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ESTIMATION FOR LÉVY PROCESSES FROM HIGH FREQUENCY
DATA WITHIN A LONG TIME INTERVAL

BY FABIENNE COMTE AND VALENTINE GENON-CATALOT

University Paris Descartes, MAP5

In this paper, we study nonparametric estimation of the Lévy density for
Lévy processes, with and without Brownian component. For this, we consider
n discrete time observations with step �. The asymptotic framework is: n

tends to infinity, � = �n tends to zero while n�n tends to infinity. We use
a Fourier approach to construct an adaptive nonparametric estimator of the
Lévy density and to provide a bound for the global L

2-risk. Estimators of
the drift and of the variance of the Gaussian component are also studied. We
discuss rates of convergence and give examples and simulation results for
processes fitting in our framework.

1. Introduction. Let (Lt , t ≥ 0) be a real-valued Lévy process, that is, a
process with stationary independent increments and càdlàg sample paths. The
distribution of (Lt , t ≥ 0) is completely specified by the characteristic function
ψt(u) = E(exp iuLt) of the random variable Lt which has the form

ψt(u) = exp t

(
iub̃ − 1

2
u2σ 2 +

∫
R/{0}

(
eiux − 1 − iux1|x|≤1

)
N(dx)

)
,(1.1)

where b̃ ∈ R, σ 2 ≥ 0 and N(dx) is a positive measure on R/{0} satisfying∫
R/{0} x2 ∧ 1N(dx) < ∞ [see, e.g., Bertoin (1996) or Sato (1999)]. Thus, the sta-

tistical problem for Lévy processes is the estimation of its characteristic triple
(b̃, σ 2,N) where appears a finite-dimensional parameter (b̃, σ 2) and an infinite-
dimensional parameter N , the Lévy measure. In most recent contributions, authors
consider a discrete time observation of the sample path, with regular sampling in-
terval �. Therefore, statistical procedures are based on the i.i.d. sample composed
of the increments (Zk = Z�

k = Lk� − L(k−1)�, k = 1, . . . , n). In the general case,
the distribution of the r.v. Zk is not explicitly given as a function of (b̃, σ 2,N).
This is why authors rather use the relationship between the characteristic function
ψ� of Zk and the characteristic triple. Assuming that N(dx) = n(x) dx admits a
density, several papers concentrate on the estimation of the Lévy density under var-
ious assumptions on the characteristic triple, including the case of b̃ = σ 2 = 0 or
assuming stronger integrability conditions on the Lévy density [see, e.g., Watteel
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and Kulperger (2003), Jongbloed and van der Meulen (2006), van Es, Gugushvili
and Spreij (2007), Figueroa-López (2009) and the references therein, Comte and
Genon-Catalot (2009, 2010a, 2010b)]. The joint estimation of (b̃, σ 2,N) is in-
vestigated in Neumann and Reiss (2009) or Gugushvili (2009). The methods and
results differ according to the asymptotic point of view. One may consider that the
sampling interval � is fixed and that n tends to infinity (low frequency data). This
approach, which is quite natural, raises mathematical difficulties and does not take
into account the underlying continuous time model properties. One may consider
that � = �n tends to 0 as n tends to infinity (high frequency data). Under the as-
sumption that �n tends to 0 within a fixed length time interval (n�n = t fixed),
the estimation of σ has been widely investigated for Lévy processes [see, e.g.,
Woerner (2006), Barndorff-Nielsen, Shephard and Winkel (2006), Jacod (2007)].
However, the Lévy density cannot be identified from observations within a finite-
length time interval. To identify all parameters in the high-frequency context, one
has to assume both that �n tends to 0 and n�n tends to infinity. This is the point
of view adopted in this paper. Our main focus is the nonparametric estimation of
the Lévy density n(·) by an adaptive deconvolution method which generalizes the
study of Comte and Genon-Catalot (2009). We also study estimators of the other
parameters. More precisely, we assume that the Lévy density satisfies∫

R

x2n(x) dx < ∞.(H1)

For statistical purposes, this assumption, which was proposed in Neumann and
Reiss (2009), has several useful consequences. First, for all t , EL2

t < +∞ and as∫
R
(eiux − 1 − iux)n(x) dx is well defined, we get the following expression for

(1.1):

ψt(u) = exp t

(
iub − 1

2
u2σ 2 +

∫
R

(eiux − 1 − iux)n(x) dx

)
,(1.2)

where b = EL1 has a statistical meaning (contrary to b̃).
In Section 2, we present our main assumptions and some preliminary proper-

ties. In Section 3, we assume that σ = 0 and study the estimation of the function
h(x) = x2n(x). Using a sample of size 2n, we build two collections of estimators
(ĥm, h̄m)m>0 indexed by a cut-off parameter m. The collections are obtained by
Fourier inversion of two different estimators of the Fourier transform h∗ of the
function h. The estimators of h∗ are built using empirical estimators of the charac-
teristic function ψ� and its first two derivatives. First, we give a bound for the L

2-
risk of (ĥm, h̄m) for fixed m. Then, introducing an adequate penalty, we propose
a data-driven choice of the cut-off parameter which yields an estimator (ĥm̂, h̄m̄)

for each collection. The L
2-risk of these estimators is studied. We discuss the rates

of convergence reached on Sobolev classes of regularity for the function h. In
Section 4, we consider the general case. To reach the Lévy density and get rid of
the unknown σ 2, we must now use derivatives of ψ� up to the order 3 and we
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estimate the function p(x) = x3n(x) developing the Fourier inversion approach
and adaptive choice of the cut-off parameter as for h. It is worth stressing that the
point of view of small sampling interval is crucial to our study. Indeed, it helps
obtaining simple estimators of ψ� and its successive derivatives which are used
to estimate the Fourier transform p∗ of p. Section 5 is devoted to the estimation
of (b, σ ). We study classical empirical means of the observations. This gives an
estimator of b but cannot give estimators of σ . To estimate σ , we consider power
variation estimators, introduced in Woerner (2006), Barndorff-Nielsen, Shephard
and Winkel (2006), Jacod (2007), Aït-Sahalia and Jacod (2007), under the asymp-
totic framework of high frequency data within a long time interval. In Section 6,
we give examples of Lévy models satisfying our set of assumptions. We provide
numerical simulation results in Section 7. Section 8 contains the main proofs. In
the Appendix, two classical results, used in proofs, are recalled.

2. Assumptions and preliminary properties. Let us consider the two func-
tions

h(x) = x2n(x), p(x) = x3n(x),

and the assumptions

(k)

∫
R

|x|kn(x) dx < ∞,(H2)

⎧⎨
⎩

(H3) h belongs to L
2(R)

(H4)
∫

x8n2(x) dx =
∫

x4h2(x) dx < ∞
or ⎧⎨

⎩
(H5) p belongs to L

2(R)

(H6)
∫

x12n2(x) dx =
∫

x6p2(x) dx < ∞.

Assumption (H2)(k) is a moment assumption. Indeed, according to Sato [(1999),
Section 5.25, Theorem 5.23], E|Lt |k < ∞ is equivalent to

∫
|x|>1 |x|kn(x) dx < ∞.

Below, for each stated result, the required value of k is given. Under (H1), the func-
tion h is integrable and Section 3 is devoted to the nonparametric estimation of h

under the additional assumptions (H3)–(H4) when σ 2 = 0. Assumption (H4) is
only required for the adaptive result. Under (H1)–(H2)(3), the function p is inte-
grable and Section 4 concerns the estimation of p under (H5)–(H6) when σ 2 �= 0.

Properties of the moments of L� = Z�
1 = Z1 for small � are used in the proofs

below.

LEMMA 2.1. Let k ≥ 1 be an integer and assume (H1)–(H2)(k) with k = 3 (or
k ≥ 3). Then, E(|Z1|k) < +∞ and E(Z1) = b�, Var(Z1) = �(σ 2 + ∫

x2n(x) dx)

and for 3 ≤ � ≤ k, E(Z�
1) = �c� + o(�) where c� = ∫

x�n(x) dx.
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Thus, under (H1), (H2)(k), E(Z�
1/�) is bounded for all � ≤ k, for all �.

In the sequel, results on the behavior of the characteristic function ψ� [see (1.2)]
for small � are needed.

LEMMA 2.2. Under (H1), |ψ�(u) − 1| ≤ �|u|(c(u) + σ 2|u|) where c(u) =
|b| + | ∫ u

0 |h∗(v)|dv|, h∗(v) = ∫
eivxh(x) dx denotes the Fourier transform of h. If

h∗ is integrable on R, then

|ψ�(u) − 1| ≤ �|u|(|b| + |h∗|1 + |u|σ 2).

PROOF. By formula (1.2), under (H1), ψ� is C1 with ψ ′
�(u) = �ψ�(u) ×

(φ(u) − σ 2u), where we have set, using that eiux − 1 = ix
∫ u

0 eivx dv,

φ(u) = ib −
∫ u

0
h∗(v) dv.(2.1)

We have |φ(u)| ≤ |b| + | ∫ u
0 |h∗(v)|dv| and by the Taylor formula, ψ�(u) − 1 =

uψ ′
�(cuu) for some cu ∈ (0,1). The result follows. �

3. Case of no Gaussian component. In this section, we consider the case
σ 2 = 0 and focus on the nonparametric estimation of h. For reasons that will ap-
pear below, we suppose that we have at our disposal a 2n-sample, (Zk)1≤k≤2n,
with Zk = Z�

k = Lk� − L(k−1)�. We assume that � = �n tends to 0 and n�n

tends to infinity. Hence, � and Zk depend on n. However, to simplify notation, we
omit the dependence on n and simply write �,Zk .

3.1. Definition of estimators depending on a cut-off parameter. For a complex
valued function f belonging to L

1(R), we denote its Fourier transform by f ∗(u) =∫
eiuxf (x) dx. For integrable and square integrable functions f,f1, f2, we use the

following notation:

‖f ‖ =
∫

|f (x)|2 dx, 〈f1, f2〉 =
∫

f1(x)f̄2(x) dx

(z̄ denotes the conjugate of the complex number z). We have: (f ∗)∗(x) =
2πf (−x) and 〈f1, f2〉 = 1/(2π)〈f ∗

1 , f ∗
2 〉.

By formula (1.2), under (H1), ψ� is C2 and we have, as σ 2 = 0 [see (2.1)];

ψ ′
�(u)

ψ�(u)
= i�

(
b +

∫
eiux − 1

x
h(x) dx

)
= �φ(u).

