) is the average of the
observations in the j th bin, as in (3.17). In the absence of any assumption on pi

for i ∈ Ij,t , these index sets define quasi-buckets instead of buckets. We can extend
the arguments of Section 3.4 to the general case that makes no assumptions on
the pi and thereby derive the statistical properties of Ȳ (j) without the restrictive
assumption of i.i.d. (p̂i, Yi). With the same notation as in Section 3.4, note that
the index sets Ij,t defined in (3.18) are Gt−1-measurable since the p̂t,k are Gt−1-
measurable.
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Whereas Ȳt (j) is used to estimate the common value of pi for i ∈ Ij,t and
v̂t (j ), defined in (3.12), is used to estimate the common value of pi(1 − pi) in
Section 3.4, the pi in quasi-buckets need no longer be equal. Replacing Yi by pi

in Ȳ (j) and taking a weighted average of v̂t (j ) over t , we obtain

p̄(j) =
∑T

t=1
∑

i∈Ij,t
pi

nj

, v̂(j) =
∑T

t=1 nj,t v̂t (j)

nj

.(3.19)

Instead of (3.17) that is based on overly strong assumptions, we propose to use

Ȳ (j) ± z1−α/2{v̂(j)/nj }1/2(3.20)

as a (1 − α)-level confidence interval for p̄(j). Part (iii) of the following theorem,
whose proof is given in Section 5, shows that the confidence interval tends to be
conservative. Parts (i) and (ii) modify the estimates in Theorem 3 for σ 2

n and s2
n

when the pi in the assumed buckets turn out to be unequal.

THEOREM 5. With the same notation as in Theorem 3, remove the assumption
that pi are all equal for i ∈ Ij,t but assume that Ij,t is Gt−1-measurable for 1 ≤
j ≤ Jt .

(i) Under the assumptions of Theorem 1, let

σ̃ 2
n = 1

n

T∑
t=1

Jt∑
j=1

∑
i∈Ij,t

{L(1, p̂i) − L(0, p̂i)}2(
Yi − Ȳt (j)

)2 nj,t

nj,t − 1
.(3.21)

Then σ̃ 2
n ≥ σ 2

n + o(1) a.s. Moreover, if the pi are equal for all i ∈ Ij,t and 1 ≤ j ≤
Jt , then σ̃ 2

n − σ 2
n converges to 0 a.s.

(ii) Under the assumptions of Theorem 2, s̃2
n ≥ s2

n + o(1) a.s., where

s̃2
n = 1

n

T∑
t=1

Jt∑
j=1

∑
i∈Ij,t

δ2
i

(
Yi − Ȳt (j)

)2 nj,t

nj,t − 1
.(3.22)

(iii) Suppose Jt = J for all t = 1, . . . , T . For 1 ≤ j ≤ J , define Ȳ (j) by (3.18),
and p̄(j) and v̂(j) by (3.19), in which nj = ∑T

t=1 nj,t . Let

v(j) = n−1
j

T∑
t=1

∑
i∈Ij,t

pi(1 − pi),(3.23)

and let n = n1 + · · · + nJ be the total sample size. Suppose nj/n and v(j)

converge in probability to nonrandom positive constants as n → ∞. Then
(nj/v(j))1/2{Ȳ (j)− p̄(j)} has a limiting standard normal distribution as n → ∞.
Moreover, v̂(j) ≥ v(j) + op(1) and equality holds if the pi are equal for all
i ∈ Ij,t .
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Note that the numerator of (3.12) is equal to
∑

i∈Ij,t
(Yi − Ȳt (j))2. The estimate

(3.21) or (3.22) essentially replaces this sum by a weighted sum, using the weights
associated with pi(1 −pi) in the sum (3.5) or (3.7) that defines σ 2

n or s2
n . The term

nj,t /(nj,t − 1) in (3.21) and (3.22) corresponds to the bias correction factor in the
sample variance (3.12). Theorem 5 shows that (3.21) [or (3.22)] is still a consistent
estimator of σ 2

n (or s2
n) if the bucket model holds, and that it tends to over-estimate

σ 2
n (or s2

n) otherwise, erring only on the conservative side.

