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LOCALIZED SPHERICAL DECONVOLUTION

BY GÉRARD KERKYACHARIAN, THANH MAI PHAM NGOC

AND DOMINIQUE PICARD

CNRS and LPMA, Université Paris Sud and Université Paris VII

We provide a new algorithm for the treatment of the deconvolution prob-
lem on the sphere which combines the traditional SVD inversion with an
appropriate thresholding technique in a well chosen new basis. We establish
upper bounds for the behavior of our procedure for any Lp loss. It is impor-
tant to emphasize the adaptation properties of our procedures with respect
to the regularity (sparsity) of the object to recover as well as to inhomoge-
neous smoothness. We also perform a numerical study which proves that the
procedure shows very promising properties in practice as well.

1. Introduction. The spherical deconvolution problem was first proposed
by Rooij and Ruymgaart [19] and subsequently solved in Healy, Hendriks and
Kim [5]. Kim and Koo [11] established minimaxity for the L2-rate of conver-
gence. The optimal procedures obtained there are using orthogonal series methods
associated with spherical harmonics. One important problem arising with these
procedures is their poor local performances due to the fact that spherical harmon-
ics are spread all over the sphere. This explains for instance the fact that although
they are optimal in the L2 sense, they cease to be optimal for other losses, such
as Lp losses for instance.

In our approach, we focus on two important points. We aim at a procedure
of estimation which is efficient from a L2 point of view, as well as it performs
satisfactorily from a local point of view (for other Lp losses for instance).

Deconvolution is an inverse problem and in such there is a notable conflict be-
tween the inversion part which in presence of noise creates an instability reason-
ably handled by a Singular Value Decomposition (SVD) approach and the fact that
the SVD basis is very rarely localized and capable of representing local features
of images, which are especially important to recover. Our strategy is to follow the
approach started in Kerkyacharian et al. [10] for the Wicksell case, Kerkyachar-
ian et al. [7] for the Radon transform, which utilizes the construction borrowed
from Narcowich, Petrushev and Wald [12, 13] of a tight frame (i.e., a redundant
family) staying sufficiently close to the SVD decomposition but which enjoys at
the same time enough localization properties to be successfully used for statistical
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estimation (see, for instance, Baldi et al. [1, 2], Pietrobon et al. [14] for other types
of applications). The construction [13] produces a family of functions which very
much resemble wavelets, the needlets.

To achieve the goals presented above, and especially adaptation to different reg-
ularities and local inhomogeneous smoothness, we essentially use a projection
method on the needlets (which enables a stable inversion of the deconvolution,
due to the closeness to the SVD basis) with a subsequent fine tuning thresholding
process.

This provides a reasonably simple algorithm with very good performances, both
from a theoretical point of view and a numerical point of view. In effect, this new
algorithm provides a much better spatial adaptation, as well as adaptation to wider
classes of regularity. We give here upper bounds obtained by the procedure over a
large class of Besov spaces and any Lp losses as well as L∞. We find back these
results in the simulation study where the effect of the localization are highlighted
for instance by a comparison of the performances, on a bell-density example be-
tween the procedure provided here and the SVD methods (detailed below) proving
that our quality of reconstruction of the peak is notably better.

It is important to notice that especially because we consider different Lp losses,
we provide rates of convergence of new types attained by our procedure, which, of
course, coincide with the usual ones for L2 losses.

Again, the problem of choosing appropriated spaces of regularity on the sphere
in a serious question, and we decided to consider the spaces which may be the
closest to our natural intuition: those which generalize to the sphere case the clas-
sical approximation properties of usual regularity spaces such as Hölder spaces and
include at the same time the Sobolev regularity spaces used in Kim and Koo [11].

Sphere deconvolution has a vast domain of application such as medical imag-
ing (see Tournier et al. [18]) and astrophysics. Indeed, our results are especially
motivated by many recent developments in the area of observational astrophysics.

It is a common problem in astrophysics to analyze data sets consisting of a num-
ber of objects (such as galaxies of a particular type) or of events (such as cosmic
rays or gamma ray bursts) distributed on the celestial sphere. In many cases, such
objects trace an underlying probability distribution f on the sphere, which itself
depends on the physics which governs the production of the objects and events.

The case for instance of ultra high energy cosmic rays (UHECR) illustrates
well the type of applications covered by our results. Ultra high energy cosmic rays
are particles of unknown nature which arrive at the earth from apparently random
directions of the sky. They could originate from long-lived relic particles from
the Big Bang, about 13 billion years old. Alternatively, they could be generated
by the acceleration of standard particles, such as protons, in extremely violent
astrophysical phenomena, such as cluster shocks. They could also originate from
Active Galactic Nuclei (AGN), or from neutron stars surrounded by extremely high
magnetic fields.
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Hence, in some hypotheses, the underlying probability distribution for the di-
rections of incidences of observed UHECRs would be a finite sum of point-like
sources—or near point like, taking into account the deflection of the cosmic rays by
magnetic fields. In other hypotheses, the distribution could be uniform, or smooth
and correlated with the local distribution of matter in the universe. The distribution
could also be a superposition of the above. Identifying between these hypotheses
is of primordial importance for understanding the origin and mechanism of pro-
duction of UHECRs.

Of course, the observations of these events (Xi’s in the sequel) are always most
often perturbated by a secondary noise (εi) which leads to the deconvolution prob-
lem described below. Following Healy, Hendriks and Kim [5], Kim and Koo [11],
the spherical deconvolution problem can be described as follows. Consider the
situation where we observe Z1, . . . ,ZN, N i.i.d. observations with

Zi = εiXi,(1)

where the εi ’s are i.i.d. random elements in SO(3) (the group of 3 × 3 rotation
matrices), and the Zi’s and Xi’s are i.i.d. random elements of S2 (two-dimensional
unit sphere of R3) random elements, with εi and Xi assumed to be independent.
We suppose that the distributions of X and Z are absolutely continuous with re-
spect to the uniform probability measure on S2, and that the distribution of ε is
absolutely continuous with respect to the Haar measure of SO(3). We will denote
the densities of resp. Z,X and ε resp. fZ,fX,fε .

Then

fZ = fε ∗ fX,(2)

where ∗ denotes convolution and is defined below. In the sequel, fX will be de-
noted by f to emphasize the fact that it is the object to recover.

The following paragraph recalls the necessary definitions. It is largely inspired
by Kim and Koo [11] and Healy, Hendriks and Kim [5].

2. Some preliminaries about harmonic analysis on SO(3) and S2. We will
provide a brief overview of Fourier analysis on SO(3) and S2. Most of the material
can be found in an expanded form in Vilenkin [20], Talman [16], Terras [17], Kim
and Koo [11], and Healy, Hendriks and Kim [5]. Let

u(φ) =
⎛⎝ cosφ − sinφ 0

sinφ cosφ 0
0 0 1

⎞⎠ , a(θ) =
⎛⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞⎠ ,

where, φ ∈ [0,2π), θ ∈ [0, π). It is well known that any rotation matrix can be
decomposed as a product of three elemental rotations, one about the z-axis first
by an angle ψ , followed by a rotation about the y-axis by an angle θ , and finally
by another rotation again about the z-axis by an angle φ. Indeed, the well-known
Euler–Angle decomposition says that any g ∈ SO(3) can almost surely be uniquely
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represented by three angles (φ, θ,ψ), with the following formula (see Healy, Hen-
driks and Kim [5] for details):

g = u(φ)a(θ)u(ψ),(3)

where φ ∈ [0,2π), θ ∈ [0, π),ψ ∈ [0,2π). Consider the functions, known as the
rotational harmonics,

Dl
mn(φ, θ,ψ) = e−i(mφ+nψ)P l

mn(cos θ),(4)

where the associated Legendre functions P l
mn for −l ≤ m,n ≤ l, l = 0,1, . . . ,

are fully described in Vilenkin [20]. The functions Dl
mn for −l ≤ m,n ≤ l, l =

0,1, . . . , are the eigenfunctions of the Laplace Beltrami operator on SO(3), hence,√
2l + 1Dl

mn,−l ≤ m,n ≤ l, l = 0,1, . . . is a complete orthonormal basis for
L2(SO(3)) with respect to the probability Haar measure. In addition, if we define
the (2l + 1) × (2l + 1) matrices by

Dl(g) = [Dl
mn(g)],(5)

where for −l ≤ m,n ≤ l, l = 0,1, . . . , and g ∈ SO(3), they constitute the collec-
tion of inequivalent irreducible representations of SO(3) (for further details, see
Vilenkin [20]).