Derivating again gives

h∗(u) = − 1

�

(
ψ ′′

�(u)ψ�(u) − (ψ ′
�(u))2

ψ2
�(u)

)
,(3.1)
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where, for all u, lim�→0 ψ�(u) = 1. By splitting the 2n-sample into two indepen-
dent subsamples of n observations, we introduce the following empirical unbiased
estimators of ψ�,ψ ′

�,ψ ′′
�:

ψ̂
(j)
�,q(u) = 1

n

qn∑
k=1+(q−1)n

(iZk)
j eiuZk , j = 0,1,2, q = 1,2.

We also define, based on the full sample, the estimator of ψ ′′
�

ψ̂
(2)
� (u) = 1

2n

2n∑
k=1

(iZk)
2eiuZk .

We now build estimators of the Fourier transform h∗ of h. Considering the ex-
pression of h∗ in (3.1), we replace ψ�,ψ ′

�,ψ ′′
� in the numerator by the empirical

estimators built on the two independent subsamples of size n. In the denominator,
ψ2

� is simply replaced by 1. This yields

ĥ∗(u) = 1

�

(
ψ̂

(1)
�,1(u)ψ̂

(1)
�,2(u) − ψ̂

(2)
�,1(u)ψ̂

(0)
�,2(u)

)
.(3.2)

Hence, using independence of the two subsamples,

Eĥ∗(u) = 1

�

(
(ψ ′

�(u))2 − ψ ′′
�(u)ψ�(u)

) = h∗(u) + h∗(u)
(
ψ2

�(u) − 1
)
.

Introducing a cut-off parameter m, we define an associated estimator of h

ĥm(x) = 1

2π

∫ πm

−πm
e−iuxĥ∗(u) du.

This means that ĥ∗
m(u) = ĥ∗(u)1[−πm,πm](u). By integration, the following ex-

pression is available:

ĥm(x) = 1

n2�

∑
1≤j,k≤n

(Z2
k − ZkZn+j )

sin(πm(Zk + Zj+n − x))

π(Zk + Zj+n − x)
.

We also define another estimator of h∗ of h by setting

h̄∗(u) = − 1

�
ψ̂

(2)
� (u).(3.3)

Here, using (3.1), we get

Eh̄∗(u) = − 1

�
ψ ′′

�(u) = h∗(u) + h∗(u)
(
ψ�(u) − 1

)− �ψ�(u)φ2(u).(3.4)

Thus, h̄∗ is simpler but has an additional bias term. We set

h̄m(x) = 1

2π

∫ πm

−πm
e−iuxh̄∗(u) du = 1

2n�

2n∑
k=1

Z2
k

sin(πm(Zk − x))

π(Zk − x)
.(3.5)
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3.2. Risk for a fixed cut-off parameter. Next, let us define

hm(x) = 1

2π

∫ πm

−πm
e−iuxh∗(u) du.

Then we can prove the following result.

PROPOSITION 3.1. Assume that (H1)–(H2)(4) and (H3) hold. Then

E(‖ĥm − h‖2) ≤ ‖hm − h‖2 + 72E(Z4
1/�)

m

n�
(3.6)

+ 4�2

π

∫ πm

−πm
u2c2(u)|h∗(u)|2 du,

E(‖h̄m − h‖2) ≤ ‖hm − h‖2 + E(Z4
1/�)

m

n�
(3.7)

+ 2�2

π

∫ πm

−πm
u2c2(u)|h∗(u)|2 du + C�2Bm,

with C a constant, c(u) is defined in Lemma 2.2, Bm = (2/π)
∫ πm
−πm |φ(u)|4 du [see

(2.1)] satisfies Bm = O(m) if h∗ ∈ L1(R) and Bm = O(m5) otherwise.

REMARK 3.1. We stress that the estimator ĥm is more complicated to study,
but h̄m has an additional bias term.

3.3. Rates of convergence in Sobolev classes. The following result concerns
classes of functions h belonging to

C(a,L) =
{
f ∈ (L1 ∩ L

2)(R),

∫
(1 + u2)a|f ∗(u)|2 du ≤ L

}
.(3.8)

PROPOSITION 3.2. Assume that (H1)–(H2)(4) and (H3) hold and that h be-
longs to C(a,L) with a > 1/2. Consider the asymptotic setting where n → +∞,
� → 0, n� → +∞ and assume that m ≤ n�. If n�2 ≤ 1, then, for the choice
m = O((n�)1/(2a+1)), we have

E(‖ĥm − h‖2) ≤ O
(
(n�)−2a/(2a+1)).

If a ≥ 1, the condition n�2 ≤ 1 can be replaced by n�3 ≤ 1. The same result holds
for h̄m.

REMARK 3.2. We can also discuss the case where a ∈ (0,1/2]. If a ≤ 1/2,
| ∫ u

0 |h∗(v)|dv| = O(|u|1/2−a). Hence, the last term in (3.6) is of order �2m3−4a

which is less than m−2a if �2m3−2a ≤ 1 and thus �2m3 ≤ 1. This requires
n�5/3 ≤ 1. The same holds for h̄m.
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Note that no lower bound result is available for this problem. A benchmark
for comparison could be the problem of density estimation for i.i.d. observations
without noise: if the density f belongs to C(a,L), the optimal minimax rate is of
order O(n−2a/(2a+1)) [see Ibragimov and Khas’minskij (1980)].

3.4. Model selection. The estimators ĥm, h̄m are deconvolution estimators
that can also be described as minimum contrast estimators and projection estima-
tors. For details, the reader is referred to Comte and Genon-Catalot (2009, 2010b).
For m > 0, let

Sm = {f ∈ L
2(R), support(f ∗) ⊂ [−πm,πm]}.

The space Sm is generated by an orthonormal basis, the sinus cardinal basis, de-
fined by

ϕm,j (x) = √
mϕ(mx − j), j ∈ Z, ϕ(x) = sinπx

πx

(
ϕ(0) = 1

)
.

This is due to the fact that ϕ∗
m,j (u) = (eiuj/m/

√
m)1[−πm,πm](u), j ∈ Z. For a

function f ∈ L
2(R), fm(x) = (2π)−1 ∫ πm

−πm e−iuxf ∗(u) du is the orthogonal pro-
jection of f on Sm. Introducing, for a function t ∈ Sm,

γn(t) = ‖t‖2 − 1

π
〈ĥ∗, t∗〉 = ‖t‖2 − 2〈ĥm, t〉,

we get

ĥm = arg min
t∈Sm

γn(t),

and γn(ĥm) = −‖ĥm‖2. We have

ĥm = ∑
j∈Z

âm,jϕm,j with âm,j = 1

2π

∫ πm

−πm
ĥ∗(u)ϕ∗

m,j (−u)du

and ‖ĥm‖2 = 1/(2π)
∫ πm
−πm |ĥ∗(u)|2 du. The coefficients âm,j of the series as well

as ‖ĥm‖2 can be explicitly computed by integration. In the same way, we set


n(t) = ‖t‖2 − 1

π
〈h̄∗, t∗〉 = ‖t‖2 − 2〈h̄m, t〉,

and obtain

h̄m = arg min
t∈Sm


n(t).

Analogously, h̄m has a series expansion on the sinus cardinal basis with explicit
coefficients and ‖h̄m‖2 has a closed-form formula. We give the explicit expression
of ‖h̄m‖2 which is less cumbersome than ‖ĥm‖2:

‖h̄m‖2 = m

4n2�2

∑
1≤k,l≤2n

Z2
kZ

2
l ϕ

(
m(Zk − Zl)

)
.(3.9)
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Now, we need to select the best m as possible, in a set Mn = {m ∈ N,1 ≤ m ≤
n�} = {1, . . . ,mn}. For the estimators ĥm, we propose to take

m̂ = arg min
m∈Mn

(−‖ĥm‖2 + pen(m)
)

(3.10)

with

pen(m) = κ
m

n�2

((
1

n

n∑
k=1

Z2
k

)(
1

n

2n∑
k=n+1

Z2
k

)
+ 1

n

n∑
k=1

Z4
k

)
.

The intuition for this choice is the following. The expression of pen(m) is an esti-
mator of the variance term of the risk bound (3.6) as close as possible of the vari-
ance [see (8.2)]. The term −‖ĥm‖2 is an estimator of −‖hm‖2 = ‖h−hm‖2 −‖h‖2,
which is up to a constant, the bias term of the bound (3.6). This is why m̂ mimics
the optimal bias-variance compromise.

For the estimators h̄m, we define

m̄ = arg min
m∈Mn

(
−‖h̄m‖2 + κ ′ m

n�2

(
1

2n

2n∑
k=1

Z4
k

))
.(3.11)

The following result shows that the above data-driven choices of the cut-off para-
meter lead to an automatic optimization of the risk.

THEOREM 3.1. Assume (H1)–(H2)(16)–(H3)–(H4). If, moreover, h∗ ∈ L
1(R)

and n�3 ≤ 1, there exist numerical constants κ, κ ′ such that

E(‖ĥm̂ − h‖2) ≤ C inf
m∈Mn

(
‖h − hm‖2 + κ

(
�E

2
(

Z2
1

�

)
+ E

(
Z4

1

�

))
m

n�

)

+ �2

π

∫ πmn

−πmn

u2|h∗(u)|2 du + C
ln2(n�)

n�
,

E(‖h̄m̄ − h‖2) ≤ C inf
m∈Mn

(
‖h − hm‖2 + κ ′

E

(
Z4

1

�

)
m

n�

)

+ �2

π

∫ πmn

−πmn

u2|h∗(u)|2 du + �2Bmn + C
ln2(n�)

n�
,

where Bmn = O(mn) (Bmn is defined in Proposition 3.1).

The numerical constants κ, κ ′ have to be calibrated via simulations [see discus-
sion in Comte and Genon-Catalot (2009)].

By computations analogous to those in the proof of Proposition 3.2, we obtain
the following corollary.

COROLLARY 3.1. Assume that the assumptions of Theorem 3.1 are ful-
filled. If, for some positive L, h ∈ C(a,L) with a > 1/2, then E(‖ĥm̂ − h‖2) =
O((n�)−2a/(2a+1)) provided that n�2 ≤ 1. The same holds for E(‖h̄m̄ − h‖2). If
a ≥ 1, the constraint n�3 ≤ 1 is enough.
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4. Study of the general case (σ 2 �= 0). In this section, we assume (H1)–
(H2)(3) and study the estimation of the function

p(x) = x3n(x).

We suppose that we have a sample of size n, (Zk)1≤k≤n, Zk = Lk� − L(k−1)�.

4.1. Definition of the estimators. We compute the three first derivatives of ψ�

[see (2.1)]:

ψ ′
�(u)

ψ�(u)
= �

(
ib − uσ 2 + i

∫
eiux − 1

x
h(x) dx

)
= �

(
φ(u) − uσ 2).

