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ON BAYES’ THEOREM FOR IMPROPER MIXTURES1

BY PETER MCCULLAGH AND HAN HAN

University of Chicago

Although Bayes’s theorem demands a prior that is a probability distri-
bution on the parameter space, the calculus associated with Bayes’s theorem
sometimes generates sensible procedures from improper priors, Pitman’s es-
timator being a good example. However, improper priors may also lead to
Bayes procedures that are paradoxical or otherwise unsatisfactory, prompting
some authors to insist that all priors be proper. This paper begins with the
observation that an improper measure on � satisfying Kingman’s countabil-
ity condition is in fact a probability distribution on the power set. We show
how to extend a model in such a way that the extended parameter space is the
power set. Under an additional finiteness condition, which is needed for the
existence of a sampling region, the conditions for Bayes’s theorem are sat-
isfied by the extension. Lack of interference ensures that the posterior distri-
bution in the extended space is compatible with the original parameter space.
Provided that the key finiteness condition is satisfied, this probabilistic anal-
ysis of the extended model may be interpreted as a vindication of improper
Bayes procedures derived from the original model.

1. Introduction. Consider a parametric model consisting of a family of prob-
ability distributions {Pθ } indexed by the parameter θ ∈ �. Each Pθ is a probability
distribution on the observation space S1, usually a product space such as R

n. In the
parametric application of Bayes’s theorem, the family {Pθ } is replaced by a single
probability distribution Pπ(dθ, dy) = Pθ(dy)π(dθ) on the product space � × S1.
The associated projections are the prior π on the parameter space and the marginal
distribution

Pπ(� × A) =
∫
�

Pθ(A)π(dθ)

for A ⊂ S1. To each observation, y ∈ S1 there corresponds a conditional distribu-
tion Pπ(dθ | y), also called the posterior distribution, on �.

The joint distribution Pπ(dθ, dy) has a dual interpretation. The generative inter-
pretation begins with θ , a random element drawn from � with probability distribu-
tion π , the second component being distributed according to the model distribution
Y ∼ Pθ , now treated as a conditional distribution given θ . In reverse order, the in-
ferential interpretation begins with the observational component Y ∼ Pπ(� × dy)
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drawn from the mixture distribution, the parameter component being distributed
as θ ∼ Pπ(· | y) from the conditional distribution given Y = y. The conditional
distribution Pπ(· | y) tells us how to select θ ∈ � in order that the joint distribution
should coincide with the given joint distribution Pπ(dθ, dy).

On the assumption that the marginal measure Pν(dy) = ∫
� Pθ(dy)ν(dθ) is σ -

finite, formal application of the Bayes calculus with an improper prior ν yields a
posterior distribution Q(dθ | y) satisfying

Pθ(dy)ν(dθ) = Pν(dy)Q(dθ | y)

[Eaton (1982), Eaton and Sudderth (1995)]. This factorization of the joint mea-
sure yields a conditional law that is a probability distribution, in the sense that
Q(� | y) = 1. However, the joint measure is not a probability distribution, so the
factorization is not to be confused with Bayes’s theorem: it does not offer a proba-
bilistic interpretation of Q(· | y) as a family of conditional distributions generated
by a joint probability distribution on the product space. As a result, some authors
reject the Kolmogorov axiom of total probability, arguing instead for a nonuni-
tary measure theory for Bayesian applications [Hartigan (1983), Taraldsen and
Lindqvist (2010)]. The goal of this paper is to show how an improper prior may
be accommodated within the standard unitary theory without deviation from the
Kolmogorov axioms. A probability space is constructed from the improper mea-
sure in such a way that Q(· | y) admits a probabilistic interpretation as a family
of conditional probability distributions given the observation. Section 6 shows that
σ -finiteness is not needed.