Hence, for f ∈ L2(SO(3)), we define the rotational Fourier transform on SO(3)

by

f̂ l
mn =

∫
SO(3)

f (g)Dl
mn(g) dg,(6)

where dg is the probability Haar measure on SO(3) and we define the following
matrix of dimension (2l + 1) × (2l + 1)

f̂ l = [f̂ l
mn]−l≤m,n≤l , l = 0,1, . . . .

The rotational inversion can be obtained by

f (g) =∑
l

∑
−l≤m,n≤l

f̂ l
mnD

l
mn(g)

(7)
=∑

l

∑
−l≤m,n≤l

f̂ l
mnD

l
mn(g

−1),

(7) is to be understood in L2-sense although with additional smoothness condi-
tions, it can hold pointwise.

A parallel spherical Fourier analysis is available on S2. Any point on S2 can be
represented by

ω = (cosφ sin θ, sinφ sin θ, cos θ)t ,

with, φ ∈ [0,2π), θ ∈ [0, π). We also define the functions

Y l
m(ω) = Y l

m(θ,φ) = (−1)m

√
(2l + 1)

4π

(l − m)!
(l + m)!P

l
m(cos θ)eimφ(8)
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for −l ≤ m ≤ l, l = 0,1, . . . , φ ∈ [0,2π), θ ∈ [0, π) and where P l
m(cos θ) are the

Legendre functions.
The functions Y l

m obey

Y l−m(θ,φ) = (−1)mY l
m(θ,φ).(9)

The set {Y l
m,−l ≤ m ≤ l, l = 0,1, . . .} is forming an orthonormal basis of L2(S

2),
generally referred to as the spherical harmonic basis.

Again, as above, for f ∈ L2(S
2), we define the spherical Fourier transform on

S2 by

f̂ l
m =

∫
S2

f (ω)Y l
m(ω)dω,(10)

where dω is the uniform probability measure on the sphere S2. The spherical in-
version can be obtained by

f (ω) =∑
l

∑
−l≤m≤l

f̂ l
mY l

m(ω).(11)

The bases detailed above are important because they realize a singular value de-
composition of the convolution operator created by our model. In effect, we define
for fε ∈ L2(SO(3)), f ∈ L2(S

2) the convolution by the following formula:

fε ∗ f (ω) =
∫

SO(3)
fε(u)f (u−1ω)du,

and we have for all −l ≤ m ≤ l, l = 0,1, . . . ,

(f̂ε ∗ f )lm =
l∑

n=−l

f̂ l
ε,mnf̂

l
n := (f̂ l

ε f̂
l)m.(12)

2.1. The SVD method. The singular value method (see Healy, Hendriks and
Kim [5] and Kim and Koo [11]) consists in expanding f in the spherical harmon-
ics basis Y l

m and estimating the spherical Fourier coefficients using the formula
above (12). We get the following estimator of the spherical Fourier transform of f :

f̂ l,N
m := 1

N

N∑
j=1

l∑
n=−l

f̂ l
ε−1,mn

Ȳ l
n(Zj ),

(13)
f̂ l

ε−1 := (f̂ l
ε )

−1,

provided, of course, that these inverse matrices exist, and then the estimator of the
distribution f is

f N(ω) =
Ñ∑

l=0

l∑
m=−l

f̂ l,N
m Y l

m(ω),(14)

where Ñ is depending on the number of observations and has to be properly se-
lected.
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3. Needlet construction. This construction is due to Narcowich et al. [12].
Its aim is essentially to build a very well localized tight frame constructed using
spherical harmonics, as discussed below. It was recently extended to more gen-
eral Euclidean settings with fruitful statistical applications (see Kerkyacharian et
al. [10], Baldi et al. [1, 2], Pietrobon et al. [14]). As described above, we have the
following decomposition:

L2(S
2) =

∞⊕
l=0

Hl ,(15)

where Hl is the space spanned by {Y l
m,−l ≤ m ≤ l} of spherical harmonics of S2,

of degree l (which dimension is 2l + 1).
The orthogonal projector on Hl can be written using the following kernel oper-

ator:

∀f ∈ L2(S
2) PHl

f (x) =
∫

S2
Ll(〈x, y〉)f (y) dy,(16)

where,

Ll(x, y) =
l∑

m=−l

Y l
m(x)Y l

m(y) = Ll(〈x, y〉),

and where 〈x, y〉 is the standard scalar product of R3, and Ll is the Legendre
polynomial of degree l, defined on [−1,+1] and verifying∫ 1

−1
Ll(t)Lk(t) = 2l + 1

8π
δl,k,(17)

where δl,k is the Kronecker symbol.
Let us point out the following reproducing property of the projection operator:∫

S2
Ll(〈x, y〉)Lk(〈y, z〉) dy = δl,kLl(〈x, z〉).(18)

The following construction is based on two fundamental steps: Littlewood–
Paley decomposition and discretization, which are summarized in the two follow-
ing subsections.

3.1. Littlewood–Paley decomposition. Let φ be a C∞ function on R, sym-
metric and decreasing on R+ supported in |ξ | ≤ 1, such that 1 ≥ φ(ξ) ≥ 0 and
φ(ξ) = 1 if |ξ | ≤ 1

2 .

b2(ξ) = φ

(
ξ

2

)
− φ(ξ) ≥ 0,

so that

∀|ξ | ≥ 1
∑
j≥0

b2
(

ξ

2j

)
= 1.(19)
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Remark that b(ξ) �= 0 only if 1
2 ≤ |ξ | ≤ 2. Let us now define the operator 
j =∑

l≥0 b2( l
2j )Ll and the associated kernel


j(x, y) =∑
l≥0

b2
(

l

2j

)
Ll(〈x, y〉) = ∑

2j−1<l<2j+1

b2
(

l

2j

)
Ll(〈x, y〉).

We obviously have

∀f ∈ L2(S
2) f = lim

J→∞L0(f ) +
J∑

j=0


j(f )(20)

and if Mj(x, y) =∑
l≥0 b( l

2j )Ll(〈x, y〉), then


j(x, y) =
∫

Mj(x, z)Mj(z, y) dz.(21)

3.2. Discretization and localization properties. Let us define

Pl =
l⊕

m=0

Hm,

the space spanned by the spherical harmonics of of degree less than l.
The following quadrature formula is true: for all l ∈ N there exists a finite subset

Xl of S2 and positive real numbers λη > 0, indexed by the elements η of Xl , such
that

∀f ∈ Pl

∫
S2

f (x) dx = ∑
η∈Xl

ληf (η).(22)

Then the operator Mj defined in the subsection above is such that

z 
→ Mj(x, z) ∈ P[2j+1],
so that

z 
→ Mj(x, z)Mj(z, y) ∈ P[2j+2]
and we can write


j(x, y) =
∫

Mj(x, z)Mj(z, y) dz = ∑
η∈X[2j+2]

ληMj(x, η)Mj(η, y).