4. Simulation studies. The risk buckets in Section 3.4 and the forecasts
are usually based on covariates. In this section we consider T = 2 in the case
of discrete covariates so that there are Jt buckets of various sizes for n =∑2

t=1
∑Jt

j=1 nj,t = 300 probability forecasts prior to observing the indicator vari-
ables Y1, . . . , Yn of the events. We use the Brier score and its associated loss func-
tion L(p, p̂) = (p − p̂)2 to evaluate the probability forecasts and study by simula-
tions the adequacy of the estimates β̂2

n and ŝ2
n and their use in the normal approxi-

mations. The simulation study covers four scenarios and involves 1,000 simulation
runs for each scenario. Scenario 1 considers the Brier score of a forecasting rule,
while Scenarios 2–4 consider the difference of Brier scores of two forecasts. The
bucket sizes and how the pi and p̂i are generated in each scenario are described as
follows.

SCENARIO 1. There are ten buckets of size 15 each for each period. The com-
mon values pt(j) in the buckets are 0.1, 0.25, 0.3, 0.35, 0.4, 0.5, 0.65, 0.7, 0.75 and
0.8, respectively, for t = 1,2. The probability forecast p̂t,k,1 ≤ k ≤ 150, made at
time t − 1, uses covariate information to identify the bucket j associated with the
kth event at time t and predicts that it occurs with probability Ȳt−1(j), assuming
that 150 indicator variables at time 0 are also observed so that Ȳ0(j) is available.

SCENARIO 2. For each period, there are nine buckets, three of which have
size 2 and two of which have size 5; the other bucket sizes are 24, 30, 35 and 45
(one bucket for each size). The bucket probabilities pt(j) are i.i.d. random vari-
ables generated from Uniform (0,1). The forecast p̂t,k is the same as that in Sce-
nario 1, and there is another forecast p̂′

t,k = Ȳt−1 that ignores covariate informa-
tion.

SCENARIO 3. For each period, there are five buckets of size 30 each, and
pt(j) = −0.1 + j/5 for j = 1, . . . ,5. The two forecasts are the same as in Sce-
nario 2.

SCENARIO 4. This is the same as Scenario 3, except that pi is uniformly
distributed on [(j − 1)/5, j/5] for i ∈ Ij,t , that is, the bucket assumption is only
approximately correct.
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FIG. 2. Q–Q plots for Scenarios 1–4.

Figure 2 gives the Q–Q plots of
√

n(L̂n − n−1 ∑2
t=1

∑Jt

j=1 nj,t v̂t (j) − Ln)/β̂n

for Scenario 1 and
√

n(�̂n −�n)/ŝn for Scenarios 2–4. Despite the deviation from
the assumed bucket model in Scenario 4, the Q–Q plot does not deviate much
from the 45◦ line. Table 2 gives the means and 5-number summaries (minimum,
maximum, median, 1st and 3rd quartiles) of ŝn/sn for Scenarios 2–4 and β̂n/βn

for Scenario 1.
To illustrate the reliability diagram and the associated confidence intervals

(3.20) in Section 3.5, we use one of the simulated data sets in Scenario 4 to con-
struct the reliability diagram for the forecasts p̂t,k (t = 1,2;k = 1, . . . ,5), group-
ing the forecasts over time in the bins [(j − 1)/5, j/5], j = 1, . . . ,5, that are nat-
ural for this scenario. The diagram is given in Figure 3. Table 3 gives the means,
standard deviations (SD), and 5-number summaries of Ȳ (j), p̄(j), v̂(j) and v(j)

defined in (3.18), (3.19) and (3.23) based on the 1,000 simulations. In particular,
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TABLE 2
Simulation results for β̂n/βn (Scenario 1) and ŝn/sn

Min. 1st qrt. Median 3rd qrt. Max. Mean

Scenario 1 0.6397 1.0840 1.1810 1.2830 1.6520 1.1780
Scenario 2 0.7442 0.9647 1.0060 1.0490 1.1970 1.0050
Scenario 3 0.7586 0.9506 1.0060 1.0570 1.2070 1.0010
Scenario 4 0.7420 0.9661 1.0180 1.0730 1.2240 1.0160

it shows that v̂(j) tends to over-estimate v(j). Moreover, the probability of cov-
erage of the 95% interval (3.20) for p̄(j), evaluated by averaging over the 1,000
simulations, is 0.949, 0.947, 0.944, 0.940 and 0.928, for j = 1, . . . ,5, respectively,
suggesting that the results of Theorem 5 still apply even for moderate sample sizes.
We do not consider the second forecast p̂′

t,k = Ȳt−1 to illustrate reliability dia-
grams because by the central limit theorem, the p̂′

t,k are concentrated around 0.5
and nearly all of the forecasts lie in the bin [0.4,0.6].