It would be inappropriate here to offer a review of the vast literature on im-
proper priors, most of which is not relevant to the approach taken here. Nonethe-
less, a few remarks are in order. Some statisticians clearly have qualms about the
use of such priors, partly because Bayes’s theorem demands that priors be proper,
partly because the “degree of belief” interpretation is no longer compelling, and
partly because the formal manipulation of improper priors may lead to inferential
paradoxes of the sort discussed by Dawid, Stone and Zidek (1973). Lindley (1973)
argues correctly that strict adherence to the rules of probability requires all priors
to be proper. Even though the Bayes calculus often generates procedures yielding
sensible conclusions, he concludes that improper priors must be rejected. Many
statisticians, including some who interpret the prior as a “degree of belief,” are in-
clined to take a less dogmatic view. In connection with Bernoulli trials, Bernardo
and Smith (1994) (Section 5.2) comment as follows. It is important to recognize,
however, that this is merely an approximation device and in no way justifies [the
improper limit θ−1(1 − θ)−1] as having any special significance as a represen-
tation of “prior ignorance.” In subsequent discussion in Section 5.4, they take
a more pragmatic view of a reference prior as a mathematical tool generating a
reference analysis by the Bayes calculus.

The purpose of this note is to offer a purely probabilistic interpretation of an im-
proper prior, in agreement with Lindley’s thesis but not with his conclusion. The
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interpretation that removes the chief mathematical obstacle is that an improper
measure on � is a probability distribution on the set of subsets of �. A proper
prior determines a random element θ ∈ � with distribution π , whereas an im-
proper prior ν determines a random subset, a countable collection {θi} distributed
as a Poisson process with mean measure ν. In the product space �× S1, the proper
joint distribution Pπ determines a random element (θ, Y ), whereas the improper
distribution Pν determines a random subset Z ⊂ � × S1, a countable collection
of ordered pairs Z = {(θi, Yi)}. An observation on a point process consists of a
sampling region A ⊂ S1 together with the set y = Y ∩ A of events that occur in A.
It is critical that the sampling region be specified in such a way that Y ∩ A is fi-
nite, a condition that puts definite limits on ν and on the set of sampling schemes.
Having done so, we obtain the conditional distribution given the observation. The
standard Bayesian argument associates with each point y ∈ S1 a probability distri-
bution on �: the point process argument associates with each finite subset y ⊂ A

a probability distribution on �#y. Despite this fundamental distinction, certain as-
pects of the conditional distribution are in accord with the formal application of
the Bayes calculus, treating the mixture as if it were a model for a random element
rather than a random subset.

2. Conditional distributions. Consider a Poisson process with mean mea-
sure μ in the product space S = S0 × S1. Existence of the process is guaranteed if
the singletons of S are contained in the σ -field, and μ is a countable sum of finite
measures, that is,

μ =
∞∑

n=1

μn where μn(S) < ∞.(2.1)

Kingman’s countability condition, also called weak finiteness [Kingman (1993)],
is the natural condition for existence because it implies that the marginal measures
μ0(B) = μ(B × S1) for B ⊂ S0 and μ1(A) = μ(S0 ×A) for A ⊂ S1 are countable.
Consequently, the projected processes exist and are also Poisson.

Unlike σ -finiteness, countability does not imply the existence of a subset A ⊂ S
such that 0 < μ(A) < ∞. If such a set exists, the process is said to be observ-
able on A. For example, the measure taking the value ∞ on subsets of positive
Lebesgue measure in R and zero otherwise is countable, but the process is not
observable on any subset. Sigma-finiteness is a stronger condition, sufficient for
existence but not necessary, and not inherited by the projected marginal measures
[Kingman (1993)].

The symbol Z ∼ PP(μ) denotes a Poisson point process, which is a random
subset Z ⊂ S such that for each finite collection of disjoint subsets A1, . . . ,An

of S , the random variables #(Z∩A1), . . . ,#(Z∩An) are distributed independently
according to the Poisson distribution #(Z ∩ Aj) ∼ Po(μ(Aj )). In much of what
follows, it is assumed that μ(S) = ∞, which implies that #Z ∼ Po(∞) is infinite
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with probability one, but countable on account of (2.1). Since Z is countable and
S is a product set, we may label the events

Z = (X,Y ) = {(Xi, Yi) : i = 1,2, . . .},
where X ⊂ S0 is a Poisson process with mean measure μ0 and Y ⊂ S1 is a Poisson
process with mean measure μ1. The notation Z = (X,Y ) implies that X ⊂ S0 and
Y ⊂ S1 are countable subsets whose elements are in a specific 1–1 correspondence.