This implies


jf (x) =
∫


j(x, y)f (y) dy =
∫ ∑

η∈X[2j+2]

ληMj(x, η)Mj(η, y)f (y) dy

= ∑
η∈X[2j+2]

√
ληMj(x, η)

∫ √
ληMj(y, η)f (y) dy.
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We denote

X[2j+2] = Zj , ψj,η(x) :=
√

ληMj(x, η) for η ∈ Zj .

It can also be proved that the set of cubature points Xl can be chosen so that

1

c
22j ≤ #Zj ≤ c22j ,

1

c
22j ≤ λη ≤ c22j(23)

for some c > 0. It holds, using (20):

f = L0(f ) +∑
j

∑
η∈Zj

〈f,ψj,η〉L2(S
2)ψj,η.

The main result of Narcowich et al. [12] is the following localization property
of the ψj,η, called needlets: for any k ∈ N there exists a constant ck such that, for
every ξ ∈ S2,

|ψj,η(ξ)| ≤ ck2j

(1 + 2j d(η, ξ))k
,(24)

where d is the natural geodesic distance on the sphere (d(ξ, η) = arccos〈η, ξ〉). In
other words, needlets are almost exponentially localized around their associated
cubature point, which motivates their name.

A major consequence of this localization property can be summarized in the
following properties which will play an essential role in the sequel. Their proof
can be found in [12, 13], also in [8].

For any 1 ≤ p < ∞, there exist positive constants cp , Cp , c, C and Dp such
that

cp22j (p/2−1) ≤ ‖ψjη‖p
p ≤ Cp22j (p/2−1),(25)

c2j ≤ ‖ψjη‖∞ ≤ C2j ,(26) ∥∥∥∥ ∑
η∈Zj

ληψj,η

∥∥∥∥
π

≤ c22j (1/2−1/π)

( ∑
η∈Zj

|λη|π
)1/π

,(27)

∥∥∥∥ ∑
η∈Zj

ληψjη

∥∥∥∥p

p

≤ Dp

∑
η∈Zj

|λη|p‖ψjη‖p
p,(28)

∥∥∥∥ ∑
η∈Zj

uηψjη

∥∥∥∥∞
≤ C sup

η∈Zj

|uη|2j .(29)

To conclude this section, let us give a graphic representation of a spherical
needlet in the spherical coordinates in order to illustrate the above theory. In the
following graphic, we chose j = 3 and η = 250.
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3.3. Besov spaces on the sphere. The problem of choosing appropriated
spaces of regularity on the sphere in a serious question, and we decided to con-
sider the spaces which may be the closest to our natural intuition: those which
generalize to the sphere case the classical approximation properties used to define
for instance Sobolev spaces. In this section, we summarize the main properties of
Besov spaces which will be used in the sequel, as established in [12].

Let f : S2 → R be a measurable function. We define

Ek(f,π) = inf
P∈Pk

‖f − P‖π ,

the Lπ distance between f and the space Pk of spherical harmonics of degree less
than k. The Besov space Bs

π,r is defined as the space of functions such that

f ∈ Lπ and

( ∞∑
k=0

(ksEk(f,π))r
1

k

)1/r

< +∞.

Remarking that k → Ek(f,π) is decreasing, by a standard condensation argument
this is equivalent to

f ∈ Lπ and

( ∞∑
j=0

(2jsE2j (f,π))r

)1/r

< +∞,

and the following theorem states that as it is the case for Besov spaces in Rd , the
needlet coefficients are good indicators of the regularity and in fact Besov spaces
of S2 are Besov bodies, when expressed using needlet expansion. We provide in
Figure 1 a graphical representation of a needlet which shows its localization around
the associated cubature point.

THEOREM 1. Let 1 ≤ π ≤ +∞, s > 0, 0 ≤ r ≤ +∞. Let f be a measurable
function and define

〈f,ψj,η〉 =
∫

S2
f (x)ψj,η(x) dx

def .= βj,η,

provided the integrals exist. Then f belongs to Bs
π,r if and only if, for every j =

1,2, . . . , ( ∑
η∈Xj

(|βj,η|‖ψj,η‖π)π
)1/π

= 2−jsδj ,

where (δj )j ∈ �r .

As has been shown above,

c22j (1/2−1/π) ≤ ‖ψj,η‖π ≤ C22j (1/2−1/π)
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FIG. 1. A spherical needlet.

for some positive constants c,C, the Besov space Bs
π,r turns out to be a Banach

space associated to the norm

‖f ‖Bs
π,r

:= ∥∥(2j [s+2(1/2−1/π)]‖(βjη)η∈Zj
‖�π

)
j≥0

∥∥
�r

< ∞,(30)

and using standard arguments (reducing to comparisons of lq norms), it is easy to
prove the following embeddings:

Bs
π,r ⊂ Bs

p,r for p ≤ π,
(31)

Bs
π,r ⊂ Bs−2(1/π−1/p)

p,r for π ≤ p and s > 2
(

1

π
− 1

p

)
.

Moreover, it is also true that for s > 2
π

, if f belongs to Bs
π,r , then it is continuous,

and as a consequence bounded.
In the sequel, we shall denote by Bs

π,r (M) the ball of radius M of the Besov
space Bs

π,r .

4. Needlet algorithm: Thresholding the needlet coefficients. The first step
is to construct a needlet system (frame) {ψjη :η ∈ Zj , j ≥ −1} as described in
Section 3.

The needlet decomposition of any f ∈ L2(S
2) takes the form

f =∑
j

∑
η∈Zj

(f,ψjη)L2(S
2)ψjη.
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Using Parseval’s identity, we have βjη = (f,ψjη)L2(S
2) =∑

lm f̂ l
mψlm

jη with f̂ l
m =

(f,Y l
m) and ψlm

jη = (ψjη, Y
l
m).

Thus,

β̂jη =∑
lm

f̂ l,N
m ψlm

jη ,(32)

is an unbiased estimate of βjη. We recall that f̂ l,N
m has been defined in (13). It

is worthwhile pointing out that the SVD-estimate of the Fourier coefficient f̂ l,N
m

appears in the expression of the estimate β̂jη. This underlines that the Needlet
dictionary does not depart too much from the Fourier basis and hence benefits
from the inversion property while being very well localized.

Notice that from the needlet construction (see the previous section) it follows
that the sum above is finite. More precisely, ψlm

jη �= 0 only for 2j−1 < l < 2j+1.
Let us consider the following estimate of f :

f̂ =
J∑

j=−1

∑
η∈Zj

t (β̂jη)ψjη,(33)

where t is a thresholding operator defined by

t (β̂jη) = β̂jηI {|β̂jη| ≥ κtN |σj |} with(34)

tN =
√

logN

N
,(35)

σ 2
j = A

∑
ln

∣∣∣∣∑
m

ψlm
jη f̂ l

ε−1mn

∣∣∣∣2.(36)

Here κ is a tuning parameter of the method which will be properly selected
later on. A is chosen such that ‖fZ‖∞ ≤ A. The choice of these parameters will
be discussed later. Notice that the thresholding depends on the resolution level j

through the constant σj . As usual in inverse problems, the upper level of details J

will be chosen depending of the degree of ill-posedness. It is precisely defined in
Theorem 2.