5. Proofs of Theorems 4 and 5. Re-labeling the Yi as Yt,1, . . . , Yt,Kt , we note
that conditional on Ft−1, {Yt,k : 1 ≤ k ≤ Kt } is a set of independent Bernoulli ran-
dom variables with respective parameters pt,1, . . . , pt,Kt . This point, which has
been noted in the second paragraph of Section 3.4 and will be discussed further
in Section 7, explains why we can first derive the result for the special case in
which Yt,k are independent and then modify the argument by conditioning on Ft−1
and appealing to martingale theory. As an illustration, note that if Yi, i ∈ Ij,t , are

FIG. 3. Reliability diagram for the forecasts p̂t,k . At the midpoint of each of the five bins
[(j − 1)/5, j/5], j = 1, . . . ,5, a 95% confidence interval, centered at Ȳ (j), for p̄(j) is shown; only
the upper (or lower) half of the interval is shown at j = 1 (or 5) to keep the range of the vertical axis
between 0.1 and 0.9.
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TABLE 3
Simulation results for p̄(j), Ȳ (j), v(j) and v̂(j)

Min 1st qrt. Median 3rd qrt. Max Mean SD

p̄(1) 0.101 0.101 0.101 0.168 0.234 0.121 0.033
Ȳ (1) 0.017 0.083 0.117 0.156 0.350 0.123 0.051
v(1) 0.087 0.087 0.087 0.127 0.167 0.100 0.020
v̂(1) 0.067 0.089 0.106 0.132 0.233 0.106 0.037

p̄(2) 0.101 0.300 0.300 0.355 0.515 0.320 0.049
Ȳ (2) 0.050 0.267 0.317 0.378 0.633 0.319 0.089
v(2) 0.087 0.207 0.207 0.207 0.247 0.209 0.015
v̂(2) 0.048 0.208 0.221 0.239 0.259 0.213 0.034

p̄(3) 0.300 0.515 0.515 0.577 0.701 0.527 0.058
Ȳ (3) 0.217 0.467 0.533 0.589 0.833 0.529 0.096
v(3) 0.206 0.233 0.247 0.247 0.247 0.239 0.011
v̂(3) 0.144 0.240 0.249 0.254 0.259 0.244 0.015

p̄(4) 0.515 0.659 0.701 0.701 0.906 0.690 0.052
Ȳ (4) 0.367 0.633 0.689 0.750 1.000 0.687 0.090
v(4) 0.082 0.206 0.206 0.206 0.247 0.204 0.021
v̂(4) 0.063 0.207 0.217 0.236 0.259 0.211 0.035

p̄(5) 0.769 0.906 0.906 0.906 0.906 0.895 0.026
Ȳ (5) 0.733 0.867 0.900 0.933 1.000 0.892 0.049
v(5) 0.082 0.082 0.082 0.082 0.164 0.088 0.016
v̂(5) 0.077 0.084 0.093 0.120 0.202 0.096 0.037

i.i.d. Bernoulli random variables with common parameter pt(j), then v̂t (j ) defined
in (3.12) is an unbiased estimate of pt(j)(1 − pt(j)) and one can use the classical
strong law of large numbers to derive the result. The proof of Theorem 3 basically
shows that v̂t (j ) is “conditionally unbiased” given Ft−1 in the sense of (3.13) and
then uses the martingale strong law to derive the result. To prove Theorem 4, we
extend this idea to obtain a conditionally unbiased estimate of Var(v̂t (j )) by first
considering the i.i.d. case: let X1, . . . ,Xm be i.i.d. random variables. As is well
known, the sample variance v̂ = ∑m

i=1(Xi − X̄)2/(m − 1) is a U -statistic of or-
der 2, with kernel h(Xi,Xk) = (Xi − Xk)