Derivating again gives

ψ ′′
�(u)ψ�(u) − (ψ ′

�(u))2

(ψ�(u))2 = �
(
φ′(u) − σ 2) = −�

(
σ 2 +

∫
eiuxx2n(x) dx

)
,

and last

p∗(u) = i

�

(
ψ

(3)
� (u)

ψ�(u)
− 3

ψ ′′
�(u)ψ ′

�(u)

ψ2
�(u)

+ 2
[ψ ′

�(u)]3

ψ3
�(u)

)
.

Let

p̄∗(u) = i

�
ψ̂

(3)
� (u) with ψ̂

(3)
� (u) = 1

n

n∑
k=1

(iZk)
3eiuZk .

Then

p̄m(x) = 1

2π

∫ πm

−πm
e−iuxp̄∗(u) du = 1

n�

n∑
k=1

Z3
k

sin(πm(Zk − x))

π(Zk − x)
.(4.1)

Let us set

φ̃(u) = φ(u) − uσ 2 = ib −
∫ u

0
h∗(v) dv − uσ 2.(4.2)

Using ψ ′
�(u) = �ψ�(u)φ̃(u) and some computations, we get

Ep̄∗(u) − p∗(u) = (
ψ�(u) − 1

)
p∗(u) − 3i�ψ�(u)φ̃(u)

(
σ 2 + h∗(u)

)
(4.3)

+ i�2ψ�(u)(φ̃(u))3.

REMARK 4.1. By a method analogous to the one used for h, considering a
sample of size 3n, we can build another estimator of p∗ which is less biased but
more complicated to study.
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4.2. Risk of the estimators. The risk of the estimator with fixed cut-off para-
meter is bounded as follows.

PROPOSITION 4.1. Under (H1)–(H2)(6) and (H5),

E(‖p̄m − p‖2) ≤ ‖p − pm‖2 + E(Z6
1/�)

m

n�
(4.4)

+ C

(
�2

∫ πm

−πm
u2(1 + u2)|p∗(u)|2 du + �2m3 + �4m7

)
,

where pm(x) = (2π)−1 ∫ πm
−πm e−iuxp∗(u) du denotes the orthogonal projection of

p on Sm.

We can state the result analogous to the one of Proposition 3.2.

PROPOSITION 4.2. Assume that (H1), (H2)(6), (H5) hold and that p belongs
to C(a,L). Consider the asymptotic setting where n → +∞, � → 0 and n� →
+∞. If n�11/7 ≤ 1, then

E(‖p̄m − p‖2) ≤ O
(
(n�)−2a/(2a+1)).

If a ≥ 1/2, the condition n�7/5 ≤ 1 can be replaced by n�2 ≤ 1.

4.3. Model selection strategy. The data driven selection of the best possible m

imposes here a restricted collection of models. We choose Mn = {m ∈ N/{0},m ≤√
n� := μn}.
We can consider the estimator p̄m̄ where

m̄ = arg min
m∈Mn

(−‖p̄m‖2 + pen(m)
)

(4.5)

with pen(m) = κ ′ m

n�2

(
1

n

n∑
k=1

Z6
k

)
.

We can prove the following result.

THEOREM 4.1. Under assumptions (H1), (H2)(24), (H5), (H6) and with
n�2 ≤ 1, there exists a numerical constant κ such that (with μn = √

n�)

E(‖p̄m̄ − p‖2)

≤ C inf
m∈Mn

(
‖p − pm‖2 + κ ′

E

(
Z6

1

�

)
m

n�

)

+ C

(
�2

π

∫ πμn

−πμn

u2(1 + u2)|p∗(u)|2 du + �2μ3
n + �4μ7

n + ln2(n�)

n�

)
.

The consequence of Theorem 4.1 is that the adaptive estimators reach automat-
ically the expected rate of convergence when p belongs to a Sobolev class. This
can be seen by computations analogous to those of Proposition 4.2.
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5. Parameter estimation. Under (H1), the observed process may be written
as Lt = bt +σWt +Xt where (Wt) is a standard Brownian motion, (Xt) is a Lévy
process, independent of (Wt), of the form

Xt =
∫
]0,t]

∫
R/{0}

x
(
p̂(ds, dx) − dsn(x) dx

)
,

where p̂(ds, dx) is the random jump measure of (Lt ) [and (Xt)].
If moreover

∫ |x|n(x) dx < ∞, then Lt = b0t + σWt + 
t where b0 = b −∫
xn(x) dx and


t =
∫
]0,t]

∫
R

xp̂(ds, dx) = Xt + t

∫
xn(x) dx = ∑

s≤t


s − 
s−

is of bounded variation on compact sets. We consider here a sample of size n.
By using empirical means of the data Z�

k , it is possible to obtain consistent and
asymptotically Gaussian estimators of b (� = 1) and, under suitable integrability
assumptions on the Lévy density, of

∫
x�n(x) dx for � ≥ 3. But this method fails to

estimate σ for � = 2 (see below). For this, one has to use another approach based
on power variations.

5.1. Some small time properties. To study estimators of b and σ , small time
properties of moments of L� are needed. For simple moments, the result is stated
in Lemma 2.1. For absolute moments, we refer, for example, to Figueroa-López
(2008): if

∫
{|x|>1} |x|rn(x) dx < +∞, and r > 2, �−1

E(|L�|r ) → ∫ |x|rn(x) dx

as � → 0. For the case of |x|r with r < 2, we state the following proposition.

PROPOSITION 5.1. (i) Let (
t ) be a Lévy process with no continuous com-
ponent and Lévy measure n(γ ) dγ . If

∫ |γ |n(γ ) dγ < ∞, b = ∫
γ n(γ ) dγ and

for r ≤ 1,
∫ |γ |rn(γ ) dγ < ∞. There exists a constant C such that, for all �,

E|
�|r ≤ C�. [Under the assumption, (
t ) has finite mean and bounded varia-
tion on compact sets.]

(ii) Let Xt = B
t where (
t ) is a subordinator with Lévy density n
 satisfying
b = ∫+∞

0 γ n
(γ ) dγ < ∞ and (Bt ) is a Brownian motion independent of (
t ).
The Lévy measure of (Xt) has a density given by

nX(x) =
∫ +∞

0
e−x2/2γ 1√

2πγ
n
(γ ) dγ.(5.1)

Consequently, if C = ∫+∞
0 γ r/2n
(γ ) dγ < ∞ with r ≤ 2, then E|X�|r ≤ C�.

(iii) Let (Xt) be a Lévy process with no Gaussian component. Then X�/
√

�

converges to 0 as � tends to 0 in probability and in L
r for all r < 2.
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5.2. Estimator of b. Consider a Lévy process (Lt ) satisfying (H1) and set
Zk = Lk� − L(k−1)� as above. Let us define the empirical means

b̂ = 1

n�

n∑
k=1

Zk, ĉ� = 1

n�

n∑
k=1

Z�
k for � ≥ 2.(5.2)

We prove now that b̂, ĉ�, � ≥ 2 are consistent and asymptotically Gaussian estima-
tors of the quantities b, c�, � ≥ 2 where

c2 = σ 2 +
∫

x2n(x) dx, c� =
∫

x�n(x) dx for � ≥ 3.

PROPOSITION 5.2. Assume (H1) and n tends to infinity, � tends to 0, n�

tends to infinity.

(i) Under (H2)(2 + ε) for some positive ε,
√

n�(b̂ − b) converges in distribution to N (0, c2).

(ii) Under (H2)(2(�+ ε)) for some positive ε, and if n�3 tends to 0,
√

n�(ĉ� −
c�) converges in distribution to N (0, c2�).

We stress that this method provides an estimator of b which is easy to compute
and very good in practice (see Section 7), but cannot provide an estimator of σ 2.

5.3. Estimation of σ with power variations. Estimators of σ based on power
variations of (Lt ) have been proposed and mostly studied in the case where
n� = 1. They are studied for high frequency data within a long time interval in
Aït-Sahalia and Jacod (2007). In the latter paper, the context is more general than
ours, which implies that proofs are of high complexity. For Lévy processes fitting
in our set of assumptions, we can derive the asymptotic properties of power vari-
ations estimators with a specific proof given in Section 8. Consider the family of
estimators of σ given by

σ̂ (r) = [
σ̂ (r)

n

]1/r with σ̂ (r)
n = 1

mrn�r/2

n∑
k=1

|Zk|r ,(5.3)

where mr = E|X|r for X a standard Gaussian variable (recall that Zk = Lk� −
L(k−1)�).

PROPOSITION 5.3. As n tends to infinity, � tends to 0 and n� tends
to infinity, if n�2−r = o(1),

√
n(σ̂

(r)
n − σ r) converges in distribution to a

N (0, σ 2r (m2r/m2
r − 1)) for:

(i) (Lt ) a Lévy process satisfying (H1) and such that
∫ |x|n(x) dx < ∞ and∫ |x|rn(x) dx < ∞ for r < 1.
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(ii) (Lt = bt + σWt + Xt), with Xt = B
t , where W,B,
 are independent
processes, W,B are Brownian motions, 
 is a subordinator with Lévy measure n


satisfying b = ∫+∞
0 γ n
(γ ) dγ < ∞ and

∫+∞
0 γ r/2n
(γ ) dγ < ∞ for r < 1.

Consequently,
√

n(σ̂ (r) − σ) converges in distribution to a N (0, (σ 2/r2)(m2r/

m2
r − 1)).

For other cases of Lévy processes, the result depends on the rate of con-
vergence to 0 of E|X�|r/�r/2 [see Proposition 5.1(iii)] and will still hold if√

n�E|X�|r/�r/2 tends to 0.

REMARK 5.1. It is worth noting that the rate of convergence is
√

n. For r = 1,
the estimator σ̂

(1)
n is consistent but not asymptotically Gaussian (because of its

asymptotic bias). We have implemented these estimators for r = 1/2, r = 1/4
(see Section 7) for processes satisfying

∫ |x|rn(x) dx < +∞ for all positive r .
Note that we always give integrability conditions on R for the Lévy density. This
simplifies the presentation but induces some redundancies. One should distinguish
integrability conditions near 0 and near infinity to avoid them.

6. Examples. In this section, we give examples of models fitting in our frame-
work.

EXAMPLE 1. Drift + Brownian motion + Compound Poisson process.
Let

Lt = b0t + σWt +
Nt∑
i=1

Yi,(6.1)

where Nt is a Poisson process with constant intensity c and Yi is a sequence of
i.i.d. random variables with density f , independent of the process (Nt). Then,∑Nt

i=1 Yi is a compound Poisson process and (Lt ) is a Lévy process with Lévy
density n(x) = cf (x). Note that EL1 = b = b0 + ∫

xn(x) dx. For the estimation of
p, the rates that can be obtained depend on the density f provided that f satisfies
the assumptions of Theorem 4.1, which are essentially here moment assumptions
for the r.v.’s Yi . Any order can be obtained as shown in Table 1 where rates are
computed for f a standard Gaussian, an exponential with parameter 1 and a Beta
distribution with parameters (1,3) (for p to be regular enough).

