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NEW ESTIMATORS OF THE PICKANDS DEPENDENCE
FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE1

BY AXEL BÜCHER, HOLGER DETTE AND STANISLAV VOLGUSHEV

Ruhr-Universität Bochum

We propose a new class of estimators for Pickands dependence function
which is based on the concept of minimum distance estimation. An explicit
integral representation of the function A∗(t), which minimizes a weighted
L2-distance between the logarithm of the copula C(y1−t , yt ) and functions
of the form A(t) log(y) is derived. If the unknown copula is an extreme-value
copula, the function A∗(t) coincides with Pickands dependence function.
Moreover, even if this is not the case, the function A∗(t) always satisfies the
boundary conditions of a Pickands dependence function. The estimators are
obtained by replacing the unknown copula by its empirical counterpart and
weak convergence of the corresponding process is shown. A comparison with
the commonly used estimators is performed from a theoretical point of view
and by means of a simulation study. Our asymptotic and numerical results in-
dicate that some of the new estimators outperform the estimators, which were
recently proposed by Genest and Segers [Ann. Statist. 37 (2009) 2990–3022].
As a by-product of our results, we obtain a simple test for the hypothesis
of an extreme-value copula, which is consistent against all positive quadrant
dependent alternatives satisfying weak differentiability assumptions of first
order.

1. Introduction. The copula provides an elegant margin-free description of
the dependence structure of a random variable. By the famous theorem of Sklar
(1959), it follows that the distribution function H of a bivariate random variable
(X,Y ) can be represented in terms of the marginal distributions F and G of X

and Y , that is,

H(x,y) = C(F(x),G(y)),

where C denotes the copula, which characterizes the dependence between X

and Y . Extreme-value copulas arise naturally as the possible limits of copulas of
component-wise maxima of independent, identically distributed or strongly mix-
ing stationary sequences [see Deheuvels (1984) and Hsing (1989)]. These copulas
provide flexible tools for modeling joint extremes in risk management. An impor-
tant application of extreme-value copulas appears in the modeling of data with
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positive dependence, and in contrast to the more popular class of Archimedean
copulas they are not symmetric [see Tawn (1988) or Ghoudi, Khoudraji and Rivest
(1998)]. Further applications can be found in Coles, Heffernan and Tawn (1999)
or Cebrian, Denuit and Lambert (2003) among others. A copula C is an extreme-
value copula if and only if it has a representation of the form

C(y1−t , yt ) = yA(t) ∀y, t ∈ [0,1],(1.1)

where A : [0,1] → [1/2,1] is a convex function satisfying max{s,1 − s} ≤ A(s) ≤
1, which is called Pickands dependence function. The representation of (1.1) of
the extreme-value copula C depends only on the one-dimensional function A and
statistical inference on a bivariate extreme-value copula C may now be reduced to
inference on its Pickands dependence function A.

The problem of estimating Pickands dependence function nonparametrically
has found considerable attention in the literature. Roughly speaking, there exist
two classes of estimators. The classical nonparametric estimator is that of Pickands
(1981) [see Deheuvels (1991) for its asymptotic properties] and several variants
have been discussed. Alternative estimators have been proposed and investigated
in the papers by Capéraà, Fougères and Genest (1997), Jiménez, Villa-Diharce and
Flores (2001), Hall and Tajvidi (2000), Segers (2007) and Zhang, Wells and Peng
(2008), where the last-named authors also discussed the multivariate case. In most
references, the estimators of Pickands dependence function are constructed assum-
ing knowledge of the marginal distributions. Recently Genest and Segers (2009)
proposed rank-based versions of the estimators of Pickands (1981) and Capéraà,
Fougères and Genest (1997), which do not require knowledge of the marginal dis-
tributions. In general, all of these estimators are neither convex nor do they satisfy
the boundary restriction max{t,1 − t} ≤ A(t) ≤ 1, in particular the endpoint con-
strains A(0) = A(1) = 1. However, the estimators can be modified without chang-
ing their asymptotic properties in such a way that these constraints are satisfied,
see, for example, Fils-Villetard, Guillou and Segers (2008).

Before the specific model of an extreme-value copula is selected, it is necessary
to check this assumption by a statistical test, that is a test for the hypotheses

H0 :C ∈ C vs. H1 :C /∈ C,(1.2)

where C denotes the class of all copulas satisfying (1.1). Throughout this paper, we
call (1.2) the hypothesis of extreme-value dependence. The problem of testing this
hypothesis has found much less attention in the literature. To our best knowledge,
only two tests of extremeness are currently available in the literature. The first one
was proposed by Ghoudi, Khoudraji and Rivest (1998). It exploits the fact that for
an extreme-value copula the random variable W = H(X,Y ) = C(F(X),G(Y ))

satisfies the identity

−1 + 8E[W ] − 9E[W 2] = 0.(1.3)
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The properties of this test have been studied by Ben Ghorbal, Genest and Nešle-
hová (2009), who determined the finite- and large-sample variance of the test
statistic. In particular, the test proposed by Ghoudi, Khoudraji and Rivest (1998)
is not consistent against alternatives satisfying (1.3). The second class of tests was
recently introduced by Kojadinovic and Yan (2010) who proposed to compare the
empirical copula and a copula estimator which is constructed from the estimators
proposed by Genest and Segers (2009) under the assumption of an extreme-value
copula. These tests are only consistent against alternatives that are left tail de-
creasing in both arguments and satisfy strong smoothness assumptions on the cop-
ula and convexity assumptions on an analogue of Pickands dependence function,
which are hard to verify analytically.

The present paper has two purposes. The first is the development of some al-
ternative estimators of Pickands dependence function using the principle of mini-
mum distance estimation. We propose to consider the best approximation of the
logarithm of the empirical copula Ĉ evaluated in the point (y1−t , yt ), that is,
log Ĉ(y1−t , yt ), by functions of the form

log(y)A(t)(1.4)

with respect to a weighted L2-distance. It turns out that the minimal distance and
the corresponding optimal function can be determined explicitly. On the basis of
this result, and by choosing various weight functions in the L2-distance, we obtain
an infinite-dimensional class of estimators for the function A. Our approach is
closely related to the theory of Z-estimation and in Section 3 we indicate how
this point of view provides several interesting relationships between the different
concepts for constructing estimates of Pickands dependence function.

The second purpose of the paper is to present a new test for the hypothesis of
extreme-value dependence, which is consistent against a much broader class of
alternatives than the tests which have been proposed so far. Here our approach is
based on an estimator of a weighted minimum L2-distance between the true copula
and the class of functions satisfying (1.4) and the corresponding tests are consis-
tent with respect to all positive quadrant dependent alternatives satisfying weak
differentiability assumptions of first order. To our best knowledge, this method
provides the first test in this context which is consistent against such a general
class of alternatives. Moreover, in contrast to Ghoudi, Khoudraji and Rivest (1998)
and Kojadinovic and Yan (2010) we also provide a weak convergence result under
fixed alternative which can be used for studying the power of the test.

The remaining part of the paper is organized as follows. In Section 2, we con-
sider the approximation problem from a theoretical point of view. In particular, we
derive explicit representations for the minimal L2-distance between the logarithm
of the copula and its best approximation by a function of the form (1.4), which
will be the basis for all statistical applications in this paper. The new estimators,
say Ân, are defined in Section 3, where we also prove weak convergence of the
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process {√n(Ân(t) − A(t))}t∈[0,1] in the space of uniformly bounded functions
on the interval [0,1] under appropriate assumptions on the weight function used
in the L2-distance. Furthermore, we give a theoretical and empirical comparison
of the new estimators with the estimators proposed in Genest and Segers (2009).
We will also determine “optimal” estimators in the proposed class by minimiz-
ing the asymptotic MSE with respect to the choice of the weight function used
in the L2-distance. In particular, we demonstrate that some of the new estimators
have a substantially smaller asymptotic variance than the estimators proposed by
the last-named authors. We also provide a simulation study in order to investigate
the finite sample properties of the different estimates. In Section 4, we introduce
and investigate the new test of extreme-value dependence. In particular, we derive
the asymptotic distribution of the test statistic under the null hypothesis as well as
under the alternative. In order to approximate the critical values of the test, we in-
troduce a multiplier bootstrap procedure, prove its consistency and study its finite
sample properties by means of a simulation study. Finally, most of the technical
details are deferred to the Appendix.

2. A measure of extreme-value dependence. Let A denote the set of all
functions A : [0,1] → [1/2,1], and define � as the copula corresponding to in-
dependent random variables, that is, �(u,v) = uv. Throughout this paper, we as-
sume that the copula C satisfies C ≥ � which holds for any extreme-value copula
due to the lower bound for the function A. As pointed out by Scaillet (2005), this
property is equivalent to the concept of positive quadrant dependence, that is,

P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) ∀(x, y) ∈ R
2.(2.1)

For a copula with this property, we define the weighted L2-distance

Mh(C,A) =
∫
(0,1)2

(
logC(y1−t , yt ) − log(y)A(t)

)2
h(y) d(y, t),(2.2)

where h : [0,1] → R
+ is a continuous weight function.

The following result is essential for our approach and provides an explicit ex-
pression for the best L2-approximation of the logarithm of the copula by the loga-
rithm of a function of the form (1.1) and as a by-product characterizes the function
A∗ minimizing Mh(C,A).

THEOREM 2.1. Assume that the given copula satisfies C ≥ �κ for some κ ≥ 1
and that the weight function h satisfies

∫ 1
0 (logy)2h(y) dy < ∞. Then the function

A∗ = arg min{Mh(C,A)|A ∈ A}
is unique and given by

A∗(t) = B−1
h

∫ 1

0

logC(y1−t , yt )

logy
h∗(y) dy,(2.3)
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where the associated weight function h∗ is defined by

h∗(y) = log2(y)h(y), y ∈ (0,1),(2.4)

and

Bh =
∫ 1

0
(logy)2h(y) dy =

∫ 1

0
h∗(y) dy.(2.5)

Moreover, the minimal L2-distance between the logarithms of the given copula and
the class of functions of the form (1.4) is given by

Mh(C,A∗) =
∫
(0,1)2

(
logC(y1−t , yt )

logy

)2

h∗(y) d(y, t) − Bh

∫ 1

0
(A∗(t))2 dt.(2.6)

PROOF. Since C ≥ �κ , we get 0 ≥ logC(y1−t , yt ) ≥ κ logy and thus
|logC(y1−t , yt )| ≤ κ|logy| and all integrals exist. Rewriting the L2 distance in
(2.2) gives

Mh(C,A) =
∫ 1

0

∫ 1

0

(
logC(y1−t , yt )

logy
− A(t)

)2

(logy)2h(y) dy dt

and the assertion is now obvious. �

Note that A∗(t) = A(t) if C is an extreme-value copula of the form (1.1) with
Pickands dependence function A. Furthermore, the following lemma shows that
the minimizing function A∗ defined in (2.3) satisfies the boundary conditions of
Pickands dependence functions.

LEMMA 2.2. Assume that C is a copula satisfying C ≥ �. Then the function
A∗ defined in (2.3) has the following properties:

(i) A∗(0) = A∗(1) = 1,
(ii) A∗(t) ≥ t ∨ (1 − t),

(iii) A∗(t) ≤ 1.

PROOF. Assertion (i) is obvious. For a proof of (ii), one uses the Fréchet–
Hoeffding bound C(u, v) ≤ u ∧ v [see, e.g., Nelsen (2006)] and obtains the asser-
tion by a direct calculation. Similarly, assertion (iii) follows from the inequality
C ≥ �. �

Unfortunately, the function A∗ is in general not convex for every copula sat-
isfying C ≥ �. A counterexample can be derived from Theorem 3.2.2 in Nelsen
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(2006) and is given by the following shuffle of the copula u ∧ v:

C(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{u, v,1/2}, (u, v) ∈ [
0,

√
1/2

]2
,

min
{
u, v + 1/2 − √

1/2
}
,

(u, v) ∈ [
0,

√
1/2

] × [√
1/2,1

]
,

min
{
u + 1/2 − √

1/2, v
}
,

(u, v) ∈ [√
1/2,1

] × [
0,

√
1/2

]
,

min
{
u, v,u + v + 1/2 − 2

√
1/2

}
,

(u, v) ∈ [√
1/2,1

]2
,

(2.7)

for which an easy calculation shows that the mapping t �→ − logC(1/21−t ,1/2t )

is not convex. Consequently, one can find a weight function h such that the corre-
sponding best approximating function A∗ is not convex.