2/2. Arvesen (1969) has shown that an
unbiased estimate of the variance of the U -statistic is the jackknife estimate

4(m − 1)

m(m − 2)2

m∑
i=1

{
1

m − 1

m∑
k=1
k �=i

h(Xi,Xk) − v̂

}2

.(5.1)
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PROOF OF THEOREM 4. Use L(p, p̂) = (p − p̂)2 to express n{L̂n − n−1 ×∑T
t=1

∑Jt

j=1 nj,t v̂t (j) − Ln} as

T∑
t=1

Kt∑
k=1

(1 − 2p̂t,k)(Yt,k − pt,k) −
T∑

t=1

Jt∑
j=1

nj,t

[
v̂t (j ) − pt(j)

(
1 − pt(j)

)]
,(5.2)

which is the difference of two martingales and is therefore a martingale. To com-
pute the conditional variance (or predictable variation) of (5.2), we can use the
“angle bracket” notation and formulas for predictable variation and covariation
[Williams (1991), Section 12.12] to obtain〈

T∑
t=1

Kt∑
k=1

(1 − 2p̂t,k)(Yt,k − pt,k)

〉

=
T∑

t=1

Kt∑
k=1

(1 − 2p̂t,k)
2E

(
(Yt,k − pt,k)

2|Ft−1
)

(5.3)

=
T∑

t=1

Jt∑
j=1

( ∑
i∈Ij,t

(1 − 2p̂i)
2
)
pt(j)

(
1 − pt(j)

)
,

〈
T∑

t=1

Kt∑
k=1

(1 − 2p̂t,k)(Yt,k − pt,k),

T∑
t=1

Jt∑
j=1

nj,t

[
v̂t (j ) − pt(j)

(
1 − pt(j)

)]〉

(5.4)

=
T∑

t=1

Jt∑
j=1

[ ∑
i∈Ij,t

(1 − 2p̂i)

]
pt(j)

(
1 − pt(j)

)(
1 − 2pt(j)

)
,

〈
T∑

t=1

Jt∑
j=1

nj,t

[
v̂t (j ) − pt(j)

(
1 − pt(j)

)]〉

=
T∑

t=1

Jt∑
j=1

{
nj,tpt (j)

(
1 − pt(j)

)[
1 − 4pt(j)

(
1 − pt(j)

)]
(5.5)

+ 2nj,tp
2
t (j )

(
1 − pt(j)

)2
/(nj,t − 1)

}
.

Combining (5.3), (5.4) and (5.5) yields formula (3.15) for the conditional variance
of (5.2) divided by n.

In view of (3.13), v̂t (j ) is a conditionally unbiased estimate of pt(j)(1−pt(j))

given Ft−1. If Y ∼ Bernoulli(pi), then E(Y − p)3 = p(1 − p)(1 − 2p). Hence a
conditionally unbiased estimate of pt(j)(1 − pt(j))(1 − 2pt(j)) given Ft−1 is

[n2
j,t /(nj,t − 1)3] ∑

i∈Ij,t

(
Yi − Ȳt (j)

)3
,(5.6)
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analogous to (3.13). Replacing pt(j)(1 − pt(j))(1 − 2pt(j)) in (5.4) by (5.6) and
multiplying (5.4) by −2/n gives the second summand of (3.16). Note that the first
summand of (3.16) corresponds to replacing pt(j)(1 − pt(j)) in (5.3) by v̂t (j ).
The last summand of (3.16) corresponds to using the jackknife estimate (5.1) to
estimate the conditional variance of v̂t (j ) given Ft−1. Since {Yi, i ∈ Ij,t } is a set of
i.i.d. random variables conditional on Ft−1, the jackknife estimate is conditionally
unbiased given Ft−1; see the paragraph preceding the proof of this theorem. The
rest of the argument is similar to that of Theorem 3. �

PROOF OF THEOREM 5. We first prove (iii). Using the notation in the
paragraph preceding the proof of Theorem 4, recall that conditional on Ft−1,
the Yt,k are independent Bernoulli(pt,k) random variables. Since Ij,t is Ft−1-
measurable, it follows that