To say what is meant by an observation on a point process, we must first estab-
lish the sampling protocol, which is a test set or sampling region A ⊂ S1 such that
μ1(A) < ∞. In this scheme, S0 is the domain of inference, so X is not observed.
The actual observation is the test set A together with the random subset y = Y ∩A,
which is finite with probability one. Although we refer to S1 as the “space of ob-
servations,” it must be emphasized that an observation is not a random element
in S1, but a finite random subset y ⊂ A ⊂ S1, which could be empty.

The distinction between a point process and an observation on the process is
the same as the distinction between an infinite process and an observation on that
process. An infinite process is a sequence of random variables Y = (Y1, Y2, . . .)

indexed by the natural numbers, that is, a random function Y : N → R. An ob-
servation consists of a sample, a finite subset A ⊂ N, together with the response
values Y [A] for the sampled units. Likewise, a point process is a random subset
considered as a random function Y : S1 → {0,1} indexed by the domain S1. An
observation consists of a sample or sampling region A ⊂ S1 together with the re-
striction Y [A] = Y ∩A of the process to the sample. Usually A is not finite or even
countable, but the observation is necessarily finite in the sense that #(Y ∩A) < ∞.

Whether we are talking of sequences or point processes, the domain of inference
is not necessarily to be interpreted as a parameter space: in certain applications
discussed below, the observation space consists of finite sequences in S1 = R

n,
and S0 = R

∞ is the set of subsequent trajectories. In this sense, predictive sample-
space inferences are an integral part of the general theory (Section 4.2).

We focus here on inferences for the X-values associated with the events y =
Y ∩ A that occur in the sampling region, that is, the subset

x = X[A] = {Xi :Yi ∈ A} = {Xi :Yi ∈ y}
in 1–1 correspondence with the observation y. In this formal sense, an inference is
a rule associating with each finite subset y ⊂ A a probability distribution on S #y

0 .
Clearly, if y is empty, x is also empty, so the conditional distribution is trivial,

putting probability one on the event that x is empty. Without loss of generality,
therefore, we assume that 0 < μ1(A) < ∞, that m = #y is positive and finite, and
that the events are labeled (Y1, . . . , Ym) by a uniform random permutation indepen-
dent of Z. Given #y = m, the pairs (X1, Y1), . . . , (Xm,Ym) are independent and
identically distributed random variables with probability density μ(dxdy)/μ1(A)
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in S0 × A. Thus, the conditional joint density given Y ∩ A = y is equal to

p(dx | y) =
m∏

i=1

μ(dxidyi)

μ1(dyi)
=

m∏
i=1

μ(dxi | yi),(2.2)

where μ(dx | y) is the limiting ratio μ(dx × dy)/μ1(dy) as dy ↓ {y}.
The key properties of this conditional distribution are twofold, conditional in-

dependence and lack of interference. First, the random variables X1, . . . ,Xm are
conditionally independent given Y ∩ A = y. Second, the conditional distribution
of Xi given y depends only on Yi , not on the number or position of other events
in A. For example, if two or more events occur at the same point (Yi = Yj ) the
random variables Xi,Xj are conditionally independent and identically distributed
given y. The test set determines the events on which predictions are made, but be-
yond that it has no effect. In particular, if m = 1, the conditional density of X is
p(dx | y) ∝ μ(dx | y) regardless of the test set.

The observability assumption μ1(A) < ∞ is not made out of concern for what
might reasonably be expected of an observer in the field. On the contrary, finite-
ness is essential to the mathematical argument leading to (2.2). If the number of
events were infinite, countability implies that the values can be labeled sequentially
y1, y2, . . . in 1–1 correspondence with the integers. Countability does not imply
that they can be labeled in such a way that the infinite sequence is exchangeable.
As a result, the factorization (2.2) fails if #y = ∞.