4.1. Performances of the procedure. The following theorem considers the
case of a Lp loss with 1 ≤ p < ∞. The case p = ∞ is studied in Theorem 3.

THEOREM 2. Let 1 ≤ p < ∞, ν > 0, and let us assume that

σ 2
j := A

∑
ln

∣∣∣∣∑
m

ψlm
jη f̂ l

ε−1mn

∣∣∣∣2 ≤ C22jν ∀j ≥ 0.(37)

A is chosen such that ‖fZ‖∞ ≤ A. Let us choose κ such that κ ≥ √
3πA and√

3πAκ > max{8p,2p + 1}. Let us also take 2J = τ [tN ]−1/(ν+1) with tN as in
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(35) and τ is a positive constant. Then if π ≥ 1, s > 2/π , r ≥ 1 (with the restric-
tion r ≤ π if s = (ν + 1)(

p
π

− 1)), there exists a constant T such that

sup
f ∈Bs

π,r (M)

E‖f̂ − f ‖p
p ≤ T (log(N))p−1[N−1/2

√
log(N)

]μp
,(38)

where

μ = s

s + ν + 1
, if s ≥ (ν + 1)

(
p

π
− 1

)
,

mu = s − 2/π + 2/p

s + ν − 2/π + 1
, if

2

π
< s < (ν + 1)

(
p

π
− 1

)
.

The following theorem considers the case of L∞ norm loss.

THEOREM 3. For ν > 0, let us assume that there exist two constants C,C′
such that

C′22jν ≤ σ 2
j := A

∑
ln

∣∣∣∣∑
m

ψlm
jη f̂ l

ε−1mn

∣∣∣∣2 ≤ C22jν ∀j ≥ 0.(39)

A is chosen such that ‖fZ‖∞ ≤ A. Let us choose κ such that κ ≥ √
3πA and√

3πAκ > 16. Let us also take 2J = τ [tN ]−1/(ν+1) with tN as in (35) and τ is a
positive constant. Then if π ≥ 1, s > 2/π , r ≥ 1 , there exists a constant T such
that

sup
f ∈Bs

π,r (M)

E‖f̂ − f ‖∞ ≤ T log(N)[tN ]μ′
,(40)

where

μ′ = s − 2/π

s + ν − 2/π + 1
.

The proof of these theorems is given in Section 6.

REMARKS.

1. In Theorem 2, the rates of convergence obtained for larger s are usually referred
to as the dense case, whereas the other case is referred to as the sparse case.

2. The parameter ν appearing here is often called degree of ill-posedness of the
problem (DIP). It appears here through conditions (37) and (39) which are es-
sential in this problem. In [11], for instance, and very often in diverse inverse
problems, this DIP parameter is introduced with the help of the eigenvalues of
the operator (i.e., here the discrepancy of the coefficients of fε in its expan-
sion along the rotational harmonics). In the following subsection, we prove that
(37) and (39) are in fact a consequence of (and even equivalent to) the standard
“ordinary smooth” condition.
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3. The rates of convergence found here are standard in inverse problems. They
can be related to rates found in Kim and Koo [11] in the same deconvolution
problem, with a L2 loss and constraints on the spaces comparable to Bs

22(M). In
the deconvolution problem on the interval, similar rates are found even for Lp

losses (with standard modifications since the dimension here is 2 instead of 1):
see, for instance, Johnstone et al. [6]. These results are proved to be minimax
(see Kim and Koo [11]) up to logarithmic factors, for the case p = 2 with
a Bs

22(M) constraint on the object to estimate. With methods comparatively
similar to those in Willer [21], it could be proved that our rates are also minimax
in the general case (again up to logarithmic factors) if we assume condition (39)
(or, in other terms, that the DIP is exactly of the order ν).

4. It is interesting to notice that Theorem 3 proves that the same algorithm is also
working for the L∞ norm, with a slightly more sophisticated proof. It is often
the most useful loss function in practice. The proof requires (39) instead of (37).
We do not know if this condition is necessary.

5. It is worthwhile noticing that the procedure is adaptive, meaning that it does not
require a priori knowledge on the regularity (or sparsity) of the function. It also
adapts to nonhomogeneous smoothness of the function. The logarithmic factor
is a standard price to pay for adaptation.

6. The procedure requires the knowledge of the constant A which is correspond-
ing to the L∞ norm of the density fZ . It is obvious (because of the convolution)
that A ≤ M . However, it should be better to obtain a procedure not depending
on M either. For that, we advocate that ‖fZ‖∞ can be replaced by ‖f̂Z(jN))‖∞
in practice where f̂Z(jN)) is an undersmoothed needlet estimator of the den-
sity fZ close to those introduced in Baldi et al. [1] but with no thresholding
and with the level jN chosen so that 22jN � N/(logN)2. Standard arguments
similar as in Giné and Nickl [4]) imply that this random quantity exponentially
concentrates around ‖fZ‖∞. We can also adopt a more straightforward strategy
as detailed in Section 5.

4.2. Conditions (37), (39) and the smoothness of fε . Following Kim and
Koo ([11], condition (3.6)), we can define the smoothness of fε spectrally. We
place ourselves in the “ordinary smooth” case

‖(f̂ l
ε )

−1‖op ≤ d0l
ν and ‖f̂ l

ε‖op ≤ d1l
−ν as l → ∞(41)

for some positive constants d0, d1 and nonnegative constant ν, and where the op-
erator norm of the rotational Fourier transform f̂ l

ε is defined as

‖f̂ l
ε‖op = sup

h �=0,h∈Hl

‖f̂ l
εh‖2

‖h‖2
,

Hl being the (2l + 1)-dimensional vector space spanned by {Y l
m :−l ≤ m ≤ l}.

The following proposition states that condition (37) [resp. (39)] is verified in
the ordinary smooth case by the needlets system.
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PROPOSITION 1. If ‖(f̂ l
ε )

−1‖op ≤ d0l
ν , then there exists a constant C such

that

|σj |2 := A
∑
ln

∣∣∣∣∑
m

ψlm
jη f̂ l

ε−1mn

∣∣∣∣2 ≤ C22jν ∀j ≥ 0.

If ‖f̂ l
ε‖op ≤ d0l

−ν , then there exists a constant C′ such that

|σj |2 := A
∑
ln

∣∣∣∣∑
m

ψlm
jη f̂ l

ε−1mn

∣∣∣∣2 ≥ C′22jν ∀j ≥ 0.

The proof of this proposition is given in the supplement article (Kerkyacharian
et al. [9]).

Notice also that the super smooth case (corresponding to exponential spectral
decreasing) is also considered in Kim and Koo [11]. We will not consider this case
here, although this could be done, basically because this case corresponds to very
poor rates of convergence (logarithmic in N ). As well, this case does not require a
thresholding since the adaptation is obtained almost for free.

We now give a brief review of some examples of smooth distributions which are
discussed in depth in Healy, Hendriks and Kim [5] and Kim and Koo [11].

4.2.1. Rotational Laplace distribution. This distribution can be viewed as an
exact analogy on SO(3) of the Laplace distribution on R. Spectrally, for some
ρ2 > 0, this distribution is characterized by

f̂ l
ε,mn = (

1 + ρ2l(l + 1)
)−1

δmn(42)

for −l ≤ m,n ≤ l and l = 0,1, . . . , and where δmn = 1 if m = n and 0 otherwise.