∑
i∈Ij,t

(Yi − pi) is a martingale difference sequence

with respect to {Ft } and E{[∑i∈Ij,t
(Yi − pi)]2|Ft−1} = ∑

i∈Ij,t
pi(1 − pi). Since

n−1 ∑T
t=1

∑
i∈Ij,t

pi(1−pi) converges in probability to a nonrandom positive con-
stant as n → ∞, we can apply the martingale central limit theorem as in the proof
of Theorem 1 to conclude that∑T

t=1
∑

i∈Ij,t
(Yi − pi)

{∑T
t=1

∑
i∈Ij,t

pi(1 − pi)}1/2
�⇒ N(0,1)

proving the first part of (iii).
To prove the second part of (iii), and also (i) and (ii), we first show that for any

nonnegative Ft−1-measurable random variables wt,1, . . . ,wt,Kt ,

E

{ ∑
k∈Ij,t

wt,k

(
Yt,k − Ȳt (j)

)2|Ft−1

}
(5.7)

≥ ∑
k∈Ij,t

(1 − n−1
j,t )wt,kpt,k(1 − pt,k),

in which
∑

k∈Ij,t
means

∑
i∈Ij,t

when i is represented as (t, k); see the second

paragraph of Section 3.4. Define Ȳt (j), Ȳ (j) and p̄(j) as in (3.18) and (3.19), and
let p̄t (j) = (

∑
k∈Ij,t

pt,k)/nj,t . From the decomposition

Yt,k − Ȳt (j) = (Yt,k − pt,k) + (
pt,k − p̄t (j)

) + (
p̄t (j) − Ȳt (j)

)
,(5.8)

it follows that the left-hand side of (5.7) is equal to∑
k∈Ij,t

wt,kE[(Yt,k − pt,k)
2|Ft−1] + ∑

k∈Ij,t

wt,k

(
pt,k − p̄t (j)

)2

+ ∑
k∈Ij,t

wt,kE
[(

Ȳt (j) − p̄t (j)
)2|Ft−1

]
(5.9)

− 2E

[(
Ȳt (j) − p̄t (j)

) ∑
k∈Ij,t

wt,k(Yt,k − pt,k)

]
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by using the fact that conditional on Ft−1 the Yt,k are independent Bernoulli. Since
Ȳt (j) − p̄t (j) = ∑

k∈It,j
(Yt,k − pt,k)/nj,t , we can use this fact again to combine

the last two terms of (5.9) into

− ∑
k∈Ij,t

(wt,k/nj,t )E[(Yt,k − pt,k)
2|Ft−1].(5.10)

Since wt,k ≥ 0, we can drop the second term in (5.9) to obtain (5.7) from (5.9)
and (5.10). Moreover, since this term is actually 0 when the pt,k are all equal for
k ∈ Ij,t , equality holds in (5.7) in this case.

Let wt,k = nj,t /(nj,t − 1). Then (5.7) reduces to

E(nj,t v̂t (j)|Ft−1) ≥ ∑
k∈Ij,t

pt,k(1 − pt,k).(5.11)

Under the assumptions of part (iii) of the theorem, we can apply the martingale
strong law to obtain

T∑
t=1

{nj,t v̂t (j) − E(nj,t v̂t (j)|Ft−1)}/nj −→ 0 a.s. on {nj → ∞}.(5.12)

Combining (5.11) with (5.12) yields v̂(j) ≥ v(j) + op(1), with equality when the
pt,k are all equal for k ∈ Ij,t .

To prove part (i) of the theorem, put wt,k = {L(1, p̂t,k) − L(0, p̂t,k)}2nj,t /

(nj,t − 1) in (5.7) and then use the same argument as in the preceding paragraph.
The proof of part (ii) is similar. �

6. Extensions and connections to forecast comparison in econometrics.
Our new approach to evaluating probability forecasts in Section 3 is based on con-
sistent and asymptotically normal estimates of the average loss n−1 ∑n

i=1 L(pi,

p̂i), without any assumptions on how the observed indicator variables Yi and their
forecasts p̂i are generated. The key to this approach is that conditional on Fi−1,
Yi is Bernoulli(pi), and therefore martingale arguments can be used to derive the
results in Section 3. In Section 6.1 we show how this approach can be extended
to more general random variables Yi . As shown in (2.3), when Yi is an indicator
variable, the conditional expectation of the score L(Yi, p̂i) given Fi−1 is a linear
function of pi , but this does not extend to more general random variables Yi . In
Section 6.2 we review the recent econometrics literature on testing the equality of
the expected scores of two forecasts and discuss an alternative approach to statis-
tical inference on the expected difference in average scores of two forecasts.