As
∫ |x|rn(x) dx < ∞ for all r < 1 (actually, for all r ≤ 2), estimation of σ is

possible using σ̂ (r) for any value of 0 < r < 1 [provided that n�2−r = o(1)].

EXAMPLE 2. Drift + Brownian motion + Lévy–Gamma process.
Consider Lt = b0t + σWt + 
t where (
t ) is a Lévy gamma process with pa-

rameters (β,α), that is, is a subordinator such that, for all t > 0, 
t has distri-
bution Gamma with parameters (βt, α) and density: αβtxβt−1e−αx/
(βt)1x≥0.
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TABLE 1
Rates for different “Drift + Brownian motion + Compound Poisson processes”

f (x) N (0,1) E(1) β(1,3)

p(x) = cx3f (x) ∝ x3e−x2 ∝ x3e−x1x>0 ∝ x3(1 − x)21[0,1](x)

p∗(u) ∝ (u3 − 3u)e−u2/2 ∝ 1/(1 − iu)4 O(1/|u|3) for large |u|∫
|u|≥πm |p∗(u)|2 du O((πm)5e−(πm)2

) O((πm)−7) O((πm)−5)∫
|u|≤πμn

u4|p∗(u)|2 du O(1) O(1) O(1)

m̆ (best choice of m)
√

log(n�) − 5
2 log log(n�)/π O((n�)1/8) O((n�)1/6)

Rate ∝
√

log(n�)
n� (n�)−7/8 (n�)−5/6

The Lévy density of (Lt ) is n(x) = βx−1e−αx1x>0. We have EL1 = b = b0 +∫
xn(x) dx and p(x) = βx2e−αx1x>0.
We find p∗(u) = 2β/(α − iu)3,

∫
|u|≥πm |p∗(u)|2 du = O(m−5) and∫ πμn−πμn

u4|p∗(u)|2 du = O(1). Therefore, the rate for estimating p is O((n�)−5/6)

for a choice m̆ = O((n�)1/6).
As for all r > 0,

∫
xrn(x) dx < ∞, σ̂ (r) is authorized, for any value of 0 <

r < 1, to estimate σ .

EXAMPLE 2 (Continued). Drift + Brownian motion + A specific class of sub-
ordinators.

Let Lt = b0t + σWt + 
t where (
t ) is a subordinator of pure jump type
with Lévy density of the form n(x) = βxδ−1/2x−1e−αx1x>0 with δ > −1/2
(thus,

∫
xn(x) dx < ∞). This class of subordinators includes compound Poisson

processes (δ > 1/2) and Lévy Gamma processes (δ = 1/2). When δ > 0, the func-
tion xn(x) is both integrable and square integrable. This case was discussed in
Comte and Genon-Catalot (2009) where the estimation of xn(x), when b0 = 0,
σ = 0, is studied. Here, we consider the case −1/2 < δ ≤ 0 which includes the
Lévy Inverse Gaussian process (δ = 0). Assumptions (H1)–(H6) are satisfied. The
function p(x) = x3n(x) can be estimated in presence (or not) of additional drift
and Brownian component. We can compute

p∗(u) = β

(δ + 5/2)

(α − iu)δ+5/2 .

Thus,
∫
|u|≥πm |p∗(u)|2 du = O(m−(2δ+4)). As 2δ + 1 ≤ 1, u4|p∗(u)|2 is not in-

tegrable and we have �2 ∫|u|≤πμn
u4|p∗(u)|2 du = �2o(μn) = o(�3/2). The best

rate for estimating p is O((n�)−(2δ+4)/(2δ+5)) for a choice m̆ = O((n�)1/(2δ+5)).
Note that �3/2 ≤ (n�)−(2δ+4)/(2δ+5) for n�2 ≤ 1 and −1/2 < δ ≤ 0.

We have
∫

xrn(x) dx < ∞ for r > 1/2 − δ. Hence, to estimate σ using σ̂ (r),
we must choose 1/2 − δ < r < 1.
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EXAMPLE 3. Drift + Brownian motion + Pure jump martingale.
Consider Lt = bt +σWt +B
t where W,B,
 are independent processes, W,B

are standard Brownian motion, and 
 is a pure-jump subordinator with Lévy den-
sity n
(γ ) = βγ δ−1/2γ −1e−αγ 1γ>0 as above (assuming δ > −1). The Lévy den-
sity n(·) of (Lt ) [and of (Xt = B
t )] is linked with n
 [see (5.1)] and can be
computed as the norming constant of a Generalized Inverse Gaussian distribution

n(x) = 2β√
2π

Kδ−1
(√

2α|x|)( |x|√
2α

)δ−1

,

where Kν is a Bessel function of third kind (MacDonald function) [see, e.g.,
Barndorff-Nielsen and Shephard (2001)]. For δ = 1/2, B
t is a symmetric bi-
lateral Lévy Gamma process [see Madan and Seneta (1990), Küchler and Tappe
(2008)]. For δ = 0, B
t is a normal inverse Gaussian Lévy process [see Barndorff-
Nielsen and Shephard (2001)]. The relation (5.1) allows to check that the function
p(x) = x3n(x) belongs to L

1 ∩ L
2 and satisfies (H6) for δ > −3/4. Moreover, we

can obtain

p∗(u) = −iβ

(
u3
(δ + 5/2)

(α + u2/2)5/2 − 3
u
(δ + 3/2)

(α + u2/2)3/2

)
.

Thus,
∫
|u|≥πm |p∗(u)|2 du = O(m−3) and �2 ∫|u|≤πμn

u4|p∗(u)|2 du =
�2O(μn) = O(�3/2). The best rate for estimating p is O((n�)−3/4) obtained for
m̆ = O((n�)1/4)). We have �3/2 ≤ (n�)−3/4 as n�2 ≤ 1. As

∫
γ r/2n
(γ ) dγ <

∞ for r > 1 − δ/2, the estimation of σ by σ̂ (r) requires 1 − δ/2 < r < 1. There-
fore, we must have δ > 0.

7. Simulations. In this section, we present numerical results for simulated
Lévy processes corresponding to Examples 1 and 2 (see Section 6). For these
models, the functions g(x) = xn(x), h and p belong to L

1 ∩ L
2(R). Thus, we

can apply the method of Comte and Genon-Catalot (2009), to estimate g when
b0 = 0, σ = 0, and the method developed here to estimate h when σ = 0 and p

when σ �= 0. We have implemented the estimators h̄m̄, p̄m̄ defined by (3.5)–(3.11)
and (4.1)–(4.5). The numerical constant κ ′ appearing in the penalties has been set
to 7.5 for g, 4 for h and 3 for p; its calibration is done by preliminary experiments.
The cutoff m̄ is chosen among 100 equispaced values between 0 and 10.

Figure 1 shows estimated curves for models with jump part coming from com-
pound Poisson processes [see (6.1)] where the Yi’s are standard Gaussian, Expo-
nential E (1), and β(3,3) rescaled on [−4,4]. The intensity c is equal to 0.5.

Figure 2 shows estimated curves for jump part of Lévy Gamma and bilateral
Lévy Gamma type. The bilateral Lévy Gamma process is the difference 
t − 
′

t

of two independent Lévy Gamma processes.
On top of each graph, we give the mean value of the selected cutoff with its

standard deviation in parentheses. This value is surprisingly small. As expected,
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FIG. 1. Variability bands for the estimation of g,h,p for a compound Poisson process with
Gaussian (first line), Exponential E (1) (second line) and β(3,3) rescaled on [−4,4] (third line)
Yi ’s, with c = 0.5. True (bold black line) and 50 estimated curves (dotted red), � = 0.05, n = 5.104.

the presence of a Gaussian component deteriorates the estimation, which remains
satisfactory on the whole.

We estimate the product of a power of x and the Lévy density whereas other au-
thors estimate n(·) on a compact set separated from the origin, see [12], Figueroa-
Lopez (2009). Therefore, our point of view coincides with the usual one. Moreover
we have, an obvious inequality; setting n̂(x) = h̄(x)/x2 as n(x) = h(x)/x2, we get

E
(‖(n̂ − n)1R/[−a,a]‖2) ≤ 1

a2 E(‖h̄ − h‖2).

Analogous inequalities hold for n̂(x) = ĝ(x)/x or n̂(x) = p̄(x)/x3. In Figure 3,
we plot the estimator of n(·) deduced by dividing by the correct power of x and
by excluding an interval [−a, a] around zero. To obtain correct representations,
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FIG. 2. Variability bands for the estimation of g,h,p for jumps from a Lévy–Gamma process with
β = 1, α = 1 (first line), a bilateral Lévy–Gamma process with (β,α) = (0.7,1), (β ′, α′) = (1,1)

(second line). True (bold black line) and 50 estimated curves (dotted red), � = 0.05, n = 5.104.

a = 0.1 suits for ĝ(x)/x, a = 0.5 for h̄(x)/x2 and a = 1 for p̄(x)/x3. The results
are satisfactory and in accordance with the difficulty of estimating n(·) without or
with Gaussian component.

Tables 2 and 3 show the means of the estimation results for b = E(L1) = b0 +∫
xn(x) dx [see (5.2)] and σ , with standard deviations in parentheses.
The estimation of b is good in all cases, and especially when n� is large. The

estimation of σ is clearly more difficult, with noticeable differences according to
the values of n and �. When � is not small enough, the estimation can be heavily
biased. In accordance with the theory, when r is smaller, the estimator of σ is
slightly better (smaller bias). Table 4 shows the values of n�2 and n�2−r , which
should be small for the performance of the estimator to be satisfactory. It is worth
noting that σ is constantly over estimated.

8. Proofs.

8.1. Proof of Proposition 3.1. First, the Parseval formula gives ‖ĥm − h‖2 =
(1/(2π))‖ĥ∗

m − h∗‖2 and we can note that h∗(u) − h∗
m(u) = h∗(u)1|u|≥πm is or-

thogonal to ĥ∗
m − h∗

m which has its support in [−πm,πm]. Thus,

‖ĥm − h‖2 = 1

2π
(‖h∗ − h∗

m‖2 + ‖h∗
m − ĥ∗

m‖2).
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FIG. 3. Estimation of n(·)1[−a,a]c with a = 0.1 (first column), a = 0.5 (second column), a = 1
(third column). In all cases, λ = 0.5, n = 50,000, � = 0.05; 25 estimated curves (thin dotted) + the
true (bold line).