4.2.2. The Rosenthal distribution. This distribution has its origin in random
walks in groups (for details, see Rosenthal [15]).

If one considers the situation where fε is a p-fold convolution product of con-
jugate invariant random for a fixed axis, then Rosenthal ([15], page 407) showed
that

f̂ l
ε,mn =

(
sin(l + 1/2)θ

(2l + 1) sin θ/2

)p

δmn

for −l ≤ m,n ≤ l and l = 0,1, . . . , and where 0 < θ ≤ π and p > 0.

5. Practical performances. In this section, we produce the results of numer-
ical experiments on the sphere S2. Numerical work has been conducted using the
spherical pixelization HEALPix software package. HEALPix provides an approx-
imate quadrature of the sphere with a number of data points of order C22J and a
number of quadrature weights of order 1

C22J , for some positive constant C. This ap-
proximation is considered as reliable enough and commonly used in astrophysics.
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In the two examples below, we considered samples of cardinality N = 1500.
The maximal resolution level J is taken such that J = (1/2) log2(

N
logN

). In order
not to have more cubature points than observations, we set J = 3 for N = 1500.
We recall the expression of the estimate of the needlets coefficients of the density
of interest:

β̂jη = 1

N

√
λjη

2j+1∑
l=2j−1

b(l/2j )

l∑
m=−l

Y l
m(ξjη)

l∑
n=−l

f̂ l
ε−1,mn

N∑
u=1

Y l
n(Zu),(43)

where the quadrature weight are approximately uniform, λjη � 4π/(12.22j ). We
replace the rotational Fourier transform (f̂ l

ε )mn := f̂ l
ε,mn [defined in (6)] by its em-

pirical version, more tractable in our simulation study. Note also that this situation
is very likely to occur for instance in the context of astrophysics.

We precise again that f̂ l
ε−1,mn

denotes the (m,n) element of the matrix

(f̂ l
ε )

−1 := f̂ l
ε−1 which is the inverse of the (2l + 1) × (2l + 1) matrix (f̂ l

ε ). In
order to get the empirical version f̂

l,N

ε−1,mn
of f̂ l

ε−1,mn
, we have first to compute the

empirical matrix (f̂ l,N
ε ) then to inverse it to get the matrix (f̂ l,N

ε )−1 := f̂
l,N

ε−1 . The

(m,n) entry of the matrix (f̂ l,N
ε ) is given by the formula

f̂ l,N
ε,mn = 1

N

N∑
j=1

Dl
m,n(εj ),

where the rotational harmonics Dl
m,n have been defined in (4). The εj ’s are i.i.d.

realizations of the variable ε ∈ SO(3).
For the generation of the random variable ε ∈ SO(3), we chose Oz as the ro-

tation axis and an angle φ following a uniform law with different supports such
as [0, π/8], [0, π/4], [0, π/2]. The larger the support of distribution is, the more
intense the effect of the noise will be.

This particular choice of rotation matrix entails that in the decomposition of an
element of SO(3) [see formula (3)] the angles ψ and θ are both equal to zero. For
this specific setting of perturbation, we deduce the following form for the rotational
harmonics:

Dl
m,n(εj ) = P l

mn(1)e−niφj = δmne
−inφj ,

where φj ∼ U [0, a] and a is a positive constant which will be specified later.
Choosing σj . As one may notice, the estimator f̂ [see (33)] relies on the knowl-

edge of A which controls the sup norm of the density fZ and appears in the for-
mula of σ 2

j , see (36). Different ways to circumvent this difficulty can be used, for
instance, estimating it as explained above. However, we have adopted in this sec-
tion a different approach. The quantity σ 2

j constitutes a control of the variance of
the estimated coefficients β̂jη as it is shown by inequality (5) in the supplemen-
tary material (see Kerkyacharian et al. [9]). Using this remark, instead of using an
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upper bound of the variance of β̂jη, we will directly plug in an estimation of this
variance. Hence, σ 2

j in (34) is replaced by

v2
jη = 1

(N − 1)

N∑
i=1

|Gjη(Zi) − G̃jη(Z)|2,

where

Gjη(x) =∑
lm

ψlm
jη

∑
n

f̂ l
ε−1,mn

Y l
n(x)

and

G̃jη(Z) = 1

N

N∑
i=1

Gjη(Zi).

Remark that β̂jη = 1
N

∑N
i=1 Gjη(Zi).

Hence, for the reconstruction of the density f , we have the following Needlet
estimator:

f̂ := 1

|S2| +
J∑

j=0

12.22j∑
η=1

β̂jηψjηI{|β̂jη|≥κtN |vjη|}.

Choosing the tuning parameter κ . Before entering into the details of the numer-
ical results, we will dwell on the methodology used in this part to calibrate the
tuning paramater κ in practice. In a first time, we focus on the uniform density. In-
deed, we make an upstream study with the uniform density f = 1

4π
1S2 which will

allow us to determine a reasonable value for κ which will be kept in the sequel for
other types of densities. On the one hand, the choice of the uniform density is not
fortuitous because we know that in theory the needlet coefficient 〈f,ψjη〉 = 0 for
all j and η. On the other hand, for an upstream study, a prerequisite is to deal with
a simple density, which is the case. Hence, we test various values of κ and see how
many coefficients survive thresholding. Then we look at the smallest value of κ

for which all the estimated coefficients are killed. It turns out that κ = 0.5. Con-
sequently for κ = 0.5, we have noise-free reconstructions of the uniform density.
Accordingly, this particular value of κ plays a benchmark value for the other types
of density that we highlight. In other words, in the Example 2, which concerns the
unimodal density we set κ = 0.5.

We can form a parallel to what happens on the real line. Indeed, in a certain
way, this strategy for choosing κ in practise meets up with the universal threshold√

2 logn put forward by Donoho and Johnstone [3] in the context of fixed design
regression on R in order to “kill” asymptotically all the coefficients when estimat-
ing the zero function. Then, we compute the L2 and L∞ losses and give the graphic
reconstructions. This choice of κ turns out to be very reasonable and fruitful as the
results prove to be good enough.
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TABLE 1
Number of coefficients surviving thresholding for various values of κ ,

φ ∼ U [0,π/8]

j = 0 j = 1 j = 2 j = 3

κ = 0.2 0 7 30 110
κ = 0.3 0 0 2 6
κ = 0.4 0 0 0 3

EXAMPLE 1. In this first example, we consider the case of the uniform den-
sity f = 1

4π
1S2 . It is easy to verify that βjη = 〈f,ψjη〉L2 = 0 for every j and ev-

ery η. Following Baldi et al. [1], a simple way of assessing the performance of the
Needlet procedure is to count the number of coefficients surviving thresholding.

We precise that both in the cases of an angle following a law U [0, π/8] or
U [0, π], all the coefficients are killed for κ = 0.5 (see Tables 1 and 2). Accord-
ingly, we can conclude that the thresholding procedure based on spherical needlets
is very efficient.

EXAMPLE 2. We will now deal with the example of a density of the form
f (ω) = ce−4|ω−ω1|2 , with ω1 = (0,1,0) and c = 1/0.7854. The graph of f in
the spherical coordinates (�,�) (� = longitude, 0 ≤ � ≤ 2π , � = colatitude,
0 ≤ � ≤ π ) is given in Figure 2. We also plot the noisy observations for dif-
ferent cases of perturbations. For big rotation angles such that φ ∼ U [0, π/4] or
φ ∼ U [0, π/2], the observations tend to be spread over a large region on the sphere
and not to be concentrated in a specific region any more. Consequently, denois-
ing might prove to be difficult. In the context of the deconvolution on the sphere,
a large amount of noise corresponds to a rotation about the Oz axis by a large
angle.