With the notation

fy(t) = C(y1−t , yt ),(2.8)

the function A∗ is convex (for every weight function h) if and only if the function
gy(t) = − logfy(t) is convex for every y ∈ (0,1). The following lemma is now
obvious.

LEMMA 2.3. If the function t → fy(t) = C(y1−t , yt ) is twice differentiable
and the inequality

[f ′
y(t)]2 ≥ f ′′

y (t)fy(t)

holds for every (y, t) ∈ (0,1)2, then the best approximation A∗ defined by (2.3) is
convex.

It is worthwhile to mention that the function A∗ is convex for some frequently
considered classes of copulas, which will be illustrated in the following examples.

EXAMPLE 2.4. Consider the Clayton copula

CClayton(u, v; θ) = (u−θ + v−θ − 1)−1/θ , θ > 0.(2.9)

Then a tedious calculation yields

[f ′
y(t)]2 − f ′′

y (t)fy(t)

= θ log2(y){CClayton(y
1−t , yt ; θ)}2+2θ (

4y−θ − y−θt − y−θ(1−t))
≥ θ log2(y){CClayton(y

1−t , yt ; θ)}2+2θ (3y−θ − 1) ≥ 0,

where the inequalities follow observing that m(t) = y−θt + y−θ(1−t) ≤ m(0) =
1 + y−θ and y−θ ≥ 1. Therefore, we obtain from Lemma 2.3 that the best approx-
imation A∗ is convex and corresponds to an extreme-value copula.
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EXAMPLE 2.5. In the following, we discuss the weight function hk(y) =
−yk/ logy (k ≥ 0) with associated function h∗

k(y) = −yk logy, which will be used
later for the construction of the new estimators of Pickands dependence function.
On the one hand this choice is made for mathematical convenience, because it al-
lows an explicit calculations of the asymptotic variance A∗ in specific examples.
On the other hand, estimates constructed on the basis of this weight function turn
out to have good asymptotic and finite sample properties (see the discussion in
Section 3.7). It follows that

Bhk
= −

∫ 1

0
yk logy dy = (k + 1)−2

and

A∗(t) = −(k + 1)2
∫ 1

0
logC(y1−t , yt )yk dy,(2.10)

which simplifies in the case k = 0 to the representation

A∗(t) = −
∫ 1

0
logC(y1−t , yt ) dy.(2.11)

EXAMPLE 2.6. In the following, we calculate the minimal distance Mh(C,

A∗) and its corresponding best approximation A∗ for two copula families and the
associated weight function h∗

1(y) = −y logy from Example 2.5. First, we investi-
gate the Gaussian copula defined by

Cρ(u, v) = �2(�
−1(u),�−1(v), ρ),

where � is the standard normal distribution function and �2(·, ·, ρ) is the dis-
tribution function of a bivariate normal random variable with standard normally
distributed margins and correlation ρ ∈ [0,1]. For the limiting cases ρ = 0 and
ρ = 1, we obtain the independence and perfect dependence copula, respectively,
while for ρ ∈ (0,1) the copula Cρ is not an extreme-value copula. The minimal
distances are plotted as a function of ρ in the left part of the first line of Figure 1.
In the right part, we show some functions A∗ corresponding to the best approxi-
mation of the logarithm of the Gaussian copula by a function of the form (1.4). We
note that all functions A∗ are convex although Cρ is only an extreme value copula
in the case ρ = 0.

In the second example, we consider a convex combination of a Gumbel copula
with parameter θ1 = log 2/ log 1.5 (corresponding to a coefficient of tail depen-
dence of 0.5) and a Clayton copula with parameter θ2 = 2, that is,

Cα(u, v) = αCClayton(u, v; θ2) + (1 − α)CGumbel(u, v; θ1), α ∈ [0,1],
where the Clayton copula is given in (2.9) and the Gumbel copula is defined by

CGumbel(u, v; θ) = exp
(−{(− logu)θ + (− logv)θ }1/θ )

, θ > 1.
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FIG. 1. Left: minimal distances Mh(C,A∗) × 105 for the Gaussian copula (as a function of its
correlation coefficient) and for the convex combination of a Gumbel and a Clayton copula (as a
function of the parameter α in the convex combination). Right: the functions A∗ corresponding to
the best approximations by functions of the form (1.4).

Note that only the Gumbel copula is an extreme-value copula and obtained for
α = 0. The minimal distances are depicted in the left part of the lower panel of Fig-
ure 1 as a function of α. In the right part, we show the functions A∗ corresponding
to the best approximation of the logarithm of Cα by a function of the form (1.4).
Again all approximations are convex, which means that A∗ corresponds in fact to
an extreme value copula.

3. A class of minimum distance estimators.

3.1. Pickands and CFG estimators. Let (X1, Y1), . . . , (Xn,Yn) denote a sam-
ple of independent identically distributed bivariate random variables with copula



NEW ESTIMATORS OF PICKANDS DEPENDENCE FUNCTION 1971

C and marginals F and G. Most of the estimates which have been proposed in the
literature so far are based on the fact that the random variable

ξ(t) = − logF(X)

1 − t
∧ − logG(Y)

t

is exponentially distributed with parameter A(t). In particular, we have E[ξ(t)] =
1/A(t). If the marginal distributions would be known, an estimate of A(t) could
be obtained by the method of moments. In the case of unknown marginals, Genest
and Segers (2009) proposed to replace F and G by their empirical counterparts
and obtained

ÂP
n,r (t) =

(
1

n

n∑
i=1

ξ̂i (t)

)−1

as a rank-based version of Pickands estimate, where

ξ̂i (t) = − log F̂n(Xi)

1 − t
∧ − log Ĝn(Yi)

t
, i = 1, . . . , n,

and

F̂n(Xi) = 1

n + 1

n∑
j=1

I {Xj ≤ Xi} and Ĝn(Yi) = 1

n + 1

n∑
j=1

I {Yj ≤ Yi}(3.1)

denote the (slightly modified) empirical distribution functions of the samples
{Xj }nj=1 and {Yj }nj=1 at the points Xi and Yi , respectively. Similarly, observing the
identity E[log ξ(t)] = − logA(t)−γ (here γ = − ∫ ∞

0 logxe−x dx denotes Euler’s
constant), they obtained a rank-based version of the estimate proposed by Capéraà,
Fougères and Genest (1997), that is,

ÂCFG
n,r (t) = exp

(
−γ − 1

n

n∑
i=1

log ξ̂i (t)

)
.

For illustrative purposes, we finally recall two integral representations for the rank-
based version of Pickands and CFG estimate, which we use in Section 3.6 to put
all estimates considered in this paper in a general context, that is,

1

ÂP
n,r (t)

=
∫ 1

0

Ĉn(y
1−t , yt )

y
dy,(3.2)

γ + log ÂCFG
n,r (t) =

∫ 1

0

Ĉn(y
1−t , yt ) − I {y > e−1}

logy
dy,(3.3)

where

Ĉn(u, v) = 1

n

n∑
i=1

I {F̂n(Xi) ≤ u, Ĝn(Yi) ≤ v}(3.4)

denotes the empirical copula and F̂n(Xi), Ĝn(Yi) are defined in (3.1) [see Genest
and Segers (2009) for more details].
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3.2. New estimators and weak convergence. Theorem 2.1 suggests to define
a class of new estimators for Pickands dependence function by replacing the un-
known copula in (2.3) through the empirical copula defined in (3.4). The asymp-
totic properties of the corresponding estimators will be investigated in this section.
For technical reasons, we require that the argument in the logarithm in the repre-
sentation (2.3) is positive and propose to use the estimator

C̃n = Ĉn ∨ n−γ ,(3.5)

where the constant γ satisfies γ > 1/2 and the empirical copula Ĉn is defined
in (3.4).

For the subsequent proofs, we will need a result on the weak convergence of
the empirical copula process with estimated margins. While this problem has been
considered by many authors [see, e.g., Rüschendorf (1976), Fermanian, Radulović
and Wegkamp (2004) or Tsukahara (2005) among others], all of them assume that
the copula has continuous partial derivatives on the whole unit square [0,1]2. How-
ever, as was pointed out by Segers (2010), there is only one extreme-value copula
that has this property. Luckily, in a remarkable paper Segers (2010) was able to
show that the following condition is sufficient for weak convergence of the empir-
ical copula process

∂jC exists and is continuous on {(u1, u2) ∈ [0,1]2|uj ∈ (0,1)}(3.6)

(j = 1,2). This condition can be shown to hold for any extreme-value copula with
continuously differentiable Pickands function A [see Segers (2010)]. Moreover,
under this assumption, the process

√
n(C̃n − C) shows the same limiting behavior

as the empirical copula process
√

n(Ĉn − C), that is,
√

n(C̃n − C)
w� GC,(3.7)

where the symbol
w� denotes weak convergence in l∞[0,1]2. Here, GC is a Gaus-

sian field on the square [0,1]2 which admits the representation

GC(x) = BC(x) − ∂1C(x)BC(x1,1) − ∂2C(x)BC(1, x2),

where x = (x1, x2),BC is a bivariate pinned C-Brownian sheet on the square
[0,1]2 with covariance kernel given by

Cov(BC(x),BC(y)) = C(x ∧ y) − C(x)C(y),

and the minimum x ∧ y is understood component-wise. Observing the representa-
tion (2.3), we obtain the estimator

Ân,h(t) = B−1
h

∫ 1

0

log C̃n(y
1−t , yt )

logy
h∗(y) dy(3.8)

for Pickands dependence function, where C̃n is defined in (3.5). Note that this
relation specifies an infinite-dimensional class of estimators indexed by the set
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of all admissible weight functions. The following results specify the asymptotic
properties of these estimators. We begin with a slightly more general statement,
which shows weak convergence for the weighted integrated process

√
nWn,w(t) = √

n

∫ 1

0
log

C̃n(y
1−t , yt )

C(y1−t , yt )
w(y, t) dy,

where the weight function w : [0,1]2 → R̄ depends on y and t . The result (and
some arguments in its proof) are also needed in Section 4.

THEOREM 3.1. Assume that for the weight function w : [0,1]2 → R̄ there ex-
ists a function w̄ : [0,1] → R̄

+
0 such that

∀(y, t) ∈ [0,1]2 |w(y, t)| ≤ w̄(y),(3.9)

∀ε > 0 sup
y∈[ε,1]

w̄(y) < ∞,(3.10)

∫ 1

0
w̄(y)y−λ dy < ∞(3.11)

for some λ > 1. If the copula C satisfies (3.6) and C ≥ �, then we have for any
γ ∈ (1/2, λ/2) as n → ∞

√
nWn,w(t) = √

n

∫ 1

0
log

C̃n(y
1−t , yt )

C(y1−t , yt )
w(y, t) dy

(3.12)
w� WC,w(t) =

∫ 1

0

GC(y1−t , yt )

C(y1−t , yt )
w(y, t) dy

in l∞[0,1].
The following result is now an immediate consequence of Theorem 3.1 using

w(y, t) := −B−1
h h∗(y) [recall the definition of the associated weight function h∗

in (2.4)] and yields the weak convergence of the process
√

n(Ân,h − A∗) for a
broad class of weight functions.

THEOREM 3.2. If the copula C ≥ � satisfies condition (3.6) and the weight
function h satisfies the conditions

for all ε > 0 sup
y∈[ε,1]

∣∣∣∣h∗(y)

logy

∣∣∣∣ < ∞,(3.13)

∫ 1

0
h∗(y)(− logy)−1y−λ dy < ∞(3.14)

for some λ > 1, then we have for any γ ∈ (1/2, λ/2) as n → ∞
An,h = √

n(Ân,h − A∗) w� AC,h in l∞[0,1],
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where the process AC,h is given by

AC,h(t) = B−1
h

∫ 1

0

GC(y1−t , yt )

C(y1−t , yt )

h∗(y)

logy
dy.(3.15)

REMARK 3.3. (a) Conditions (3.13) and (3.14) restrict the behavior of the
function h∗ near the boundary of the interval [0,1]. A simple sufficient condition
for (3.13) and (3.14) is given by

sup
x∈[0,1]

∣∣∣∣ h∗(x)

xα(1 − x)β

∣∣∣∣ < ∞

for some α > 0, β ≥ 1. In this case, λ can be chosen as 1 + α/2.
(b) In the construction discussed so far, it is also possible to use weight functions

that depend on t , that is, functions of the form h̃∗(y, t). As long as h̃∗(y, t) > 0
for (y, t) ∈ (0,1) × [0,1], the corresponding best approximation A∗ will still
be well defined and correspond to the Pickands dependence function if C is an
extreme-value copula. Theorem 3.1 provides the asymptotic properties of the cor-
responding estimator A if we set w(y, t) := h̃∗(y, t)/(− logy) and assume that∫ 1

0 h̃∗(y, t) dy = 1 for all t . However, for the sake of a clear presentation, we will
only use weight functions that do not depend on t .