The first term (1/(2π))‖h∗ − h∗
m‖2 = ‖h − hm‖2 is a classical squared bias term.

Next,

ĥ∗
m(u) − h∗

m(u) = [ĥ∗
m(u) − E(ĥ∗

m(u))] + [E(ĥ∗
m(u)) − h∗

m(u)]
= [ĥ∗

m(u) − E(ĥ∗
m(u))] + [ψ2

�(u) − 1]h∗(u)1|u|≤πm.

Bounding the norm of ‖ĥ∗
m − h∗

m‖2 by twice the sum of the norms of the two
elements of the decomposition, we get

E(‖ĥm − hm‖2) ≤ 1

π
E

(∫ πm

−πm
|ĥ∗(u) − Eĥ∗(u)|2 du

)

+ 1

π

∫ πm

−πm
|ψ2

�(u) − 1|2|h∗(u)|2 du

≤ 1

π

(∫ πm

−πm
Var(ĥ∗(u)) du

)

+ 4�2

π

∫ πm

−πm
u2c2(u)|h∗(u)|2 du
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TABLE 2
Estimation of (b, σ ), b0 = 1, the true value of b in parenthesis, σ = 0.5, K = 200 replications

Model (n,�) (5.104,0.05) (5.104,0.01) (5.104,10−3) (104,10−3)

Poisson b̂ (b = 1) 1.000 (0.02) 0.997 (0.04) 0.995 (0.123) 1.001 (0.280)

Gaussian σ̂ (1/2) 0.602 (0.03) 0.527 (0.002) 0.504(0.002) 0.504 (0.005)

σ̂ (1/4) 0.589 (0.03) 0.521 (0.002) 0.503 (0.002) 0.503 (0.002)

Poisson b̂ (b = 1.5) 1.502 (0.05) 1.502 (0.051) 1.494 (0.142) 1.461 (0.359)

Exp(1) σ̂ (1/2) 0.611 (0.003) 0.530 (0.003) 0.505 (0.002) 0.505 (0.005)

σ̂ (1/4) 0.594 (0.003) 0.522 (0.003) 0.503 (0.002) 0.503 (0.005)

Gamma b̂ (b = 2) 2.001 (0.02) 2.000 (0.05) 1.998 (0.177) 2.018 (0.335)

(1, 1) σ̂ (1/2) 0.705 (0.004) 0.562 (0.003) 0.512 (0.002) 0.513 (0.005)

σ̂ (1/4) 0.677 (0.004) 0.548 (0.003) 0.508 (0.002) 0.508 (0.005)

Bilateral b̂ (b = 1.4286) 1.426 (0.035) 1.4286 (0.076) 1.4493 (0.264) 1.405 (0.619)

Gamma σ̂ (1/2) 0.862 (0.005) 0.628 (0.004) 0.526 (0.003) 0.526 (0.006)

(0.7, 1), (1.1) σ̂ (1/4) 0.798 (0.004) 0.593 (0.003) 0.516 (0.002) 0.515 (0.006)

TABLE 3
Estimation of (b, σ ), b0 = 1, the true value of b in parenthesis, σ = 1, power variation method for

estimation of σ , K = 200 replications

Model (n,�) (5.104,0.05) (5.104,0.01) (5.104,10−3) (104,10−3)

Poisson b̂ (1) 0.999 (0.025) 1.005 (0.059) 0.998 (0.178) 1.025 (0.85)

Gaussian σ̂ (1/2) 1.082 (0.005) 1.026 (0.004) 1.006 (0.004) 1.005 (0.009)

σ̂ (1/4) 1.072 (0.005) 1.020 (0.005) 1.004 (0.004) 1.003 (0.01)

Poisson b̂ (1.5) 1.510 (0.026) 1.498 (0.06) 1.481 (0.190) 1.485 (0.442)

Exp(1) σ̂ (1/2) 1.096 (0.005) 1.030 (0.004) 1.006 (0.004) 1.006 (0.009)

σ̂ (1/4) 1.080 (0.005) 1.022 (0.004) 1.003 (0.004) 1.003 (0.010)

Gamma b̂ (2) 2.00 (0.026) 1.995 (0.068) 1.991 (0.196) 2.023 (0.195)

(1, 1) σ̂ (1/2) 1.172 (0.005) 1.062 (0.005) 1.014 (0.004) 1.014 (0.004)

σ̂ (1/4) 1.152 (0.005) 1.050 (0.005) 1.010 (0.005) 1.010 (0.004)

Bilateral b̂ (1.4286) 1.425 (0.04) 1.431 (0.10) 1.429 (0.28) 1.492 (0.63)

Gamma σ̂ (1/2) 1.330 (0.006) 1.136 (0.005) 1.033 (0.005) 1.033 (0.01)

(0.7, 1), (1.1) σ̂ (1/4) 1.284 (0.006) 1.105 (0.005) 1.022 (0.005) 1.022 (0.01)

TABLE 4
Values of n,�, n�, n�2, n�2−r for r = 1/2 and r = 1/4

(n,�) (5.104,0.05)(5.104,0.01)(5.104,10−3)(104,10−3)

n� 2500 500 50 10
n�2 125 5 0.05 0.01
n�2−1/2 559 50 1.6 0.3
n�2−1/4 264 16 0.3 0.06
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(see Lemma 2.2 for the upper bound of |ψ�(u) − 1| and note that |ψ�(u)| ≤ 1).
Now, we use the decomposition

�
(
ĥ∗(u) − E(ĥ∗(u))

)
= (

ψ̂
(1)
�,1(u) − ψ ′

�(u)
)(

ψ̂
(1)
�,2(u) − ψ ′

�(u)
)

+ (
ψ̂

(1)
�,1(u) − ψ ′

�(u)
)
ψ ′

�(u) + (
ψ̂

(1)
�,2(u) − ψ ′

�(u)
)
ψ ′

�(u)(8.1)

− (
ψ̂

(2)
�,1(u) − ψ ′′

�(u)
)(

ψ̂
(0)
�,2(u) − ψ�(u)

)
− (

ψ̂
(2)
�,1(u) − ψ ′′

�(u)
)
ψ�(u) − (

ψ̂
(0)
�,2(u) − ψ�(u)

)
ψ ′′

�(u).

Considering each term consecutively and exploiting the independence of the sam-
ples, we obtain

Var(ĥ∗(u)) ≤ 6

�2

(
E

2(Z2
1)

n2 + 2
E

2(Z2
1)

n
+ E(Z4

1)

n2 + 2
E(Z4

1)

n

)
(8.2)

≤ 36
E(Z4

1/�)

n�
.

Thus, the first risk bound (3.6) is proved. Analogously, we have

E(‖h̄m − h‖2) ≤ ‖hm − h‖2 + 1

π

∫ πm

−πm
|Eh̄∗(u) − h∗(u)|2 du

+ 1

π

∫ πm

−πm
Var(h̄∗(u)) du.

For the variance of h̄∗(u), we use: h̄∗(u) − Eh̄∗(u) = −�−1(ψ̂
(2)
� (u) − ψ ′′

�(u)).

Thus,

Var(h̄∗(u)) ≤ 1

2n�
E(Z4

1/�).

Next, for the bias of h̄∗(u), we use [see first (3.4) and then (2.1)]

|Eh̄∗(u) − h∗(u)|2 ≤ 2|h∗(u)|2||ψ�(u) − 1|2 + 2�2|φ4(u)|.
Hence, there is an additional term in the risk bound equal to

2

π
�2

∫ πm

−πm
|φ4(u)|du = �2Bm.(8.3)

If h∗ is integrable, |φ(u)| ≤ C and Bm = O(m). Otherwise, |φ4(u)| ≤ C|u|4 and
Bm = O(m5).
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8.2. Proof of Proposition 3.2. As ‖h − hm‖2 = (1/π)
∫
|u|≥πm |h∗(u)|2 du, the

definition of C(a,L) implies clearly that ‖h−hm‖2 ≤ (L/2π)(πm)−2a . The com-
promise between this term and the variance term of order m/(n�) is standard: it
leads to choose m = O((n�)1/(2a+1)) and yields the order O((n�)−2a/(2a+1)).

For a > 1/2, we have

∣∣∣∣
∫ u

0
|h∗(v)|dv

∣∣∣∣ ≤
√

L

∫
(1 + v2)−a dv < +∞.

Therefore, h∗ is integrable and |φ(u)| ≤ |b| + |h∗|1.
The last term in the risk bound (3.6) is less than

K�2
∫ πm

−πm
u2|h∗(u)|2 du ≤ L�2(πm)2(1−a)+ .

If a ≥ 1 and n�3 ≤ 1, we have �2(πm)2(1−a)+ = �2 ≤ (n�)−1.
If a ∈ (1/2,1), the inequality �2m2(1−a) ≤ m−2a is equivalent to �2m2 ≤ 1.

As m ≤ n�, �2m2 ≤ 1 holds if n�2 ≤ 1.
For the additional bias term appearing in the risk bound of h̄m, we have

Bm = O(m). Thus, m�2 ≤ m−2a holds, for m = O((n�)1/(2a+1)), if m1+2a�2 =
(n�)�2 ≤ 1 which in turn holds if n�3 ≤ 1.

8.3. Proof of Theorem 3.1. We only study ĥm̂ as the result for h̄m̄ can be
proved analogously (and is even simpler).

The proof is given in two steps. We define, for some �, 0 < � < 1,

�� :=
{∣∣∣∣ [(1/n�)

∑n
k=1 Z2

k ][(1/n�)
∑2n

k=n+1 Z2
k ]

(E(Z2
1/�))2

− 1
∣∣∣∣ ≤ �/2

}

∩
{∣∣∣∣ [(1/n�)

∑n
k=1 Z4

k ]
(E(Z4

1/�))
− 1

∣∣∣∣ ≤ �/2
}
,

so that E(‖ĥm̂ − h‖2) = E(‖ĥm̂ − h‖21��) + E(‖ĥm̂ − h‖21�c
�
).

Step 1. For the study of E(‖ĥm̂ − h‖21�c
�
), we refer to the analogous proof

given in Comte and Genon-Catalot (2009) (see Section A4 therein). Using that
E(Z16

1 ) < +∞, we can prove E(‖ĥm̂ −h‖21�c
�
) ≤ C/(n�). For this, we make use

of the Rosenthal inequality [see Hall and Heyde (1980)].
Step 2. Study of E(‖ĥm̂ − h‖21��).
The proof relies on the following decomposition of γn:

γn(t) − γn(s) = ‖t − h‖2 − ‖s − h‖2 + 2〈t − s, h〉 − 1

π
〈ĥ∗, t∗ − s∗〉

= ‖t − h‖2 − ‖s − h‖2 − 2νn(t − s) − 2Rn(t − s),
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where

νn(t) = 1

2π
〈ĥ∗ − E(ĥ∗), t∗〉, Rn(t) = 1

2π
〈E(ĥ∗) − h∗, t∗〉.