The remark made above, that the test set has no effect on inferences, is correct
but possibly misleading. Suppose that 0 < m < ∞ and that the observation con-
sists of that information alone without recording the particular values. If μ1(A) = 0
or μ1(A) = ∞, no inference is possible beyond the fact that the model is totally
incompatible with the observation. If the marginal measure is finite on A, the con-
ditional density is such that the components of X[A] are independent and identi-
cally distributed with density μ(dx ×A)/μ1(A), which does depend on the choice
of test set. In the context of parametric mixture models with � ≡ S0, each se-
quence with distribution Pθ has probability Pθ(A) of being recorded. Thus, before
observation begins, the restriction to A ⊂ S1 effectively changes the measure to
Pθ(A)ν(dθ), which is finite on �, but depends on the choice of A.

3. Improper mixtures. Consider a parametric statistical model consisting of
a family of probability distributions {Pθ : θ ∈ �} on the observation space S1, one
distribution for each point θ in the parameter space. Each model distribution de-
termines a random element Y ∼ Pθ . A probability distribution π on � completes
the Bayesian specification, and each Bayesian model also determines a random el-
ement (θ, Y ) ∈ � × S1 distributed as π(dθ)Pθ (dy). The observational component
is a random element Y ∈ S1 distributed as the mixture Y ∼ Pπ , and the condi-
tional distribution given Y = y is formally the limit of π(dθ)Pθ (dy)/Pπ(�,dy)

as dy ↓ {y}.
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A countable measure ν such that ν(�) = ∞ does not determine a random el-
ement θ ∈ �, but it does determine an infinite random subset X ⊂ �. Further-
more, the joint measure ν(dθ)Pθ (dy) is countable, so there exists a random subset
Z = (X,Y ) ⊂ � × S1, distributed according to the Poisson process with mean
measure ν(dθ)Pθ (dy). If this interpretation is granted, it is necessary first to spec-
ify the sampling region A ⊂ S1, in such a way that Pν(A) < ∞ to ensure that
only finitely many events y = Y ∩ A occur in A. To each observed event Yi ∈ y,
there corresponds a parameter point θi ∈ X[A] such that (θi, Yi) ∈ Z. Parametric
inference consists in finding the joint conditional distribution given Y ∩ A = y of
the particular subset of parameter values θ1, . . . , θm corresponding to the events
observed.

This probabilistic interpretation forces us to think of the parameter and the ob-
servation in a collective manner, as sets rather than points. Taken literally, the
improper mixture is not a model for a random element in � × S1, but a model for
a random subset Z = (X,Y ) ⊂ � × S1. If ν(�) < ∞, as in a proper mixture, it is
sufficient to take A = S1 and to record the entire subset y ⊂ S1, which is neces-
sarily finite. However, if ν(�) = ∞, it is necessary to sample the process by first
establishing a test set A ⊂ S1 such that Pν(A) < ∞, and then listing the finite set
of values y = Y ∩ A that occur in A. Generally speaking, this finiteness condition
rules out many sampling schemes that might otherwise seem reasonable. In the
special case where #y = 1, X[A] is a random subset consisting of a single point,
whose conditional density at x ∈ � is

pr(X[A] ∈ dx | y = {y}) = ν(dx)px(y)∫
� pθ(y)ν(dθ)

,(3.1)

where pθ(y) is the density of Pθ at y. The finiteness condition on A ensures that
the integral in the denominator is finite, and the occurrence of an event at y implies
that Pν assigns positive mass to each open neighborhood of y.

Provided that 0 < Pν(A) < ∞, this purely probabilistic conclusion may be in-
terpreted as a vindication of the formal Bayes calculation associated with an im-
proper prior. However, the two versions of Bayes’s theorem are quite different in
logical structure; one implies a single random element, the other infinitely many.
Accordingly, if a statistical procedure is to be judged by a criterion such as a
conventional loss function, which presupposes a single observation and a single
parameter, we should not expect optimal results from a probabilistic theory that
demands multiple observations and multiple parameters. Conversely, if the proce-
dure is to be judged by a criterion that allows for multiple sequences each with
its own parameter, we should not expect useful results from a probabilistic the-
ory that recognizes only one sequence and one parameter. Thus, the existence of
a joint probability model associated with an improper prior does not imply opti-
mality in the form of coherence, consistency or admissibility. For example, in the
MANOVA example of Eaton and Sudderth (1995), the Poisson point process in-
terpretation yields the classical posterior, which is incoherent in de Finetti’s sense
and is strongly inconsistent in Stone’s sense.
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The observability condition implies that the restriction of Pν to A is finite, and
hence trivially σ -finite. The role of the finiteness condition is illustrated by two
examples in Sections 4 and 6. For the Gaussian model, Pν is countable for every
n ≥ 0 and σ -finite for n ≥ 2, which guarantees the existence of a sampling region
if n ≥ 2. For the Bernoulli model, Pν is countable for each n ≥ 0 but not σ -finite
for any n. Nonetheless, the finiteness condition for observability is satisfied by
certain subsets A ⊂ {0,1}n for n ≥ 2.