Note that Theorem 3.2 is also correct if the given copula is not an extreme-
value copula. In other words: it establishes weak convergence of the process√

n(Ân,h − A∗) to a centered Gaussian process, where A∗ denotes the function
corresponding to the best approximation of the logarithm of the copula C by a
function of the form (1.4). If A∗ is convex, it corresponds to an extreme-value cop-
ula and coincides with Pickands dependence function. Note also that Theorem 3.2
excludes the case h∗

0(y) = − logy, because condition (3.14) is not satisfied for
this weight function. Nevertheless, under the additional assumption that C is an
extreme-value copula with twice continuously differentiable Pickands dependence
function A, the assertion of the preceding theorem is still valid.

THEOREM 3.4. Assume that C is an extreme-value copula with twice con-
tinuously differentiable Pickands dependence function A. For the weight function
h∗

0(y) = − logy, we have for any γ ∈ (1/2,3/4) as n → ∞

An,h0(t) = √
n(Ân,h0 − A)(t)

w� AC,h0(t) = −
∫ 1

0

GC(y1−t , yt )

C(y1−t , yt )
dy

in l∞[0,1], where Ân,h0(t) = − ∫ 1
0 log C̃n(y

1−t , yt ) dy.

REMARK 3.5. (a) If the marginals of (X,Y ) are independent the distribu-
tion of the random variable A�,h0 coincides with the distribution of the random
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variable A
P
r = − ∫ 1

0 G�(y1−t , yt )y−1 dy, which appears as the weak limit of the
appropriately standardized Pickands estimator; see Genest and Segers (2009). In
fact, a much more general statement is true: by using weight functions h̃∗(y, t)

depending on t it is possible to obtain for any extreme-value copula estimators of
the form (3.8) which show the same limiting behavior as the estimators proposed
by Genest and Segers (2009). This already indicates that for any extreme-value
copula it is possible to find weight functions which will make the new minimum
distance estimators asymptotically at least as efficient (in fact better, as will be
shown in Section 3.4) as the estimators introduced by Genest and Segers (2009).

(b) A careful inspection of the proof of Theorem 3.1 reveals that the condition
C ≥ � can be relaxed to C ≥ �κ for some κ > 1, if one imposes stronger condi-
tions on the weight function.

(c) The estimator depends on the parameter γ which is used for the construc-
tion of the statistic C̃n = Ĉn ∨ n−γ . This modification is only made for technical
purposes and from a practical point of view the behavior of the estimators does not
change substantially provided that γ is chosen larger than 2/3.

REMARK 3.6. The new estimators can be alternatively motivated observing
that the identity (1.1) yields the representation A(t) = logC(y1−t , yt )/ logy for
any y ∈ (0,1). This leads to a simple class of estimators, that is,

Ãn,δy (t) = log C̃n(y
1−t , yt )

logy
; y ∈ (0,1),

where δy is the Dirac measure at the point y and C̃n is defined in (3.5). By averag-
ing these estimators with respect to a distribution, say π , we obtain estimators of
the form

Ãn,π (t) =
∫ 1

0

log C̃n(y
1−t , yt )

logy
π(dy),

which coincide with the estimators obtained by the concept of best L2-approxima-
tion.

3.3. A special class of weight functions. In this subsection, we illustrate the
results investigating Example 2.5 discussed at the end of Section 2. For the associ-
ated weight function h∗

k(x) = −yk logy with k ≥ 0, we obtain

Ân,hk
(t) = −(k + 1)2

∫ 1

0
log C̃n(y

1−t , yt )yk dy.(3.16)

The process {An,hk
(t)}t∈[0,1] converge weakly in l∞[0,1] to the process

{AC,hk
}t∈[0,1], which is given by

AC,hk
(t) = −(k + 1)2

∫ 1

0

GC(y1−t , yt )

C(y1−t , yt )
yk dy.(3.17)
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Consequently, for C ∈ C , the asymptotic variance of Ân,hk
is obtained as

Var(AC,hk
(t)) = (k + 1)4

∫ 1

0

∫ 1

0
σ(u, v; t)(uv)k−A(t) dudv,(3.18)

where the function σ is given by

σ(u, v; t) = Cov(GC(u1−t , ut ),GC(v1−t , vt )).

In order to find an explicit expression for these variances, we assume that the
function A is differentiable and introduce the notation

μ(t) = A(t) − tA′(t), ν(t) = A(t) + (1 − t)A′(t),

where A′ denotes the derivative of A. The following results can be shown by sim-
ilar arguments as given in Genest and Segers (2009); for details, see Bücher, Dette
and Volgushev (2010).

PROPOSITION 3.7. For t ∈ [0,1], let μ̄(t) = 1 − μ(t) and ν̄(t) = 1 − ν(t).
If C is an extreme-value copula with Pickands dependence function A, then the
variance of the random variable AC,hk

(t) is given by

(k + 1)2
{

2(k + 1)

2k + 2 − A(t)
− (

μ(t) + ν(t) − 1
)2

− 2μ(t)μ̄(t)(k + 1)

2k + 1 + t
− 2ν(t)ν̄(t)(k + 1)

2k + 2 − t

+ 2μ(t)ν(t)
(k + 1)2

(1 − t)t

∫ 1

0

(
A(s) + (k + 1)

(
1 − s

1 − t
+ s

t

)
− 1

)−2

ds

− 2μ(t)
(k + 1)2

(1 − t)t

∫ t

0

(
A(s) + (k + t)

1 − s

1 − t
+ (

k + 1 − A(t)
)s
t

)−2

ds

− 2ν(t)
(k + 1)2

(1 − t)t

∫ 1

t

(
A(s) + (

k + 1 − A(t)
)1 − s

1 − t

+ (k + 1 − t)
s

t

)−2
ds

}
.

Note that the limiting process in (3.15) is a centered Gaussian process. This
means that, asymptotically, the quality of the new estimators [as well as of the es-
timators of Genest and Segers (2009), which show a similar limiting behavior] is
determined by the variance. Based on these observations, we will now provide an
asymptotic comparison of the new estimators Ân,hk

(t) with the estimators inves-
tigated by Genest and Segers (2009). Some finite sample results will be presented
in the following section for various families of copulas. For the sake of brevity, we
restrict ourselves to the independence copula �, for which A(t) ≡ 1. In the case
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k = 0, we obtain from Proposition 3.7 the same variance as for the rank-based
version of Pickands estimator, that is,

Var(A�,h0) = 3t (1 − t)

(2 − t)(1 + t)
= Var(AP

r )

[see Corollary 3.4 in Genest and Segers (2009)] while the case k > 0 yields

Var(A�,hk
) = (3 + 4k)(k + 1)2

2k + 1

t (1 − t)

(2k + 2 − t)(2k + 1 + t)
.

Investigating the derivative in k, it is easy to see that Var(A�,hk
) is strictly decreas-

ing in k with

lim
k→∞ Var(A�,hk

) = t (1 − t)

2
.

Therefore, we have

Var(AP
r ) = Var(A�,h0) ≥ Var(A�,hk

)

for all k ≥ 0 with strict inequality for all k > 0. This means that for the inde-
pendence copula all estimators obtained by our approach with associated weight
function h∗

k(y) = −yk logy, k > 0, have a smaller asymptotic variance than the
rank-based version of Pickands estimator. On the other hand, a comparison with
the CFG estimator proposed by Genest and Segers (2009) does not provide a clear
picture about the superiority of one estimator and we defer this comparison to the
following section, where optimal weight functions for the new estimates Ân,h are
introduced.

3.4. Optimal weight functions. In this section, we discuss asymptotically op-
timal weight functions corresponding to the class of estimates introduced in Sec-
tion 3.2. As pointed out in the previous section, from an asymptotic point of view
the mean squared error of the estimates is dominated by the variance and therefore
we concentrate on weight functions minimizing the asymptotic variance of the es-
timate Ân,h. The finite sample properties of the mean squared error of the various
estimates will be investigated by means of a simulation study in Section 3.7.

Note that an optimal weight function depends on the point t where Pickands de-
pendence function has to be estimated and on the unknown copula. Therefore, an
estimator with an optimal weight function cannot be implemented in concrete ap-
plications without preliminary knowledge about the copula. However, it can serve
as a benchmark for user-specified weight functions. To be precise, observe that by
Theorem 3.2 the variance of the limiting process AC,h is of the form

V (ξ) =
∫ 1

0

∫ 1

0
kt (x, y) dξ(x) dξ(y),(3.19)
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where ξ denotes a probability measure on the interval [0,1] defined by dξ(x) =
B−1

h h∗(x) dx and the kernel kt (x, y) is given by

kt (x, y) = E

[
GC(x1−t , xt )

C(x1−t , xt ) logx

GC(y1−t , yt )

C(y1−t , yt ) logy

]
.

It is easy to see that V defines a convex function on the space of all probability
measures on the interval [0,1] and the existence of a minimizing measure follows
if the kernel kt is continuous on [0,1]2. The following result characterizes the
minimizer of V and is proved in the Appendix.

THEOREM 3.8. A probability measure η on the interval [0,1] minimizes V if
and only if the inequality∫ 1

0
kt (x, y) dη(y) ≥

∫ 1

0

∫ 1

0
kt (x, y) dη(x) dη(y)(3.20)

is satisfied for all x ∈ [0,1].
Theorem 3.8 can be used to check the optimality of a given weight function. For

example, if the copula C is given by the independence copula � we have

kt (x, y) = (xt ∧ yt − (xy)t )(x1−t ∧ y1−t − (xy)1−t )

x logx y logy
,

and it is easy to see that none of the associated weight functions h∗
k(y) = −yk logy

with k ≥ 0 is optimal in the sense that it minimizes the asymptotic variance of the
estimate Ân,h with respect to the choice of the weight function. On the other hand,
the result is less useful for an explicit computation of optimal weight functions.
Deriving an analytical expression for the optimal weight function seems to be im-
possible, even for the simple case of the independence copula.

However, approximations to the optimal weight function can easily be com-
puted numerically. To be precise we approximate the double integral appearing in
the representation of Var(AC,h(t)) by the finite sum

V (ξ) ≈
N∑

i=1

N∑
j=1

ξi,Nξj,Nkt (i/N, j/N) = �T Kt�,(3.21)

where N ∈ N, Kt = (kt (i/N, j/N))Ni,j=1 denotes an N ×N matrix, � = (ξi,N )Ni=1
is an vector of length N and ξi,N = ξ((i − 1)/N, i/N] represents the mass of ξ

allocated to the interval ((i − 1)/N, i/N] (i = 1, . . . ,N ). Minimizing the right-
hand side of the above equation with respect to � under the constrains ξi,N ≥ 0,∑N

i=1 ξi,N = 1 is a quadratic (convex) optimization problem which can be solved
by standard methods; see, for example, Nocedal and Wright (2006) and approxi-
mations of the optimal weight function can be calculated with arbitrary precision
by increasing N .
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FIG. 2. Asymptotic variances of various estimators of the Pickands dependence function. Left
panel: independence copula; right panel: asymmetric negative logistic model.