6.1. Extensions to general predictands. A characteristic of (p̂i, Yi) in proba-
bility forecasting is that E(Yi |Fi−1) = pi while the Gi−1-measurable forecast p̂i

is an estimate of pi . The theorems in Section 3 and their martingale proofs in
Section 5 can be easily extended to general random variables Yi when the loss
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function is of the form L(μi, μ̂i), where μi = E(Yi |Fi−1) and μ̂i is a forecast of
Yi given Fi−1. Although Yi |Fi−1 ∼ Bernoulli(pi) in Section 3, no parametric as-
sumptions are actually needed when we use a loss function of the form L(μi, μ̂i).
As in (2.2), such loss function is said to have a linear equivalent L̃ if

L̃(y, ŷ) is linear in y and L(y, ŷ) − L̃(y, ŷ) does not depend on ŷ.(6.1)

The bucket model in Section 3.4 can be extended so that Yt,k|Ft−1 have the same
mean and variance for all (t, k) belonging to the same bucket. In place of (3.12),
we now use

v̂t (j ) = ∑
i∈Ij,t

(
Yi − Ȳt (j)

)2
/(nj,t − 1)(6.2)

as an unbiased estimate of the common conditional variance of Yi given Fi−1 for
i = (t, k) ∈ Ij,t , using the same notation as that in the proof of Theorem 4. While
the extension of Theorem 3 only needs the first two moments of Yt,k|Ft−1 to be
equal for all (t, k) belonging to the same bucket, Theorem 4 can also be extended
by assuming the first four moments of Yt,k|Ft−1 to be equal for all (t, k) belonging
to the same bucket, by using Arvesen’s (1969) jackknife estimate of the variance
of a U -statistic.

Clearly (5.8), (5.9) and (5.10) also hold with pt,k and p̄t (j) replaced by μt,k

and μ̄t (k), so Theorem 5 can likewise be extended to quasi-buckets and reliability
diagrams for the predicted means μ̂t,k . For sample means in the case of indepen-
dent observations within each bucket, this extension of Theorem 5 can be viewed
as a corollary of the analysis of variance. In fact, the proof of Theorem 5 uses
martingale arguments and conditioning to allow dependent observations in each
(quasi-)bucket.

6.2. Inference on expected difference in average scores of two forecasts.
When the Yi are indicator variables of events, Theorem 2(ii) establishes asymptotic
normality for the difference �̂n = n−1 ∑n

i=1{L(Yi, p̂
′
i) − L(Yi, p̂

′′
i )} in average

scores between two forecasts, from which one can perform inference on

�n = n−1
n∑

i=1

E{L(Yi, p̂
′
i) − L(Yi, p̂

′′
i )|Fi−1}

(6.3)

= n−1
n∑

i=1

{δipi + L(0, p̂′
i ) − L(0, p̂′′

i )},

where δi = {L(1, p̂′
i ) − L(0, p̂′

i )} − {L(1, p̂′′
i ) − L(0, p̂′′

i )}. This simplicity, how-
ever, does not extend to general Yi .

Proper scoring rules for probability forecasts of categorical and continuous
variables Yi have been an active area of research; see the review by Gneiting
and Raftery (2007). Another active area of research is related to the extension
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of �̂n to general Yi in the econometrics literature, beginning with the seminal
paper of Diebold and Mariano (1995). They consider the usual forecast errors
et := Yt − Ŷt |t−1 in time series analysis, where Ŷt |t−1 is the one-step ahead fore-
cast of Yt based on observations up to time t − 1. Unlike a probability fore-
cast that gives a predictive distribution of Yt as in Gneiting and Raftery (2007),
Ŷt |t−1 is a nonprobabilistic forecast that predicts the value of Yt [see Wilks (2005),
Section 7.3]. The score used by Diebold and Mariano (1995) is of the form
L(Yt , Ŷt |t−1) = g(et ), and they consider the average loss differential