4. Gaussian point process.

4.1. Parametric version. Consider the standard model for a Gaussian se-
quence with independent N(θ,σ 2) components. Let p be a given real num-
ber, and let the prior measure be ν(dθ dσ) = dθ dσ/σp on the parameter space
� = R × R

+. For all p, both ν and the joint measure on � × R
n satisfy the count-

ability condition. Consequently a Poisson point process Z = (X,Y ) ⊂ � × R
n

exists in the product space. For n > 2 − p, the marginal measure Pν has a density
in R

n

λn(y) = �((n + p − 2)/2)2(p−3)/2π−(n−1)/2n−1/2

(
∑n

i=1(yi − ȳ)2)(n+p−2)/2 ,(4.1)

which is finite at all points y ∈ R
n except for the diagonal set. Provided that n ≥ 2

and n > 2 − p, there exists in R
n a subset A such that Pν(A) < ∞, which serves

as the region of observation. In fact, these conditions are sufficient for σ -finiteness
in this example. To each observation y = Y ∩ A and to each event y ∈ y, there
corresponds a conditional distribution on � with density

p(θ, σ | Y ∩ A = y, y ∈ y) = φn(y; θ, σ )σ−p/λn(y),

where φn(y; θ, σ ) is the Gaussian density at y in R
n. The conditional distribution

(2.2) of the parameter subset X[A] ⊂ � given Y ∩ A = y is a product of factors
of this type, one for each of the events in y. It should be emphasized here that
the information in the conditioning event is not simply that y ⊂ Y , but also that Y

contains no other events in A.

4.2. Nonparametric version. Let N be the set of natural numbers, and let S =
R

N be the collection of real-valued sequences,

S = R
N = {y = (y1, y2, . . .) :yi ∈ R, i ∈ N}

with product σ -field RN. We construct directly in this space a Poisson process
Z ⊂ S whose mean measure 
 is uniquely determined by its finite-dimensional
projections 
n with density (4.1). By their construction, these measures are finitely
exchangeable and satisfy the Kolmogorov consistency condition 
n+1(A × R) =

n(A) for each integer n ≥ 0 and A ∈ Rn. In keeping with the terminology for
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random sequences, we say that the point process Z ∼ PP(
) is infinitely exchange-
able if each 
n is finitely exchangeable.

Let S = S1 × S0, where S1 = R
n is the projection onto the first n coordinates,

and S0 ∼= S is the complementary projection onto the subsequent coordinates.
Each event z ∈ Z is an ordered pair, so we write Z = (Y,X) ⊂ S as a count-
able set of ordered pairs (Yi,Xi) in which the marginal process Y ⊂ S1 is Poisson
with parameter 
n, and X ∼ PP(
) has the same distribution as Z. Provided that
the set A ⊂ S1 has finite 
n-measure, the observation y = Y ∩ A is finite. To each
event y ∈ y, there corresponds an event z = (y, x) ∈ Z, so that y = (z1, . . . , zn)

is the initial sequence, and x = (zn+1, . . .) is the subsequent trajectory. The con-
ditional distribution (2.2) is such that the subsequent trajectories X[A] are condi-
tionally independent and noninterfering given Y ∩A = y. For each event y ∈ y, the
k-dimensional joint density at x = (x1, . . . , xk) of the subsequent trajectory is

p(dx | Y ∩ A = y, y ∈ y) = λn+k(y, x) dx

λn(y)
,(4.2)

which is the k-dimensional exchangeable Student t density [Kotz and Nadarajah
(2004), page 1] on ν = n + p − 2 > 0 degrees of freedom.