In the remaining part of this section, we will compare the asymptotic variance
of the Pickands-, the CFG-estimator proposed by Genest and Segers (2009) and
the new estimates, where the new estimators are based on the weight functions
h∗

k discussed in Section 3.3 for two values of k as well as on the optimal weights
minimizing the right-hand side of (3.21), where we set N = 100. In order to com-
pute the solution �opt, we used the routine ipop from the R-package kernlab by
Karatzoglou et al. (2004). In the left part of Figure 2, we show the asymptotic
variances of the different estimators for the independence copula. We observe that
Pickands estimator has the largest asymptotic variances (this curve is not displayed
in the figure), while the CFG estimator of Genest and Segers (2009) yields smaller
variances than the estimator Ân,h1 , but larger asymptotic variances than the esti-
mators Ân,h5 . On the other hand, the estimate Ân,hopt corresponding to the numer-
ically determined optimal weight function yields a substantially smaller variance
than all other estimates under consideration. In the right-hand part of Figure 2, we
display the corresponding results for the asymmetric negative logistic model [see
Joe (1990)]

A(t) = 1 − {(
ψ1(1 − t)

)−θ + (ψ2t)
−θ}−1/θ(3.22)

with parameters ψ1 = 1,ψ2 = 2/3 and θ ∈ (0,∞) chosen such that the coefficient
of tail dependence is 0.6. We observe that the estimate Ân,h5 yields the largest
asymptotic variance. The CFG estimate proposed by Genest and Segers (2009)
and the estimate Ân,h1 show a similar behavior (with minor advantages for the
latter), while the best results are obtained for the new estimate corresponding to
the optimal weight function.

We conclude this section with the remark that we have presented a comparison
of the different estimators based on the asymptotic variance which determines the
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mean squared error asymptotically. For finite samples, minimizing only the vari-
ance might increase the bias and therefore the asymptotic results cannot directly
be transferred to applications. In the finite sample study presented in Section 3.7,
we will demonstrate that not all of the asymptotic results yield good predictions
for the finite-sample behavior of the corresponding estimators.

3.5. Convex estimates and endpoint corrections. In general, all of the esti-
mates discussed so far [including those proposed by Genest and Segers (2009)]
will neither be convex, nor will they satisfy the other characterizing properties
of Pickands dependence functions. However, the literature provides many propos-
als on how to enforce these conditions. Various endpoint corrections have been
proposed by Deheuvels (1991), Segers (2007) or Hall and Tajvidi (2000) among
others. Fils-Villetard, Guillou and Segers (2008) proposed an L2-projection of the
estimate of Pickands dependence function on a space of partially linear functions
which is arbitrarily close to the space of all convex functions in A satisfying the
conditions of Lemma 2.2. They also showed that this transformation decreases the
L2-distance between the “true” dependence function and the estimate. An alter-
native concept of constructing convex estimators is based on the greatest convex
minorant, which yields a decrease in the sup-norm, that is,

sup
0<t<1

|Âgcm
n (t) − A(t)| ≤ sup

0<t<1
|Ân(t) − A(t)|,

where Ân is any initial estimate of Pickands dependence function and Â
gcm
n its

greatest convex minorant [see, e.g., Marshall (1970), Wang (1986), Robertson,
Wright and Dykstra (1996) among others]. It is also possible to combine this con-
cept with an endpoint correction calculating the greatest convex minorant of the
function

t −→ (
Ân(t) ∧ 1

) ∨ t ∨ (1 − t)

[see Genest and Segers (2009) who also proposed alternative special endpoint cor-
rections for their estimators]. All these methods can be used to produce an estimate
of A which has the characterizing properties of a Pickands dependence function.

3.6. M- and Z-estimates. As mentioned in the Introduction, a broader class
of estimates could be obtained by minimizing more general distances between the
given copula and the class of functions defined by (1.1) and in this paragraph we
briefly indicate this principle. Consider the best approximation of the copula C by
functions of the form (1.1) with respect to the distance

Dw(C,A) =
∫ 1

0

∫ 1

0
�

(
C(y1−t , yt ), yA(t))w(y, t) dy dt,(3.23)

where � : [0,1] × [0,1] → R
+
0 denotes a “distance” and w is a given weight func-

tion. Note that the minimization in (3.23) can be carried out by separately minimiz-
ing the inner integral for every value of t . Consequently, the problem reduces to
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a one-dimensional minimization problem and assuming differentiability it follows
that for fixed t the optimal value A∗(t) minimizing the interior integral in (3.23) is
obtained as a solution of the equation

∂

∂a

∫ 1

0
�(C(y1−t , yt ), ya)w(y, t) dy

∣∣∣∣
a=A∗(t)

= 0.

Under suitable assumptions, integration and differentiation can be exchanged and
we have ∫ 1

0
�(C(y1−t , yt ), ya)(logy)yaw(y, t)

∣∣∣∣
a=A∗(t)

dy = 0,(3.24)

where � = ∂2� denotes the derivative of � with respect to the second argument.
In general, the solution of (3.24) is only defined implicitly as a functional of the
copula C. Therefore, if C is replaced through the empirical copula the analysis of
the stochastic properties of the corresponding process turns out to be extremely dif-
ficult because in many cases one has to control improper integrals (see the proofs
of Theorems 3.1 and 3.4 in the Appendix). For the sake of a clear exposition, we do
not discuss details in this paper and defer these considerations to future research.

Nevertheless, equation (3.24) yields a different view on the estimation problem
of Pickands dependence function. Note that the estimate introduced in Section 3.2
is obtained by the choice w(y, t) = h(y)B−1

h and

�(z1, z2) = (log z1 − log z2)
2; �(z1, z2) = −2(log z1 − log z2)/z2

in (3.24). This estimate corresponds to a minimum distance estimate. Similarly, an
estimate corresponding to the classical L2-distance is obtained for the choice

�(z1, z2) = (z1 − z2)
2; �(z1, z2) = −2(z1 − z2).

This yields for (3.24) the equation∫ 1

0

(
C(y1−t , yt ) − ya)

(logy)2yah(− logy)

∣∣∣∣
a=A∗(t)

dy = 0,

which cannot be solved analytically. The rank-based versions of Pickands and the
CFG estimator proposed by Genest and Segers (2009) do not correspond to M-
estimates, but could be considered as Z-estimates obtained from (3.24) for the
function

�(z1, z2) = (z1 − z2)/z2

with wμ,ν(y) = yμ−1/(− logy)1+ν with μ = ν = 0 and μ = 0, ν = 1, respectively.
In fact, this choice leads to a general class of estimators which relates the Pickands
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and the CFG estimate in an interesting way. To be precise, note that for ν ∈ [0,1)

equation (3.24) yields∫ 1

0

(C(y1−t , yt ) − I {y > e−1})yμ−1

(− logy)ν
dy

=
∫ 1

0

(yA(t) − I {y > e−1})yμ−1

(− logy)ν
dy(3.25)

= �(1 − ν)

(A(t) + μ)1−ν
−

∫ 1

0

e−μx

xν
dx.

Here the case ν = 1 has to be interpreted as the limit ν → 1, which yields a gener-
alization of the defining equation for the CFG estimate, that is,

− logμ−
∫ ∞
μ

e−t

t
dt + log

(
A(t)+μ

) =
∫ 1

0

(C(y1−t , yt ) − I {y > e−1})yμ−1

logy
dy.

Observing the relation

lim
μ→0

logμ +
∫ ∞
μ

e−t

t
dt = −γ

we obtain the defining equation for the estimate proposed by Genest and Segers
(2009) [see (3.3)]. Similarly, if ν ∈ [0,1) it follows from (3.25)∫ 1

0

C(y1−t , yt )yμ−1

(− logy)ν
dy = �(1 − ν)

(A(t) + μ)1−ν
(3.26)

and we obtain a defining equation for a generalization of the Pickands estimate.
The classical case is obtained for μ = ν = 0 [see Genest and Segers (2009) or
equation (3.2)], but (3.26) defines many other estimates of this type. Therefore,
the Pickands and the CFG estimate correspond to the extreme cases in the class
{wμ,ν |μ ≥ 0, ν ∈ [0,1]}.

We finally note that there are numerous other functions � , which could be used
for the construction of alternative Z-estimates, but most of them do not lead to
an explicit solution for A∗(t). In this sense the CFG-estimator, Pickands-estimator
and the estimates proposed in this paper could be considered as attractive special
cases, which can be explicitly represented in terms of an integral of the empirical
copula.

3.7. Finite sample properties. In this subsection, we investigate the small sam-
ple properties of the new estimators by means of a simulation study. Especially, we
compare the new estimators with the rank-based estimators suggested by Genest
and Segers (2009), which are most similar in spirit with the method proposed in
this paper. We study the finite sample behavior of the greatest convex minorants of
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the endpoint corrected versions of the various estimators. The new estimators are
corrected in a first step by

Âcorr
n,h (t) := max

(
t,1 − t,min(Ân,h,1)

)
(3.27)

and in a second step the greatest convex minorant of Âcorr
n,h is calculated. For the

rank-based CFG and Pickands estimators, we first used the endpoint corrections
proposed in Genest and Segers (2009), then applied (3.27) and finally calculated
the greatest convex minorant. Hereby, we compare the performance of the differ-
ent statistical procedures which will be used in concrete applications and apply the
corrections, that are most favorable for the respective estimators. The greatest con-
vex minorants are computed using the routine gcmlcm from the package fdrtool
by Strimmer (2009). All results presented here are based on 5,000 simulation runs
and the sample size is n = 100.

As estimators, we consider the statistics defined in (3.8) with the weight func-
tion hk and the optimal weight function determined in Section 3.4. An important
question is the choice of the parameter k for the statistic Ân,hk

in order to achieve
a balance between bias and variance. For this purpose, we first study the perfor-
mance of the estimator Ân,hk

with respect to different choices for the parameter
k and consider the asymmetric negative logistic model defined in (3.22) and the
symmetric mixed model [see Tawn (1988)] defined by

A(t) = 1 − θt + θt2, θ ∈ [0,1].(3.28)

The results for other copula models are similar and are omitted for the sake
of brevity. For the Pickands dependence function (3.22), we used the parame-
ters ψ1 = 1 and ψ2 = 2/3 such that the coefficient of tail dependence is given
by ρ = 2(3θ + 2θ )−1/θ and varies in the interval (0,2/3), while the parameter
θ ∈ [0,1] used in (3.28) yields ρ = θ/2 ∈ [0,1/2].

The quality of an estimator Â is measured with respect to mean integrated
squared error

MISE(Â) = E

[∫ 1

0

(
Â(t) − A(t)

)2
dt

]
,

which was computed by taking the average over 5,000 simulated samples. The new
estimators turned out to be rather robust with respect to the choice of the parameter
γ in the definition of the process C̃n = Ĉn ∨ n−γ provided that γ ≥ 2/3. For this
reason, we use γ = 0.95 throughout this section. Analyzing the impact of choosing
different values for k, in Figure 3 we display simulated curves

k �→ MISE(Ân,hk
)

min�≥0 MISE(Ân,h�
)

(3.29)
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FIG. 3. The function defined in (3.29) for various models and coefficients of tail dependence. The
minimum corresponds to the optimal value of k in the weight function hk . The solid curve corresponds
to the worst case defined by (3.30). The sample size is n = 100 and the MISE is calculated by 5,000
simulation runs. Left panel: asymmetric negative logistic model. Right panel: mixed model.

for the asymmetric negative logistic and the mixed models with different coeffi-
cients of tail dependence ρ, as well as the maximum over such curves for different
values of ρ (solid curves), that is,

k �→ max
ρ

MISEρ(Ân,hk
)

min�≥0 MISEρ(Ân,h�
)
,(3.30)

where by MISEρ we denote the MISE for the tail dependence coefficient ρ. The
curves in (3.29) attain their minima in the optimal k for the respective ρ, and their
shapes provide information about the performance of the estimators for nonoptimal
values of k. The solid curve gives an impression about the “worst case” scenario
(with respect to ρ) in every model. The simulations indicate, that for n = 100
the optimal values of k for different models and tail dependence coefficients lie
in the interval [0.2,0.6]. Moreover, for values of k in this interval the quality of
the estimators remains very stable. For n = 200, n = 500 and additional models
the picture remains quite similar and these results are not depicted for the sake
of brevity. We thus recommend using k = 0.4 in practical applications. Note that
the asymptotic analysis in Section 3.4 suggests that the asymptotically optimal k

should differ substantially for various models. However, this effect is not visible
for sample size up to n = 500. In these cases, the optimal values for k usually
varies in the interval [0.2,0.8].