As motivated above, in the sequel, the tuning parameter κ for the Needlet pro-
cedure is set to 0.5 both for computing the quadratic loss, the L∞ loss and the
graphic reconstructions.

First of all, we have computed an estimate of the L2 and the L∞ norms of the
difference between f̂ our Needlet estimator and f (see Table 3). For the quadratic

TABLE 2
Number of coefficients surviving thresholding for various values of κ ,

φ ∼ U [0,π ]

j = 0 j = 1 j = 2 j = 3

κ = 0.2 2 3 77 350
κ = 0.3 0 0 4 10
κ = 0.4 0 0 0 6
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FIG. 2. Observations φ ∼ U [0,π/8].

loss, we took the square root of the sum of the squares of the coefficients. As for
the L∞ distance, we chose an almost uniform grid of the sphere S2 given by the
HEALPix pixelization program. We recall that

‖f̂ − f ‖∞ = sup
i=1,...,L

|f̂ (αi) − f (αi)|,

where the αi are the points of a uniform grid of the sphere. Here, we chose
L = 192 = 12.24. All the estimated losses were computed over 50 runs and for
N = 1500 observations. We considered the three cases of noise level described
above. The results are summarized in the following table of errors which shows
that the estimator performs quite well. In particular, its performances are deteri-
orating when the noise becomes more important (which was expected) and give
very good results in L∞ norm. We concentrated on particular phenomena instead
of performing a large scanning of the errors in very diverse situations because the
computations—although feasible—are rather costly in time when used repeatedly.
For instance, to our knowledge, and probably for the same reason, no such study
has been performed for the SVD method.

SVD versus needlet on a particular problem. A central issue in Astrophysics
is to detect the place of the peak of the bell which in the present density case is
localized in (� = π/2,� = π/2). For each case of noise, we plot the observations

TABLE 3
L2 and L∞ estimated losses

φ ∼ U [0,π/8] φ ∼ U [0,π/4] φ ∼ U [0,π/2]
L2 0.3335 0.5523 0.7830
L∞ 0.1019 0.1677 0.1928
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FIG. 3. The exact density, the Needlet procedure, the SVD method, φ ∼ U [0,π/8].

both on the sphere and on the flattened sphere and give the reconstructed density
in the spherical coordinates for the Needlet procedure and the SVD estimator (see
Figures 2, 4 and 6).

For each of the three groups of graphic reconstructions of the target density
presented below corresponding to three cases of noise, you will find in order, the
exact target density, then the one estimated with the Needlet procedure and finally
the density estimated with the SVD method (see Figures 3, 5 and 7).

At a closer inspection, we notice that the position of the peak of the estimated
bell is well localized by the Needlet procedure whatever the amount of noise, it
is especially true for φ ∼ U [0, π/8]. Only in the case of the law U [0, π/2], the
longitude coordinate of the peak tends to slightly move away from the true value.
As for the SVD method, for the three reconstructions, it fails to detect properly the
exact position of the peak. Therefore, even if in the case of big rotations such that
φ ∼ U [0, π/4] and especially φ ∼ U [0, π/2], the Needlet procedure allows us to
have a rather good detection of the position of the peak. This is of course due to
the remarkable concentration of the needlet. Of course, one remarks that the base

FIG. 4. Observations φ ∼ U [0,π/4].
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FIG. 5. The exact density, the Needlet procedure, the SVD method, φ ∼ U [0,π/4].

of the bell tends to become a bit larger when the noise increases, this is due to the
fact that the observations are not concentrated in a specific region any longer, but
the genuine form of the density is well preserved.

6. Proof of Theorems 2 and 3. In this proof, C will denote an absolute con-
stant which may change from one line to the other.

We begin with the following proposition.

PROPOSITION 2. For any q ≥ 1 there exist constants C, sq, s
′
q , such that, as

soon as 2j ≤ [ N
logN

]1/2,

P{|β̂jη − βjη| ≥ σjv} ≤ 2 exp
{
− Nv2

2(1 + 2/(
√

3πA)v2j )

}
∀v > 0,(44)

E|β̂jη − βjη|q ≤ sq

[σ 2
j

N

]q/2
,(45)

FIG. 6. Observations φ ∼ U [0,π/2].
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FIG. 7. The exact density, the Needlet procedure, the SVD method, φ ∼ U [0,π/2].

E sup
η

|β̂jη − βjη|q ≤ s′
q(j + 1)q

[σ 2
j

N

]q/2

,(46)

P(|β̂jη − βjη| ≥ σjκtN) ≤ 2N−√
3πAκ/4 ∀κ ≥ √

3πA.(47)

The proof of this proposition is given in the supplementary material (see Kerky-
acharian et al. [9]).

6.1. Proof of Theorem 2. Now, to get the result of Theorem 2, we begin by the
following decomposition:

E‖f̂ − f ‖p
p ≤ 2p−1

{
E

∥∥∥∥∥
J∑

j=−1

∑
η∈Zj

(
t (β̂jη) − βjη

)
ψjη

∥∥∥∥∥
p

p

+
∥∥∥∥∑
j>J

∑
η∈Zj

βjηψjη

∥∥∥∥p

p

}

=: I + II.

The term II is easy to analyze, as follows. We observe first that since Bs
π,r (M) ⊂

Bs
p,r(M

′) for π ≥ p, this case will be assimilated to the case π = p and from
now on, we will only consider π ≤ p. Since f belongs to Bs

π,r (M), using
the embedding results recalled above in (31), we have that f also belongs to
B

s−(2/π−2/p)
p,r (M ′), for some constant M ′ and for π ≤ p. Hence,∥∥∥∥∑

j>J

∑
η∈Zj

βjηψjη

∥∥∥∥
p

≤ C2−J [s−2(1/π−1/p)].

Then we only need to verify that s−2(1/π−1/p)
ν+1 is always larger that μ, which is not

difficult.
Indeed, on the first zone s ≥ (ν + 1)(p/π − 1). So, s + ν + 1 ≥ (ν + 1)

p
π

which
entails that s

(s+ν+1)
≤ s

(ν+1)p/π
. We need to check that s − 2( 1

π
− 1

p
) ≥ sπ

p
. We
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have that s − 2
π

+ 2
p

− sπ
p

= 2( sπ
2 − 1)( 1

π
− 1

p
) ≥ 0 since s ≥ 2

π
and p ≥ π .

On the second zone, we obviously have that s−2(1/π−1/p)
ν+1 is always larger than

μ = s−2/π+2/p
s+ν−2/π+1 .

Bounding the term I is more involved. Using the triangular inequality together
with Hölder inequality, and property (28) for the second line, we get

I ≤ 2p−1Jp−1
J∑

j=−1

E

∥∥∥∥ ∑
η∈Zj

(
t (β̂jη) − βjη

)
ψjη

∥∥∥∥p

p

≤ 2p−1Jp−1C

J∑
j=−1

∑
η∈Zj

E|t (β̂jη) − βjη|p‖ψjη‖p
p.