�̂n = n−1
n∑

t=1

{L(Yt , Ŷ
′
t |t−1) − L(Yt , Ŷ

′′
t |t−1)}(6.4)

between two forecasts Y ′
t |t−1 and Ŷ ′′

t |t−1,1 ≤ t ≤ n. Assuming a probability mea-
sure Q under which dt := g(e′

t ) − g(e′′
t ) is covariance stationary with absolutely

summable autocovariances γk so that f (0) := ∑∞
k=−∞ γk/(2π) is the spectral den-

sity at frequency 0, they use the asymptotic normality of �̂n under the null hypoth-
esis H0 :EQ(dt ) = 0 and a window estimate f̂ (0) of f (0) so that the test statis-
tic

√
n�̂n/(2πf̂ (0))1/2 has a limiting standard normal distribution under H0 as

n → ∞. This aysmptotic normality result, however, requires additional assump-
tions, such as stationary mixing, which they do not mention explicitly. Their work
has attracted immediate attention and spawned many subsequent developments in
the econometrics literature on this topic.

Giacomini and White (2006), hereafter abbreviated as G&W, review some of the
developments and propose a refinement of H0 for which the asymptotic normal-
ity of �̂n can be established under precisely stated conditions that can also allow
nonstationarity. They formulate the null hypothesis of equal predictive ability of
two forecasting models or methods as “a problem of inference about conditional
expectations of forecasts and forecast errors that nests the unconditional expecta-
tions that are the sole focus of the existing literature.” The econometrics literature
they refer to is primarily concerned with “forecast models;” thus Q in the previ-
ous paragraph is the probability measure associated with the forecast model being
evaluated, or with a more general model than the two competing forecast models
whose predictive abilities are compared.

G&W evaluate not only the forecasting model but also the forecasting method,
which includes “the forecasting model along with a number of choices,” such as
the estimation procedure and the window of past data, used to produce the forecast.
They consider k-step ahead forecasts, for which Ŷt |t−1 is replaced by Ŷt |t−k , and
assume that the forecasts are based on finite-memory models involving unknown
parameters, that is,

Ŷt+k|t = h(Yt , . . . , Yt−m+1,xt , . . . ,xt−m+1;β),(6.5)

where h is a known function, m is the order of the model, xt is a covariate vector
at time t and β is a parameter vector to be estimated from some specified win-
dow of past data. Their formulation generalizes that of West (1996) who considers
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regression models. Whereas West assumes that the data are actually generated by
the regression model with true parameter β∗, G&W allow model misspecification,
and therefore their assumptions do not involve β∗. They consider two such nomi-
nal models, resulting in the forecasts Ŷ ′

t |t−k and Ŷ ′′
t |t−k that use the same covariates

but different estimates β̂
′
t and β̂

′′
t . Their null hypothesis

H0 :E{L(Yt , Ŷ
′
t |t−k) − L(Yt , Ŷ

′′
t |t−k)|Gt−k} = 0 a.s. ∀t ≥ 1(6.6)

seems to be stronger than EL(Yt , Y
′
t |t−k) = EL(Yt , Y

′′
t |t−k) ∀t considered by

Diebold and Mariano (1995) for the case k = 1. On the other hand, (6.6) in the
case k = 1 just says that L(Yt , Y

′
t |t−1) − L(Yt , Y

′′
t |t−1) is a martingale difference

sequence under H0 so that the martingale central limit theorem can be applied
to derive the limiting χ2-distribution of G&W’s test statistics under H0. Unlike
Diebold and Mariano (1995) for the case k = 1, G&W do not use test statistics of
the form (6.4) and their test statistics involve more complicated weighted sums of
L(Yt , Ŷ

′
t |t−k) − L(Yt , Ŷ

′′
t |t−k). These weights are chosen to improve the power of

the test and require additional mixing and moment assumptions on (xt , Yt ) given
in their Theorems 1–3.