For any continuous location-scale model with finite pth moment and improper
prior density proportional to dμdσ/σp with p > 0, the initial segment Y ⊂ R

2 is
a Poisson process with intensity

λ2(y) ∝ 1

|y1 − y2|p .

Otherwise if p ≤ 0 the initial segment of length n > 2 − p is a Poisson process
with intensity

λn(y) ∝ 1

(
∑n

i=1(yi − ȳ)2)(n+p−2)/2 .

The prescription (4.2) extends each event y ∈ Y to an infinite random sequence in
such a way that the set of extended sequences Z ⊂ R

N is a Poisson process with
mean measure 
. Given Y ⊂ R

2, these extensions are conditionally independent,
noninterfering, and each extension is an exchangeable sequence. In the Gaussian
case, (4.2) is equivalent to the statement that each initial sequence with sn = 0 is
extended according to the recursive Gosset rule

yn+1 = ȳn + snεn

√
n2 − 1

n(n + p − 2)
,

where ȳn, s
2
n are the sample mean and variance of the first n components,

and εn ∼ tn+p−2 has independent components. The resulting extension is an
exchangeable sequence whose k-dimensional joint density at (y3, . . . , yk+2) is
λk+2(y1, . . . , yk+2)/λ2(y1, y2).
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The Gosset extension is such that the sequence (ȳn, s
2
n) is Markovian and has a

limit. Given a single sequence in the sampling region, the joint distribution of the
limiting random variables (ȳ∞, s∞) is

p(ȳ∞, s∞ | Y ∩ A = y, y ∈ y) = φn(y; ȳ∞, s∞)s−p∞ /λn(y),

which is the posterior density on � as computed by the Bayes calculus with im-
proper prior.

5. Cauchy sequences. Consider the standard model for a Cauchy sequence
having independent components with parameter θ ∈ R × R

+. For p > 0, the prior
measure ν(dθ) = dθ1 dθ2/θ

p
2 satisfies the countability condition, which implies

that a Poisson process X = (X,Y ) ⊂ � × R
n with mean measure Pν exists in the

product space. If 0 < p < n and n ≥ 2, the marginal measure in R
n has a density

which is finite at all points y ∈ R
n whose components are distinct. The density

satisfies the recurrence formula

lim
yn→±∞πy2

nλn,p(y1, . . . , yn) = λn−1,p−1(y1, . . . , yn−1).

For integer p ≥ 2, the density is

λn,p(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(n−p+1)/2

πn−22n−p+1

∑
r =s

|ys − yr |n−p

drds

, (n − p) odd;

(−1)(n−p)/2

πn−12n−p

∑
r =s

(ys − yr)
n−p log |ys − yr |
drds

,

(n − p) even;

(5.1)

where dr = ∏
t =r (yt − yr). For example, λ2,1(y) = 1/(2|y1 − y2|) and

λ3,2(y) = 1

2π |(y1 − y2)(y2 − y3)(y1 − y3)| .
Spiegelhalter (1985) established the same formula for p = 1 in equation (2.2).

For n > p, there exists a subset A ⊂ R
n such that 
n(A) < ∞, which serves as

the region of observation. The Poisson process determines a probability distribu-
tion on finite subsets y ⊂ A, and to each point y ∈ y it also associates a conditional
distribution on � with density

Pν(dθ × dy)


n(dy)
= fn(y; θ)θ

−p
2

λn(y)
,(5.2)

where fn(y; θ) is the Cauchy density at y ∈ R
n.