Now, we separate four cases:

J∑
j=−1

∑
η∈Zj

E|t (β̂jη) − βjη|p‖ψjη‖p
p

=
J∑

j=−1

∑
η∈Zj

E|t (β̂jη) − βjη|p‖ψjη‖p
p

{
I {|β̂jη| ≥ κtNσj }

+ I {|β̂jη| < κtNσj }}
≤

J∑
j=−1

∑
η∈Zj

[
E|β̂jη − βjη|p‖ψjη‖p

pI {|β̂jη| ≥ κtNσj }

×
{
I

{
|βjη| ≥ κ

2
tNσj

}
+ I

{
|βjη| < κ

2
tNσj

}}
+ |βjη|p‖ψjη‖p

pI {|β̂jη| < κtNσj }{I {|βjη| ≥ 2κtNσj }

+ I {|βjη| < 2κtNσj }}]
=: Bb + Bs + Sb + Ss.

We have the following upper bounds for the terms Bs and Sb:

Bs ≤ CN−√
3πAκ/16,

Sb ≤ CN−√
3πAκ/2+p/(ν+1).

It is easy to check that in any cases if
√

3πAκ > max{8p,2p + 1} the terms
Bs and Sb are smaller than the rates announced in the theorem. For the details of
the above upper bounds of the terms Bs and Sb, see the supplementary material
(Kerkyacharian et al. [9]).
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Using Proposition 2, we have

Bb ≤ C

J∑
j=−1

∑
η∈Zj

σ
p
j N−p/2‖ψjη‖p

pI

{
|βjη| ≥ κ

2
tNσj

}
,

Ss ≤
J∑

j=−1

∑
η∈Zj

|βjη|p‖ψjη‖p
pI {|βjη| < 2κtNσj }.

Using again Proposition 2, (25) and condition (37) for any p ≥ z ≥ 0:

Bb ≤ CN−p/2
J∑

j=−1

σ
p
j 2j (p−2)

∑
η∈Zj

I

{
|βjη| ≥ κ

2
tNσj

}

≤ CN−p/2
J∑

j=−1

σ
p
j 2j (p−2)

∑
η∈Zj

|βjη|z[tNσj ]−z

≤ CtN
p−z

J∑
j=−1

2j [ν(p−z)+p−2] ∑
η∈Zj

|βjη|z.

Also, for any p ≥ z ≥ 0,

Ss ≤ C

J∑
j=−1

2j (p−2)
∑

η∈Zj

|βjη|zσp−z
j [tN ]p−z

≤ C[tN ]p−z
J∑

j=−1

2j (ν(p−z)+p−2)
∑

η∈Zj

|βjη|z.

So in both cases we have the same bound to investigate. We will write this bound
on the following form (forgetting the constant):

A + B := tN
p−z1

[ j0∑
j=−1

2j [ν(p−z1)+p−2] ∑
η∈Zj

|βjη|z1

]

+ tN
p−z2

[
J∑

j=j0+1

2j [ν(p−z2)+p−2] ∑
η∈Zj

|βjη|z2

]
.

The constants zi and j0 will be chosen depending on the cases, with the only
constraint p ≥ zi ≥ 0.

We recall that we only need to investigate the case p ≥ π , since when p ≤ π ,
Bs

πr(M) ⊂ Bs
pr(M

′).
Let us first consider the case where s ≥ (ν + 1)(

p
π

− 1), put

q = p(ν + 1)

s + ν + 1
,
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and observe that on the considered domain, q ≤ π and p > q . In the sequel, it will
be useful to observe that we have s = (ν + 1)(

p
q

− 1). Now, taking z2 = π , we get

B ≤ tN
p−π

[
J∑

j=j0+1

2j [ν(p−π)+p−2] ∑
η∈Zj

|βjη|π
]
.

Now, as

p

q
− 2

π
+ ν

(
p

q
− 1

)
= s + 1 − 2

π

and ∑
η∈Zj

|βjη|π = 2−jπ(s+1−2/π)τπ
j ,

with (τj )j ∈ lr (this last thing is a consequence of the fact that f ∈ Bs
π,r(M)), we

can write

B ≤ tN
p−π

J∑
j=j0+1

2jp(1−π/q)(ν+1)τπ
j

≤ CtN
p−π2j0p(1−π/q)(ν+1).

The last inequality is true for any r ≥ 1 if π > q and for r ≤ π if π = q . Notice
that π = q is equivalent to s = (ν + 1)(

p
π

− 1). Now if we choose j0 such that
2j0(p/q)(ν+1) ∼ tN

−1, we get the bound

tN
p−q,

which exactly gives the rate announced in the theorem for this case. As for the
first part of the sum (before j0), we have, taking now z1 = q̃ , with q̃ ≤ π (and
also q̃ ≤ p since we investigate the case p ≥ π ), so that [ 1

22j

∑
η∈Zj

|βjη|q̃]1/q̃ ≤
[ 1

22j

∑
η∈Zj

|βjη|π ]1/π , we get

A ≤ tN
p−q̃

[ j0∑
j=−1

2j [ν(p−q̃)+p−2] ∑
η∈Zj

|βjη|q̃
]

≤ tN
p−q̃

[ j0∑
j=−1

2j [ν(p−q̃)+p−2q̃/π ]
[ ∑
η∈Zj

|βjη|π
]q̃/π

]

≤ tN
p−q̃

j0∑
j=−1

2j [(ν+1)p(1−q̃/q)]τ q̃
j

≤ CtN
p−q̃2j0p[(ν+1)(1−q̃/q)]

≤ CtN
p−q.
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The last two lines are valid if q̃ is chosen strictly smaller than q (this is possible
since π ≥ q).

Let us now consider the case where s < (ν + 1)(
p
π

− 1), and choose now

q = p
ν + 1 − 2/p

s + ν − 2/π + 1
.

In such a way that we easily verify that p − q = p
s−2/π+2/p
1+ν+s−2/π

, q − π =
(p−π)(1+ν)−πs

s+ν−2/π+1 > 0. Furthermore, we also have s + 1 − 2
π

= p
q

− 2
q

+ ν(
p
q

− 1).

Hence, taking z1 = π and using again the fact that f belongs to Bs
π,r (M),

A ≤ tN
p−π

[ j0∑
−1

2j [ν(p−π)+p−2] ∑
η∈Zj

|βjη|π
]

≤ tN
p−π

j0∑
−1

2j [(ν+1−2/p)(p/q)(q−π)]τπ
j

≤ CtN
p−π2j0[(ν+1−2/p)(p/q)(q−π)].

This is true since ν + 1 − 2
p

is also strictly positive since ν + 1 > s
p/π−1 ≥ 2

p−π
≥

2
p

. If we now take 2j0(p/q)(ν+1−2/p) ∼ tN
−1, we get the bound

tN
p−q,

which is the rate announced in the theorem for this case.
Again, for B , we have, taking now z2 = q̃ > q(> π)

B ≤ tN
p−q̃

[
J∑

j=j0+1

2j [ν(p−q̃)+p−2] ∑
η∈Zj

|βjη|q̃
]
.

But ∑
η∈Zj

|βjη|q̃ ≤ C2−j q̃(s+1−2/π)τ
q̃
j ,

and s + 1 − 2
π

= p
q

− 2
q

+ ν(
p
q

− 1), hence

B ≤ CtN
p−q̃

∑
j=j0+1

2j [(ν+1−2/p)(p/q)(q−q̃)]τ q̃
j

≤ CtN
p−q̃2j0[(ν+1−2/p)(p/q)(q−q̃)]

≤ CtN
p−q,

which completes the proof of Theorem 2.
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6.2. Proof of Theorem 3. The proof of this theorem is entirely given in the
supplementary material (see Kerkyacharian et al. [9]).