Next, we compare the new estimators with rank-based versions of Pickands
and the CFG estimator proposed by Genest and Segers (2009). In Figure 4, the
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FIG. 4. 100 × MISE for various estimators, models and coefficients of tail dependence, based on
5,000 samples of size n = 100.

normalized MISE is plotted as a function of the tail dependence parameter ρ for
the asymmetric negative logistic and the mixed model, where the parameter θ is
chosen in such a way, that the coefficient of tail dependence ρ = 2(1 − A(0.5))

varies over the specific range of the corresponding model. For each sample, we
computed the rank-based versions of Pickands estimator, the CFG estimator [see
Genest and Segers (2009)] and two of the new estimators Ân,hk

(k = 0.4, 0.6).
In this comparison, we also include the estimator Ân,hopt which uses the optimal
weight function determined in Section 3.4.

Summarizing the results, one can conclude that in general the best performance
is obtained for our new estimator based on the weight function hk with k = 0.4 and
k = 0.6, in particular if the coefficient of tail dependence is small. A comparison
of the two estimators Ân,h0.4 and Ân,h0.6 shows that the choice k = 0.4 performs
slightly better than the choice k = 0.6 in both models. In both settings, the MISE
obtained by Ân,h0.4 and Ân,h0.6 is smaller than the MISE of the CFG estimator pro-
posed in Genest and Segers (2009) if the coefficient of tail dependence is small.
On the other hand, the latter estimators yield sightly better results for a large co-
efficient of tail dependence. The results for rank-based version of the Pickands
estimator are not depicted, because this estimator yields a uniformly larger MISE.
Simulations of other scenarios show similar results and are also not displayed for
the sake of brevity. It is remarkable that the optimal weight function usually yields
an estimator with a substantially larger MISE than all other estimates if the coef-
ficient of tail dependence is small. Similar results can be observed for the sample
size n = 500 (these results are not depicted). This indicates that the advantages of
the asymptotically optimal weight function only start to play a role for rather large
sample sizes.
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4. A test for an extreme-value dependence.

4.1. The test statistic and its weak convergence. From the definition of the
functional Mh(C,A) in (2.2) it is easy to see that, for a strictly positive weight
function h with h∗ ∈ L1(0,1), a copula function C is an extreme-value copula if
and only if

min
A∈A

Mh(C,A) = Mh(C,A∗) = 0,

where A∗ denotes the best approximation defined in (2.3). This suggests to use
Mh(C̃n, Ân,h) as a test statistic for the hypothesis (1.2), that is,

H0 :C is an extreme-value copula.

Recalling the representation (2.6)

Mh(C,A∗) =
∫ 1

0

∫ 1

0
C̄2(y, t)h∗(y) dy dt − Bh

∫ 1

0
(A∗(t))2 dt

with C̄(y, t) = − logC(y1−t , yt ) and defining C̄n(y, t) := − log C̃n(y
1−t , yt ) we

obtain the decomposition

Mh(C̃n, Ân,h) − Mh(C,A∗)

=
∫ 1

0

∫ 1

0

(
C̄2

n(y, t) − C̄2(y, t)
) h∗(y)

(logy)2 dy dt

− Bh

∫ 1

0
Â2

n,h(t) − (A∗(t))2 dt

= 2
∫ 1

0

∫ 1

0

(
C̄n(y, t) − C̄(y, t)

)
C̄(y, t)

h∗(y)

(logy)2 dy dt

− 2Bh

∫ 1

0

(
Ân,h(t) − A∗(t)

)
A∗(t) dt

+
∫ 1

0

∫ 1

0

(
C̄n(y, t) − C̄(y, t)

)2 h∗(y)

(logy)2 dy dt(4.1)

− Bh

∫ 1

0

(
Ân,h(t) − A∗(t)

)2
dt

= 2
∫ 1

0

∫ 1

0

(
C̄n(y, t) − C̄(y, t)

)(
C̄(y, t) − A∗(t)(− logy)

) h∗(y)

(logy)2 dy dt

+
∫ 1

0

∫ 1

0

(
C̄n(y, t) − C̄(y, t)

)2 h∗(y)

(logy)2 dy dt

− Bh

∫ 1

0

(
Ân,h(t) − A∗(t)

)2
dt

=: S1 + S2 + S3,
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where the last identity defines the terms S1, S2 and S3 in an obvious manner.
Note that under the null hypothesis of extreme-value dependence we have A∗ = A

and thus C̄(y, t) = A∗(t)(− logy). This means that under H0 the term S1 will
vanish and the asymptotic distribution will be determined by the large sample
properties of the random variable S2 + S3. Under the alternative, the equality
C̄(y, t) = A∗(t)(− logy) will not hold anymore and it turns out that in this case
the statistic is asymptotically dominated by the random variable S1. With the fol-
lowing results, we will derive the limiting distribution of the proposed test statistic
under the null hypothesis and the alternative.

THEOREM 4.1. Assume that the given copula C satisfies condition (3.6) and
is an extreme-value copula with Pickands dependence function A∗. If the function
w̄(y) := h∗(y)/(logy)2 fulfills conditions (3.10) and (3.11) for some λ > 2 and
the weight function h is strictly positive and satisfies assumptions (3.13), (3.14)
for λ̃ := λ/2 > 1, then we have for any γ ∈ (1/2, λ/4) and n → ∞

nMh(C̃n, Ân,h)
w� Z0,

where the random variable Z0 is defined by

Z0 :=
∫ 1

0

∫ 1

0

(
GC(y1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy dt − Bh

∫ 1

0
A

2
C,h(t) dt

with Bh = ∫ 1
0 h∗(y) dy and the process {AC,h(t)}t∈[0,1] is defined in Theorem 3.2.

The next theorem gives the distribution of the test statistic Mh(C̃n, Ân,h) under
the alternative. Note that in this case we have Mh(C,A∗) > 0.

THEOREM 4.2. Assume that the given copula C satisfies C ≥ �, condition
(3.6) and that Mh(C,A∗) > 0. If additionally the weight function h is strictly
positive and h and the function w̄(y) := h∗(y)/(logy)2 satisfy the assumptions
(3.13), (3.14) and (3.10), (3.11) for some λ > 1, respectively, then we have for any
γ ∈ (1/2, (1 + λ)/4 ∧ λ/2) and n → ∞

√
n
(
Mh(C̃n, Â) − Mh(C,A∗)

) w� Z1,

where the random variable Z1 is defined as

Z1 = 2
∫ 1

0

∫ 1

0

GC(y1−t , yt )

C(y1−t , yt )
v(y, t) dy dt

with

v(y, t) = (
logC(y1−t , yt ) − log(y)A∗(t)

) h∗(y)

(logy)2 .
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REMARK 4.3. (a) Note that the weight functions h∗
k(y) = −yk logy satisfy

the assumptions of Theorems 4.1 and 4.2 for k > 1 and k > 0, respectively.
(b) The preceding two theorems yield a consistent asymptotic level α test for

the hypothesis of extreme-value dependence by rejecting the null hypothesis H0 if

nMh(C̃n, Ân,h) > z1−α,(4.2)

where z1−α denotes the (1 − α)-quantile of the distribution of the random vari-
able Z0.

(c) By Theorem 4.2, the power of the test (4.2) is approximately given by

P
(
nMh(C̃n, Ân,h) > z1−α

) ≈ 1 − �

(
z1−α√

nσ
− √

n
Mh(C,A∗)

σ

)

≈ �

(√
n
Mh(C,A∗)

σ

)
,

where the function A∗ is defined in (2.3) corresponding to the best approximation
of the logarithm of the copula C by a function of the form (1.4), σ is the standard
deviation of the distribution of the random variable Z1 and � is the standard nor-
mal distribution function. Thus, the power of the test (4.2) is an increasing function
of the quantity Mh(C,A∗)σ−1.

4.2. Multiplier bootstrap. In general, the distribution of the random variable
Z0 cannot be determined explicitly, because of its complicated dependence on the
(unknown) copula C. We hence propose to determine the quantiles by the multi-
plier bootstrap approach as described in Bücher and Dette (2010). To be precise,
let ξ1, . . . , ξn denote independent identically distributed random variables with

P(ξ1 = 0) = P(ξ1 = 2) = 1/2.

We define ξ̄n = n−1 ∑n
i=1 ξi as the mean of ξ1, . . . , ξn and consider the multiplier

statistics

Ĉ∗
n(u, v) = F̂ ∗

n (F̂−
n1(u), F̂−

n2(v)),

where

F̂ ∗
n (x1, x2) = 1

n

n∑
i=1

ξi

ξ̄n

I{Xi1 ≤ x1,Xi2 ≤ x2},

and F̂nj denotes the marginal empirical distribution functions. If we estimate the
partial derivatives of the copula C by

∂̂1C(u, v) := Ĉn(u + h, v) − Ĉn(u − h, v)

2h
,

∂̂2C(u, v) := Ĉn(u, v + h) − Ĉn(u, v − h)

2h
,
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where h = n−1/2 → 0, we can approximate the distribution of GC by the distribu-
tion of the process

α̂pdm
n (u, v) := β̂n(u, v) − ∂̂1C(u, v)β̂n(u,1) − ∂̂2C(u, v)β̂n(1, v),(4.3)

where β̂n(u, v) = √
n(Ĉ∗

n(u, v) − Ĉn(u, v)). More precisely, it was shown by
Bücher and Dette (2010) that we have weak convergence conditional on the data
in probability toward GC , that is,

α̂pdm
n

P�
ξ

GC in l∞[0,1]2,(4.4)

where the symbol
P�
ξ

denotes weak convergence conditional on the data in proba-

bility as defined by Kosorok (2008), that is, α
pdm
n �P

ξ GC if

sup
h∈BL1(l

∞[0,1]2)

|Eξh(αpdm
n ) − Eh(GC)| P−→ 0(4.5)

and

Eξh(αpdm
n )∗ − Eξh(αpdm

n )∗
P−→ 0 for every h ∈ BL1(l

∞[0,1]2).(4.6)

Here

BL1(l
∞[0,1]2)

= {f : l∞[0,1]2 → R :‖f ‖∞ ≤ 1, |f (β) − f (γ )| ≤ ‖β − γ ‖∞
∀γ,β ∈ l∞[0,1]2}

is the class of all uniformly bounded functions which are Lipschitz continuous with
constant smaller one, and Eξ denotes the conditional expectation with respect to
the weights ξn given the data (X1, Y1) · · · (Xn,Yn). As a consequence, we obtain
the following bootstrap approximation for Z0.

THEOREM 4.4. If condition (3.6) is satisfied, the weight function h satisfies
the conditions of Theorem 4.1 and h∗(y)(y logy)−2 is uniformly bounded then

Ẑ∗
0 =

∫ 1

0

∫ 1

0

(
α̂

pdm
n (y1−t , yt )

C̃n(y1−t , yt )

)2 h∗(y)

(logy)2 dy dt

− B−1
h

∫ 1

0

(∫ 1

0

α̂
pdm
n (y1−t , yt )

C̃n(y1−t , yt )

h∗(y)

logy
dy

)2

dt

converges weakly to Z0 conditional on the data, that is,

Ẑ∗
0

P�
ξ

Z0 in l∞[0,1].
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By Theorem 4.4, Ẑ∗
0 is a valid bootstrap approximation for the distribu-

tion of Z0. Consequently, repeating the procedure B times yields a sample
Ẑ∗

0(1), . . . , Ẑ∗
0(B) that is approximately distributed according to Z0 and we can

use the empirical (1 − α)-quantile of this sample, say z∗
1−α , as an approximation

for z1−α . Therefore, rejecting the null hypothesis if

nMh(C̃n, Ân,h) > z∗
1−α(4.7)

yields a consistent asymptotic level α test for extreme-value dependence.
Note that the condition on the boundedness of the function h∗(y)(y logy)2 is

not satisfied for any member of the class h∗
k(y) = −yk/ log(y) from Example 2.5.

Nevertheless, mimicking the procedure from Kojadinovic and Yan (2010) and us-
ing h∗

k(y)I[ε,1−ε](y) instead of h∗
k(y) is sufficient for the boundedness. Since this

is the procedure being usually performed in practical applications, Theorem 4.4 is
still valuable for the weight functions investigated in this paper.