The methodology developed in Section 3 and its extension outlined in Sec-
tion 6.1 suggest an alternative approach to comparing econometric forecasts. As
in (6.4), we consider the average score difference

�̂n = n−1
n∑

i=1

{L(Yt , Ŷ
′
t ) − L(Yt , Ŷ

′′
t )},(6.7)

in which Ŷ ′
t and Ŷ ′′

t are forecasts that are Gt−1-measurable. Since k-step ahead
forecasts of Yt are Gt−1-measurable for any k ≥ 1, the theory applies to all k-step
ahead forecasts of Yt , as illustrated in Table 1. Instead of hypothesis testing, our
approach is targeted toward estimating

�n = n−1
n∑

i=1

E{L(Yt , Ŷ
′
t ) − L(Yt , Ŷ

′′
t )|Gt−1},(6.8)

in which E is with respect to the actual but unknown probability measure P . Anal-
ogously to Theorem 2(i) for the case of binary Yi , we can apply the martingale
central limit theorem to establish the asymptotic normality of �̂n − �n. In many
applications, one can make use of the bucket structure of the type in Section 3.4 to
estimate the asymptotic variance of �̂n. In particular, this structure is inherent in
dynamic panel data in econometrics and longitudinal data in epidemiology, which
is beyond the scope of this paper on forecasting probabilities of events and will
be treated elsewhere. Note that the bucket structure is only used in estimating the
asymptotic variance of �̂n by (6.2), and that Theorem 5 and its extension out-
lined in Section 6.1 imply that the variance estimate tends to be conservative if the
assumed bucket structure actually fails to hold.
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7. Discussion. The average score n−1 ∑n
i=1 L(Yi, p̂i) measures the diver-

gence of the predicted probabilities p̂i , which lie between 0 and 1, from the in-
dicator variables Yi that can only have values 0 or 1. As noted by Lichtendahl and
Winkler (2007), this tends to encourage more aggressive bets on the binary out-
comes, rather than the forecaster’s estimates of the event probabilities. For exam-
ple, an estimate of 95% probability may lead to a probability forecast of 100% for
a higher reward associated with the indicator variable Yi ; see also Mason (2008),
who gives an example in which a forecaster is encouraged to give such “dishon-
est” forecasts. This difficulty would disappear if one uses L to compare p̂i with
the actual pi , rather than with the Bernoulli(pi ) random variable Yi . Because the
pi are unknown, this is not feasible and the importance of using a proper score
L(Yi, p̂i) to evaluate a probability forecast has been emphasized to address the is-
sue of dishonest forecasts. In Section 3.2 we have shown that it is possible to use
L(pi, p̂i) − L(pi, p̂

′
i) for comparing two forecasters and to construct confidence

intervals of the average loss difference. A key idea underlying this development is
the linear equivalent of a loss function introduced in Section 2. Schervish (1989),
Section 3, has used a framework of two-decision problems involving these loss
functions to develop a method for comparing forecasters. Our approach that con-
siders L(pi, p̂

′
i) − L(pi, p̂

′′
i ) can be regarded as a further step in this direction.

As noted in Section 3.5, an important assumption underlying statistical infer-
ence in the verification of probability forecasts in meteorology is that the forecast-
observation pairs are independent realizations from the joint distribution of fore-
casts and observations. Although Mason [(2008), page 32] has pointed out that
this assumption cannot hold “if the verification score is calculated using forecasts
for different locations, or if both the forecasts and observations are not indepen-
dent temporally,” not much has been done to address this problem other than using
moving-blocks bootstrap [Mason (2008), Wilks (2005)] because traditional sta-
tistical inference does not seem to provide much help in tackling more general
forecast-observation pairs. The new approach in Section 3 can be used to resolve
this difficulty. It uses martingale theory to allow the forecast-observation pairs to
be generated by general stochastic systems, without the need to model the under-
lying system in carrying out the inference. The treatment of spatial dependence
is also covered in Section 3.5, in which dependence of the events at Kt locations
at time t is encapsulated in the highly complex joint distribution of their gener-
ating probabilities pt,1, . . . , pt,Kt , which our approach does not need to model in
performing inference on forecast validation. Our viewpoint in forecast evaluation
is that one should try not to make unnecessary or arbitrary assumptions on the
underlying data-generating mechanism, especially in regulatory settings such as
regulatory supervision of a bank’s internal ratings models of loan default prob-
abilities; see Section 3.4 and Lai and Wong (2008). A convenient but incorrect
data-generating model that is assumed can unduly bias the comparison.
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