In the nonparametric version with � replaced by R
k , the conditional distri-

bution extends each point y ∈ A to a sequence (y,X) ∈ R
n+k , with conditional

density X ∼ λn+k(y, x)/λn(y). The extension is infinitely exchangeable. The tail
trajectory of the infinite sequence is such that, if Tk: Rk → � is Cauchy-consistent,
Tn+k(y,X) has a limit whose density at θ ∈ � is (5.2).
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6. Binary sequences. Consider the standard model for a Bernoulli sequence
with parameter space � = (0,1). The prior measure ν(dθ) = dθ/(θ(1 − θ)) de-
termines a Poisson process with intensity θn1(y)−1(1 − θ)n0(y)−1 at (y, θ) in the
product space S1 × �. Here S1 = {0,1}n is the space of sequences of length n,
n0(y) is the number of zeros and n1(y) is the number of ones in y. The marginal
measure on the observation space is


n({y}) =
{

�(n0(y))�(n1(y))/�(n), n0(y), n1(y) > 0,
∞, otherwise,

which is countable but not σ -finite. Any subset A ⊂ S1 that excludes the zero
sequence and the unit sequence has finite measure and can serve as the region
of observation. Given such a set and the observation y = Y ∩ A recorded with
multiplicities, the conditional distribution (2.2) associates with each y ∈ y the beta
distribution

Pν(θ | Y ∩ A = y, y ∈ y) = θn1(y)−1(1 − θ)n0(y)−1�(n)

�(n1(y))�(n0(y))

on the parameter space.
As in the preceding section, we may bypass the parameter space and proceed

directly by constructing a Poisson process with mean measure 
 in the space of
infinite binary sequences. The values assigned by 
 to the infinite zero sequence
and the infinite unit sequence are not determined by {
n}, and can be set to any
arbitrary value, finite or infinite. Regardless of this choice, (2.2) may be used to
predict the subsequent trajectory of each of the points y = Y ∩ A provided that

n(A) < ∞. In particular, the conditional distribution of the next subsequent com-
ponent is

pr(yn+1 = 1 | Y ∩ A = y, y ∈ y) = n1(y)/n.

This is the standard Pólya urn model [Durrett (2010)] for which the infinite av-
erage of all subsequent components is a beta random variable with parameters
(n0(y), n1(y)), in agreement with the parametric analysis.

7. Interpretation. The point-process interpretation of an improper measure
on � forces us to think of the parameter in a collective sense as a random subset
rather than a random point. One interpretation is that a proper prior is designed for
a specific scientific problem whose goal is the estimation of a particular parame-
ter about which something may be known, or informed guesses can be made. An
improper mixture is designed for a generic class of problems, not necessarily re-
lated to one another scientifically, but all having the same mathematical structure.
Logistic regression models, which are used for many purposes in a wide range of
disciplines, are generic in this sense. In the absence of a specific scientific context,
nothing can be known about the parameter, other than the fact that there are many
scientific problems of the same mathematical type, each associated with a different
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parameter value. In that wider sense of a generic mathematical class, it is not un-
natural to consider a broader framework encompassing infinitely many scientific
problems, each with its own parameter. The set of parameters is random but not
indexed in an exchangeable way.

A generic model may be tailored to a specific scientific application by coupling
it with a proper prior distribution π that is deemed relevant to the scientific context.
If there is broad agreement about the model and the relevance of π to the context,
subsequent calculations are uncontroversial. Difficulties arise when no consensus
can be reached about the prior. According to one viewpoint, each individual has a
personal prior or belief; Bayes’s theorem is then a recipe for the modification of
personal beliefs [Bernardo and Smith (1994), Chapter 2]. Another line of argument
calls for a panel of so-called experts to reach a consensus before Bayes’s theorem
can be used in a mutually agreeable fashion [Weerhandi and Zidek (1981), Genest,
McConway and Schervish (1986)]. A third option is to use proper but flat or rela-
tively uninformative priors. Each of these options demands a proper prior on � in
order that Bayes’s theorem may be used.

This paper offers a fourth option by showing that it is possible to apply Bayes’s
theorem to the generic model. Rather than forcing the panel to reach a proper con-
sensus, we may settle for an improper prior as a countable sum of proper, and
perhaps mutually contradictory, priors generated by an infinite number of experts.
Although Bayes’s theorem can be used, the structure of the theorem for an im-
proper mixture is not the same as the structure for a proper prior. For example,
improper Bayes estimators need not be admissible.

Finiteness of the restriction of the measure to the sampling region is needed in
our argument. If the restriction to the sampling region is σ -finite, we may partition
the region into a countable family of disjoint subsets of finite measure, and apply
the extension subset by subset. The existence of a Poisson point process on the
sampling region is assured by Kingman’s superposition theorem. Lack of interfer-
ence implies that these extensions are mutually consistent, so there is no problem
dealing with such σ -finite restrictions. This is probably not necessary from a sta-
tistical perspective, but it does not create any mathematical problems because the
extension does not depend on the choice of the partition of the region.