4.3. Finite sample properties. In this subsection, we investigate the finite sam-
ple properties of the test for extreme-value dependence. We consider the asymmet-
ric negative logistic model (3.22), the symmetric mixed model (3.28) and addition-
ally the symmetric model of Gumbel

A(t) = (
tθ + (1 − t)θ

)1/θ(4.8)

with parameter θ ∈ [1,∞) [see Gumbel (1960)] and the model of Hüsler and Reiss

A(t) = (1 − t)�

(
θ + 1

2θ
log

1 − t

t

)
+ t�

(
θ + 1

2θ
log

t

1 − t

)
,(4.9)

where θ ∈ (0,∞) and � is the standard normal distribution function [see Hüsler
and Reiss (1989)]. The coefficient of tail dependence in (4.9) is given by ρ = 2(1−
�(θ)), that is, independence is obtained for θ → ∞ and complete dependence for
θ → 0. For the Gumbel model (4.8), complete dependence is obtained in the limit
as θ approaches infinity while independence corresponds to θ = 1. The coefficient
of tail dependence ρ = 2(1 − A(0.5)) is given by ρ = 2 − 21/θ .

We generated 1,000 random samples of sample size n = 200 from various
copula models and calculated the probability of rejecting the null hypothesis.
Under the null hypothesis, we chose the model parameters in such a way that
the coefficient of tail dependence ρ varies over the specific range of the corre-
sponding model. Under the alternative, the coefficient of tail dependence does not
need to exist and we therefore chose the model parameters, such that Kendall’s
τ is an element of the set {1/4,1/2,3/4}. The weight function is chosen as
h0.4(y) = −y0.4/ log(y) and the critical values are determined by the multiplier
bootstrap approach as described in Section 4.2 with B = 200 Bootstrap replica-
tions. The results are stated in Table 1.

We observe from the left part of Table 1 that the level of test is accurately ap-
proximated for most of the models, if the tail dependence is not too strong. For
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TABLE 1
Simulated rejection probabilities of the test (4.7) for the null hypothesis of an extreme-value copula
for various models. The first four columns deal with models under the null hypothesis, while the last

four are from the alternative

H0-model ρ 0.05 0.1

Independence 0 0.031 0.075

Gumbel 0.25 0.045 0.098
0.5 0.029 0.066
0.75 0.025 0.065

Mixed model 0.25 0.043 0.09
0.5 0.047 0.10

Asy. Neg. Log. 0.25 0.041 0.09
0.5 0.038 0.077

Hüsler–Reiß 0.25 0.04 0.091
0.5 0.045 0.089
0.75 0.009 0.053

H1-model τ 0.05 0.1

Clayton 0.25 0.874 0.916
0.5 1 1
0.75 0.999 1

Frank 0.25 0.291 0.396
0.5 0.73 0.822
0.75 0.783 0.898

Gaussian 0.25 0.168 0.240
0.5 0.237 0.336
0.75 0.084 0.156

t4 0.25 0.105 0.187
0.5 0.158 0.263
0.75 0.046 0.092

a large tail dependence coefficient the bootstrap test is conservative. This phe-
nomenon can be explained by the fact that for the limiting case of random variables
distributed according to the upper Fréchet–Hoeffding the empirical copula Ĉn does
not converge weakly to a nondegenerate process at a rate 1/

√
n, rather in this case

it follows that ‖Ĉn − C‖ = O(1/n). Consequently, the approximations proposed
in this paper, which are based on the weak convergence of

√
n(Ĉn − C) to a non-

degenerate process, are not appropriate for small samples, if the tail dependence
coefficient is large. Considering the alternative, we observe reasonably good power
for the Frank and Clayton copulas, while for the Gaussian or t-copula deviations
from an extreme-value copula are not detected well with a sample size n = 200. In
some cases, the power of the test (4.7) is close the nominal level. This observation
can be again explained by the closeness to the upper Fréchet–Hoeffding bound.

Indeed, we can use the minimal distance Mh(C,A∗) as a measure of deviation
from an extreme-value copula. Calculating the minimal distance Mh(C,A∗) (with
Kendall’s τ = 0.5 and h = h0.4), we observe that the minimal distances are about
ten times smaller for the Gaussian and t4 than for the Frank and Clayton copula,
that is,

Mh(C,A∗
Clayton) = 1.65 × 10−3, Mh(C,A∗

Frank) = 5.87 × 10−4,

Mh(C,A∗
Gaussian) = 2.08 × 10−4, Mh(C,A∗

t4
) = 1.18 × 10−4.

Moreover, as explained in Remark 4.3(b) the power of the tests (4.2) and (4.7)
is an increasing function of the quantity p(copula) = Mh(C,A∗)σ−1. For the four
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copulas considered in the simulation study (with τ = 0.5), the corresponding ratios
are approximately given by

p(Clayton) = 0.230, p(Frank) = 0.134,

p(Gaussian) = 0.083, p(t4) = 0.064,

which provides some theoretical explanation of the findings presented in Table 1.
Loosely speaking, if the value Mh(C,A∗)σ−1 is very small a larger sample size
is required to detect a deviation from an extreme-value copula. This statement
is confirmed by further simulations results. For example, for the Gaussian and
t4 copula (with Kendall’s τ = 0.75) we obtain for the sample size n = 500 the
rejection probabilities 0.766 (0.629) and 0.40 (0.544) for the bootstrap test with
level 5% (10%), respectively.

APPENDIX A: PROOFS

PROOF OF THEOREM 3.1. Fix λ > 1 as in (3.11) and γ ∈ (1/2, λ/2). Due to
Lemma 1.10.2(i) in Van der Vaart and Wellner (1996), the process

√
n(C̃n − C)

will have the same weak limit (with respect to the
w� convergence) as

√
n(Ĉn −C).

For i = 2,3, . . . , we consider the following random functions in l∞[0,1]:

Wn(t) =
∫ 1

0

√
n
(
log C̃n(y

1−t , yt ) − logC(y1−t , yt )
)
w(y, t) dy,

Wi,n(t) =
∫ 1

1/i

√
n
(
log C̃n(y

1−t , yt ) − logC(y1−t , yt )
)
w(y, t) dy,

W(t) =
∫ 1

0

GC(y1−t , yt )

C(y1−t , yt )
w(y, t) dy,

Wi(t) =
∫ 1

1/i

GC(y1−t , yt )

C(y1−t , yt )
w(y, t) dy.

We prove the theorem by an application of Theorem 4.2 in Billingsley (1968),
adapted to the concept of weak convergence in the sense of Hoffmann–Jørgensen,
see, for example, Van der Vaart and Wellner (1996). More precisely, we will show
in Lemma B.1 in Appendix B that the weak convergence Wn

w� W in l∞[0,1]
follows from the following three assertions:

(i) For every i ≥ 2 Wi,n
w� Wi for n → ∞ in l∞[0,1],

(ii) Wi
w� W for i → ∞ in l∞[0,1],

(A.1)
(iii) For every ε > 0

lim
i→∞ lim sup

n→∞
P

∗(
sup

t∈[0,1]
|Wi,n(t) − Wn(t)| > ε

)
= 0.
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The main part of the proof now consists in the verification assertion (iii).
We begin by proving assertion (i). For this purpose, set Ti = [1/i,1]2 and con-

sider the mapping

�1 :
{

D�1 → l∞(Ti),

f �→ log◦f,

where its domain D�1 is defined by D�1 = {f ∈ l∞(Ti) : infx∈Ti
|f (x)| > 0} ⊂

l∞(Ti). By Lemma 12.2 in Kosorok (2008), it follows that �1 is Hadamard-
differentiable at C, tangentially to l∞(Ti), with derivative �′

1,C(f ) = f/C. Since

C̃n ≥ n−γ and C ≥ � we have C̃n,C ∈ D�1 and the functional delta method [see
Theorem 2.8 in Kosorok (2008)] yields

√
n(log C̃n − logC)

w� GC/C

in l∞(Ti). Next, we consider the operator

�2 :
{

l∞(Ti) → l∞([1/i,1] × [0,1]),
f �→ f ◦ ϕ,

where the mapping ϕ : [1/i,1] × [0,1] → Ti is defined by ϕ(y, t) = (y1−t , yt ).
Observing

sup
(y,t)∈[1/i,1]×[0,1]

|f ◦ ϕ(y, t) − g ◦ ϕ(y, t)| ≤ sup
x∈Ti

|f (x) − g(x)|

we can conclude that �2 is Lipschitz-continuous. By the continuous mapping the-
orem [see, e.g., Theorem 7.7 in Kosorok (2008)] and conditions (3.9) and (3.10),
we immediately obtain

√
n
(
log C̃n(y

1−t , yt ) − logC(y1−t , yt )
)
w(y, t)

w� GC(y1−t , yt )

C(y1−t , yt )
w(y, t)

in l∞([1/i,1] × [0,1]). The assertion in (i) now follows by continuity of integra-
tion with respect to the variable y.

For the proof of assertion (ii), we simply note that GC is bounded on [0,1]2 and
that

K(y, t) = w(y, t)

C(y1−t , yt )

is uniformly bounded with respect to t ∈ [0,1] by the integrable function K̄(y) =
w̄(y)y−1.

For the proof of assertion (iii), choose some α ∈ (0,1/2) such that λα > γ and
consider the decomposition

Wn(t) − Wi,n(t)

=
∫ 1/i

0

√
n
(
log C̃n(y

1−t , yt ) − logC(y1−t , yt )
)
w(y, t) dy(A.2)

= B
(1)
i (t) + B

(2)
i (t),
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where

B
(j)
i (t) =

∫
I
B

(j)
i

(t)

√
n log

C̃n

C
(y1−t , yt )w(y, t) dy, j = 1,2,(A.3)

and

I
B

(1)
i (t)

= {0 < y < 1/i|C(y1−t , yt ) > n−α},
(A.4)

I
B

(2)
i (t)

= (0,1) \ I
B

(1)
i (t)

.

The usual estimate

P
∗(

sup
t∈[0,1]

|Wi,n(t) − Wn(t)| > ε
)

(A.5)
≤ P

∗(
sup

t∈[0,1]
∣∣B(1)

i (t)
∣∣ > ε/2

)
+ P

∗(
sup

t∈[0,1]
∣∣B(2)

i (t)
∣∣ > ε/2

)
allows for individual investigation of both expressions, and we begin with the term
supt∈[0,1]|B(1)

i (t)|. By the mean value theorem applied to the logarithm, we have

log
C̃n

C
(y1−t , yt ) = log C̃n(y

1−t , yt ) − logC(y1−t , yt )

(A.6)

= (C̃n − C)(y1−t , yt )
1

C∗(y, t)
,

where C∗(y, t) is some intermediate point satisfying |C∗(y, t) − C(y1−t , yt )| ≤
|C̃n(y

1−t , yt ) − C(y1−t , yt )|. Especially, observing C ≥ � we have

C∗(y, t) ≥ (C ∧ C̃n)(y
1−t , yt ) ≥ y ∧

(
y

C̃n

C
(y1−t , yt )

)
(A.7)

and therefore

sup
t∈[0,1]

∣∣B(1)
i (t)

∣∣ ≤ sup
t∈[0,1]

∫
I
B

(1)
i

(t)

√
n|(C̃n − C)(y1−t , yt )|

×
∣∣∣∣1 ∨ C

C̃n

(y1−t , yt )

∣∣∣∣w(y, t)y−1 dy

≤ sup
x∈[0,1]2

√
n|C̃n(x) − C(x)|

×
(

1 ∨ sup
x∈[0,1]2 : C(x)>n−α

∣∣∣∣ C

C̃n

(x)

∣∣∣∣) × ψ(i)
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with ψ(i) = ∫ 1/i
0 w̄(y)y−1 dy = o(1) for i → ∞. This yields for the first term on

the right-hand side of (A.5)

P
∗(

sup
t∈[0,1]

∣∣B(1)
i (t)

∣∣ > ε
)

≤ P
∗
(

sup
x∈[0,1]2

√
n|C̃n(x) − C(x)| >

√
ε

ψ(i)

)
(A.8)

+ P
∗
(

1 ∨ sup
C(x)>n−α

∣∣∣∣ C

C̃n

(x)

∣∣∣∣ >

√
ε

ψ(i)

)
.