As γn(ĥm) = −‖ĥm‖2, we deduce from (3.10) that, for all m ∈ Mn,

γn(ĥm̂) + pen(m̂) ≤ γn(hm) + pen(m).

This yields

‖ĥm̂ − h‖2 ≤ ‖h − hm‖2 + pen(m) − pen(m̂) + 2νn(ĥm̂ − hm) + 2Rn(ĥm̂ − hm).

Then, for φn = νn,Rn, we use the inequality

2φn(ĥm̂ − hm) ≤ 2‖ĥm̂ − hm‖ sup
t∈Sm+Sm̂,‖t‖=1

|φn(t)|

≤ 1

8
‖ĥm̂ − hm‖2 + 8 sup

t∈Sm+Sm̂,‖t‖=1
|φn(t)|2.

Using that ‖ĥm̂ − hm‖2 ≤ 2‖ĥm̂ − h‖2 + 2‖ĥm − h‖2 and some algebra, we find

1

4
‖ĥm̂ − h‖2 ≤ 7

4
‖h − hm‖2 + pen(m) − pen(m̂)

(8.4)
+ 8 sup

t∈Sm+Sm̂,‖t‖=1
|Rn(t)|2 + 8 sup

t∈Sm+Sm̂,‖t‖=1
|νn(t)|2.

We have to study the terms containing a supremum, which are of different nature.
First, for Rn(t), we have the following.

LEMMA 8.1. We have: supt∈Sm+Sm̂,‖t‖=1 |Rn(t)|2 ≤ C�2∫ πmn−πmn
u2|h∗(u)|2 du.

PROOF. We have Rn(t) = 1
2π

〈t∗, (1 − ψ2
�)h∗〉. By using Lemma 2.2, we find

sup
t∈Sm+Sm̂,‖t‖=1

|〈t∗, (1 − ψ2
�)h∗〉|2 ≤ sup

t∈Smn,‖t‖=1
|〈t∗, (1 − ψ2

�)h∗〉|2

≤ 2π
∥∥(1 − ψ2

�)h∗1[−πmn,πmn]
∥∥2

≤ C�2
∫ πmn

−πmn

u2|h∗(u)|2 du. �

On the other hand, νn is decomposed: νn(t) = ∑4
j=1 νn,j (t) + rn(t) with

rn(t) = 1

2π�

〈
t∗,

(
ψ̂

(1)
�,1(u) − ψ ′

�(u)
)(

ψ̂
(1)
�,2(u) − ψ ′

�(u)
)〉

(8.5)

− 1

2π�

〈
t∗,

(
ψ̂

(2)
�,1(u) − ψ ′′

�(u)
)(

ψ̂
(0)
�,2(u) − ψ�(u)

)〉
,
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and

νn,1(t) = 1

2π�

〈
t∗,

(
ψ ′′

� − ψ̂
(2)
�,1

)
ψ�

〉
, νn,2(t) = 1

2π�

〈
t∗,

(
ψ� − ψ̂

(0)
�,2

)
ψ ′′

�

〉
.

νn,3(t) = 1

2π�

〈
t∗,

(
ψ̂

(1)
�,1 − ψ ′

�

)
ψ ′

�

〉
, νn,4(t) = 1

2π�

〈
t∗,

(
ψ̂

(1)
�,2 − ψ ′

�

)
ψ ′

�

〉
.

LEMMA 8.2. We have: E(supt∈Sm+Sm̂,‖t‖=1 |rn(t)|2) ≤ C
n
.

PROOF. Using the independence of the subsamples, we can write

E

(
sup

t∈Sm+Sm̂,‖t‖=1
|rn(t)|2

)

≤ E

(
sup

t∈Smn,‖t‖=1
|rn(t)|2

)

≤ 1

2π2�2 E
[∥∥(ψ̂(1)

�,1 − ψ ′
�

)(
ψ̂

(1)
�,2 − ψ ′

�

)
1[−πmn,πmn]

∥∥2

+ ∥∥(ψ̂(2)
�,1 − ψ ′′

�

)(
ψ̂

(0)
�,2 − ψ�

)
1[−πmn,πmn]

∥∥2](8.6)

≤ 1

2π2�2

∫ πmn

−πmn

E
[∣∣ψ̂(1)

�,1(u) − ψ ′
�(u)

∣∣2]E[∣∣ψ̂(1)
�,2(u) − ψ ′

�(u)
∣∣2]du

+ 1

2π2�2

∫ πmn

−πmn

E
[∣∣ψ̂(2)

�,1(u) − ψ ′′
�(u)

∣∣2]E[∣∣ψ̂(0)
�,2(u) − ψ�(u)

∣∣2]du

≤ mn

π�2

( [E(Z2
1)]2

n2 + E(Z4
1)

n2

)
≤ C

n

because mn ≤ n� and E(Z2
1) and E(Z4

1) have order �. �

Now, the study of the νn,j ’s relies on Lemma A.1. Let us first study the process
νn,1. We must split Z2

k = Z2
k1Z2

k≤kn

√
� + Z2

k1Z2
k>kn

√
� with kn to be defined later.

This implies that νn,1(t) = νP
n,1(t) + νR

n,1(t) (P for Principal, R for residual) with

νP
n,1(t) = 1

n

n∑
k=1

[ft (Zk) − E(ft (Zk))]
(8.7)

with ft (z) = 1

2π�
z21z2≤kn

√
�〈t∗, eiz·ψ�〉,

and νR
n,1(t) = νn,1(t) − νP

n,1(t). We prove the following results for νn,1 and νn,2.

PROPOSITION 8.1. Under the assumptions of Theorem 3.1, choose kn =
C

√
n

ln(n�)
and

p(m,m′) = 4E(Z4
1/�)

m ∨ m′

�
,(8.8)
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then

E

(
sup

t∈Sm+Sm̂,‖t‖=1
[νP

n,1(t)]2 − p(m, m̂)
)
+ + E

[
sup

t∈Smn,‖t‖=1

∣∣ν(R)
n,1 (t)

∣∣2]

≤ C
ln2(n�)

n�
,

where C is a constant.

PROPOSITION 8.2. Under the assumptions of Theorem 3.1,

E

(
sup

t∈Sm+Sm̂,‖t‖=1
[νn,2(t)]2 − p(m, m̂)

)
+ ≤ C

n�
,

where C is a constant.

For both νn,3 and νn,4, which are similar, we have to split again Zk =
Zk1|Zk |≤kn

√
� + Zk1|Zk |>kn

√
� with the same kn as above. We define νn,j (t) =

νP
n,j (t) + νR

n,j (t) as previously, for j = 3,4.

PROPOSITION 8.3. Under the assumptions of Theorem 3.1, define for j = 3,4

q(m,m′) = 4E
2(Z2

1/�)
m ∨ m′

�
,(8.9)

then

E

(
sup

t∈Sm+Sm̂,‖t‖=1
[νP

n,j (t)]2 − q(m, m̂)
)
+ + E

[
sup

t∈Smn,‖t‖=1

∣∣ν(R)
n,j (t)

∣∣2]

≤ C
ln2(n�)

n�
,

where C is a constant.

Now, on ��, the following inequality holds (by bounding the indicator by 1),
for any choice of κ :

(1 − �)penth(m) ≤ pen(m) ≤ (1 + �)penth(m),

where penth(m) = E(pen(m)). It follows from (8.4) that

1

4
E(‖ĥm̂ − h‖21��) ≤ 7

4
‖h − hm‖2 + penth(m) − E(pen(m̂)1��)

+ C�2
∫ πmn

−πmn

u2|h∗(u)|2 du(8.10)

+ 8E

(
sup

t∈Sm+Sm̂,‖t‖=1
|νn(t)|21��

)
.
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Recalling that

νn(t) = rn(t) + νP
n,1(t) + νR

n,1(t) + νn,2(t) + νP
n,3(t) + νR

n,3(t) + νP
n,4(t) + νR

n,4(t),

we have

E

(
sup

t∈Sm+Sm̂,‖t‖=1
|νn(t)|21��

)

≤ 8
(

C

n�
+ ∑

j∈{1,3,4}
E

(
sup

t∈Sm+Sm̂,‖t‖=1
|νP

n,j (t)|21��

)
(8.11)

+ E

(
sup

t∈Sm+Sm̂,‖t‖=1
|νn,2(t)|21��

))

≤ 8
(

C′

n�
+ 2E

[(
p(m, m̂) + q(m, m̂)

)
1��

])
.

We note that p(m,m′) + q(m,m′) = 1
4κ

(penth(m) + penth(m
′)). Thus,

penth(m) − E(pen(m̂)1��) + 128E
[(

p(m, m̂) + q(m, m̂)
)
1��

]
≤ penth(m) − (1 − �)E(penth(m̂)1��) + 32

κ
E
[(

penth(m) + penth(m̂)
)
1��

]

≤
(

1 + 32

κ

)
penth(m) +

(
32

κ
− (1 − �)

)
E[penth(m̂)1�� ].

Therefore, we choose κ such that (32/κ − (1 − �)) ≤ 0, that is κ ≥ 32/(1 − �).
This together with (8.10) and (8.11) yields

1

4
E(‖ĥm̂ − h‖21��) ≤ 7

4
‖h − hm‖2 + (2 − �)penth(m)

+ C�2
∫ πmn

−πmn

u2|h∗(u)|2 du + C′′

n�
.

8.4. Proof of Propositions 8.1–8.3.

PROOF OF PROPOSITION 8.1. Let m′′ = m ∨ m′, and note that Sm + Sm′ =
Sm′′ . We evaluate the constants M,H,v to apply Lemma A.1 to νP

n,1(t) [see (8.7)]:

sup
z∈R

|ft (z)| ≤ kn

2π
√

�
sup
z∈R

∣∣∣∣
∫ πm′′

−πm′′
t∗(−u)eiuzψ�(u)du

∣∣∣∣
≤ kn

2π
√

�

∫ πm′′

−πm′′
|t∗(u)|du ≤ kn

2π
√

�

(
2πm′′

∫ πm′′

−πm′′
|t∗(u)|2 du

)1/2

= kn√
�

(m′′)1/2‖t‖ = kn

√
m′′

√
�

:= M.
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Moreover,

E

(
sup

t∈Sm+Sm′ ,‖t‖=1

[
νP
n,1(t)

]2) ≤ 1

2πn�2

∫ πm′′

−πm′′
E(Z4

1)ψ2
�(u)du

≤ m′′
E(Z4

1/�)

n�
:= H 2.