8. Marginalization paradoxes. The unBayesian characteristic of an im-
proper prior distribution is highlighted by the marginalization paradoxes discussed
by Stone and Dawid (1972) and by Dawid, Stone and Zidek (1973). In the follow-
ing example from Stone and Dawid (1972), the formal marginal posterior distribu-
tion calculated by two methods demonstrates the inconsistency.

EXAMPLE 8.1. The observation consists of two independent exponential ran-
dom variables X ∼ E (θφ) and Y ∼ E (φ), where θ and φ are unknown parameters.
The parameter of interest is the ratio θ .
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METHOD 1. The joint density is

pr(dx, dy | θ,φ) = θφ2e−φ(θx+y) dx dy.

Given the improper prior distribution π(θ) dθdφ, the marginal posterior distribu-
tion for θ is

π(θ | x, y) ∝ π(θ)θ

(θx + y)3 ∝ π(θ)θ

(θ + z)3 ,(8.1)

where z = y/x.

METHOD 2. Notice that the posterior distribution depends on (x, y) only
through z. For a given θ , z/θ has an F2,2 distribution, that is,

pr(z | θ) ∝ θ

(θ + z)2 .

Using the implied marginal prior π(θ) dθ , as if it were the limit of a sequence of
proper priors, we obtain

π(θ | z) ∝ π(θ)θ

(θ + z)2 ,(8.2)

which differs from (8.1). It has been pointed out by Dempster and in the author’s
rejoinder [Dawid, Stone and Zidek (1973)], that no choice of π(θ) could bring the
two analyses into agreement.

From the present viewpoint, the improper prior determines a random subset of
the parameter space and a random subset of the observation space (R+)2. Under
suitable conditions on π , the bivariate intensity

λ(x, y) = 2
∫ ∞

0

θπ(θ) dθ

(θx + y)3

is finite on the interior of the observation space, so the bivariate process is observ-
able. Equation (2.2) associates with each event (x, y) the conditional distribution
(8.1) in agreement with the formal calculation by Method 1. Each event (x, y)

determines a ratio z = y/x, and the set of ratios is a Poisson point process in
(0,∞). However, the marginal measure is such that 
z(A) = ∞ for sets of pos-
itive Lebesgue measure, and zero otherwise. This measure is countable, but the
marginal process is not observable. Thus, conclusion (8.2) deduced by Method 2
does not follow from (2.2), and there is no contradiction.

Conversely, if the prior measure π(dθ)ρ(dφ) is multiplicative with ρ(R+) < ∞
and π locally finite, the marginal measure on the observation space is such that

Pν({a < x/y < b}) < ∞
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for 0 < a < b < ∞. Thus, the ratio z = x/y is observable, and the conditions
for Method 2 are satisfied. The point process model associates with each ratio
0 < z < ∞ the conditional distribution with density

π(θ,φ | z) ∝ ρ(φ)θ

(θ + z)2

in agreement with (8.2). However, the conditional distribution given (x, y)

π(θ,φ | (x, y)) ∝ θφ2e−φ(θx+y)π(θ)ρ(φ)

is such that the marginal distribution of θ given (x, y) is not a function of z alone.
Once again, there is no conflict with (8.2).

All of the other marginalization paradoxes in Dawid, Stone and Zidek (1973)
follow the same pattern.

Jaynes (2003) asserts that “an improper pdf has meaning only as the limit of
a well-defined sequence of proper pdfs.” On this point, there seems to be near-
universal agreement, even among authors who take diametrically opposed views
on other aspects of the marginalization paradox [Akaike (1980), Dawid, Stone and
Zidek (1973) and Wallstrom (2007)]. No condition of this sort occurs in the point-
process theory. However, a sequence of measures μn such that μn(A) < ∞, each
of which assigns a conditional distribution (2.2) to every y ∈ A, may have a weak
limit μn → μ such that μ(A) = ∞ for which no conditional distribution exists.
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