Since supx∈[0,1]2
√

n|C̃n(x)−C(x)| is asymptotically tight, we immediately obtain

lim
i→∞ lim sup

n→∞
P

∗
(

sup
x∈[0,1]2

√
n|C̃n(x) − C(x)| >

√
ε

ψ(i)

)
= 0.(A.9)

For the estimation of the second term in (A.8), we note that

sup
x∈[0,1]2 : C(x)>n−α

∣∣∣∣ C̃n(x) − C(x)

C(x)

∣∣∣∣ < nα sup
x∈[0,1]2

|C̃n(x) − C(x)| P
∗−→ 0,(A.10)

which in turn implies

sup
C(x)>n−α

∣∣∣∣ C

C̃n

(x)

∣∣∣∣ = sup
C(x)>n−α

∣∣∣∣1 + C̃n − C

C
(x)

∣∣∣∣−1

≤
(

1 − sup
C(x)>n−α

∣∣∣∣ C̃n − C

C
(x)

∣∣∣∣)−1

IAn

(A.11)

+
(

sup
C(x)>n−α

∣∣∣∣1 + C̃n − C

C
(x)

∣∣∣∣−1)
I�\An

P
∗−→ 1,

where An = {supC(x)>n−α | C̃n−C
C

(x)| < 1/2}. This implies that the function

max{1, supC(x)>n−α | C

C̃n
(x)|} can be bounded by a function that converges to one in

outer probability, and thus

lim
i→∞ lim sup

n→∞
P

∗
(

1 ∨ sup
C(x)>n−α

∣∣∣∣ C

C̃n

(x)

∣∣∣∣ >

√
ε

ψ(i)

)
= 0.

Observing (A.8) and (A.9) it remains to estimate the second term on the right-hand
side of (A.5). We make use of the mean value theorem again [see (A.6)] but use
the estimate

C∗(y, t) ≥ (C ∧ C̃n)(y
1−t , yt ) ≥ yλ ∧ yλ C̃n

Cλ
(y1−t , yt )(A.12)
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[recall that λ > 1 by assumption (3.11)]. This yields

sup
t∈[0,1]

∣∣B(2)
i (t)

∣∣ ≤ sup
t∈[0,1]

∫
I
B

(2)
i

(t)

√
n|(C̃n − C)(y1−t , yt )|

×
∣∣∣∣1 ∨ Cλ

C̃n

(y1−t , yt )

∣∣∣∣w(y, t)y−λ dy

≤ sup
x∈[0,1]2

√
n|C̃n(x) − C(x)|

×
(

1 ∨ sup
x∈[0,1]2 : C(x)≤n−α

∣∣∣∣Cλ

C̃n

(x)

∣∣∣∣) × φ(i),

where φ(i) = ∫ 1/i
0 w̄(y)y−λ dy = o(1) for i → ∞ by condition (3.11). Using anal-

ogous arguments as for the estimation of supt∈[0,1]|B(1)
i (t)| the assertion follows

from

sup
x∈[0,1]2 : C(x)≤n−α

∣∣∣∣Cλ

C̃n

(x)

∣∣∣∣ ≤ sup
x∈[0,1]2 : C(x)≤n−α

|nγ Cλ(x)| ≤ nγ−λα = o(1)

due to the choice of γ and α. �

PROOF OF THEOREM 3.4. The proof will also be based on Lemma B.1 in Ap-
pendix B verifying conditions (i)–(iii) in (A.1). A careful inspection of the previous
proof shows that the verification of condition (i) in (A.1) remains valid. Regarding
condition (ii), we have to show that the process GC

C
(y1−t , yt ) is integrable on the

interval (0,1). For this purpose, we write

GC(x) = BC(x) − ∂1C(x)BC(x1,1) − ∂2C(x)BC(1, x2)

and consider each term separately. From Theorem G.1 in Genest and Segers
(2009), we know that for any ω ∈ (0,1/2) the process

B̃C(x) =
⎧⎨⎩

BC(x)

(x1 ∧ x2)ω(1 − x1 ∧ x2)ω
, if x1 ∧ x2 ∈ (0,1),

0, if x1 = 0 or x2 = 0 or x = (1,1),

has continuous sample paths on [0,1]2. Considering C(y1−t , yt ) ≥ y and using
the notation

K1(y, t) = qω(y1−t ∧ yt )y−1,(A.13)

K2(y, t) = ∂1C(y1−t , yt )qω(y1−t )y−1,(A.14)

K3(y, t) = ∂2C(y1−t , yt )qω(yt )y−1(A.15)

with qω(t) = tω(1 − t)ω it remains to show that there exist integrable func-
tions K∗

j (y) with Kj(y, t) ≤ K∗
j (y) for all t ∈ [0,1] (j = 1,2,3). For K1 this
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is immediate because K1(y, t) ≤ (y1−t ∧ yt )ωy−1 ≤ yω/2−1. For K2, note that
∂1C(y1−t , yt ) = μ(t)yA(t)−(1−t), with μ(t) = A(t) − tA′(t). Therefore,

K2(y, t) ≤ μ(t)yA(t)−(1−ω)(1−t)−1 ≤ μ(t)yω/2−1 ≤ 2yω/2−1,(A.16)

where the second estimate follows from the inequality t ∨ (1 − t) ≤ A(t) ≤ 1 and
holds for ω ∈ (0,2). A similar argument works for the term K3.

For the verification of condition (iii), we proceed along similar lines as in the
previous proof. We begin by choosing some β ∈ (1,9/8),ω ∈ (1/4,1/2) and some
α ∈ (4/9, γ ∧(2−ω)−1) in such a way that γ < βα. First, note that y ≤ 1/(n+2)2

implies C̃n(y
1−t , yt ) = n−γ for all t ∈ [0,1]. This yields∫ (n+2)−2

0

√
n(log C̃n − logC)(y1−t , yt ) dy = O

(
logn

n3/2

)
uniformly with respect to t ∈ [0,1], and therefore it is sufficient to consider the
decomposition in (A.2) with the sets

I
B

(1)
i (t)

= {1/(n + 2)2 < y < 1/i|C(y1−t , yt ) > n−α},
I
B

(2)
i (t)

= (
1/(n + 2)2,1/i

) \ I
B

(1)
i (t)

.

We can estimate the term B
(1)
i (t) analogously to the previous proof by

∣∣B(1)
i (t)

∣∣ ≤
∫
I
B

(1)
i

(t)

√
n|(C̃n − C)(y1−t , yt )| ×

∣∣∣∣1 ∨ C

C̃n

(y1−t , yt )

∣∣∣∣y−1 dy.

Let Hn denote the empirical distribution function of the standardized sample
(F (X1),G(Y1)), . . . , (F (Xn),G(Yn)). By the results in Segers [(2010), Section 5]
we can decompose

√
n(C̃n − C) = √

n(Cn ∨ n−γ − C) as follows:
√

n(C̃n − C)(x) = √
n(Cn − C)(x) + √

n(C̃n − Cn)(x)

= αn(x) − ∂1C(x)αn(x1,1) − ∂2C(x)αn(1, x2)(A.17)

+ R̃n(x),

where αn(x) = √
n(Hn − C)(x) and the remainder satisfies

sup
x∈[0,1]2

|R̃n(x)| = O
(
n1/2−γ + n−1/4(logn)1/2(log logn)3/4)

a.s.(A.18)

Note that the estimate of (A.18) requires validity of condition 5.1 in Segers (2010).
This condition is satisfied provided that the function A is assumed to be twice
continuously differentiable; see Example 6.3 in Segers (2010). With (A.17), we
can estimate the term |B(1)

i (t)| analogously to decomposition (A.2) by B
(1)
i,1 (t) +
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· · · + B
(1)
i,4 (t), where

B
(1)
i,1 (t) =

∫
I
B

(1)
i

(t)

|αn(y
1−t , yt )|

∣∣∣∣1 ∨ C

C̃n

(y1−t , yt )

∣∣∣∣y−1 dy,

B
(1)
i,2 (t) =

∫
I
B

(1)
i

(t)

∂1C(y1−t , yt )|αn(y
1−t ,1)|

∣∣∣∣1 ∨ C

C̃n

(y1−t , yt )

∣∣∣∣y−1 dy,

B
(1)
i,3 (t) =

∫
I
B

(1)
i

(t)

∂2C(y1−t , yt )|αn(1, yt )|
∣∣∣∣1 ∨ C

C̃n

(y1−t , yt )

∣∣∣∣y−1 dy,

B
(1)
i,4 (t) =

∫
I
B

(1)
i

(t)

|R̃n(y
1−t , yt )|

∣∣∣∣1 ∨ C

C̃n

(y1−t , yt )

∣∣∣∣y−1 dy.

The decomposition in (A.17), Theorem G.1 in Genest and Segers (2009) and the
inequality α < γ ∧ (2 − ω)−1 may be used to conclude

sup
(y,t) : C(y1−t ,yt )>n−α

∣∣∣∣ C̃n − C

C
(y1−t , yt )

∣∣∣∣ = oP∗(1),

which in turn implies

1 ∨ sup
(y,t) : C(y1−t ,yt )>n−α

∣∣∣∣ C

C̃n

(y1−t , yt )

∣∣∣∣ = OP∗(1)(A.19)

analogously to (A.11). Together with (A.18) and observing the inequality∫ 1/i

(n+2)−2 y−1 dy ≤ 2 log(n + 2), we obtain, for n → ∞

sup
t∈[0,1]

B
(1)
i,4 (t) = OP∗

(
n1/2−γ logn + n−1/4(logn)3/2(log logn)1/4) = oP∗(1),

which implies

lim
i→∞ lim sup

n→∞
P

∗(
sup

t∈[0,1]
B

(1)
i,4 (t) > ε/4

)
= 0.(A.20)

Observing that qω(y1−t ∧ yt ) ≤ yω/2 the first term B
(1)
i,1 (t) can be estimated by

sup
t∈[0,1]

B
(1)
i,1 (t) ≤ sup

x∈[0,1]2

|αn(x)|
qω(x1 ∧ x2)

×
(

1 ∨ sup
(y,t) : C(y1−t ,yt )>n−α

∣∣∣∣ C

C̃n

(y1−t , yt )

∣∣∣∣) × ψ(i),

where ψ(i) = ∫ 1/i
0 y−1+ω/2 dy = o(1) for i → ∞. Using analogous arguments as

in the previous proof we can conclude, using of (A.19) and Theorem G.1 in Genest
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and Segers (2009), that limi→∞ lim supn→∞ P
∗(supt∈[0,1] B

(1)
i,1 (t) > ε/4) = 0. For

the second summand, we note that

sup
t∈[0,1]

B
(1)
i,2 (t) ≤ sup

x1∈[0,1]
|αn(x1,1)|

qω(x1)
×

(
1 ∨ sup

(y,t) : C(y1−t ,yt )>n−α

∣∣∣∣ C

C̃n

(y1−t , yt )

∣∣∣∣)

× sup
t∈[0,1]

∫ 1/i

0
K2(y, t) dy,

where K2(y, t) is defined in (A.14). Observing the estimate in (A.16), we
easily obtain limi→∞ supt∈[0,1]

∫ 1/i
0 K2(y, t) dy = 0. Again, under consider-

ation of (A.19) and Theorem G.1 in Genest and Segers (2009), we have
limi→∞ lim supn→∞ P

∗(supt∈[0,1] B
(1)
i,2 (t) > ε/4) = 0. A similar argument works

for B
(1)
i,3 and from the estimates for the different terms the assertion

lim
i→∞ lim sup

n→∞
P

∗(
sup

t∈[0,1]
∣∣B(1)

i (t)
∣∣ > ε

)
= 0

follows. Considering the term supt∈[0,1]|B(2)
i (t)|, we proceed along similar lines

as in the proof of Theorem 3.1. For the sake of brevity, we only state the important
differences: in estimation (A.12) replace λ by β , then make use of decomposi-
tion (A.17), calculations similar to (A.16), and Theorem G.1 in Genest and Segers
(2009) again and for the estimation of the remainder note that

∫ 1/i

1/(n+2)2 y−β dy =
O(n2(β−1)). �

PROOF OF THEOREM 3.8. Let η denote a probability measure minimizing the
functional V defined in (3.19). Note that V is convex and define for α ∈ [0,1] and
a further probability measure ξ on [0,1] the function

g(α) = V
(
αξ + (1 − α)η

)
.