The most delicate term is v:

Var(ft (Z1)) = 1

4π2�2 E

(
Z4

11Z2
1≤kn

√
�

∣∣∣∣
∫ ∫

eixZ1 t∗(−x)ψ�(x)dx

∣∣∣∣
2)

≤ 1

4π2�2 E

(
Z4

1

∫∫
ei(x−y)Z1 t∗(−x)t∗(y)ψ�(x)ψ�(−y)dx dy

)

= 1

4π2�2

∫∫
ψ

(4)
� (x − y)t∗(−x)t∗(y)ψ�(x)ψ�(−y)dx dy,

where we recall that ψ
(4)
� (x) = E(Z4

1eixZ1). Making use of the basis (ϕm′′,j , j ∈ Z)

of Sm′′ , we have t = ∑
j∈Z tjϕm′′,j with ‖t‖2 = ∑

j∈Z t2
j = 1,

Var(ft (Z1)) ≤ 1

4π2�2

∑
j,k∈Z

tj tk

∫∫
ψ

(4)
� (x − y)ϕ∗

m′′,j (−x)ϕ∗
m′′,k(y)

× ψ�(x)ψ�(−y)dx dy

≤ 1

4π2�2

( ∑
j,k∈Z

∣∣∣∣
∫ ∫

ψ
(4)
� (x − y)ϕ∗

m′′,j (−x)ϕ∗
m′′,k(y)

× ψ�(x)ψ�(−y)dx dy

∣∣∣∣
2)1/2

= 1

4π2�2

(∫∫
[−πm′′,πm′′]2

∣∣ψ(4)
� (x − y)

∣∣2|ψ�(x)|2

× |ψ�(−y)|2 dx dy

)1/2

,

Var(ft (Z1)) ≤ 1

4π2�2

(∫∫
[−πm′′,πm′′]2

∣∣ψ(4)
� (x − y)

∣∣2 dx dy

)1/2

(8.12)

≤
√

2πm′′
4π2�2

(∫
[−2πm′′,2πm′′]

∣∣ψ(4)
� (z)

∣∣2 dz

)1/2

.

Therefore, we need to study
∫
[−2πm′′,2πm′′] |ψ(4)

� (z)|2 dz. Recall that φ(u) = ib −∫ u
0 h∗(v) dv. We have

ψ
(4)
� = �

[
φ(3) + �

(
4φφ′′ + 3(φ′)2)+ 6�2φ′φ2 + �3φ4]ψ�,
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where

φ′(u) = −h∗(u), φ′′(u) = −i

∫
eiuxx3n(x) dx,

φ(3)(u) =
∫

eiuxx4n(x) dx

satisfy:
∫ |φ′(u)|2 du = ‖h‖2, |φ′(u)| ≤ |h|1 and thanks to (H4), the Parseval equal-

ity yields ∫
|φ′′(u)|2 du =

∫
x6n2(x) dx =

∫
x2h2(x) dx,

∫
|φ(3)(u)|2 du =

∫
x8n2(x) dx =

∫
x4h2(x) dx.

By assumption, h∗ is in L1(R), thus, |φ(u)| ≤ |b| + |h∗|1 := Mφ . Therefore,

|ψ(4)
� |2 ≤ C�2(∣∣φ(3)

∣∣2 + �2((φ′′)2 + (φ′)4)+ �4(φ′)2 + �6),
where C is a constant depending on Mφ and |h|1. Therefore,∫ 2πm′′

−2πm′′
∣∣ψ(4)

� (u)
∣∣2 du ≤ C�2

[∫
x4h2(x) dx + �2

(∫
x2h2(x) dx + 4πm′′|h|41

)

+ �4‖h‖2 + 4πm′′�6
]

≤ C1�
2
[∫

x4h2(x) dx + �2
∫

x2h2(x) dx + �4‖h‖2
]

+ C2m
′′�4.

Thus, using Assumptions (H1), (H3), (H4),∫
[−2πm′′,2πm′′]

∣∣ψ(4)
� (u)

∣∣2 du ≤ K(�2 + m′′�4).

As m′′�4 ≤ n�5 and n�3 ≤ 1 we get
∫
[−2πm′′,2πm′′] |ψ(4)

� (u)|2 du ≤ 2K�2. This

together with (8.12) yields v = c
√

m′′/� where c is a constant.
Applying Lemma A.1 yields, for ε2 = 1/2 and p(m,m′) given by (8.8) yields

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]2 − p(m,m′)
)
+

≤ C1

(√
m′′

n�
e−C2

√
m′′ + k2

nm
′′

n2�
e−C3

√
n/kn

)

as p(m,m′) = 4H 2. We choose

kn = C3

4

√
n

ln(n�)
,
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and as m ≤ n�, we get

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]2 − p(m,m′)
)
+

≤ C′
1

(√
m′′

n�
e−C2

√
m′′ + 1

(�n)4 ln2(n�)

)
.

As C2xe−C2x is decreasing for x ≥ 1/C2, and its maximum is 1/(eC2), we get

mn∑
m′=1

√
m′′e−C2

√
m′′ ≤ ∑

√
m′≤1/C2

(eC2)
−1 + ∑

√
m′≥1/C2

√
m′e−C2

√
m′

≤ 1

eC3
2

+
∞∑

m′=1

√
m′e−C2

√
m′

< +∞.

It follows that
mn∑

m′=1

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]2 − p(m,m′)
)
+ ≤ C

n�
.

Let us now study the second term ν
(R)
n,j (t) in the decomposition of νn,j (t). The

cases j = 3,4 being similar, we consider only ν
(R)
n,j (t) for j = 1:

E

[
sup

t∈Smn,‖t‖=1

∣∣ν(R)
n,1 (t)

∣∣2]

≤ 1

4π2�2 E

(∫ πmn

−πmn

∣∣∣∣1n
n∑

k=1

(
Z2

k1Z2
k>kn

√
�eiuZk − E(Z2

k1Z2
k>kn

√
�eiuZk )

)∣∣∣∣
2

× |ψ2
�(u)|2 du

)

≤
E(Z4

11Z2
1>kn

√
�)

4nπ2�2

∫ πmn

−πmn

du ≤ mnE(Z
4+2p
1 )

2πn�2(kn

√
�)p

≤ K
E(Z

4+2p
1 /�) lnp(n�)

2π(n�)p/2 ,

using mn ≤ n� and recalling that kn = (C3/4)(
√

n/ ln(n�)). Taking p = 2, which
is possible because E(Z8

1) < +∞, gives a bound of order ln2(n�)/(n�).
Proposition 8.1 is proved. �

PROOF OF PROPOSITION 8.2. For νn,2, the variables are bounded without
splitting, and the function ft is replaced by f̃t (z) = (2π�)−1〈t∗, eiz·ψ ′′

�〉. We just
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check the orders of M , H 2 and v for the application of Lemma A.1. For t ∈ Sm′′ =
Sm + Sm′ and ‖t‖ ≤ 1, we have

sup
z∈R

|f̃t (z)| ≤ 1

2π�

√∫ πm′′

−πm′′
|t∗(−u)|2 du

∫ πm′′

−πm′′
|ψ ′′

�(u)|2 du

≤ √
m′′ E(Z2

1)

�
≤ C

√
m′′ := M.

Next,

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νn,2(t)]2

)
≤ 1

2πn�2

∫ πm′′

−πm′′
|ψ ′′

�(u)|2 du

≤ m′′
E

2(Z2
1/�)

n�
:= H 2.

Following the same line as previously for v, we get

Var(f̃t (Z1))

≤ 1

4π2�2

(∫∫
[−πm′′,πm′′]2

|ψ�(u − v)|2|ψ ′′
�(u)|2|ψ ′′

�(−v)|2 dudv

)1/2

.

As ψ ′′
� = �(φ′ +�φ2]ψ�, we get (recall that Mφ = |b|+ |h∗|1 is the upper bound

of |φ(u)|)

Var(f̃t (Z1)) ≤ 1

4π2�2

∫ πm′′

−πm′′
|ψ ′′

�(x)|2 dx ≤ 2�2(‖h∗‖2 + 2πm′′�2M2
φ)

4π2�2

≤ 1

π
(‖h‖2 + M2

φmn�
2) ≤ ‖h‖2 + M2

φ

π
:= v

as mn�
2 ≤ n�3 ≤ 1. �

PROOF OF PROPOSITION 8.3. Here, ft is replaced by f̆t (z) = z1|z|≤k′
n

√
�〈t∗,

eiz·ψ ′
�〉. Using now that |ψ ′

�(u)| ≤ E(|Z1|) ≤
√

E(Z2
1), we obtain here that M =

k′
n

√
m′′

√
E(Z2

1/�). On the other hand, we find H 2 = m′′
E

2(Z2
1)/(n�2). Last, we

find

Var(f̆t (Z1))

≤ 1

4π2�2

(∫∫
[−πm′′,πm′′]2

∣∣ψ(2)
� (u − v)

∣∣2|ψ ′
�(u)|2|ψ ′

�(−v)|2 dudv

)1/2

.

With the bounds for |ψ ′
�| and

∫ 2πm′′
−2πm′′ |ψ ′′

�(z)|2 dz, we obtain v = cE(Z2
1/�)

√
m′′.

�



832 F. COMTE AND V. GENON-CATALOT

8.5. Proof of Proposition 4.2. Let us take m = O((n�)1/(2a+1)). When p ∈
C(a,L), the first two terms of (4.4) are of order O((n�)−2a/(2a+1)). The third term
is O(�2m2(2−a)+). If a ≥ 2, its order is �2 and is less than 1/(n�) if n�3 ≤ 1.

If a ∈ (0,2), �2m2(2−a) = O(�2(n�)2(2−a)/(1+2a)) which has lower rate than
O((n�)−2a/(2a+1)) if �2(n�)4/(1+2a) ≤ O(1), that is n�1+(1+2a)/2 = n�3/2+a ≤
O(1). We must consider in addition the terms �2m3 and �4m7. As previously,
�2m3 ≤ (n�)−2a/(2a+1) if n�(6a+5)/(2a+3) ≤ O(1) that is n�5/3 ≤ 1 if a > 0 and
n�2 if a ≥ 1/2. Moreover, �4m7 ≤ (n�)−2a/(2a+1) if n�(10a+11)/(2a+7) ≤ 1 that
is n�11/7 ≤ 1 if a > 0 and n�2 ≤ 1 if a ≥ 1/2.