SUPPLEMENTARY MATERIAL

Supplement to “Localized spherical deconvolution” (DOI: 10.1214/10-
AOS858SUPP; .pdf). We give in the supplement some technical details for the
understanding of the proofs of Propositions 1 and 2 and of Theorems 2 and 3.

Acknowledgments. The authors would like to thank Erwan Le Pennec for
many helpful discussions and suggestions concerning the simulations. We would
also like to thank an Associate Editor and two anonymous referees for their in-
sightful comments on a first draft of this work.

REFERENCES

[1] BALDI, P., KERKYACHARIAN, G., MARINUCCI, D. and PICARD, D. (2009). Adaptive density
estimation for directional data using needlets. Ann. Statist. 37 3362–3395. MR2549563

[2] BALDI, P., KERKYACHARIAN, G., MARINUCCI, D. and PICARD, D. (2009). Subsampling
needlet coefficients on the sphere. Bernoulli 15 438–463. MR2543869

[3] DONOHO, D. L and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika 81 425–455. MR1311089

[4] GINÉ, E. and NICKL, R. (2010). Adaptive estimation of a distribution function and its density
in sup-norm loss by wavelet and spline projections. Bernoulli. To appear.

[5] HEALY JR., D. M., HENDRIKS, H. and KIM, P. T. (1998). Spherical deconvolution. J. Multi-
variate Anal. 67 1–22. MR1659108

[6] JOHNSTONE, I., KERKYACHARIAN, G., PICARD, D. and RAIMONDO, M. (2004). Wavelet
deconvolution in a periodic setting. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 547–573.
MR2088290

[7] KERKYACHARIAN, G., KYRIAZIS, G., LE PENNEC, E., PETRUSHEV, P. and PICARD, D.
(2010). Inversion of noisy Radon transform by SVD based needlets. Appl. Comput. Har-
monic Anal. 28 24–45. MR2563258

[8] KERKYACHARIAN, G. and PICARD, D. (2009). New generation wavelets associated with sta-
tistical problems. In The 8th Workshop on Stochastic Numerics 119–146. Research Insti-
tute for Mathematical Sciences, Kyoto Univ.

[9] KERKYACHARIAN, G., PHAM NGOC, T. M and PICARD, D. (2010). Supplement to “Local-
ized spherical deconvolution.” DOI:10.1214/10-AOS858SUPP.

[10] KERKYACHARIAN, G., PETRUSHEV, P., PICARD, D. and WILLER, T. (2007). Needlet al-
gorithms for estimation in inverse problems. Electron. J. Statist. 1 30–76 (electronic).
MR2312145

[11] KIM, P. T. and KOO, J. Y. (2002). Optimal spherical deconvolution. J. Multivariate Anal. 80
21–42. MR1889831

[12] NARCOWICH, F., PETRUSHEV, P. and WARD, J. (2006). Decomposition of Besov and Triebel–
Lizorkin spaces on the sphere. J. Funct. Anal. 238 530–564. MR2253732

[13] NARCOWICH, F., PETRUSHEV, P. and WARD, J. (2006). Local tight frames on spheres. SIAM
J. Math. Anal. 38 574–594. MR2237162

[14] PIETROBON, D., BALDI, P., KERKYACHARIAN, G., MARINUCCI, D. and PICARD, D.
(2008). Spherical needlets for CMB data analysis. Monthly Notices of the Roy. Astron.
Soc. 383 539–545.

http://dx.doi.org/10.1214/10-AOS858SUPP
http://www.ams.org/mathscinet-getitem?mr=2549563
http://www.ams.org/mathscinet-getitem?mr=2543869
http://www.ams.org/mathscinet-getitem?mr=1311089
http://www.ams.org/mathscinet-getitem?mr=1659108
http://www.ams.org/mathscinet-getitem?mr=2088290
http://www.ams.org/mathscinet-getitem?mr=2563258
http://dx.doi.org/10.1214/10-AOS858SUPP
http://www.ams.org/mathscinet-getitem?mr=2312145
http://www.ams.org/mathscinet-getitem?mr=1889831
http://www.ams.org/mathscinet-getitem?mr=2253732
http://www.ams.org/mathscinet-getitem?mr=2237162
http://dx.doi.org/10.1214/10-AOS858SUPP


1068 G. KERKYACHARIAN, T. M. PHAM NGOC AND D. PICARD

[15] ROSENTHAL, J. S. (1994). Random rotations: Characters and random walks on SO(N). Ann.
Probab. 22 398–423. MR1258882

[16] TALMAN, J. D. (1968). Special Functions: A Group Theoretic Approach. W. A. Benjamin,
New York. MR0239154

[17] TERRAS, A. (1985). Harmonic Analysis on Symmetric Spaces and Applications. I. Springer,
New York. MR0791406

[18] TOURNIER J. D., CALAMANTE, F., GADIAN, D. G. and CONNELLY, A. (2004). Direct es-
timation of the fiber orientation density function from diffusion-weighted mri data using
spherical deconvolution. NeuroImage 23 1176–1185.

[19] VAN ROOIJ, A. C. M. and RUYMGAART, F. H. (1991). Regularized deconvolution on the circle
and the sphere. In Nonparametric Functional Estimation and Related Topics (Spetses,
1990). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 335 679–690. Kluwer Academic,
Dordrecht. MR1154359

[20] VILENKIN, N. J. (1969). Fonctions spéciales et théorie de la représentation des groupes.
Traduit du Russe par D. Hérault. Monographies Universitaires de Mathématiques 33.
Dunod, Paris. MR0243143

[21] WILLER, T. (2009). Optimal bounds for inverse problems with Jacobi-type eigenfunctions.
Statist. Sinica 19 785–800. MR2514188

G. KERKYACHARIAN

CNRS, LPMA
175 RUE DU CHEVALERET

75013 PARIS

FRANCE

E-MAIL: kerk@math.jussieu.fr

T. M. PHAM NGOC

LABORATOIRE DE MATHÉMATIQUES,
UMR CNRS 8628

UNIVERSITÉ PARIS SUD

91405 ORSAY CEDEX

FRANCE

E-MAIL: thanh.pham_ngoc@math.u-psud.fr

D. PICARD

UNIVERSITÉ PARIS VII
175 RUE DU CHEVALERET

75013 PARIS

FRANCE

E-MAIL: picard@math.jussieu.fr

http://www.ams.org/mathscinet-getitem?mr=1258882
http://www.ams.org/mathscinet-getitem?mr=0239154
http://www.ams.org/mathscinet-getitem?mr=0791406
http://www.ams.org/mathscinet-getitem?mr=1154359
http://www.ams.org/mathscinet-getitem?mr=0243143
http://www.ams.org/mathscinet-getitem?mr=2514188
mailto:kerk@math.jussieu.fr
mailto:thanh.pham_ngoc@math.u-psud.fr
mailto:picard@math.jussieu.fr

	Introduction
	Some preliminaries about harmonic analysis on SO(3) and S2
	The SVD method

	Needlet construction
	Littlewood-Paley decomposition
	Discretization and localization properties
	Besov spaces on the sphere

	Needlet algorithm: Thresholding the needlet coefficients
	Performances of the procedure
	Conditions (37), (39) and the smoothness of fepsilon
	Rotational Laplace distribution
	The Rosenthal distribution


	Practical performances
	Proof of Theorems 2 and 3
	Proof of Theorem 2
	Proof of Theorem 3

	Supplementary Material
	Acknowledgments
	References
	Author's Addresses