Because V is convex it follows that η is optimal if and only if the directional
derivative of η in the direction ξ − η satisfies

0 ≤ g′(0+) = lim
α→0+

g(α) − g(0)

α

= 2
∫ 1

0

∫ 1

0
kt (x, y) dξ(x) dη(y)

− 2
∫ 1

0

∫ 1

0
kt (x, y) dη(x) dη(y)

for all probability measures ξ . Using Dirac measures for ξ yields that this inequal-
ity is equivalent to (3.20), which proves Theorem 3.8. �
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PROOF OF THEOREM 4.1. Since the integration mapping is continuous, it
suffices to establish the weak convergence Wn(t)

w� W(t) in l∞[0,1] where we
define

Wn(t) =
∫ 1

0
n

(
log

C̃n(y
1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy − nBh

(
Ân,h(t) − A∗(t)

)2
,

W(t) =
∫ 1

0

(
GC(y1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy − BhA
2
C,h(t).

We prove this assertion along similar lines as in the proof of Theorem 3.1. For
i ≥ 2, we recall the notation w̄(y) = h∗(y)/(logy)2 and consider the following
random functions in l∞[0,1]:

Wi,n(t) =
∫ 1

1/i
n

(
log

C̃n(y
1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy

− B−1
h

(∫ 1

1/i

√
n

(
log

C̃n(y
1−t , yt )

C(y1−t , yt )

)
h∗(y)

logy
dy

)2

,

Wi(t) =
∫ 1

1/i

(
GC(y1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy

− B−1
h

(∫ 1

1/i

GC(y1−t , yt )

C(y1−t , yt )

h∗(y)

logy
dy

)2

.

By an application of Lemma B.1 in Appendix B, it suffices to show the conditions
listed in (A.1). By arguments similar to those in the proof of Theorem 3.1, we
obtain

√
n log

C̃n(y
1−t , yt )

C(y1−t , yt )

w� GC(y1−t , yt )

C(y1−t , yt )
(A.21)

in l∞([1/i,1] × [0,1]). Assertion (i) now follows immediately by the bounded-
ness of the functions w̄(y) and h∗(y)(− logy)−1 on [1/i,1] [see conditions (3.9),
(3.10) and (3.13)] and the continuous mapping theorem.

For the proof of assertion (ii), we simply note that G
2
C and GC are bounded

on [0,1]2 and K1(y, t) = w̄(y)

C2(y1−t ,yt )
and K2(y, t) = h∗(y)

C(y1−t ,yt )
are bounded uni-

formly with respect to t ∈ [0,1] by the integrable functions K̄1(y) = w̄(y)y−2 and
K̄2(y) = h∗(y)(− logy)−1y−1.

For the proof of assertion (iii), we fix some α ∈ (0,1/2) such that λα > 2γ and
consider the decomposition

Wn(t) − Wi,n(t) = B
(1)
i (t) + B

(2)
i (t) + B

(3)
i (t),(A.22)
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where

B
(1)
i (t) =

∫
I
B

(1)
i

(t)

n

(
log

C̃n(y
1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy,(A.23)

B
(2)
i (t) =

∫
I
B

(2)
i

(t)

n

(
log

C̃n(y
1−t , yt )

C(y1−t , yt )

)2

w̄(y) dy,(A.24)

B
(3)
i (t) = −B−1

h I (t,1/i)
(
2I (t,1) − I (t,1/i)

)
,(A.25)

I
B

(1)
i

(t) and I
B

(2)
i

(t) are defined in (A.4) and

I (t, a) = √
n

∫ a

0

(
log

C̃n(y
1−t , yt )

C(y1−t , yt )

)
h∗(y)

logy
dy.

By the same arguments as in the proof of Theorem 3.1, we have for every ε > 0

lim
i→∞ lim sup

n→∞
P

∗(
sup

t∈[0,1]
|I (t,1/i)| > ε

)
= 0,

and supt∈[0,1] |I (t,1)| = OP∗(1), which yields the asymptotic negligibility

limi→∞ lim supn→∞ P
∗(supt∈[0,1] |B(3)

i (t)| > ε) = 0. For B
(1)
i (t), we obtain the

estimate

sup
t∈[0,1]

∣∣B(1)
i (t)

∣∣
≤ sup

t∈[0,1]

∫
I
B

(1)
i

(t)

n|(C̃n − C)(y1−t , yt )|2
∣∣∣∣1 ∨ C2

C̃2
n

(y1−t , yt )

∣∣∣∣w̄(y)y−2 dy

≤ sup
x∈[0,1]2

n|C̃n(x) − C(x)|2 ×
(

1 ∨ sup
x∈[0,1]2 : C(x)>n−α

∣∣∣∣C2

C̃2
n

(x)

∣∣∣∣) × ψ(i),

where ψ(i) := ∫ 1/i
0 w̄(y)y−2 dy, which can be handled by the same arguments as

in the proof of Theorem 3.1. Finally, the term B
(2)
i (t) can be estimated by

sup
t∈[0,1]

∣∣B(2)
i (t)

∣∣
≤ sup

t∈[0,1]

∫
I
B

(2)
i

(t)

n|(C̃n − C)(y1−t , yt )|2
∣∣∣∣1 ∨ Cλ

C̃2
n

(y1−t , yt )

∣∣∣∣w̄(y)y−λ dy

≤ sup
x∈[0,1]2

n|C̃n(x) − C(x)|2 ×
(

1 ∨ sup
x∈[0,1]2 : C(x)≤n−α

∣∣∣∣Cλ

C̃2
n

(x)

∣∣∣∣) × φ(i),

where φ(i) = ∫ 1/i
0 w̄(y)y−λ dy = o(1) for i → ∞ by condition (3.11). Mimicking

the arguments from the proof of Theorem 3.1 completes the proof. �
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PROOF OF THEOREM 4.2. Recall the decomposition Mh(C̃n, Ân,h) − Mh(C,
A∗) = S1 + S2 + S3 where S1, S2 and S3 are defined in (4.1). With the notation
v̄(y) := 2h∗(y)/(− logy) it follows that |v(y, t)| ≤ v̄(y) and the assumptions on h

yield the validity of (3.9)–(3.11) for v(y, t). This allows for an application of Theo-
rem 3.1 and together with the continuous mapping theorem we obtain

√
nS1

w� Z1,
where Z1 is the limiting process defined in (4.2). Thus, it remains to verify the
negligibility of S2 + S3. For S3, we note that by Theorem 3.2 and the continuous
mapping theorem we have S3 = OP∗(1/n) and it remains to consider S2. To this
end, we fix some α ∈ (0,1/2) such that (1 + (λ − 1)/2)α > γ and consider the
decomposition ∫ 1

0
log2 C̃n(y

1−t , yt )

C(y1−t , yt )

h∗(y)

(logy)2 dy

=
∫
I
B

(1)
1 (t)

log2 C̃n(y
1−t , yt )

C(y1−t , yt )

h∗(y)

(logy)2 dy

+
∫
I
B

(2)
1 (t)

log2 C̃n(y
1−t , yt )

C(y1−t , yt )

h∗(y)

(logy)2 dy

=: T1(t, n) + T2(t, n),

where the sets I
B

(j)
1 (t)

, j = 1,2 are defined in (A.4). On the set I
B

(1)
1 (t)

, we use the

estimate

log2 C̃n(y
1−t , yt )

C(y1−t , yt )
≤ |C̃n − C|2

(C∗)2 (y1−t , yt ) ≤ nα |C̃n − C|2
C∗

1

1 ∧ C̃n/C
(y1−t , yt )

≤ nα |C̃n − C|2
C∗ (y1−t , yt )

(
1 ∨ sup

x∈[0,1]2 : C(x)>n−α

C(x)

C̃n(x)

)
,

where |C∗(y, t)−C(y1−t , yt )| ≤ |C̃n(y
1−t , yt )−C(y1−t , yt )|. By arguments sim-

ilar to those used in the proof of Theorem 3.1, it is now easy to see that√
n sup

t
|T1(t, n)| ≤ sup

x∈[0,1]2
nα+1/2|C̃n(x) − C(x)|2

×
(

1 ∨ sup
x∈[0,1]2 : C(x)>n−α

∣∣∣∣ C

C̃n

(x)

∣∣∣∣)2

× K

= oP∗(1),

where K := ∫ 1
0 w̄(y)y−1 dy < ∞ denotes a finite constant [see condition (3.11)].

Now set β := (λ − 1)/2 > 0. From the estimate

C∗(y, t) ≥ y1+β

(
1 ∧ C̃n

C1+β
(y1−t , yt )

)
= y−βyλ

(
1 ∧ C̃n

C1+β
(y1−t , yt )

)
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we obtain by similar arguments as in the proof of the negligibility of |B(2)
i (t)| in

the proof of Theorem 3.1 (note that on I
B

(2)
1 (t)

we have y ≤ C(y1−t , yt ) ≤ n−α )

sup
t∈[0,1]

|T2(t, n)| ≤ log(n)n−βα sup
x∈[0,1]2

√
n|C̃n(x) − C(x)|

×
(

1 ∨ sup
x∈[0,1]2 : C(x)≤n−α

∣∣∣∣C1+β

C̃n

(x)

∣∣∣∣) × K̃,

where K̃ := γ
∫ 1

0 (1 − logy)
h∗(y)

(logy)2 y−λ dy denotes a finite constant [see conditions

(3.11) and (3.14)] and we used the estimate∣∣∣∣log
C̃n(y

1−t , yt )

C(y1−t , yt )

∣∣∣∣2 ≤ (γ logn − logy)

∣∣∣∣log
C̃n(y

1−t , yt )

C(y1−t , yt )

∣∣∣∣
≤ γ log(n)(1 − logy)

∣∣∣∣log
C̃n(y

1−t , yt )

C(y1−t , yt )

∣∣∣∣,
which holds for sufficiently large n. Finally, we observe that

sup
x∈[0,1]2 : C(x)≤n−α

∣∣∣∣C1+β

C̃n

(x)

∣∣∣∣ ≤ sup
x : C(x)≤n−α

|nγ C1+β(x)| ≤ nγ−(1+β)α = o(1).

Now the proof is complete. �

PROOF OF THEOREM 4.4. The conditions on the weight function imply
that all integrals in the definition of Z0 are proper and therefore the mapping
(GC,C) �→ Z0(GC,C) is continuous. Hence, the result follows by the continuous
mapping theorem for the bootstrap [see, e.g., Theorem 10.8 in Kosorok (2008)]
provided the conditional weak convergence in (4.4) holds under the nonrestrictive
smoothness assumption (3.6). To see this, proceed similar as in Bücher and Dette
(2010) and show Hadamard-differentiability of the mapping H �→ H(H−

1 ,H−
2 ),

which is defined for some distribution function H on the unit square whose
marginals H1 = H(·,1) and H2 = H(1, ·) satisfy H1(0) = H2(0) = 0. This can
be done by similar arguments as in Segers (2010) and the details are omitted for
the sake of brevity. �

APPENDIX B: AN AUXILIARY RESULT

LEMMA B.1. Let Xn,Xi,n :� → D for i, n ∈ N be arbitrary maps with values
in the metric space (D, d) and Xi,X :� → D be Borel-measurable. Suppose that:

(i) For every i ∈ N Xi,n
w� Xi for n → ∞,

(ii) Xi
w� X for i → ∞,

(iii) For every ε > 0 lim
i→∞ lim sup

n→∞
P

∗(
d(Xi,n,Xn) > ε

) = 0.
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Then Xn
w� X for n → ∞.

PROOF. Let F ⊂ D be closed and fix ε > 0. If Fε = {x ∈ D :d(x,F ) ≤ ε)

denotes the ε-enlargement of F we obtain

P
∗(Xn ∈ F) ≤ P

∗(Xi,n ∈ Fε) + P
∗(

d(Xi,n,Xn) > ε
)
.

By hypothesis (i) and the Portmanteau theorem [see Van der Vaart and Wellner
(1996)]

lim sup
n→∞

P
∗(Xn ∈ F) ≤ P(Xi ∈ Fε) + lim sup

n→∞
P

∗(
d(Xi,n,Xn) > ε

)
.

By conditions (ii) and (iii) lim supn→∞ P
∗(Xn ∈ F) ≤ P(X ∈ Fε) and since Fε ↓

F for ε ↓ 0 and closed F the result follows by the Portmanteau theorem. �
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