8.6. Proof of Proposition 4.1. As previously, ‖p̄m −p‖2 = 1
2π

(‖p∗ −p∗
m‖2 +

‖p∗
m − p̄∗

m‖2). The variance of p̄m satisfies

E(‖p̄m − pm‖2) = 1

2π
E(‖p̄∗

m − p∗
m‖2)

= 1

2π

∫ πm

−πm

(
Var(p̄∗(u)) + |E(p̄∗(u)) − p∗(u)|2)du,

where

Var(p̄∗(u)) ≤ E(Z6
1)

n�2 = E(Z6
1/�)

n�
.

We have |h∗(u)| ≤ |h|1. By Lemma 2.2, |φ̃(u)| ≤ |b| + |u|(|h|1 + σ 2) ≤ C(1 +
|u|). Inserting these bounds in (4.3) implies

|E(p̄∗(u)) − p∗(u)| ≤ C�|p∗(u)||u|(1 + |u|)
(8.13)

+ C′�(1 + |u|) + C′′�2(1 + |u|)3.

Gathering the terms gives the announced bound for the risk of p̄m. This ends the
proof of Proposition 4.1.

8.7. Proof of Theorem 4.1. The proof follows the same lines as for the adap-
tive estimator of h. We introduce, for 0 < � < 1,

�b :=
{∣∣∣∣ [(1/(n�))

∑n
k=1 Z6

k ]
(E(Z6

1/�))
− 1

∣∣∣∣ ≤ �

}
.

Provided that E(Z24
1 ) < ∞, we can make use of the Rosenthal inequality to obtain:

E(‖p̄m̄ − p‖21�c
�
) ≤ C/n�.

For the study of E(‖p̄m̄ − p‖21��), the decomposition is similar to the previous

case [see (8.4)] where ĥm̂, h are now replaced by p̄m̄, p. The processes Rn(t) and
νn(t) are given by

νn(t) = 1

2π
〈p̄∗ − E(p̄∗), t∗〉, Rn(t) = 1

2π
〈E(p̄∗) − p∗, t∗〉.
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The term Rn(t) is dealt using (8.13). For the term containing νn(t), we need ap-
ply Lemma A.1. So, νn is split into the sum of a principal and a residual term,
respectively denoted by νP

n and νR
n with

νP
n (t) = 1

n

n∑
k=1

[ft (Zk) − E(ft (Zk))]
(8.14)

with ft (z) = 1

2π�
z31|z|3≤kn

√
�〈t∗, eiz·〉,

and νR
n (t) = νn(t) − νP

n (t). Everything is analogous. The difference is that,

for applying Lemma A.1, we have to bound
∫ 2πm′′
−2πm′′ |ψ(6)

� (u)|2 du (instead of∫ 2πm′′
−2πm′′ |ψ(4)

� (u)|2 du previously). Using ψ ′
� = �φ̃ψ� [see (2.1)–(4.2)], we find

ψ
(6)
� = �ψ�φ(5) + �2ψ�

[
6φ̃φ(4) + 15φ(3)(φ′(u) − σ 2)]

+ �3ψ�

[
15φ(3)φ̃2 + 60φ′′(φ′(u) − σ 2)φ̃ + 15

(
φ′(u) − σ 2)3]

+ �4ψ�

[
17φ′′φ̃(3) + 36φ̃(2)(φ′(u) − σ 2)2]

+ 12�5ψ�φ̃4(φ′(u) − σ 2)+ �6ψ�φ̃6.

Now, φ̃(u) ≤ C(1 + |u|) and all the derivatives of φ̃, φ are bounded. Moreover,
under (H6),

∫ |φ(5)(u)|2 du = ∫
x6|p(x)|2 dx < +∞. Thus, we find the following

bound:∫ 2πm′′

−2πm′′
|ψ(6)

� |2 ≤ C�2(1+�2m3 +�4m5 +�6m7 +�8m9 +�10m13) = O(�2),

as m ≤ √
n�. The proof may then be completed as for ĥm̂.

8.8. Proof of Proposition 5.1. Proof of (i). The assumptions and the fact that
r ≤ 1 imply

|
�|r =
∣∣∣∣∑
s≤�


s − 
s−

∣∣∣∣
r

≤ ∑
s≤�

|
s − 
s−|r .

Taking expectations yields E|
�|r ≤ �
∫ |γ |rn(γ ) dγ.

Proof of (ii). Consider f a nonnegative function such that f (0) = 0. We have

E

∑
s≤t

f (Xs − Xs−) = E

∑
s≤t

f (B
s − B
s− ).

Then,
∑

s≤t Ef (B
s −B
s− ) = ∑
s≤t

∫
R

f (x)(Ee(−x2/2(
s−
s− )) 1√
2π(
s−
s− )

) dx.

Since, for all x,

E

∑
s≤t

e(−x2/2(
s−
s− )) 1√
2π(
s − 
s−)

= t

∫ +∞
0

e−x2/2γ 1√
2πγ

n
(γ ) dγ,
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we get the formula for nX . Setting mα = E|X|α , for X a standard Gaussian vari-
able, yields ∫

R

|x|αnX(x) dx = mα

∫ +∞
0

γ α/2n
(γ ) dγ.

Thus, E|X�|r = mrE(

r/2
� ). As r/2 ≤ 1, 


r/2
� = (

∑
s≤� 
s − 
s−)r/2 ≤∑

s≤�(
s − 
s−)r/2. Taking expectation gives the result.
Proof of (iii). The result is proved, for example, in Barndorff-Nielsen, Shephard

and Winkel [(2006), Theorem 1, page 804] [see also Aït-Sahalia and Jacod (2007)].

8.9. Proof of Proposition 5.2. We have E(Zk) = �b and, for � ≥ 2, E(Z�
k) =

�c� +o(�). Therefore, b̂ is an unbiased estimator of b and, for � ≥ 2,
√

n�|Eĉ� −
c�| =

√
n�O(�). Hence, the additional condition n�3 = o(1) to erase the bias.

Setting c1 = b, ĉ1 = b̂, as VarZ�
k = �c2� +o(�) for � ≥ 1, we have n�Var ĉ� =

c2� +O(�). Writing
√

n�(ĉ� −Eĉ�) = (n�)−1/2 ∑n
k=1(Z

�
k −EZ�

k) = ∑n
k=1 χk,n,

it is now enough to prove that
∑n

k=1 E|χk,n|2+ε tends to 0. Under the assumption,
we have

n∑
k=1

E|χk,n|2+ε ≤ C

nε/2�1+ε/2

(
E|Zk|�(2+ε) + |E(Z�

k)|2+ε) ≤ C

(n�)ε/2 ,

which gives the result.

8.10. Proof of Proposition 5.3. The study of (5.3) relies on the following result
which is standard for r = 2.

LEMMA 8.3. Let Yt = θt + σWt for θ a constant and consider σ̃
(r)
n =

1
mrn�r/2

∑n
k=1 |Yk� − Y(k−1)�|r .

Then, for all r ,
√

n(σ̃
(r)
n − σ r) converges in distribution to a centered Gaussian

distribution with variance σ 2r (m2r/m2
r − 1) as n tends to infinity, � tends to 0,

n� tends to infinity, and n�2 tends to 0.

PROOF. We have Eσ̃
(r)
n = 1

mr
E|θ√

�+σX|r , for X a standard Gaussian vari-
able. Thus,

Eσ̃ (r)
n − σ r = σ r(e−θ2�/2σ 2 − 1)

+ 1

mr

e−θ2�/2σ 2
∫

|u|r (eθu
√

�/σ 2 − 1)e−u2/(2σ 2) du

σ
√

2π
.

Noting that eθu
√

�/σ 2 − 1 = θu
√

�/σ 2 + �
∑

n≥2
1
n!(uθ/σ 2)n�n/2−1 and that∫ |u|rue−u2/(2σ 2) du/(σ

√
2π) = 0, we easily obtain∣∣Eσ̃ (r)

n − σ r
∣∣ ≤ c�.
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Thus,
√

n|Eσ̃
(r)
n − σ r | = o(1) if

√
n� = (n�2)1/2 = o(1). Noting that E|θ√

� +
σX|k converges to σkmk as � tends to 0, we get nVar σ̃ (r)

n → σ 2r (m2r/m2
r − 1).

Finally, we look at χk,n = n−1(|θ√
�+σ(Wk� −W(k−1)�)/

√
�|r −E|θ√

�+
σX|r ), which satisfies nEχ4

k,n ≤ c/n3. Hence,
√

n(σ̃
(r)
n −Eσ̃

(r)
n ) converges in dis-

tribution to the centered Gaussian with the announced variance which completes
the proof. �

PROOF OF (i). As noted above, Lt = b0t + σWt + 
t with b0 = b −∫
xn(x) dx. Using that, for r ≤ 1, ||∑ai + bi |r − |∑ai |r | ≤ ∑ |bi |r , we get

|σ̂ (r)
n − σ̃

(r)
n | ≤ 1

mrn�r/2

∑n
k=1 |
k� − 
(k−1)�|r , where σ̃

(r)
n is built with Yt =

b0t + σWt as in the previous lemma. Thus, applying Proposition 5.1(i),

E
√

n
∣∣σ̂ (r)

n − σ̃ (r)
n

∣∣ ≤ 1

mr

√
n�1−r/2

∫
|x|rn(x) dx.

Since r < 1, the constraint n�2−r = o(1) can be fulfilled and implies n�2 = o(1).
Hence, the result follows from the previous proposition.

PROOF OF (ii). The proof is analogous to the previous one [using Proposi-
tion 5.1(ii)] and is omitted. As σ(r) = [σ̂ (r)

n ]1/r , we conclude for σ̂ (r) by using
the delta-method. �

APPENDIX: THE TALAGRAND INEQUALITY

The following result follows from the Talagrand concentration inequality given
in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof
of their Corollary 2, page 354).

LEMMA A.1 (Talagrand inequality). Let Y1, . . . , Yn be independent random
variables, let νn,Y (f ) = (1/n)

∑n
i=1[f (Yi) − E(f (Yi))] and let F be a countable

class of uniformly bounded measurable functions. Then for ε2 > 0

E

[
sup
f ∈F

|νn,Y (f )|2 − 2(1 + 2ε2)H 2
]
+

≤ 4

K1

(
v

n
e−K1ε

2nH 2/v + 98M2

K1n2C2(ε2)
e−2K1C(ε2)ε/(7

√
2)nH/M

)
,

with C(ε2) = √
1 + ε2 − 1, K1 = 1/6 and

sup
f ∈F

‖f ‖∞ ≤ M, E

[
sup
f ∈F

|νn,Y (f )|
]
≤ H, sup

f ∈F

1

n

n∑
k=1

Var(f (Yk)) ≤ v.

By standard density arguments, this result can be extended to the case where F
is a unit ball of a linear normed space, after checking that f �→ νn(f ) is continuous
and F contains a countable dense family.
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